Industrial Automation (Automação de Processos Industriais)

Supervised Control of Discrete Event Systems Supervision Controllers (Part 2/2)

http://users.isr.ist.utl.pt/~jag/courses/api19b/api1920.html

Prof. Paulo Jorge Oliveira, original slides Prof. José Gaspar, rev. 2019/2020

Some pointers on Supervised Control of DES

Analysers &	http://www.nd.edu/~isis/techreports/isis-2002-003.pdf (Users Manual)
simulators	http://www.nd.edu/~isis/techreports/spnbox/ (Software)

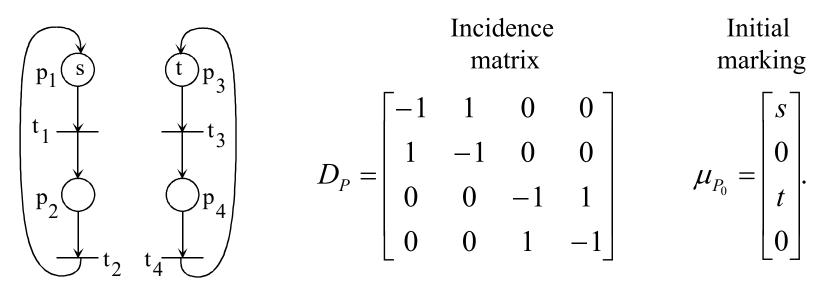
Bibliography: Supervisory Control of Discrete Event Systems using Petri Nets, J. Moody J. and P. Antsaklis, Kluwer Academic Publishers, 1998.

> **Supervised Control of Concurrent Systems: A Petri Net Structural Approach**, M. Iordache and P. Antsaklis, Birkhauser 2006.

Discrete Event Systems - Modeling and Performance Analysis, Christos G. Cassandras, Aksen Associates, 1993.

Feedback Control of Petri Nets Based on Place Invariants, K. Yamalidou, J. Moody, M. Lemmon and P. Antsaklis, <u>http://www.nd.edu/~lemmon/isis-94-002.pdf</u>

Example of controller synthesis: s **Producers / t Consumers**



 Let p2= #machines working, t2= product produced p3= #consumers, t3= request to consume (e.g. transport product)
 Q: How to write *consume only when produced* ? What is the linear constraint?

Not possible to write it as a linear constraint on places $L\mu_p \le b$. Is it impossible to solve this problem with the supervised control?

Generalized linear constraint

Let the generalized linear constraint be

$$\begin{split} L\mu_P + Fq_P + C\nu_P &\leq b, \\ \mu_P &\in N_0^{\ n}, \nu_P \in N_0^{\ m}, q_P \in N_0^{\ m}, \\ L &\in Z^{n_C \times n}, F \in Z^{n_C \times m}, C \in Z^{n_C \times m}, e \quad b \in Z^{n_C}, \end{split}$$

where

- * μ_P is the marking vector for system P;
- * q_P is the firing vector since t_0 ;
- * v_P is the number of transitions (firing) that can occur, also designated as Parikh vector.

Function LINENF of SPNBOX

Theorem*: Synthesis of Controllers based on Place Invariants, for Generalized Linear Constraints

Given the generalized linear constraint $[L\mu_P + Fq_P + C\nu_P \le b]$, if $b - L\mu_{P_0} \ge 0$, then the controller with incidence matrix and initial marking, respectively

$$D_{C}^{-} = \max(0, LD_{P} + C, F)$$

$$D_{C}^{+} = \max(0, F - \max(0, LD_{P} + C)) - \min(0, LD_{P} + C),$$

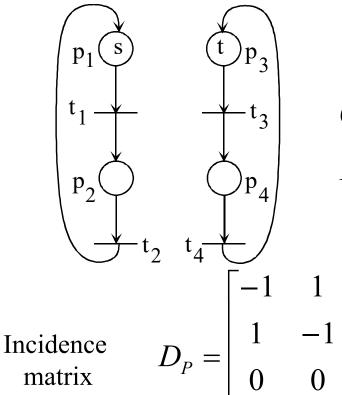
$$\mu_{C_0} = b - L\mu_{P_0} - Cv_{P_0},$$

guarantees that constraints are verified for the states resulting from the initial marking.

