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Chap. 2a – Discrete Event Systems
…

Chap. 2b – Analysis of Discrete Event Systems

Properties of DESs.

Methodologies to analyze DESs:
* The Reachability tree.
* The Method of Matrix Equations.

…

Syllabus:
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Some pointers to Discrete Event Systems

History: http://prosys.changwon.ac.kr/docs/petrinet/1.htm

Tutorial: http://vita.bu.edu/cgc/MIDEDS/
http://www.daimi.au.dk/PetriNets/

Analyzers, http://www.ppgia.pucpr.br/~maziero/petri/arp.html (in Portuguese)

and http://wiki.daimi.au.dk:8000/cpntools/cpntools.wiki
Simulators: http://www.informatik.hu-berlin.de/top/pnk/download.html

Bibliography: * Cassandras, Christos G., "Discrete Event Systems - Modeling and 
PerformanceAnalysis", Aksen Associates, 1993.
* Peterson, James L., "Petri Net Theory and the Modeling of Systems",
Prentice-Hall,1981

* Petri Nets and GRAFCET: Tools for Modelling Discrete Event Systems
R. DAVID, H. ALLA, New York : PRENTICE HALL Editions, 1992

Chap. 2b – Analysis of Discrete Event Systems
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1. Reachability

Given a Petri net C=(P, T, I, O, μ0) with initial marking μ0 , the set of all markings
that can be obtained starting from μ is the Reachable Set, R(C, μ).

Properties of Discrete Event Systems

Note: in general R(C, μ) is infinite!

How to describe and compute R(C, μ)?

Chap. 2b – Analysis of Discrete Event Systems

Reachability problem: Given a Petri net C with initial marking μ0 , does the 
marking μ’ belong to the set of all markings that can be obtained, i.e. μ’ ∈ R(C, μ)?

Property usage: State μ belongs / does not belong to R(C, μ0).
usage2: State μ is / is not reachable.
usage3: Net C has a finite / infinite Reachable Set.
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2. Coverability

Given a Petri net C=(P, T, I, O, μ0) with initial marking μ0 and states μ, μ’ ∈ R(C, μ0) 
then μ’ is covered  by μ if   μ’(i) ≤ μ (i), for all places pi ∈ P.
Equivalently, one says μ covers μ’.

Is it possible to use this property to help on the search for the reachable set? Yes! 
Details after some few slides.

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems

Property usages:
State μ’ covers / does not cover state μ.
State μ is / is not covered by state μ’.
State μ is / is not coverable by other reachable states.

Note, μ’ not covered by μ does not imply μ’ covers μ.
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3. Safeness

A place pi ∈ P of the Petri net C=(P, T, I, O, μ0) is safe if
for all μ’ ∈ R(C, μ0 ):  μi’ ≤ 1.

A Petri net is safe if all its places are safe.

Petri net not safe Petri net safe

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems

Property usage: Place pi / Net C     is / is not     safe.
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4. Boundedness 

Given a Petri net C=(P, T, I, O, μ0), a place pi ∈ P is k-bounded if μi’ ≤ k
for all μ’=(μ1’, ... , μi’, ..., μN’) ∈ R(C, μ0 ). 

A Petri net is k-bounded if all places are k-bounded.

Petri net not bounded Petri net 3-bounded

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems

Property usage: Place pi / Net C     is / is not      k-bounded.
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5. Conservation

A Petri net C=(P, T, I, O, μ0) is strictly conservative if for all μ’ ∈ R(C, μ)

Σ μ’(pi)  =  Σ μ (pi)
pi ∈P pi ∈P

Petri net strictly conservative

2

2 2

2

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems

Petri net not strictly conservative

1

1 1

1

Property usage: Net C is / is not (strictly) conservative.
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6. Liveness

A transition tj is live of

Level 0 - if it can never be fired (transition is Dead).

Level 1 - if it is potentially firable an upper-bounded number of times,
i.e. if there exists  μ’ ∈ R(C, μ) such that tj  is enabled in μ’.

Level 2 - if for every integer n, there exists a firing sequence such that tj  

occurs n times.

Level 3 - if there exists an infinite firing sequence such that tj occurs infinite times.

Level 4 - if for each μ’ ∈ R(C, μ) there exist a sequence s such that the transition 
tj is enabled (transition is Live).

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems
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• t0 is of level 0.

