Modeling and Automation of Industrial Processes

Modelação e Automação de Processos Industriais / MAPI

Supervised Control of Discrete Event Systems Supervision Controllers (Part 1/2)

http://www.isr.tecnico.ulisboa.pt/~jag/courses/mapi2122

Prof. Paulo Jorge Oliveira, original slides Prof. José Gaspar, rev. 2021/2022

Syllabus:

Chap. 2 – Discrete Event Systems (DESs)

Chap. 5b – Supervised Control of DESs * SCADA * Methodologies for the Synthesis of Supervision Controllers * Failure detection

...

...

IST / DEEC / MAPI

Some pointers on Supervised Control of DES

History:The SCADA Web, http://members.iinet.net.au/~ianw/Monitoring and Control of Discrete Event Systems, Stéphane Lafortune,http://www.ece.northwestern.edu/~ahaddad/ifac96/introductory_workshops.html

Tutorial:http://vita.bu.edu/cgc/MIDEDS/http://www.daimi.au.dk/PetriNets/

Analysers &http://www.nd.edu/~isis/techreports/isis-2002-003.pdf (Users Manual)Simulators:http://www.nd.edu/~isis/techreports/spnbox/ (Software)

Bibliography: * SCADA books <u>http://www.sss-mag.com/scada.html</u>
* K. Stouffer, J. Falco, K. Kent, "Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems Security", NIST Special Publication 800-82, 2006
* Moody J. e Antsaklis P., "Supervisory Control of Discrete Event Systems using Petri Nets," Kluwer Academic Publishers, 1998.
* Cassandras, Christos G., "Discrete Event Systems - Modeling and Performance Analysis," Aksen Associates, 1993.
* Yamalidou K., Moody J., Lemmon M. and Antsaklis P. Feedback Control of Petri Nets Based on Place Invariants http://www.nd.edu/~lemmon/isis-94-002.pdf

And

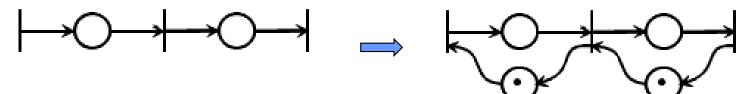
Now

Something

Completely

Different

Given one Unsafe Petri net can one obtain a Safe Petri net?



Unsafe Petri net

Safe Petri net

In many cases yes: **Supervision** of DES may be achieved using linear algebra based methodologies. *See the next slides!*

Other possible goals:

- Supervise and bound the work of the supervised DES
- Reinforce that some properties are verified
- Assure that some states are not reached

- Performance criteria are verified
- Prevent deadlocks in DES
- Constrain on the use of resources (e.g. mutual exclusion)

Some history on Supervised Control

- Methods for finite automata [Ramadge et *al*.], 1989
 - some are based on brute-force search (!)
 - or may require simulation (!)

• Formal verification of *software* in Computer Science (since the 60s) and on *hardware* (90, ...)

• Supervisory Control Method of Petri Nets, method based on *monitors* [Giua et *al*.], 1992.

• Supervisory Control of Petri Nets based on Place Invariants [Moody, Antsaklis et *al*.], 1994 (shares some similarities with the previous one, but deduced independently!...).

Advantages of the Supervisory Control of Petri Nets

- Mathematical representation is clear (and easy)
- Resorts only to linear algebra (matrices)
- More compact then automata
- Straightforward the representation of infinity state spaces
- Intuitive graphical representation available

The representation of the controller as a Petri Net leads to simplified Analysis and Synthesis tasks

Place Invariants

Place invariants are sets of places whose token count remains always constant. Place invariants can be computed from integer solutions of $w^T D = 0$. Non-zero entries of w correspond to the places that belong to the particular invariant.

Supervisor Synthesis using Place Invariants [ISIS docs]:

What type of relations can be represented in the method of Place Invariants?

- Sets of linear constraints in the state space
- Representation of convex regions (there are extensions for non-convex regions)
- Constraints to guarantee liveness and to avoid deadlocks (that can be expressed, in general, as linear constraints)
- Constraints on the events and timings (that can be expressed, in general, as linear constraints)

Methods of Analysis/Synthesis

Method of the Matrix Equations (just to remind)

The dynamics of the Petri net state can be written in compact form as:

$$\mu(k+1) = \mu(k) + Dq(k)$$

where:

- $\mu(k+1)$ marking to be reached
- μ (k) initial marking
- q(k) firing vector (transitions)
- D incidence matrix. Accounts the balance of tokens, giving the transitions fired.