* In the next slides this will be called the **LINENF theorem.**

Example of controller synthesis $\forall s \in N_0, \forall t \in N_0, \forall n \in N_0$

Producer / Consumer



Linear constraint: $v_3 \leq v_2$ that can be written as: $\begin{vmatrix} \cdot & \cdot \\ - & \cdot \\ D_{P} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ Initial marking

Page 6

Example of controller synthesis

Producer / Consumer

1) Test
$$b - L\mu_{P_0} = 0 - 0 \ge 0.$$
 OK.

2) Compute

$$D_{C}^{-} = \max(0, LD_{P} + C, F)$$

$$D_{C}^{+} = \max(0, F - \max(0, LD_{P} + C)) - \min(0, LD_{P} + C),$$

$$D_{C}^{-} = \max(0, [0 -1 \ 1 \ 0], \ 0) = [0 \ 0 \ 1 \ 0]$$

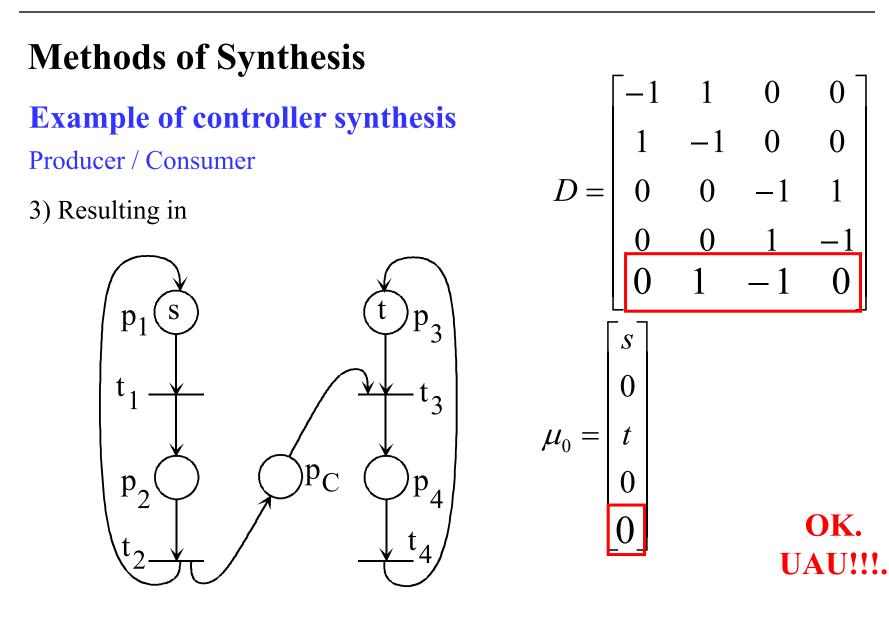
$$D_{C}^{+} = \max(0, -[0 \ 0 \ 1 \ 0]) - \min(0, [0 \ -1 \ 1 \ 0])$$

$$= [0 \ 0 \ 0 \ 0] - [0 \ -1 \ 0 \ 0] = [0 \ 1 \ 0 \ 0]$$

and

$$\mu_{C_0} = b - L\mu_{P_0} - Cv_{P_0},$$

$$\mu_{C_0} = b - L\mu_{P_0} = 0 - 0 = 0.$$
 OK.



% The Petri net D=Dp-Dm, and m0 % (Dplus-Dminus= Post-Pre)

Dm= [1 0 0 0;
0 1 0 0;
0 0 1 0;
0 0 0 1];
Dp= [0 1 0 0;
1000;
0 0 0 1;
0 0 1 0];
mO= [1 0 1 0]';
% Supervisor constraint %
L= []; F= []; C= [0 -1 1 0];
b= 0;
% Computing the supervisor
\$
[Dfm, Dfp, ms0] = linenf(Dm, Dp, L, b, m0, F, C)
Df= Dfp-Dfm
msO

Example of controller synthesis: Producer Consumer

Result using the function LINENF.m of the toolbox SPNBOX:

Df =

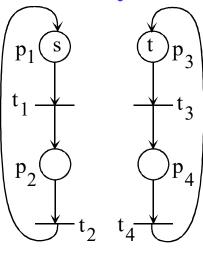
ms0 =

0

-1	1	0	0
1	-1	0	0
0	0	-1	1
0	0	1	-1
0	1	-1	0

Example of controller synthesis

Bounded Producer / Consumer



 Incidence matrix
 Initial marking

 $D_P = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ $\mu_{P_0} = \begin{bmatrix} s \\ 0 \\ t \\ 0 \end{bmatrix}$

