

Start Up Guide for Unity Pro
Installing an Application

UNY USE 40010V20E

 eng

35
00

84
02

.0
0

September 2004

2

Table of Contents
About the Book .5

Chapter 1 Description of the application .7
Presentation of the Application . 7

Chapter 2 Presentation of Unity Pro software. 9
Presentation of Unity Pro Software . 9

Chapter 3 Installing the Application using Unity Pro15
At a Glance . 15

3.1 Presentation of the Solution Used. 16
At a Glance . 16
Technological Choices Used. 17
The Different Steps in the Process using Unity Pro . 18

3.2 Developing the Application . 19
At a Glance . 19
Creating the Project. 20
Declaration of variables. 21
Creation and Use of DFBs . 24
Creating the Program in SFC for Managing the Tank. 30
Creating a Program in LD for Application Execution. 34
Creating a Program in LD for Application Simulation . 36
Creating a Program in FBD for Application Diagnostics 39
Creating an Animation Table. 41
Creating the Operator Screen . 43

Chapter 4 Starting the Application . 47
At a Glance . 47
Execution of Application in Simulation Mode . 48
Execution of Application in Standard Mode. 49
Diagnostics Viewer . 51

Glossary . 53

Index . 59
3

4

About the Book
At a Glance

Document Scope This manual describes how to install an application using different types of variables,
programming languages and an operator screen describing the operation of the
application.

Validity Note The application presented in this manual was developed using version V2.0 of Unity
Pro software.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Title of Documentation Reference Number

Unity Pro Online Help

Application available in the documentation CD Tank_management.XEF
 5

About the Book
6

1

Description of the application
Presentation of the Application

At a Glance The application described in this document is used to manage the level of a liquid in
a tank. The tank is filled by a pump, and drained using a valve.
The different levels of the tank are measured with sensors placed on the tank.
The volume of the tank is shown by a digital display.
The application’s operation control resources are based on an operator screen,
which shows the status of the various sensors and actuators, as well as the volume
of the tank.
Depending on the status of the tank level and the application, the user must be
alerted by way of alarms, with all necessary information backed up each time these
are triggered.

Illustration This is the application’s final operator screen:

2..8

Tank high safety

High tank level

Low tank level

Tank safety low

Pump flow0.2

Stop CycleStart Cycle
7

Description of the Application
Operating mode The operating mode is as follows:
� A Start Cycle button is used to run filling cycles,
� When the high level of the tank is reached, the pump stops and the valve opens.

When the low level of the tank is reached, the valve closes and the pump is
activated until the high level is reached.

� A Stop Cycle button is used to interrupt the fill cycles. Pressing this button allows
you to set the system to a safe level. The pump stops and the valve opens until
the "Low safety" level is reached (tank empty). The valve closes and the cycle
stops.

� The pump has a variable flow rate, the value of which can be accessed by the
operator screen. The flow rate of the valve is equal to that of the pump.

� Safety measures must be installed:
� Loss of tank’s high level: another level, called "High safety" is activated, and

the system is set to failsafe. The pump then stops and the valve opens until
the "Low safety" level is reached (tank empty). The valve closes and the cycle
stops.

� Loss of tank’s low level: another level, called "Low safety" is activated, and the
system is set to failsafe. The valve then closes and the cycle stops.

� For both failsafe modes, a fault message must be displayed.
� The time that the valve is open and closed is monitored, with a fault message

being displayed if either of these is exceeded.
8

2

Presentation of Unity Pro software
Presentation of Unity Pro Software

At a Glance Unity Pro is a software workshop for programming Telemecanique Modicon
Premium, Modicon Quantum and Modicon Atrium PLCs.
Below we provide a brief description of each of the blocks of Unity Pro required for
application development.

Note: For more information, see Unity Pro online help.
9

Presentation of Unity Pro Software
User Interface The screen below shows the Unity Pro user interface:

The user interface is divided into several areas:

JL:

2..8

Tank high safety

High tank level

Low tank level

Stop CycleStart Cycle

File Edit View Utilities Tools Build PLC Debug Window ?
Unity Pro XL: TANK_MANAGEMENT

Project Browser

RUNRUN STOP ??????

Screen

1 2 3 4 5 6 78

8

9

10

11

12

13

14

FBI_33

Valve

EN ENO

Open...

Close...

Lim_va..

Lim_va..

Valve...

Valve...

Valve_...

Valve_...

Valve_opening_cmd

Valve_closure_cmd

Valve_opening_error

Valve_closure_error

Lim_valve_opening

Lim_valve_closure

Open_va...

Open_va...

Close_v...

Close_v...

Table

Name Value

Valve_opening_error
Valve_opening_cmd
Valve_closure_cmd

Contactor_return

Tank_high_level
Tank_low_level

Lim_valve_opening
Run

Valve_closure_error

ForceModify

Lim_valve_closure

Tank_low_safety
Tank_high_safety

Motor_run_cmd
Tank_vol
Rate
Valve_flow
Pump_rate

Valve_closure_t
Valve_opening_t

0
0
0
0
1
0
0
0
0
1
0
9.2
0
0.4
0.4
0
1
0s
0s

Stop 0

application: [MAST]BF
D

Structural View

Import/Export User Errors Find/ReplaceBuild Project

HMI Read/Write Mode EQUAL RUN NO UPLOAD INFO TCPIP:127.0.0.1 GENERAT INS

Screen Table application SimulationBF D BF D

Editing links...
Transfer and execution of modifications in online mode...
Process successful: 0 Error(s), 0 Warning(s)

[x:105,y:112]

F

LD

LD

DB

SFC

Variables & FB instances
Elementary variables
Derived variables
Derived I/O variables
Elementary FB instances
Derived FB instances

Communication
Networks
Routing Table

Program
Tasks

MAST
Sections

Tank_management
Diagnostics
Simulation
application

SR Sections
Events

Animation tables

Valve
Motor
ALRM_DIA

Derived FB Types
Derived Data Types

0: X Bus
Configuration

Station

PP NN SS RR PP NN HH CC OPER COMP JL: R

4 3

21

Area Description

1 Unity Pro toolbar .

2 Editor window (language editors, data editors, etc.).

3 Project browser.

4 Information window (provides information on errors, signal monitoring, import
functions, etc.).
10

Presentation of Unity Pro Software
Project Browser The project browser provides easy access to various editors (See The Different
Steps in the Process using Unity Pro, p. 18) used in the application.
� Configuration (See Configuration, p. 11),
� Derived FB Types (See DFB Editor, p. 13),
� Variables & FB instances (See Data Editor, p. 12),
� Programs (See Program Editor, p. 12),
� Diagnostics (See Diagnostics Viewer, p. 13),
� Operator screens (See Operator Screens, p. 14).