• t1 is of level 1.

• t2 is of level 2.

• t3 is of level 3.

• this net does not have
level 4 transitions.

t0

t2t3

t1

.

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems

Example of liveness of transitions 
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Reachability problem

Given a Petri net C=(P, T, I, O, μ0) with initial marking μ0 and 
a marking μ’, is μ’ ∈ R(C, μ0 ) reachable?

Analysis methods:

0- Brute force...

1- Reachability tree

2- Matrix equations

Chap. 2b – Analysis of Discrete Event Systems

Properties of Discrete Event Systems
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Reachability Tree - construction [Peterson81, §4.2.1]

A reachability tree is a tree of reachable markings.
Tree nodes are states. The root node is the initial state (marking).

It is constituted by three types of nodes:
- Terminal no state changes after a terminal state
- Interior state can change after
- Duplicated state already found in the tree

The infinity marking symbol (ω) is introduced whenever a marking covers other.  
This symbol allows obtaining finite trees.

The reachability tree is useful to study properties previously introduced.
Some examples later.

Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods, 1- Reachability Tree
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Reachability Tree - examples
Three types of nodes: Terminal, Interior or Duplicated

The infinity marking symbol (ω) is introduced whenever a marking covers other.  
This symbol allows obtaining finite trees.

Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods, 1- Reachability Tree
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Analysis Methods

Reachability Tree - construction [Peterson81, §4.2.1]

Algebra of the infinity symbol (ω):

For every positive integer a the following relations are verified:
1. ω + a = ω
2. ω - a = ω
3. a < ω
4. ω ≤ ω

Theorem - If there exist terminal nodes in the reachability tree then the 
corresponding Petri net has deadlocks.

Chap. 2b – Analysis of Discrete Event Systems

Reachability Tree and Deadlocks
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(1, 0, 0)

(1, , 0) (0, 1, 1)

t1 t2

t3

t2

t1

p1

p2

p3

Example of reachability tree:

.

After t1 one obtains (1, 0, 0) which is covered by (1, 1, 0). Hence one 
introduces the infinity symbol, ω and writes the state as (1, ω, 0).

Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods

1 
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(1, 0, 0)

(1, , 0) (0, 1, 1)

t1 t2

t3

t2

t1

p1

p2

p3

Example of reachability tree:

.
ω

Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods

After t1 one obtains (1, 0, 0) which is covered by (1, 1, 0). Hence one 
introduces the infinity symbol, ω and writes the state as (1, ω, 0).
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(1, 0, 0)

(1, ω , 0)

(1, ω , 0)

(0, 1, 1)

(0, 0, 1)(0, ω , 1)

(0, ω , 1)

t1

t1

t2

t3t2

t3

t3

t2

t1

p1

p2

p3
.

dup. term.

dup.

We can conclude
immediately that 
there are 

DEADLOCKS!

Chap. 2b – Analysis of Discrete Event Systems

Example of reachability tree:

Analysis Methods
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Analysis Methods

Reachability Tree vs Coverability Tree
[Cassandras08, §4.4.2]

Chap. 2b – Analysis of Discrete Event Systems

Considering a Petri net the reachability
tree is "a tree whose root node is (...), then
examine all transitions that can fire from
this state, define new nodes in the tree,
and repeat until all possible reachable
states are identified."

"The reachability tree (...) may be infinite.
A finite representation (...) is possible, but
at the expense of losing some information.
The finite version of an infinite
reachability tree will be called a
coverability tree."

Reachability tree ,      Coverability tree

(In this course we use Peterson’s terminology, i.e. “reachability tree” in both cases)

1
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(P, T, A, w, x0)

P={p1, p2, p3, p4, p5}

T={t1, t2, t3, t4}

A={(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p3, t3),
(t2, p4), (t3, p5), (p4, t4), (p5, t4), (t4, p1)}

w(p1, t1)=1, w(t1, p2)=1, w(t1, p3)=1, w(p2, t2)=1
w(p3, t3)=2, w(t2, p4)=1, w(t3, p5)=1, w(p4, t4)=3
w(p5, t4)=1, w(t4, p1)=1

x0 = {1, 0, 0, 2, 0}

Example1: simple Petri net, properties?

p1

p2 p3

t1

t3t2

p4 p5

t4

2

3

Chap. 2b – Analysis of Discrete Event Systems
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Example2: simple automation system modeled using PNs,
properties?