TWO linear constraints:

$$\begin{cases} v_3 \leq v_2 \\ v_2 \leq v_3 + n \end{cases} \Leftrightarrow \begin{cases} v_3 - v_2 \leq 0 \\ v_2 - v_3 \leq n \end{cases}$$
$$\forall s \in N_0, \forall t \in N_0, \forall n \in N_0 \end{cases}$$

The two linear constraints can be written as:

$$Cv_{p} \leq b$$

i.e. $L = 0, F = 0$ $\Leftrightarrow \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix} \leq \begin{bmatrix} 0 \\ n \end{bmatrix}$

Page 10

Example of controller synthesis

Bounded Producer / Consumer

1) Test

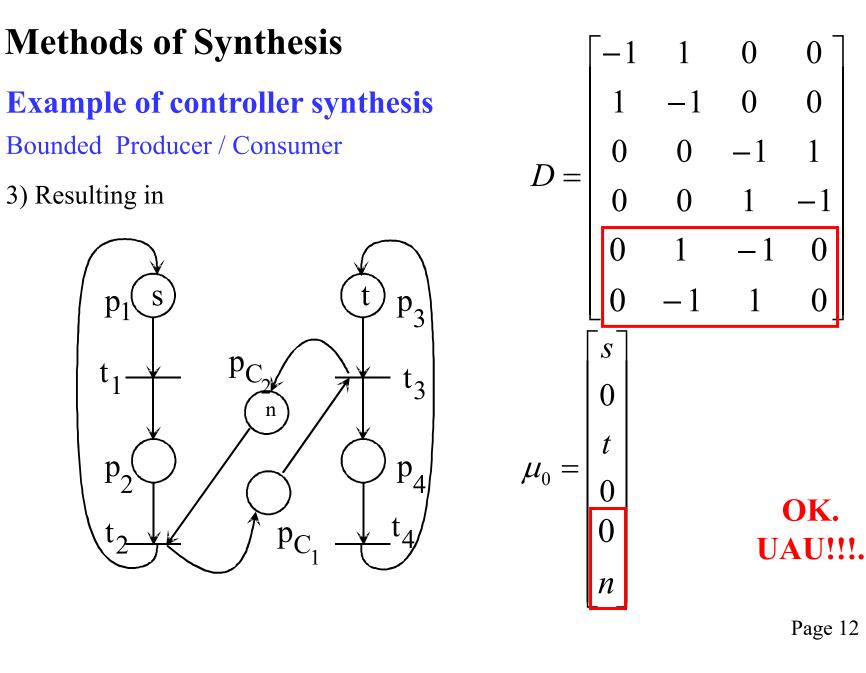
$$b - L\mu_{P_0} = b = \begin{bmatrix} 0\\ n \end{bmatrix} \ge 0.$$
OK.
2) Compute

2) Comp

$$D_{C}^{-} = \max\left(0, \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}, 0\right) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$D_{C}^{+} = \max\left(0, 0 - \max\left(0, \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}\right)\right) - \min\left(0, \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

and

$$\mu_{C_0} = b - L\mu_{P_0} = \begin{bmatrix} 0\\ n \end{bmatrix}.$$
 Page 11



0

0

0

()

Function LINENF of SPNBOX

 $D^+, D^- \in N_0^{n \times m}$ and $D \in Z_0^{n \times m}$

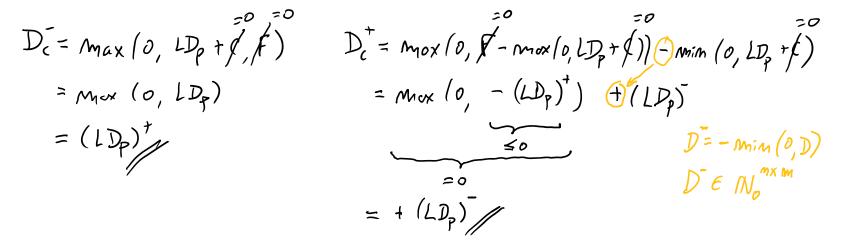
LINENF Lemma 1: From General Constraints to Theorem T1