Methods of Analysis/Synthesis

How to build the Incidence Matrix? (just to remind)

For a Petri net with *n* places and *m* transitions

$$\mu \in N_0^{n}$$

$$q \in N_0^{m}$$

$$D = D^+ - D^-, \quad D \in Z^{n \times m}, \quad D^+ \in N_0^{n \times m}, \quad D^- \in N_0^{n \times m}$$
The enabling firing rule is $D^-q \leq \mu$

Can also be written in compact form as the inequality $\mu + Dq \ge 0$, interpreted element-by-element.

Note: in this course all vector and matrix inequalities are read element-by-element unless otherwise stated.

Place Invariants

 $W^{T}\mu(K+1) = W^{T}\mu(K) + W^{T}\rho(K)$ $\sum_{k=0}^{\infty} e_{s,k} = 0 \quad \forall_{K}$

Place invariants are sets of places whose token count remains always constant. Place invariants can be computed from integer solutions of $w^T D = 0$. Non-zero entries of w correspond to the places that belong to the particular invariant.

Supervisor Synthesis using Place Invariants [ISIS docs]:

What type of relations can be represented in the method of Place Invariants?

- Sets of linear constraints in the state space
- Representation of convex regions (there are extensions for non-convex regions)
- Constraints to guarantee liveness and to avoid deadlocks (that can be expressed, in general, as linear constraints)
- Constraints on the events and timings (that can be expressed, in general, as linear constraints)

Some notation for the method

• The supervised system is modelled as a Petri net with *n* places and *m* transitions, and incidence matrix

$$D_{P} \in \mathbb{Z}^{n \times m} \cdot \begin{bmatrix} \mathcal{M}_{p}(\mathcal{W}^{(1)}) \\ \mathcal{M}_{c}(\mathcal{W}^{(1)}) \end{bmatrix} = \begin{bmatrix} \mathcal{M}_{p}(\mathcal{W}) \\ \mathcal{M}_{c}(\mathcal{W}) \end{bmatrix}^{\dagger} \begin{bmatrix} D_{P} \\ D_{c} \end{bmatrix}^{q(\mathcal{W})}$$

• The supervisor is modelled as a Petri net with n_C places and m transitions, and incidence matrix

$$D_C \in \mathbb{Z}^{n_C \times m}.$$

• The resulting total system has an incidence matrix

$$D \in \mathbb{Z}^{(n+n_c) \times m}.$$

Theorem: Synthesis of Controllers based on Place Invariants (T1)

Given the set of linear state constraints that the supervised system must follow, written as

$$L\mu_P \leq b, \quad \mu_P \in N_0^n, \quad L \in Z^{n_C \times n} \quad and \quad b \in Z^{n_C}.$$

If
$$b-L\mu_{P_0}\geq 0$$
,

then the controller with incidence matrix and the initial marking, respectively

$$D_C = -LD_P$$
, and $\mu_{C_0} = b - L\mu_{P_0}$,

enforce the constraints to be verified for all markings obtained from the initial marking.

Theorem - proof outline :

The constraint $L\mu_P \leq b$ can be written as $L\mu_P + \mu_C = b$, using the slack variables μ_C . They represent the marking of the n_C places of the controller.

To have a place invariant, the relation $w^T D = 0$ must be verified and in particular, given the previous constraint:

$$w^T D = \begin{bmatrix} L & I \end{bmatrix} \begin{bmatrix} D_P \\ D_C \end{bmatrix} = 0$$
, resulting $D_C = -LD_P$.

From $L\mu_{P_0} + \mu_{C_0} = b$, follows that $\mu_{C_0} = b - L\mu_{P_0}$.

Page 14

IST / DEEC / MAPI

Some more details:

$$L_{MP} \leq b \longrightarrow D_{c} = -LDP, \quad Mc_{0} = b - LMP$$
Using slack variables M_{c}
cillows $L_{MP} \leq b \longrightarrow L_{MP} + M_{c} = b$
which can be written in mother
form as $[L \ I] \left(MP \right) = b$
Given the dynamics
$$\begin{bmatrix} M_{1}(W_{c}) \\ M_{c}(W_{c}T) \end{bmatrix} = \begin{bmatrix} MP \\ M_{c}(W \end{bmatrix} + \begin{bmatrix} DP \\ D_{c} \end{bmatrix} (W) = b$$