An automatic soda selling 
machine accepts 

50c and $1 coins and
sells 2 types of products:

SODA A, that costs $1.50 and
SODA B, that costs $2.00.

Assume that the money return
operation is omitted.

t1

t2

t3

t4

t5

t6

t7

t8

t9

p1

p2

p3

p4

p5

p1: machine with $0.00;
t1: coin of 50 c introduced;
t8: SODA B sold.

Chap. 6 – Discrete Event Systems
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Example3:
(counter-example) t1

p1 p2

p3
t2

t1
p1 p2

p3
t2

(1, 0, 0)

t1
(0, 1, 0)

t2
(1, 0, ω)

(0, 1, ω)

(1, 0, ω)

t1

t2

(1, 0, 0)

t1
(0, 1, 0)

t2
(1, 0, ω)

(0, 1, ω)

(1, 0, ω)

t1

t2

Different reachable  sets 
but the
same reachability tree

Decidability Problem:

Can one reach (1,0,1)? Yes in one net, 
No in the other one. Simple to answer in 
this net, but undecidable in general due 
to the symbol ω.

The reachability tree does not ensure 
decidability of state reachability.

Chap. 2b – Analysis of Discrete Event Systems

dup.dup.
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Alternative definition (#3) of a Petri net

A marked Petri net is a  5-tuple

(P, T, D
-
, D

+
, μ0) or   (P, T, Pre, Post, μ0)

where:
P - set of places
T - set of transitions 

Pre - pre conditions matrix Pre  :   PxT → N
Post - post conditions matrix Post :  PxT → N
μ0 - initial marking μ0 :  P → N

Note: D = D
+

- D
-

= Post - Pre is named the incidence matrix.

Chap. 6 – Discrete Event Systems

[Iordache06]

[Iordache06] "Supervisory control of concurrent systems: a Petri net structural approach", 
Marian Iordache and Panos J. Antsaklis, Birkhauser Boston, 2006
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p1

p2 p3

t1

t3t2

p4 p5

t4

Alternative definition (#3), how to build the Incidence Matrix, D ?

,

1100

1010

0101

0011

1001























-

-

-

-

-

D

Read the example 
marked by the arrows 
as “firing t1 takes a 
mark from p1 and adds 
a mark to p2 and adds 
another mark to p3”.

t1 t2 t3 t4

Petri net (P, T, D
-
, D

+
, μ0),    D= D

+
- D

-

Set of places P={p1, p2, p3, p4, p5}

Set of transitions T={t1, t2, t3, t4}

p1

p2

p3

p4

p5
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Alternative definition (#3) of a Petri net, example arc weights

p1

p2 p3

t1

t3t2

p4 p5

t4

2

3

Chap. 6 – Discrete Event Systems
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Method of  the Matrix Equations (MME) of State Evolution

The dynamics of the Petri net state can be written in 
compact form as:

where:
μ (k+1) - marking to be reached 
μ (k) - initial marking
q(k) - firing vector (transitions) 
D - incidence matrix. Accounts the balance of 

tokens, giving the transitions fired.

( ) ( ) ( )kDqkk ++  1

Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods, 2- MME

This methodology can also be used 
to study the other  properties 
previously introduced.
Requires some thought... ;) 
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For a Petri net with n places and m transitions
n

N 0
m

Nq 0
mnmnmn NDNDDDDD -+-+ - 00 ,,,

The enabling firing rule is 

Can also be written in compact form as the inequality 
interpreted element-by-element.

qD -

,0+ Dq

Chap. 2b – Analysis of Discrete Event Systems

Note: unless otherwise stated in this course all vector and matrix inequalities are read element-by-
element.

Method of  the Matrix Equations (MME) of State Evolution

Analysis Methods, 2- MME
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Properties that can be studied immediately with the 
Method of Matrix Equations:

• Reachability

• Conservation – the weight vector is a by-product of the MME.

• Temporal invariance – cycles of operation can be found.

Theorem,  Sufficient Condition for No Reachability :
if the problem of finding the transition firing vector that drives the 
state of a Petri net from μ to state μ’ has no solution, resorting to the 
method of matrix equations, then the problem of reachability of μ’ 
does not have solution.

Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods
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Example using the method of matrix equations

t3

t2

t1

p1

p2

p3
. 
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Verify!