Given the generalized linear constraint $L\mu_P + Fq_P + C\nu_P \le b$ and the conditions of the LINENF theorem:

If
$$L \neq 0$$
, $F = 0$, $C = 0$

then
$$D_C^+ = (LD_P)^-$$
, $D_C^- = (LD_P)^+$ and $D_C = -LD_P$
 $\mu_{C0} = b - L\mu_{P0}$
(see proof in the next page) Notation:
 $D^+ = \max(0, D)$
 $D^- = -\min(0, D)$
 $D = D^+ - D^-$

IST / DEEC / API



$$D_{c} = D_{c}^{+} - D_{c}^{-} = (LD_{p})^{-} - (LD_{p})^{+} = -((LD_{p})^{+} - (LD_{p})^{-}) = -LD_{p}/$$

$$M_{co} = b - L_{p}/P_{o} - f^{=0}/P_{p} = b - L_{p}/P_{o}$$

Function LINENF of SPNBOX

LINENF Lemma 2: Firing Regulation

Given the generalized linear constraint $L\mu_P + Fq_P + C\nu_P \le b$ and the conditions of the LINENF theorem:

If
$$L = 0$$
, $F \neq 0$, $C = 0$

then

$$D_C^+ = F^+, \qquad D_C^- = F^+ \qquad \text{and} \qquad D_C = 0$$
$$\mu_{C0} = b$$

(homework, prove this lemma)

Function LINENF of SPNBOX

LINENF Lemma 3: Constraints on Counters

Given the generalized linear constraint $L\mu_P + Fq_P + C\nu_P \le b$ and the conditions of the LINENF theorem:

If
$$L = 0$$
, $F = 0$, $C \neq 0$

then $D_{C}^{+} = C^{-}, \qquad D_{C}^{-} = C^{+}$ $D_C = -C$ and $\mu_{C0} = b - C v_{P0}$

(homework, prove this lemma)

(empty page)

Methods of Synthesis:adding Uncontrollable and
Unobservable transitions

Definition of Uncontrollable Transition:

A transition is uncontrollable if its firing **cannot be inhibited** by an external action (e.g. a supervisory controller).

Definition of Unobservable Transition:

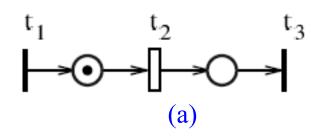
A transition is unobservable if its firing **cannot be detected or measured** (therefore the study of any supervisory controller can not depend from that firing).

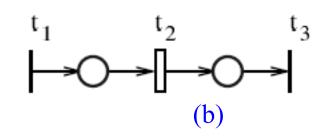
cannot add this arc

Proposition:

In a Petri net based controller, both input and output arcs to/from plant transitions are used to trigger state changes in the controller. *Since a controller cannot have arcs connecting to unobservable transitions, then all unobservable transitions are also implicitly uncontrollable*.

adding **Uncontrollable** and **Unobservable** transitions





If **t1** is controllable and <u>**t2** is uncontrollable</u>:

- case (a), then t2 cannot be directly inhibited; it will eventually fire

- case (b), then t2 can be indirectly prevented from firing by inhibiting t1.

i.e. may exist indirect solution despite t2 being uncontrollable.

If <u>t2 is unobservable</u> and t3 is observable, then we cannot detect when t2 fires. The state of a supervisor is not changed by firing t2. However we can **indirectly detect that t2 has fired**, by detecting the firing of t3.

i.e. may exist indirect solution despite t2 being unobservable.

∴ may exist indirect solution despite t2 uncontrollable and/or unobservable.

Definition: A marking μ_P is admissible if i) $L\mu_P \leq b$ and ii) $\forall \mu' \in R(C, \mu_P)$ verifies $L\mu' \leq b$

Definition: A Linear Constraint (L, b) is admissible if

i)
$$L\mu_{Po} \leq b$$
 and

ii) $\forall \mu' \in R(C, \mu_{Po})$ such that $L\mu' \leq b$ μ' is an admissible marking.

Note: ii) indicates that the firing of uncontrollable transitions can never lead from a state that satisfies the constraint to a new state that does not satisfy the constraint.