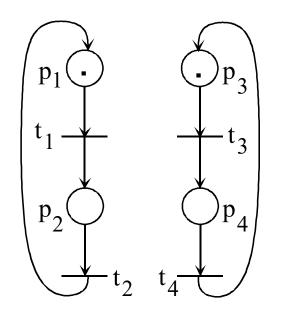
$$LD_{P} + D_{c} = 0 \longrightarrow D_{c} = -LDP$$
The initial state is direct:
$$L_{MP} = b \longrightarrow L_{mP} + \begin{bmatrix} DP \\ P_{c} \end{bmatrix} (W) = b$$

$$L_{MP} = b \longrightarrow L_{mP} + \begin{bmatrix} DP \\ P_{c} \end{bmatrix} (W)$$

$$M_{c}(W_{c}T) = \begin{bmatrix} MP \\ M_{c}(W \end{bmatrix} + \begin{bmatrix} DP \\ P_{c} \end{bmatrix} (W) = b$$

$$L_{mP} = b \longrightarrow L_{mP} + \frac{DP}{P_{c}} = b$$

Example 1 of controller synthesis: Mutual Exclusion



Linear constraint: $\mu_2 + \mu_4 \leq I$ that can be written as: $L\mu_P \leq b \quad \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{vmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{vmatrix} \leq 1.$ Incidence Matrix $D_P = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ and initial marking

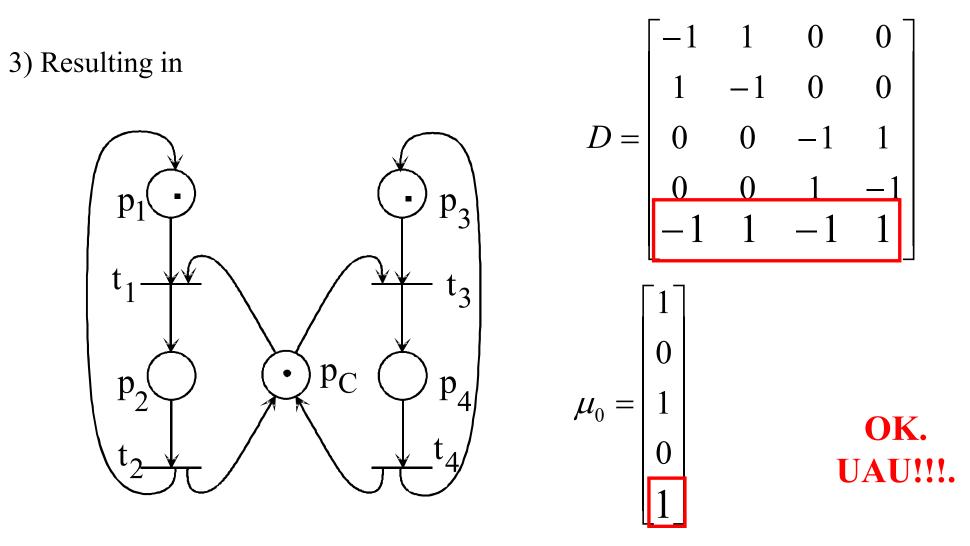
Example 1 of controller synthesis: Mutual Exclusion

 $b - L\mu_{P_0} = 1 - \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{vmatrix} 1 \\ 0 \\ 1 \\ 0 \end{vmatrix} = 1 \ge 0.$ 1) Test OK. 2) Compute $D_{C} = -LD_{P} = -\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix},$ and

$$\mu_{C_0} = b - L \mu_{P_0} = 1.$$
 OK.

Page 17

Example 1 of controller synthesis: Mutual Exclusion



Example 1 of controller synthesis: Mutual Exclusion

```
% The Petri net D=Dp-Dm, and m0
                                                Result using the function
% (Dplus-Dminus= Post-Pre)
                                                linenf.m of the toolbox
Dm= [1 0 0 0;
                                                SPNBOX:
    0 1 0 0;
    0 0 1 0;
    0 0 0 1];
                                                Df =
Dp= [0 1 0 0;
                                                    -1 1
                                                                0
                                                                      0
    1000;
                                                         -1 0
                                                     1
                                                                     0
    0 0 0 1;
                                                     0 0 -1 1
    0 0 1 0];
                                                     0 0 1 -1
                                                    -1 1
                                                               -1 1
mO = [1 \ 0 \ 1 \ 0]';
% Supervisor constraint
                                                ms0 =
L = [0 1 0 1];
                                                     1
b = 1;
                                                     0
                                                     1
% Computing the supervisor
                                                     0
                                                     1
[Dfm, Dfp, ms0] = linenf(Dm, Dp, L, b, m0);
Df= Dfp-Dfm
```

ms0

Definition:

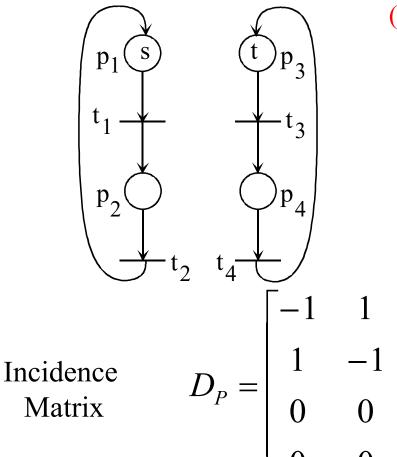
Maximal permissivity occurs when (i) all the linear constraints are verified and (ii) all legal markings can be reached.