Configuration The configuration tool is used to:
� create\modify\save the elements used to configure the PLC station,
� set up the application-specific modules comprising the station,
� diagnose the modules configured in the station,
� assess the current consumed on the basis of the voltages supplied by the power

supply module declared in the configuration,
� control the number of application-specific channels configured in relation to the

capacities of the processor declared in the configuration,
� assess processor memory usage.

Note: The configuration may be performed before or after the programming of the
project; this has the advantage of being able to create generic projects without
having to be concerned with the configuration in the initial stage.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Project configuration).
 11

Presentation of Unity Pro Software
Data Editor The data editor offers the following functions:
� declaration of variable instances,
� definition of Derived Data Types (DDT), directly accessible via Derived Data

Types,
� declaration of instances of Elementary and Derived Function Blocks (EFB/DFB),
� definition of parameters of Derived Function Blocks (DFB), directly accessible via

Derived FB Types (See DFB Editor, p. 13).

To access the Data editor, simply double-click on Variables & FB
instances in the project browser.

Program Editor The program editor is used to develop the different PLC tasks using different types
of language, in particular:
� FBD (Function Block Diagram),
� LD (Ladder Diagram),
� SFC (Sequential Function Chart), only available for the MAST task,
� IL (Instruction List),
� ST (Structured Text).

To access the Program editor, simply double-click on Program in the project
browser and select a Task or an Event.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Data editor).

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Programming).
12

Presentation of Unity Pro Software
DFB Editor Unity Pro software enables you to create DFB user function blocks, using
automation languages. A DFB is a program block that you develop to meet the
specific requirements of your application. It includes:
� input/output parameters,
� public or private internal variables.
� one or more sections written in Ladder Diagram (LD), Instruction List (IL),

Structured Text (ST) or Functional Block Diagram (FBD) language,

To access the DFB editor, simply double-click on Derived FB Types in the
project browser.

Diagnostics
Viewer

Unity Pro features a diagnostics tool for systems and projects.
If errors occur, they are displayed in a diagnostics window.

To access the DFB editor, simply double-click on Derived FB Types in the
project browser.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Language references, and User function block).

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Diagnostics).
 13

Presentation of Unity Pro Software
Operator
Screens

The operator screens are built into the software to aid operation of an automated
process. In the Unity Pro software, they use:
� the project browser for browsing through the screens and launching different

tools (the graphics editor, variables editor, messages editor, etc.),
� the graphics editor for creating or changing screens. In online mode, it also allows

the viewing of animated screens and process driving,
� the library of objects which presents design objects and enables their insertion in

the screens. It also allows users to create their own objects and insert them in a
library family.

To access Operator screens, simply right-click on Operator screens in the
project browser and select a new screen.

Simulator The PLC simulator enables you to simulate a project without having to connect to a
real PLC.
All the project tasks (Mast, Fast, AUX and Event) are also available in the simulator.
The difference in relation to a real API is that there are no I/O and communications
modules.

To access the Simulator, simply select Simulation mode in the PLC menu and
connect to the API.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Operator screens).

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, then Debugging and adjustment
and PLC simulator).
14

3

Installing the Application using
Unity Pro
At a Glance

Subject of this
Chapter

This chapter describes the procedure for creating the application described. It
shows, in general and in more detail, the steps in creating the different components
of the application.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

3.1 Presentation of the Solution Used 16

3.2 Developing the Application 19
15

Application using Unity Pro
3.1 Presentation of the Solution Used

At a Glance

Subject of this
Section

This section presents the solution used to develop the application. It explains the
technological choices and gives the application’s creation timeline.

What's in this
Section?

This section contains the following topics:

Topic Page

Technological Choices Used 17

The Different Steps in the Process using Unity Pro 18
16

Application using Unity Pro
Technological Choices Used

At a Glance There are several ways of writing an application using Unity Pro. The one proposed
allows you to structure the application so as to facilitate its creation and debugging.

Technological
Choices

The following table shows the technological choices used for the application:

Objects Choices used

Use of the pump Creation of a user function block (DFB) to facilitate
management of the pump in terms of entering a program
and speed of debugging. The programming language
used to develop this DFB is a function block diagram
(FBD)-based graphic language.

Use of the valve Creation of a user function block (DFB) to facilitate
management of the valve in terms of entering a program
and speed of debugging. The programming language
used to develop this DFB is a function block diagram
(FBD)-based graphic language.

Supervision screen Use of elements from the library and new objects.

Main supervision program This program is developed using a sequential function
chart (SFC), also called GRAFCET. The various sections
are created in Ladder Diagram (LD) language, and use the
different DFBs created.

Fault display Use of the ALRM_DIA DFB to control the status of the
variables linked with the faults.

Note: Using a DFB function block in an application enables you to:
� simplify the design and entry of the program,
� increase the legibility of the program,
� facilitate debugging the application,
� reduce the volume of generated code.
 17

Application using Unity Pro
The Different Steps in the Process using Unity Pro

At a Glance The following logic diagram shows the different steps to follow to create the
application. A chronological order must be respected in order to correctly define all
of the application elements.

Description Description of the different types:

Configuration of project
in

Configuration

Declaration of variables
in

Variables & FB instances

Creation of DFBs
in

Derived FB Types

Creation of
sections:

Transitions

Creation of
sections:
Actions

Creation of an animation
table in

Animation tables

Creation of an operator
screen in

 Operator screens

Launching of Unity Pro
and

selection of processor

Creation of Grafcet
in

Programs/Tasks/MAST

Generation of project, connection to API
and

switch to RUN mode
18

Application using Unity Pro
3.2 Developing the Application

At a Glance

Subject of this
Section

This section gives a step-by-step description of how to create the application using
Unity Pro.

What's in this
Section?

This section contains the following topics:

Topic Page

Creating the Project 20

Declaration of variables 21

Creation and Use of DFBs 24

Creating the Program in SFC for Managing the Tank 30

Creating a Program in LD for Application Execution 34

Creating a Program in LD for Application Simulation 36

Creating a Program in FBD for Application Diagnostics 39

Creating an Animation Table 41

Creating the Operator Screen 43
 19

Application using Unity Pro
Creating the Project

At a Glance Developing an application using Unity Pro involves creating a project associated
with a PLC.

Procedure for
Creating a
Project

The table below shows the procedure for creating the project using Unity Pro.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Project configuration).