Proposition: Admissibility of a constraint

A linear constraint is admissible *iff*

- The initial markings satisfy the constraint.
- There **exists a controller** with maximal permissivity that forces the constraint and **does not inhibit any uncontrollable transition**.

Two sufficient (not necessary) conditions:

Corollary: given a system with uncontrollable transitions, $l^T D_{uc} \le 0$ implies admissibility.

Corollary: given a system with unobservable transitions, $\begin{bmatrix} l^T D_{uo} = 0 \end{bmatrix}$ implies admissibility.

Function MRO_ADM of SPNBOX

Lemma *: Structure of Constraint transformation

If
$$L'\mu_p \leq b'$$
 where
 $L' = R_1 + R_2L$ and $b' = R_2(b+1) - 1$
 $R_1 \in Z^{n_C \times n}$ and $R_1\mu_p \geq 0$
 $R_2 \in Z^{n_C \times n_C}$ is a matrix with positive elements in the diagonal

then $L\mu_p \leq b$ is also verified.

* Lemma 4.10 in [Moody98] pg46

Function MRO_ADM of SPNBOX

Lemma *: Structure of Constraint transformation

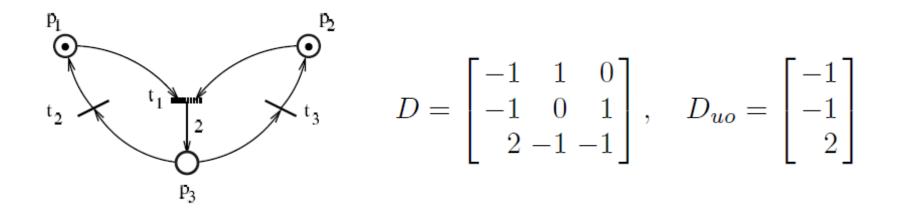
If
$$L'\mu_p \leq b'$$
 where
 $L' = R_1 + R_2 L$ and $b' = R_2(b+1) - 1$
 $R_1 \in Z^{n_C \times n}$ and $R_1 \mu_p \geq 0$
 $R_2 \in Z^{n_C \times n_C}$ is a matrix with positive elements in the diagonal
then $L\mu_p \leq b$ is also verified.

Typical usage:

- constraint L and b, and extra constraints $\rightarrow R_1$, $R_2 \rightarrow L'$, $b' \rightarrow D_C^+$, D_C^- , μ_{C0}
- see unobservable / uncontrollable extra constraints example in the next slides

* Lemma 4.10 in [Moody98] pg46

Example: design controller with t1 unobservable (1/4)



Objectives: $\mu_1 + \mu_3 \ge 1$ and $\mu_2 + \mu_3 \ge 1$ which can be written in matrix form as

$$L\mu \le b$$
, $L = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix}$, $b = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

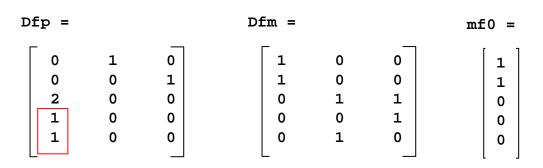
Example extracted from "Supervised Control of Concurrent Systems: A Petri Net Structural Approach", M. Iordache and P. Antsaklis, Birkhauser 2006.

Example: design controller with t1 unobservable (2/4)

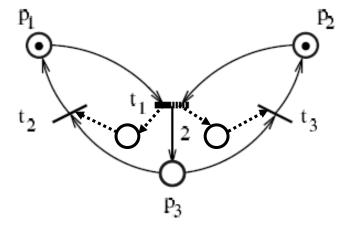
- % System and constraints
- $D= \begin{bmatrix} -1 & 1 & 0; \\ -1 & 0 & 1; \\ +2 & -1 & -1]; \end{bmatrix}$
- Dm= -D.*(D<0);
 Dp= D.*(D>0);

m0= [1 1 0]';

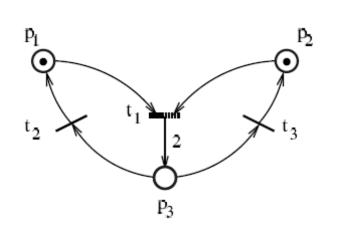
- L= [-1 0 -1; 0 -1 -1]; b= [-1; -1];
- % Supervisor computation
- [Dfp, Dfm, mf0] =
 linenf(Dp, Dm, L, b, m0);



 $^{\wedge}$ Bad news, supervisor touches t_1 .