( ) ( ) ( )kDqkk ++  1

( ) ,

0

3

1

1
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Chap. 2b – Analysis of Discrete Event Systems

Analysis Methods 1. Reachability

 q such that Dq(k)= μ(k+1)-μ(k)  is a necessary but not sufficient condition.

Reachability problem: Given a Petri net C with initial marking μ0 , does the 
marking μ’ belong to the set of all markings that can be obtained, i.e. μ’ ∈ R(C, μ)?

Given the net: Problem: 
is μ(k+1) reachable?
e.g.

Solution, find q(k):
(note using ti to avoid
using qi and confusing
with q(i); this is to drop soon)
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Example of a Petri net

p1

p2 p3

t1

t3t2

p4 p5

t4
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-

-

-

-



1100

1010

0101

0011

1001

D

2. Conservation

0DwT













--

+-

+-

++-

0

0

0

0

541

53

42

321

www

ww

ww

www

This example has a solution in the form of an undetermined 
system of equations, where we can choose:

].11112[Tw

Dqwww TTT +  '

To maintain the (weighted) number of tokens one writes:

Chap. 2b – Analysis of Discrete Event Systems

and therefore:
 x>0 is a necessary and 
sufficient condition
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3. Temporal invariance

0Dq
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0
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To determine the transition firing vectors that make the
Petri net return to the same state(s):

,

1100

1010
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0011

1001
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3

2

1

q

q

q

q

q

Chap. 2b – Analysis of Discrete Event Systems

Example of a Petri net

This example has a solution in the form of an 
undetermined system of equations from which we can 
choose e.g.:    

q = [1  1  1  1]T .

p1

p2 p3

t1

t3t2

p4 p5

t4

 q is a necessary (not 
sufficient) condition
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p1: Jobs waits
processing

p3: Job is being
processed

p2: Server is idle

p4: Job is 
complete

t1: Job
arrival

t2: Start of
processing

t3: End of
processing

t4: Job is
delivered

Chap. 2b – Analysis of Discrete Event Systems

Example for the analysis of properties:

Event   Pre-conditions Pos-conditions

t1 - p1

t2 p1, p2 p3

t3 p3 p4, p2

t4 p4 -

Q: Exists conservation ?

A: Find w such that wT.D=0
if  w>0 then net is conservative
else it is not conservative



















-

-

-

-



11

11

11

11

D

wT = [w1 w2 w3 w4] = ?

Q2: What changes if initial 
marking in p2 is zero?
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Discrete Event Systems

Example of a simple automation system modeled using PNs

An automatic soda selling 
machine accepts 

50c and $1 coins and
sells 2 types of products:

SODA A, that costs $1.50 and
SODA B, that costs $2.00.

Assume that the money return
operation is omitted.

t1

t2

t3

t4

t5

t6

t7

t8

t9

p1

p2

p3

p4

p5

p1: machine with $0.00;
t1: coin of 50 c introduced;
t8: SODA B sold.

Chap. 2b – Analysis of Discrete Event Systems

Q: Are there transition firing vectors 
that make the Petri net return to the 
same state? In other words, does the 
Petri net have cycles of operation?
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Discrete Event Systems

Example of a simple automation system modeled using PNs
>> q= null( D, 'r‘ )
q =

1  -1   1   0   1
-1   1  -1   1   0
1   0   0   0   0
0  -1   1   0   1
0   1   0   0   0
0   0  -1   1   0
0   0   1   0   0
0   0   0   1   0
0   0   0   0   1

t1

t2

t3

t4

t5

t6

t7

t8

t9

p1

p2

p3

p4

p5

D= [ -1  -1   0   0   0   0   0   1   1
1   0  -1  -1   0   0   0   0   0
0   1   1   0  -1  -1   0   0   0
0   0   0   1   1   0  -1   0  -1
0   0   0   0   0   1   1  -1   0 ]

>> q(:,1)= q(:,1)+q(:,4);
>> q(:,2)= q(:,2)+q(:,5);
>> q(:,3)= q(:,3)+q(:,4);
q =

1   0   1   0   1
0   1   0   1   0
1   0   0   0   0
0   0   1   0   1
0   1   0   0   0
1   0   0   1   0
0   0   1   0   0
1   0   1   1   0
0   1   0   0   1Time invariance ? Find q such that. D.q=0

Note: there are 
more solutions; 
see function 
invar(D) of the 
SPNBOX toolbox