Step Action

1 Launch the Unity Pro software,

2 Click on File then New then select a PLC,

3 Insert a module (See Application Hardware Configuration, p. 49) or network to terminate your
configuration.

4 Confirm with OK. You can now develop your application in Unity Pro.

PLC Description

Premium
TSXP57 204M
TSX P57 2634M
TSX P57 304M
TSX P57 3634M
TSX P57 5634M
TSX PCI57 204M

New Project

OK

Cancel

Help

Premium

57.2, 768Kb Program, Ethernet.TCP/IP, Unitelway

Quantum

Version

57.3, 1.75Mb, Program, Unitelway

57.2, 768Kb Program, Unitelway

57.3, 1.75Mb Program, Ethernet.TCP/IP, Unitelwa
57.5, 4Mb Program, Ethernet.TCP/IP, USB, Unite
57.2 for PC, 768Kb Program, Unitelway
Quantum

01.00
01.00
01.00
01.00
01.00
01.00
01.00
01.00
20

Application using Unity Pro
Declaration of variables

At a Glance All of the variables used in the different sections of the program must be declared.
Undeclared variables cannot be used in the program.

Procedure for
Declaring
Variables

The table below shows the procedure for declaring application variables:

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Data editor).

Step Action

1 In Project browser / Variables & FB instances, double-click on
Elementary variables.

2 In the Data editor window, select the box in the Name column and enter a
name for your first variable.

3 Now select a Type for this variable.

4 When all your variables are declared, you can close the window.
 21

Application using Unity Pro
Variables Used
for the
Application

The following table shows the details of the variables used in the application:

Variable Type Definition

Acknowledgement EBOOL Acknowledgement of a fault (Status 1).

Stop EBOOL Stop cycle at end of draining (Status 1).

Run EBOOL Startup request for filling cycles (Status 1).

Motor_run_cmd EBOOL Startup request for filling cycles (Status 1).

Motor_error EBOOL Error returned by the motor.

Contactor_return EBOOL Error returned by the contactor in the event of motor
error.

Pump_rate REAL Pump flow rate value.

Flow rate BOOL Intermediate variable for simulating the application.

Rate EBOOL Variable used to calculate the volume of the tank
(same as %S6 in our project).
This variable is used to simulate the project, and
must be deleted for real-life cases.

Valve_opening_cmd EBOOL Opening of the valve (Status 1).

Valve_closure_cmd EBOOL Closing of the valve (Status 1).

Valve_opening_error EBOOL Error returned by the valve on opening.

Valve_closure_error EBOOL Error returned by the valve on closing.

Lim_valve_opening EBOOL Valve in open position (Status 1).

Lim_valve_closure EBOOL Valve in closed position (Status 1).

Valve_closure_time TIME Valve closure time.

Valve_opening_time TIME Valve opening time.

Tank_low_level EBOOL Tank volume at low level (Status 1).

Tank_high_level EBOOL Tank volume at high level (Status 1).

Tank_low_safety EBOOL Tank volume at low safety level (Status 1).

Tank_high_safety EBOOL Tank volume at high safety level (Status 1).

Tank_vol REAL Variable used to calculate the volume of the tank.
This variable is used to simulate the project, and
must be deleted for real-life cases.

Note: EBOOL types can be used for I/O modules, unlike BOOL types.
22

Application using Unity Pro
The following screen shows the application variables created using the data editor:

Variables

EDTName

DDT types Function blocks DFB types

Filter
DDT IODDT*

Data Editor

Name Type Addre... Comment

Motor_error EBOOL

Valve_rate REAL

Pump_rate

Flow BOOL

Valve_opening_cmd EBOOL

Motor_run_cmd EBOOL

EBOOL

Rate

Valve_closure_cmd

EBOOL

BOOL

REAL

Tank_low_safety EBOOL

BOOL

Contactor_return EBOOL

EBOOL

Tank_high_level EBOOL

Tank_low_level

Valve_opening_error

EBOOL

EBOOL

EBOOL

sensor

Lim_valve_opening

Lim_valve_closure

Run

EBOOL

EBOOL

BOOL

BOOL

TIMEValve_closure_time

EBOOL

Valve_opening_time TIME

BOOL

Initial_condition

Valve_closure_error

Normal

No_fault

Safety

Tank_high_safety

Drainage

Value

0.2

0.2

1

sensor

sensor

sensor

Tank_Vol REAL

EBOOLStop

With_fault BOOL

EBOOLAcknowledgment
 23

Application using Unity Pro
Creation and Use of DFBs

At a Glance DFB types are function blocks that can be programmed by the user ST, IL, LD or
FBD. Our application uses a motor DFB and a valve DFB.
We will also be using existing DFB from the library for monitoring variables.
Particularly "safety" variables for tank levels, and "error" variables returned by the
valve. The status of these variables will be visible in Diagnostics display.

Procedure for
Creating a DFB

The table below shows the procedure for creating application DFBs.

Note: Function blocks can be used to structure and optimize your application. They
can be used whenever a program sequence is repeated several times in your
application, or to set a standard programming operation (for example, an algorithm
that controls a motor).
Once the DFB type is created, you can define an instance of this DFB via the
variable editor or when the function is called in the program editor.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Language references, and User function block).

Step Action

1 In the Project browser, right click on Derived FB types and select Open.

2 In the Data editor window, select the box in the Name column and enter a name for
your DFB and confirm with Enter. The name of your DFB appears with the sign
"Works" (unanalyzed DFB).

3 Open the structure of your DFB (see figure below) and add the inputs, outputs and
other variables specific to your DFB.

4 When the variables of the DFB are declared, analyze your DFB (the sign "Works" must
disappear). To analyze your DFB, select the DFB and, in the menu, click Build then
Analyze. You have created the variables for your DFB, and must now create the
associated section.

5 In the Project browser, double-click on Derived FB types then on your DFB.
Under the name of your DFB, the Sections field will appear.

6 Right click on Sections then select New section.

7 Give your section a name, then select the language type and confirm with OK. Edit your
section using the variables declared in step 3. Your DFB can now be used by the
program (DFB Instance).
24

Application using Unity Pro
Variables Used
by the Motor DFB

The following table lists the variables used by the Motor DFB:

Illustration of the
Motor DFB
variables
declared in the
data editor

The following screen shows the Motor DFB variables used in this application to
control the motor:

Variable Type Definition

Run Input Motor run command.

Stop Input Motor stop command.

Contactor_return Input Contactor feedback in the event of motor run
problem.

Acknowledgement Input Acknowledgement of the Motor_error output
variable.

Motor_run_cmd Output Start of motor.

Motor_error Output Display in the "Diagnostics display" window of an
alarm linked to a problem with the motor.

Variables

Name

DDT types Function blocks

Filter

DFB types

Data Editor

Name Type Commen...