Lemmas:

L1) The controllers obtained with T1 have maximal permissivity.

L2) Given the linear constraints used, **the place invariants** obtained with the controller synthesized with T1 **are the same** as the invariants associated with the initial system.

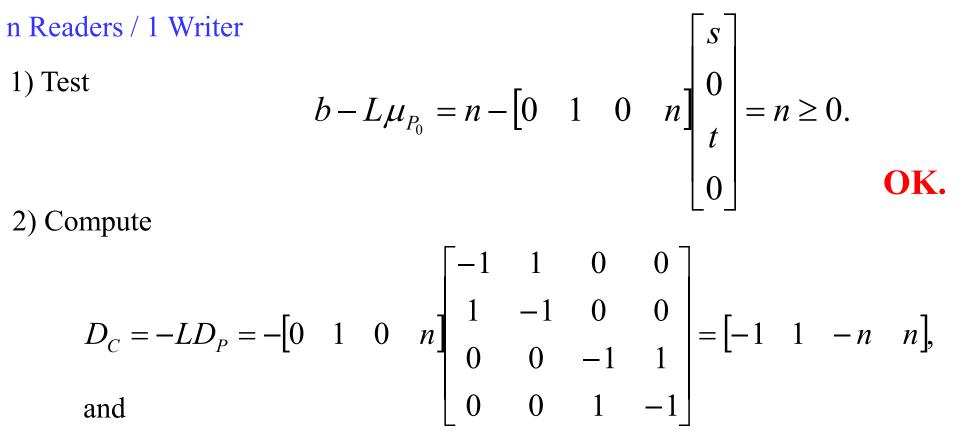
n Readers / 1 Writer



Example 2 of controller synthesis $\forall s \in N_0, \forall t \in N_0, \forall n \in N_0$ Linear constraint $\mu_2 + n\mu_4 \le n$ (max *n* readers or 1 writer) That can be written as: $L\mu_P \leq b \qquad \begin{bmatrix} 0 & 1 & 0 & n \end{bmatrix} \begin{vmatrix} r & 1 \\ \mu_2 \\ \mu_3 \end{vmatrix} \leq n.$ $D_{P} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ and initial marking 0

0

Example 2 of controller synthesis

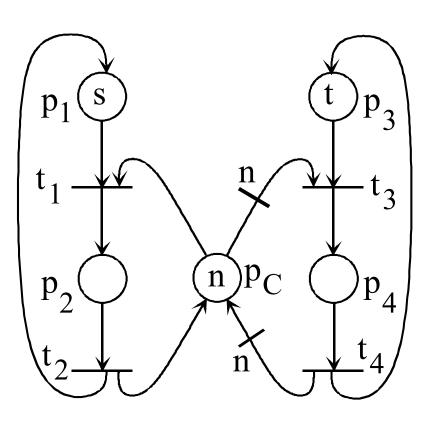


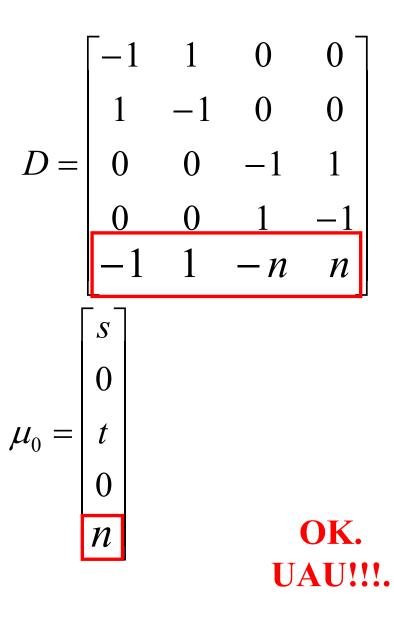
$$\mu_{C_0} = b - L\mu_{P_0} = n.$$
 OK.

Example 2 of controller synthesis

n Readers / 1 Writer

3) Resulting in





Advantages of the Method of the Place Invariants [ISIS docs]:

Other characteristics that can impact on the solutions?

- Existence and uniqueness
- Optimality of the solutions (e.g. maximal permissivity)

• Existence of transition non-controllable and/or not observable (remind definitions for time-driven systems)

In general the solutions can be found solving:

Linear Programming Problems, with Linear Constraints

Example 3 of controller synthesis

Given one Unsafe Petri net can one obtain a Safe Petri net?