Example: design controller with t1 unobservable (3/4)



D= [-1 1 0; -1 0 1; 2 -1 -1]; Tuo= [1]; Tuc= []; L= [-1 0 -1; 0 -1 -1]; b= [-1 -1]'; [La, ba, R1, R2] = mro_adm(L, b, D, Tuc, Tuo);

Solution obtained with the function MRO_ADM.m of the SPNBOX toolbox:

$$R1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad La = \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix} \qquad ba = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
$$R2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad Note: verify that \quad L_a \mu \le b_a \quad implies \quad L \mu \le b$$

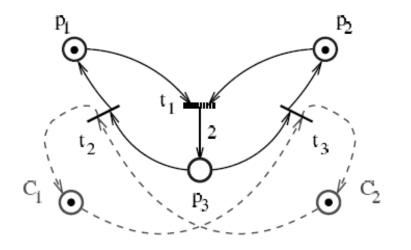
Page 26

Example: design controller with t1 unobservable (4/4)

Finally the supervised controller is simply obtained from L_a and b_a :

$$\begin{split} D_c &= -L_a D_p \\ &= \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -1 & -1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \end{split}$$

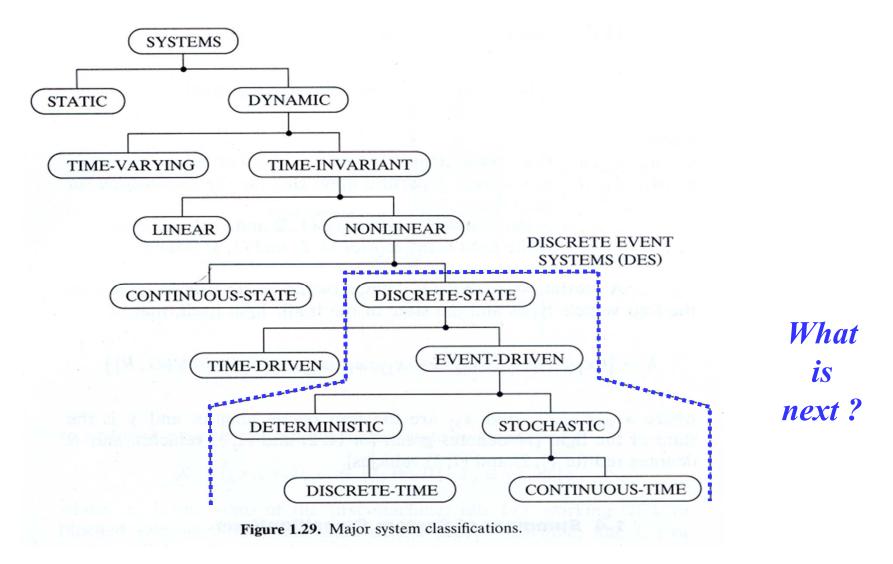
$$\mu_{c0} = b_a - L_a \mu_{p0}$$
$$= \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$



Obtained the desired result: supervisor does not touch t_1 .

This course is ending. What is next?

This course is ending.



IST / DEEC / API

Top 10 Challenges in Logic Control for Manufacturing Systems by Dawn Tilbury from University of Michigan

10. Distributed Control	(General management of distributed control applications, Open/distributed control ethernet-based control)
9. Theory	(No well-developed and accepted theory of discrete event control, in contrast to continuous control)
8. Languages	(None of the programming languages do what we need but nobody wants a new programming language)
7. Control logic synthesis	(automatically)
6. Standards	(Machine-control standards every machine is different, Validated standards, Standardizing different types of control logic programming language)
5. Verification	(Standards for validation, Simulation and verification of controllers)
4. Software	(Software re-usability cut and paste, Sophisticated software for logic control, User-unfriendly software)
3. Theory/Practice Gap	(Bridging the gap between industry and academia, Gap between commercial software and academic research)
2. Education	(Educating students for various PLCs, Education and keeping current with evolution of new control technologies, Education of engineers in logic control, Lack of curriculum in discrete-event systems) And the number one challenge in logic control for manufacturing systems is
1. Diagnostics	(Integrating diagnostic tools in logic control, Standardized methodologies for design, development, and implementation of diagnostics)

The End.