BOOL

<inputs>
Run

ValueNo.

1
2

4

3

BOOL

BOOL

BOOL
<outputs>

Motor_run_cmd

<inputs/outputs>

*

Motor <DFB>

3 BOOL

BOOL

1

Stop

Contactor_return
Acknowledgement

Motor_error

<public>

<private>
<sections>
 25

Application using Unity Pro
Operating
Principle of the
Motor DFB

The following screen shows the Motor DFB program written by the application in
FBD for controlling the motor:

When Run = 1 and Stop = 0, the motor can be controlled (Motor_run_cmd = 1). The
other part monitors the Contactor_return variable. If Contactor_return is not set to
"1" after the Discrete counter counts two seconds, the Motor_error output switches
to "1".

Note: For more information on creating a section, consult the Unity Pro online help

(click , then Unity, then Unity Pro, then Operate Modes and
Programming and select the required language).

TON

IN
PT

Q
ET

IN1
IN2

OUT
AND RS

RS

S
R1

Q1

FBI 2 FBI 3

FBI 1

.1
2 3 4

1

S
R1

Q1

Acknowledgement
Motor_error

Run
Stop

Contactor_return
Motor_run_cmd

t#2s

Motor_run_cmd

<DFB> motor: [Motor]BF
D

26

Application using Unity Pro
Variables Used
by the Valve DFB

The following table lists the variables used by the Valve DFB:

Illustration of the
Valve DFB
variables
declared in the
data editor

The following screen shows the Valve DFB variables used in this application to
control the valve:

Variable Type Definition

Valve_opening Input Valve opening command.

Valve_closure Input Valve closure command.

Lim_valve_opening Input Status of valve limit.

Lim_valve_closure Input Status of valve limit.

Acknowledgement Input Acknowledgement of variables Valve_closure_error or
Valve_opening_error.

Valve_opening_cmd Output Opening of the valve.

Valve_closure_cmd Output Closure of the valve.

Valve_opening_error Output Display in the "Diagnostics display" window of an alarm
linked to a problem with the valve opening.

Valve_closure_error Output Display in the "Diagnostics display" window of an alarm
linked to a problem with the valve closure.

Variables

Name

DDT types Function blocks

Filter

DFB types

Data Editor

Name Type Commen...

BOOL

<inputs>
Valve_opening

ValueNo.

1
2

5

3

4

2

BOOL

BOOL

BOOL

BOOL

BOOL
<outputs>

Valve_opening_cmd

<inputs/outputs>

*

Valve <DFB>

3 BOOL

BOOL

1

Valve_closure

Lim_valve_opening

Acknowledgement

Valve_closure_cmd
Valve_opening_error

Valve_closure_error

<public>

<private>

Lim_valve_closure 4 BOOL
 27

Application using Unity Pro
Operating
Principle of the
Valve DFB

The following screen shows the Valve DFB written in FBD language:

This DFB authorizes the command to open the valve (Valve_opening_cmd) when
the inputs Valve_closure and Lim_valve_opening are set to "0". The principle is the
same for closure, with an additional safety feature if the user requests the opening
and closing of the valve at the same time (opening takes priority).
In order to monitor opening and closing times, we use the TON timer to delay the
triggering of a fault. Once the valve opening is enabled (Valve_opening_cmd = 1),
the timer is triggered. If Lim_valve_opening does not switch to "1" within two
seconds, the output variable Valve_opening_error switches to "1". In this case a
message is displayed (See Diagnostics Viewer, p. 51).

Note: The PT time must be adjusted according to your equipment

TON

IN
PT

Q
ET

IN1
IN2

OUT
AND

FBI 9 5
8 9

Lim_valve_closure
Valve_closure_cmd

t#2s

TON

IN
PT

Q
ET

IN1
IN2

OUT
AND

FBI 8 4
6 7

t#2s

IN1
IN2

OUT
AND

2
3

RS
S
R1

Q1

FBI 6
2

Valve_opening Valve_opening_cmd

RS
S
R1

Q1

FBI 7
5

Valve_
closure_
cmd

IN1
IN2

OUT
OR

3
4

IN1
IN2

OUT
OR

.1
1

Valve_closure

Valve_opening_cmd
Lim_valve_opening

Valve_opening_error

Valve_closure_error

Lim_valve_opening

Lim_valve_closure
Valve_closure

Valve_opening
Valve_closure

<DFB> valve: [Valve]BF
D

28

Application using Unity Pro
Procedure for
Customizing an
Existing DFB
from a Library
DFB

The table below shows the procedure for using library ALRM_DIA DFBs.

Illustration of the
Function Blocks
Used by the
Application

The following screen shows the different ALRM_DIA Function blocks used in the
application for displaying information in the Diagnostics viewer window:

Note: For more information on creating a section, consult the Unity Pro online help

(click , then Unity, then Unity Pro, then Operate Modes and
Programming and select the required language).

Step Action

1 In the Project browser, double-click on Elementary variables, then
select the Function Blocks tab.

2 In the Data editor window, select the cell in the Name column and enter a
name for your Function block and confirm with Enter.

3 The FB type selection window appears, in Libraries/Families select
Libraries then Diagnostics and click on ALRM_DIA then confirm with
Enter.

4 In the Data editor window, add comments in the Comment field in order to
display them in Diagnostics viewer. Your Function block can now be used
by the program (DFB Instance).

Variables

Name

DDT types Function blocks

Filter
*

DFB types

Data Editor

Name Type Comment

ALRM_DIA

ValueNo.
Low_safety_alarm ALRM_DIA

EFB DFB

Valve closure time
High_safety_alarm
Valve_closure_alarm

ALRM_DIA

ALRM_DIA

Valve_opening_alarm Valve opening time

High level safety reached
Low level safety reached / tank
 29

Application using Unity Pro
Creating the Program in SFC for Managing the Tank

At a Glance The main program is written in SFC (Grafcet). The different sections of the grafcet
steps and transitions are written in LD. This program is declared in a MAST task,
and will depend on the status of a Boolean variable.
The main advantage of SFC language is that its graphic animation allows us to
monitor in real time the execution of an application.
Several sections are declared in the MAST task:

� The Tank_management (See Illustration of the Tank_management Section,
p. 31) section, written in SFC and describing the operate mode,

� The Application (See Creating a Program in LD for Application Execution, p. 34)
section, written in LD, which executes the pump start-up using the motor DFB, as
well as the opening and closure of the valve.

� The Simulation (See Creating a Program in LD for Application Simulation, p. 36)
section, written in LD, which simulates the application. This section must be
deleted in the case of connection to a PLC.

