Industrial Automation (Automação de Processos Industriais)

PLC Programming languages *Structured Text - Networking*

http://users.isr.ist.utl.pt/~jag/courses/api1819/api1819.html

Prof. José Gaspar, 2018/2019

Structured Text

Networking (in Unity Pro)

Keywords: MODBUS, READ_VAR, WRITE_VAR

Modbus is a serial communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use with its programmable logic controllers (PLCs). Simple and robust, it has since become a de facto standard communication protocol, and it is now a commonly available means of connecting industrial electronic devices.

Examples of Field Bus (IEC 61158) standards: MODBUS (Schneider), PROFIBUS (Field Bus type, Siemens), CAN bus (Controller Area Network, 1983 Robert Bosch GmbH), ...

Structured Text *Networking (in Unity Pro)*

Modbus RTU — Binary representation of the data for protocol communication. Includes CRC. Modbus messages are framed (separated) by idle (silent) periods.

Modbus ASCII — Makes use of ASCII characters for protocol communication.

Modbus TCP/IP or Modbus TCP — Modbus variant for communications over TCP/IP networks, connecting over port 502.

RTU = Remote Terminal Unit MTU = Main Terminal Unit CRC = Cyclic Redundancy Check TCP = Transmission Control Protocol ASCII = American Standard Code for Information Interchange

Structured Text

Networking (in Unity Pro)

Modbus	Function type	Function name / Function code	
	Physical Discrete Inputs	Read Discrete Inputs	2
Bit access	Internal Dita on Dhysical Cails	Read Coils	1
	Internal Bits or Physical Coils	Write Single Coil	5

IST / DEEC / API

Structured Text *Networking (in Unity Pro) – READ_VAR*

I READ_VAR	
Parameters	
Address:	
Type of Object to Read:	
Address of first object to read:	
Number of consecutive objects to read:	
Reception zone:	
Report	

Address of first object to read:

The possible objects are of the DINT type (variables, constants, immediate value)

Number of consecutive objects to read:

The possible objects are of the INT type (variables, constants, immediate value)

Address: ADDR(STRING) ARRAY [0..5] OF INT

Type of object to read:

'%M' for reading internal bits
'%MW' for reading internal words
'%S' for reading system bits
'%SW' for reading system words
'%I' for reading input bits
'%IW' for reading input words

Reception zone:

The reception zone is an integer array. The size of this array depends on the number of objects to read. This integer array can be located or not.

Report: The report is an array of 4 integers

IST / DEEC / API

Chap. 3 - PLC Programming languages

Structured Text *Networking (in Unity Pro) – READ_VAR*

III READ_VAR	
Parameters	
Address:	
Type of Object to Read:	
Address of first object to read:	<u> </u>
Number of consecutive objects to read:	
Reception zone:	
Report	

Challenge: how to make READ_VAR non-blocking in an operating system without using processes nor threads?

IST / DEEC / API

Structured Text Networking (in Unity Pro)

ts Index Search	Example including execution	on check	« »
Standard library			Submit Feedback
Control library Communications library Safety Information About the Book General Information ADDM: Address Conversion ADDR: Address Conversion ADDR: Address Conversion ADDR: Address Conversion CANCEL: Stopping an Exchange i CREAD_REG: Continuous Registe CHATA_EXCH: Exchanging Data b INPUT_BYTE: Receiving Charact MBP_MSTR: Modbus Plus Master ModbusP_ADDR: Modbus Plus Ac OUT_IN_CHAR: Sending/Receivi OUT_IN_CHAR: Sending character READ_ASYN: Reading data asyn READ_GATA: Reading Modbus READ_CASYN: Reading data asyn READ_CASYN: Reading data asyn READ_REG: Read Register READ_CASYN: Reading Modbus READ_REG: Read Register READ_VAR: Reading Variables Example of use on a Uni-Telw: Example of Reading Bits Example of Reading Words via Example of Rea	Programming the function Programming in ST: IF NOT %M21 AND %I0.1.2 THEN %MW210:4 := 0; %MW212 := 50; READ_VAR(ADDR('0.3.1.7'),'%MW' SET %M21; END_IF; • the input bit %I0.1.2 controls the function • the internet bit %M21 is used to test the ard • %MW210:4 := 0; initializes the manage • MW212 := 50; initializes the timeout variable	n, ctivity of the function, ment table to 0, lue to 5 seconds. &MW' ,20,1, %MW210:4,%MW1701:1); syntax	of exchanges, of correct exchanges, of exchanges generating ssage,
· · · · · · · · · · · · · · · · · · ·	© 2011 Schneider Electric. All rights reserved.		