Industrial Automation (Automação de Processos Industriais)

GRAFCET
 (Sequential Function Chart) 3/3

http://users.isr.ist.utl.pt/~jag/courses/api1819/api1819.html
Prof. José Gaspar, rev. 2018/2019

GRAFCET vs Ladder

GRAFCET/SFC can be converted directly to ladder logic

Memory variables:

Assign one Boolean variable to each step $\left(\mathrm{s}_{\mathrm{i}}\right)$ and transition $\left(\mathrm{t}_{\mathrm{j}}\right)$

Code to run once:

1. Initialize steps and transitions

Code to run at every scan cycle:
2. Check transitions and activate steps
3. Perform activities for steps
4. Enable transitions (jump to 2.)

Ref: [Hugh Jack 2008]

GRAFCET/SFC can be

 converted directly to ladder logicRef: [Hugh Jack 2008]

Memory variables:

Assign one Boolean variable to each step (s_{i}) and transition $\left(\mathrm{t}_{\mathrm{j}}\right)$.
Create memories to keep output values.

Code to run once:

1. Initialize steps and transitions

Code to run at every scan cycle:
2. Check transitions and activate steps
3. Perform activities for steps
4. Enable transitions (jump to 2.)

IST / DEEC / API

1. Initialize steps and transitions

IST / DEEC / API
2. Check transitions \& activate steps

IST / DEEC / API

3. Perform activities for steps

PERFORM ACTIVIIIES FOR STEPS

L
retract

U
advance

U light

U advance

U power

Page 6

IST / DEEC / API

4. Enable transitions

Note: all active steps are made inactive.

The complete program, four sections:

Page 8

IST / DEEC / API

Discussion: not-keeping

 vs keeping steps active
1)

CHECK TRANSITIONS

3)
| enable transitions

2)

If step 2 is active in 1 then its work is done in 2 and it is going to be made inactive (unlatched) in 3.

Note: code parts 1, 2 and 3 run in a single scan cycle; latched outputs imply they have no spikes.

Note2: Unity Pro is not like this, step2 gets inactive only after transposing transitions 2 .

Homework challenges:

Convert the ladder code shown in the previous slides to a structured text program.

Consider simulating the ladder diagram, ladder instructions one-byone, saving all variables:

- Steps (1..6)
- Transitions (1..6)
- Inputs (automatic button, part detect, ...)
- Outputs (power, light, advance, ...)

Confirm that:

- Step variables are active at most one scan cycle
- Outputs are set/unset (latched/unlatched) and therefore do not need the steps being active all the time.

IST / DEEC / API

GRAFCET Practice Problem 1

Draw one SFC for one stamping press that can advance and retract when a cycle button is pushed, and then stop until the button is pushed again. The press has limit switches indicating stop advancing and stop retracting.

Further study: discuss the advantages of using SFC as compared with using Ladder in this problem.

From [Hugh Jack 2008]

IST / DEEC / API

GRAFCET Practice Problem 2

Develop one SFC for a two person assembly station. The station has two presses that may be used at the same time, independently. Each press has a cycle button that will start the advance of the press. A bottom limit switch will stop the advance, and the cylinder must then be retracted until a top limit switch is hit. The two presses are enabled only after a common starting procedure.

IST / DEEC / API

GRAFCET Practice Problem 3

Design a garage door controller using an SFC. The behavior of the garage door controller is as follows:

- There is a single button in the garage and a single button remote control. When the button is pushed the door will move up or down.
- There are top/bottom limit switches to stop the motion of the door.
- If the button is pushed once while moving, the door will stop. A second push will start motion again in the opposite direction.
- There is a light beam across the bottom of the door. If the beam is cut while the door is closing the door will stop and reverse.
- There is a garage light that will be on for 5 minutes after the door opens or closes.