� The Diagnostics (See Creating a Program in FBD for Application Diagnostics,
p. 39) section, written in FBD, for returning application errors to the diagnostics
display.

Note: The LD, SFC and FBD-type sections used in the application must be
animated in online mode (See Starting the Application, p. 47), with the PLC in
RUN.
30

Application using Unity Pro
Illustration of the
Tank_manageme
nt Section

The following screen shows the application Grafcet:

Note: For more information on creating an SFC section, see Unity Pro online help

(click on , then Unity, then Unity Pro, then Operate modes, then
Programming and SFC editor).

Initial

Open_valve1

Close_valve1

Pump Initial Initial

Open_valve2

Close_valve2

Initial_cond...

No_fault

Drainage

Normal Safety

With_fault

Tank_low…

Lim_valve_...

Pump
 31

Application using Unity Pro
Description of
the
Tank_manageme
nt Section

The following table describes the different steps and transitions of the
Tank_management Grafcet:

Step / Transition Description

Initial This is the initial step.

Initial_condition This is the transition that starts the pump. The transition is valid when the variables:
� Stop_cycle = 0,
� Run_cycle = 1,
� Tank_high_safety = 0,
� Lim_valve_closure = 1

Pump This is the step that starts the pump and filling of the tank until the high level is reached. This
step activates the motor DFB in the Application section, which controls the activation of the pump.

No_fault This transition is active when the tank’s high level is reached and the safety high level is set to 0.

Open_valve1 This step opens the valve to drain the tank. This step activates the valve DFB in the Application
section, which controls the opening of the valve.

Drainage This transition is active when the tank’s low level or safety low level is set to 1.

Close_valve1 This is the valve closure step. This step activates the valve DFB in the Application section, which
controls the closure of the valve.

Normal This transition is valid when the low level of the tank and Lim_valve_closure are set to 1. In this
case we skip to step S_1_2.

Safety This transition is valid when the low safety level of the tank and Lim_valve_closure are set to 1.
Where this is the case, we return to the start of the cycle and wait for the safety variable to be
reset, and the cycle to be restarted.

With_fault This transition is active when the High safety level of the tank has been reached, or the
Stop_cycle button has been activated (Stop_cycle = 1).

Open_valve2 This step is identical to Open_valve1.

Tank_low_safety This transition is active when the low safety level of the tank is set to 1 (after the tank is drained
following a stop cycle command, or following activation of the high safety level).

Close_valve2 This step is identical to Close_valve1.

Lim_valve_closure This transition is valid when Lim_valve_closure is set to 1. Where this is the case, we return to
the start of the cycle and wait for the safety variable to be reset, and the cycle to be restarted.

Note: You can see all the steps and actions of your SFC by clicking on in front
of the name of your SFC section.
32

Application using Unity Pro
Procedure for
Creating an SFC
Section

The table below shows the procedure for creating an SFC section for the application.

Step Action

1 In Project Browser\Program\Tasks, double-click on MAST.

2 Right click on Section then select New section. Give your section a name
(Tank_management for the SFC section) then select SFC language.

3 The name of your section appears, and can now be edited by double clicking on
it.

4 The SFC edit tools appear in the window, which you can use to create your
Grafcet.
For example, to create a step with a transition:

� To create the step, click on then place it in the editor,

� To create the transition, click on then place it in the editor (generally
under the preceding step).
 33

Application using Unity Pro
Creating a Program in LD for Application Execution

At a Glance This section controls the pump and the valve using the DFBs created (See Creation
and Use of DFBs, p. 24) earlier.

Illustration of the
Application
Section

The section below is part of the MAST task. It has no condition defined for it so it is
permanently executed:

Description of
the Application
Section

� When the Pump step is active, the Run input of the motor DFB is at 1. If the Stop
input of the motor DFB is at 0, the Motor_run_cmd switches to "1" and the pump
supply is activated.

� the same principle applies to the steps Open_valve1 and Open_valve2 and to the
rest of the section.

Pump.x

FBI_32

FBI_33

Contactor_return

Acknowledgement Acknowledgement

PI

Stop

Run

EN ENO

Motor...

Valve_... Motor_error

Motor_run_cmd

Motor

Valve

EN ENO

Open...

Close...

Lim_va..

Lim_va..

Acknowledgement Acknowledgement

Valve...

Valve...

Valve_...

Valve_...

Valve_opening_cmd

Valve_closure_cmd

Valve_opening_error

Valve_closure_error

Lim_valve_opening

Lim_valve_closure

Open_valve1

Open_valve2

Open_valve1

Open_valve2

Close_valve1

Close_valve2
34

Application using Unity Pro
Procedure for
Creating an LD
Section

The table below describes the procedure for creating part of the Application
section.

Step Action

1 In Project Browser\Program\Tasks, double-click on MAST.

2 Right click on Section then select New section. Name this section
Application, then select the language type LD.
The edit window opens.

3
To create the contact Open_valve1.x, click on then place it in the editor.

Double-click on this contact then enter the name of the step with the suffix ".x"
at the end (signifying a step of an SFC section) and confirm with OK.

4 To use the motor DFB you must instantiate it. Right click in the editor then click

on Select data and on . Click on the Function and Function
Block Types tab and select your DFB then confirm with OK and position your
DFB. To link the Open_valve1.x contact to the stop input of the DFB, align the

contact and the input horizontally, click on and position the link between
the contact and the input.

Note: For more information on creating an LD section, see Unity Pro online help

(click on , then Unity, then Unity Pro, then Operate modes, then
Programming and LD editor).
 35

Application using Unity Pro
Creating a Program in LD for Application Simulation

At a Glance This section is only used for application simulation. It should therefore not be used
if a PLC is connected.
36

Application using Unity Pro
Illustration of the
Simulation
Section

The section below is part of the MAST task. It has no condition defined for it so it is
permanently executed:

TON

ENO

Q

ETPT

IN

EN

FBI_26

RS

ENO

Q1

R1

S

EN

FBI_27

TON

ENO

Q

ETPT

IN

EN

FBI_28

TON

ENO

Q

ETPT

IN

EN

FBI_30

RS

ENO

Q1

R1

S

EN

FBI_31

TON

ENO

Q

ETPT

IN

EN

FBI_34

P

Valve_opening_time

Valve_o...

Valve_closure_cmd

lim_va..

Lim_valve_...

Lim_valve_...
Valve_closure_time

Valve_c...

Valve_...

Motor_ru...

%S5

Pump.x flow rate

Contacto_...

Stop
flow rate

Tank_vol = Tank_vol + Pump_rate;

Valve_rate = Pump_rate;

Tank_vol < = 0.0

Tank_vol = Tank_vol - Valve_rate;

Tank_vol > = 10.0

Tank_vol > = 9.0

Tank_vol < = 1.0

COMPARE

COMPARE

COMPARE

COMPARE

OPERATE

OPERATE

High_level

Low_safety

High_safety

Low_level

flow rate

Open_va...

Open_va... OPERATE
P

 37

Application using Unity Pro
Description of
the Simulation
Section

� the first line is used to simulate the value of the Lim_valve_opening variable. If
the valve opening command is given (Valve_opening_cmd = 1), a TON timer is
triggered. When the PT time is reached, the TON output switches to "1" and
increments the Lim_valve_opening output to "1" unless the valve closure
command is given at the same time,

� same principle applies to the Lim_valve_closure and Contactor_return outputs.
� the last part of the section is used for the simulation of the tank level and for

triggering the different tank levels. The OPERATE and COMPARE blocks from
the library can be used to do this.

Note: For more information on creating an LD section, see Unity Pro online help

(click on , then Unity, then SoftwareUnity Pro, then Operate modes ,
then Programming and LD editor).
38

Application using Unity Pro
Creating a Program in FBD for Application Diagnostics

At a Glance This section is used to declare variables which will be sent to the diagnostics viewer
in the event of an error.

Illustration of the
Diagnostics
Section

The screen below shows the FBD section using the Function blocks (See Illustration
of the Function Blocks Used by the Application, p. 29) Low_safety_alarm,
High_safety_alarm and valve_error:

Description of
the Diagnostics
Section

The principle of this section is based on the use of ALMR_DIA function blocks. All
the blocks monitor changes in the state of the input variable. As the inputs are
always connected to COND0, display in the Diagnostics Viewer window will be
triggered when the input variable switches to 1.

Valve_closure_error

ALRM_DIA

COND1
COND0

ERROR

ALRM_DIA

COND1
COND0

ERROR

ALRM_DIA

COND1
COND0

ERROR

ALRM_DIA

COND1
COND0

ERROR

1

2

3

4

Valve_opening_error

Valve opening error

Valve closure error

Low safety alarm

High safety alarm

Tank_low_safety

Tank_high_safety
 39

Application using Unity Pro
Procedure for
Creating an FBD
Section

The table below describes the principle for the Diagnostics section:

Step Action

1 In Project Browser\Program\Tasks, double-click on MAST.

2 Right click on Section then select New section. Name this section
Diagnostics, then select the language type FBD.
The edit window opens.

3 To use the ALRM_DIA function block you created, you must instantiate it. Right

click in the editor then click on Select data and on . Click on the
Function Blocks tab and select your function block then confirm with OK
and position it in the FBD editor.

To assign a variable to an input or an output, double-click on it, click on
and select your variable from the Variable tab.

Note: For more information on creating an LD section, see Unity Pro online help

(click on , then Unity, then Unity Pro, then Operate modes, then
Programming and FBD editor).
40

Application using Unity Pro
Creating an Animation Table

At a Glance An animation table is used to monitor the values of variables, and modify and/or
force these values. Only those variables declared in Variables & FB instances
can be added to the animation table.

Procedure for
Creating an
Animation Table

The table below shows the procedure for creating an animation table.

Note: For more information, consult the Unity Pro online help (click , then
Unity, then Unity Pro, then Operate modes, then Debugging and
adjustment then Viewing and adjusting variables and Animation
tables).

Step Action

1 In the Project browser, right click on Animation tables.
The edit window opens.

2 Click on first cell in the Name column, then on the button, and add the variables
you require.
 41

Application using Unity Pro
Animation Table
Created for the
Application

The following screen shows the animation table used by the application:

Note: The animation table is dynamic only in online mode (display of variable
values).

Table

Name Value Type Comment

EBOOL
EBOOL

EBOOL

Valve_opening_error EBOOL

Valve_opening_cmd EBOOL

EBOOLValve_closure_cmd

EBOOL

EBOOL

TIME

Contactor_return EBOOL

EBOOLTank_high_level

REAL

Tank_low_level

REAL

EBOOL

EBOOL

Lim_valve_opening

Run

EBOOL

REAL

BOOL

TIME

Valve_closure_error

sensor

ForceModify

Lim_valve_closure

Tank_low_safety

Tank_high_safety

Motor_run_cmd
Tank_Vol

Rate
Valve_flow

Pump_rate

Valve_closure_time

Valve_opening_time

0

0
0

0

1
0

0

0

0

1

0

9.2
0

0.4
0.4

0

1
0s

0s

sensor
sensor

sensor

Stop EBOOL0
42

Application using Unity Pro
Creating the Operator Screen

At a Glance The operator screen is used to animate graphic objects that symbolize the
application. These objects can belong to the Unity Pro library, or can be created
using the graphic editor.

Illustration on an
Operator Screen

The following illustration shows the application operator screen:

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Operator screens).

Note: To animate objects in online mode, you must click on . By clicking on this

button, you can validate what is written.

2..8

Tank high safety

High tank level

Low tank level

Tank safety low level

Pump flow0.2

Stop CycleStart Cycle
 43

Application using Unity Pro
Procedure for
Creating an
Operator Screen

The table below shows the procedure for creating the Start Cycle button:

The table below shows the procedure for inserting and animating the tank.

Step Action

1 In the Project browser, right click on Operator screens and click on New screen.
The operator screen editor appears.

2
� Click on and place it in the operator screen editor. Double-click on the button and, in the

Control tab, select the Run variable by clicking on , and confirm with OK, then enter the name
of the button in the Text area. The button is presently assigned to the Run variable.

Step Action

1 In the Project browser, right click on Operator screens and click on New screen.
The operator screen editor appears.

2 � In the Tools menu, select Operator Screen Library. The window opens. Double click on
Fluids then Tank. Select the dynamic tank from the runtime screen, and Copy (Ctrl + C) then Paste
(Ctrl + V) it into the drawing in the operator screen editor (to return to your screen, click on Window
then Screen).

� The tank is now in your operator screen. You now need a variable to animate the level. In the Tools
menu, click on Variables Window. The window appears to the left, and in the Name column we see
the word %MW0. To obtain the animated part of the graphic object (in this case the tank), double click
on %MW0. A part of the tank is selected. Right click on this part, then click on Characteristics.

Select the Animation tab and enter the variable concerned by clicking the button (in the place

of %MW0). In our application, this will be Tank_vol.
� You must define the tank’s minimum and maximum values. In the Type of animation tab, click

Bar chart then the button, and fill in the entry fields according to the tank.

� Confirm with Apply and OK.
44

Application using Unity Pro
The table below shows the procedure for inserting and animating the valve.

Step Action

1 In the Project browser, right click on Operator screens and click on New screen.
The operator screen editor appears.

2 � In the Tools menu, select Operator Screen Library. The window opens. Double click on
Actuators then Valve. Select a dynamic valve (from the runtime screen), and Copy (Ctrl + C) then
Paste (Ctrl + V) it into the drawing in the operator screen editor (to return to your screen, click on
Window then Screen).

� Select the valve, right click on it then click on Detach. Select the red rectangle and move it so you can
see the green rectangle underneath it. Double click on the green rectangle, then click on the
Animation tab and add the Valve_opening_cmd variable. Still in the Object properties window,
in the Display condition area, select Bit = 1. This setting makes the green rectangle visible
when %M2 = 1, otherwise this rectangle is invisible.

� Same procedure for the red rectangle, only with the display condition Bit = 0. If the animation does
not work, put the foreground rectangle into the background.
 45

Application using Unity Pro
46

4

Starting the Application
At a Glance

Subject of this
Section

This chapter shows the procedure for starting the application. It describes the
different types of application executions.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Execution of Application in Simulation Mode 48

Execution of Application in Standard Mode 49

Diagnostics Viewer 51
47

Starting the Application
Execution of Application in Simulation Mode

At a Glance You can connect to the API simulator which enables you to test an application
without a physical connection to the PLC and other devices.

Application
Execution

The table below shows the procedure for launching the application in simulation
mode:

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, then Debugging and adjustment
and PLC simulator).

Step Action

1 In the PLC menu, click on Simulation Mode,

2 In the Build menu, click on Rebuild All Project. Your project is
generated and is ready to be transferred to the simulator. When you generate
the project, you will see a results window. If there is an error in the program,
Unity Pro indicates its location if you double-click on the highlighted sequence.

3 In the PLC menu, click on Connection. You are now connected to the
simulator.

4 In the PLC menu, click on Transfer project to PLC. The Transfer
project to PLC window opens. Click on Transfer. The application is
transferred to the PLC simulator.

5 In the PLC, click on Execute. The Execute window opens. Click on OK. The
application is now being executed (in RUN mode) on the PLC simulator.
48

Starting the Application
Execution of Application in Standard Mode

At a Glance To work in standard mode you need to use a PLC and Discrete and Analog I/O
modules to assign outputs to different sensors and actuators.
The variables used in simulation mode must be modified. In standard mode,
variables must be located to be associated to physical I/Os.

Application
Hardware
Configuration

The table below shows the procedure for configuring the application.

Assignment of
Variables to
Input Module

The table below shows the procedure for direct addressing of variables:

Note: For more information on addressing, see Unity Pro online help (click on

, then Unity, then Unity Pro, then Languages reference, then Data
description and Data instances).

Step Action

1 In the Project browser double-click on Configuration then on 0:Bus X and
on 0:TSX RKY ••• (where 0 is the rack number).

2 In the Bus X window, select a slot, for example 3 and double-click on it.

3 Insert a discrete input module, for example TSX DEY 16A5.

4 Confirm with OK. This input module is used to connect the application’s EBOOL
inputs.

Step Action

1 In the Project browser and in Variables & FB instances, double-
click on Elementary variables.

2 In the Address column, enter the address associated with the variable in the
form Rack\Module\Channel\Data.
Example:
On the TSX DEY 16A5 module, there are 2 channels, channel 0 and channel
8. Channel 0 handles inputs 0 to 7 and channel 8 handles inputs 8 to 15.
If the valve closure limit switch output is connected to input 0 of the module, the
address %I0.3.0.0 is displayed in the address column of the editor for the
Lim_valve_closure variable

Illustration:

3 Repeat the same procedure for all located variables.

Lim_valve_closure BOOL %IO.3.0.0
 49

Starting the Application
Application
Execution

The table below shows the procedure for launching the application in standard
mode:

Step Action

1 In the PLC menu, click on Standard Mode,

2 In the Build menu, click on Rebuild All Project. Your project is
generated and is ready to be transferred to the PLC. When you generate the
project, you will see a results window. If there is an error in the program, Unity
Pro indicates its location if you click on the highlighted sequence.

3 In the PLC menu, click on Connection. You are now connected to the PLC.

4 In the PLC menu, click on Transfer project to PLC. The Transfer
project to PLC window opens. Click on Transfer. The application is
transferred to the PLC.

5 In the PLC, click on Execute. The Execute window opens. Click on OK. The
application is now being executed (in RUN mode) on the PLC.
50

Starting the Application
Diagnostics Viewer

At a Glance The diagnostics viewer enables you to monitor variables when they are associated
to diagnostics function blocks (ALMR_DIA for example).

Creation of
Diagnostics

The table below shows the procedure for displaying the diagnostics window:

Illustration of the
Diagnostics
Viewer

The illustration below shows an example of what is displayed when the
Tank_low_safety variable switches from 0 to 1:

Note: For more information on the declaration of these variables for diagnostics
purposes, go to the DFB section (See Procedure for Customizing an Existing DFB
from a Library DFB, p. 29).

Step Action

1 In the Tools menu, click on Diagnostics Viewer.
The window is displayed on-screen.

2 As soon as the Tank_low_safety or Tank_high_safety or
Valve_opening_error or Valve_closure_error variables switch from 0
to 1, a message is displayed in the diagnostics viewer.

Note: For more information, see Unity Pro online help (click on , then Unity,
then Unity Pro, then Operate modes, and Diagnostics).

Diagnostic viewer

Low level safety reached / tank empty FB Alarm Low_safety_alarm 0 06/02/2004 11:30:59Acknowledged
Low level safety reached / tank empty FB Alarm Low_safety_alarm 06/02/2004 11:30:46 06/02/2004 11:30:56Deleted
Low level safety reached / tank empty FB Alarm Low_safety_alarm 06/02/2004 11:30:06 06/02/2004 11:30:38Deleted

0
0

Message Fault Symbol Appearance Date: 3Area Appearance Date: 2

Deleted

Acknowledge-
ment: 0
 51

Starting the Application
52

Glossary
%I According to the IEC standard, %I indicates a discrete input-type language object.

%M According to the IEC standard, %M indicates a memory bit-type language object.

%MW According to the IEC standard, %MW indicates a memory word-type language object.

%Q According to the IEC standard, %Q indicates a discrete output-type language object.

BIT This is a binary unit for a quantity of information which can represent two distinct
values (or statuses): 0 or 1.

BOOL BOOL is the abbreviation of Boolean type. This is the elementary data item in
computing. A BOOL type variable has a value of either: 0 (FALSE) or 1 (TRUE).
A BOOL type word extract bit, for example: %MW10.4.

BYTE When 8 bits are put together, this is called a BYTE. A BYTE is either entered in
binary, or in base 8.
The BYTE type is coded in an 8 bit format, which, in hexadecimal, ranges from
16#00 to 16#FF

!

B

 53

Glossary
DFB DFB is the abbreviation of Derived Function Block.
DFB types are function blocks that can be programmed by the user ST, IL, LD or
FBD.
By using DFB types in an application, it is possible to:
� simplify the design and input of the program,
� increase the legibility of the program,
� facilitate the debugging of the program,
� reduce the volume of the generated code.

DFB instance A DFB type instance occurs when an instance is called from a language editor.
The instance possesses a name, input/output interfaces, the public and private
variables are duplicated (one duplication per instance, the code is not duplicated).
A DFB type can have several instances.

EBOOL EBOOL is the abbreviation of Extended Boolean type. It can be used to manage
rising or falling edges, as well as forcing.
An EBOOL type variable takes up one byte of memory.

EFB Is the abbreviation for Elementary Function Block.
This is a block which is used in a program, and which performs a predefined
software function.
EFBs have internal statuses and parameters. Even where the inputs are identical,
the output values may be different. For example, a counter has an output which
indicates that the preselection value has been reached. This output is set to 1 when
the current value is equal to the preselection value.

FBD FBD is the abbreviation of Function Block Diagram.

D

E

F

54

Glossary
FBD is a graphic programming language that operates as a logic diagram. In
addition to the simple logic blocks (AND, OR, etc.), each function or function block of
the program is represented using this graphic form. For each block, the inputs are
located to the left and the outputs to the right. The outputs of the blocks can be linked
to the inputs of other blocks to form complex expressions.

Function view View making it possible to see the program part of the application through the
functional modules created by the user (see Functional module definition).

IEC 61131-3 International standard: Programmable Logic Controls
Part 3: Programming languages.

IL IL is the abbreviation of Instruction List.
This language is a series of basic instructions.
This language is very close to the assembly language used to program processors.
Each instruction is composed of an instruction code and an operand.

Instantiate To instantiate an object is to allocate a memory space whose size depends on the
type of object to be instantiated. When an object is instantiated, it exists and can be
manipulated by the program.

INT INT is the abbreviation of single integer format (coded on 16 bits).
The lower and upper limits are as follows: -(2 to the power of 31) to (2 to the power
of 31) - 1.
Example:
-32768, 32767, 2#1111110001001001, 16#9FA4.

LD LD is the abbreviation of Ladder Diagram.
LD is a programming language, representing the instructions to be carried out in the
form of graphic diagrams very close to a schematic electrical diagram (contacts,
coils, etc.).

I

L

 55

Glossary
Located variable A located variable is a variable for which it is possible to know its position in the PLC
memory. For example, the variable Water_pressure, is associated with %MW102.
Water_pressure is said to be located.

Master task Main program task.
It is obligatory and is used to carry out sequential processing of the PLC.

Operator screen This is an editor that is integrated into Unity Pro, which is used to facilitate the
operation of an automated process. The user regulates and monitors the operation
of the installation, and, in the event of any problems, can act quickly and simply.

REAL Real type is a coded type in 32 bits.
The ranges of possible values are illustrated in gray in the following diagram:

When a calculation result is:
� between -1.175494e-38 and 1.175494e-38 it is considered as a DEN,
� less than -3.402824e+38, the symbol -INF (for -infinite) is displayed,
� greater than +3.402824e+38, the symbol INF (for +infinite) is displayed,
� undefined (square root of a negative number), the symbol NAN is displayed.

Section Program module belonging to a task which can be written in the language chosen
by the programmer (FBD, LD, ST, IL, or SFC).

M

O

R

-3.402824e+38 3.402824e+38-1.1754944e-38 1.1754944e-380.0

INF-INF

S

56

Glossary
A task can be composed of several sections, the order of execution of the sections
corresponding to the order in which they are created. This order is modifiable.

SFC SFC is the abbreviation of Sequential Function Chart.
SFC enables the operation of a sequential automation device to be represented
graphically and in a structured manner. This graphic description of the sequential
behavior of an automation device, and the various situations which result from it, is
provided using simple graphic symbols.

SFC objects An SFC object is a data structure representing the status properties of an action or
transition of a sequential chart.

ST ST is the abbreviation of Structured Text language.
Structured Text language is an elaborated language close to computer
programming languages. It enables you to structure series of instructions.

Structure View in the project navigator with represents the project structure.

Subroutine Program module belonging to a task (Mast, Fast) which can be written in the
language chosen by the programmer (FBD, LD, ST, or IL).
A subroutine may only be called by a section or by another subroutine belonging to
the task in which it is declared.

Task A group of sections and subroutines, executed cyclically or periodically for the MAST
task, or periodically for the FAST task.
A task possesses a level of priority and is linked to inputs and outputs of the PLC.
These I/O are refreshed in consequence.

TIME The type TIME expresses a duration in milliseconds. Coded in 32 bits, this type
makes it possible to obtain periods from 0 to (2 to the power of 32)-1 milliseconds.

Unlocated
variable

An unlocated variable is a variable for which it is impossible to know its position in
the PLC memory. A variable which have no address assigned is said to be
unlocated.

T

U

 57

Glossary
Variable Memory entity of the type BOOL, WORD, DWORD, etc., whose contents can be modified
by the program during execution.

WORD The WORD type is coded in 16 bit format and is used to carry out processing on bit
strings.
This table shows the lower/upper limits of the bases which can be used:

Representation examples

V

W

Base Lower limit Upper limit

Hexadecimal 16#0 16#FFFF

Octal 8#0 8#177777

Binary 2#0 2#1111111111111111

Data content Representation in one of the bases

0000000011010011 16#D3

1010101010101010 8#125252

0000000011010011 2#11010011
58

CB
Index
A
Application section (LD), 34

B
button, 41

C
Connection

Simulator mode, 48
Standard Mode, 49

D
Diagnostics section (FBD), 39

M
Motor DFB, 25

S
Simulation section (LD), 37

T
Tank_management section (SFC), 31

U
Unity Pro

Configuration, 11
Data editor, 12
DFB editor, 13
Diagnostics, 13
Operator screens, 14
Presentation, 9
Program editor, 12
Project browser, 11
Simulator, 14
User interface, 10

V
Valve DFB, 27
59

Index
60

	Start Up Guide for Unity Pro
	Table of Contents
	About the Book

	Description of the application
	Presentation of Unity Pro software
	Installing the Application using Unity Pro
	Presentation of the Solution Used
	Developing the Application

	Starting the Application
	Glossary
	Index

