35006144.10

Unity Pro
Program Languages and Structure
Reference Manual

07/2011

Schneider

www.schneider-electric.com a Electric

The information provided in this documentation contains general descriptions and/or
technical characteristics of the performance of the products contained herein. This
documentation is not intended as a substitute for and is not to be used for
determining suitability or reliability of these products for specific user applications. It
is the duty of any such user or integrator to perform the appropriate and complete
risk analysis, evaluation and testing of the products with respect to the relevant
specific application or use thereof. Neither Schneider Electric nor any of its affiliates
or subsidiaries shall be responsible or liable for misuse of the information contained
herein. If you have any suggestions forimprovements or amendments or have found
errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of
Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform
repairs to components.

When devices are used for applications with technical safety requirements, the
relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware
products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2011 Schneider Electric. All rights reserved.

35006144 07/2011

Table of Contents

Part |
Chapter 1

Part Il
Chapter 2

Chapter 3

3.1

Safety Information
About the Book.
General Presentation
Presentation
Capabilities of Unity Pro
User Interface
Project Browser.

of UNity Pro

User Application and Project File Formats

Configurator.
Data Editor
Program Editor
Function Block Diagram FBD .

Ladder Diagram (LD) Language oot ii i
General Information about SFC Sequence Language

Instruction ListIL.
Structured Text ST
PLC Simulator.
Export/Import.
User Documentation........
Debug Services.
Diagnostic Viewer
Operator Screen

Application Structure

Description of the Available Functions for Each Type of

Functions Available for the Different Types of PLC.
Application Program Structure
Description of Tasks and Processes.,

Presentation of the Master Tas
Presentation of the Fast Task .
Presentation of Auxiliary Tasks
Overview of Event Processing

K

11
13
15
17
18
22
24
25
29
32
40
43
45
47
50
51
52
53
54
55
62
63

65

67
67
69
70
71
72
73
75

35006144 07/2011

3.2

3.3

3.4

Chapter 4
4.1

4.2

Chapter 5

5.1

5.2

5.3

Chapter 6
6.1

Description of Sections and Subroutines.
Descriptionof Sections
Description of SFC sections. i
Description of Subroutines.
Mono Task Execution i
Description of the Master TaskCycle
Mono Task: Cyclic Execution.o ...
Periodic Execution.
Controlof Cycle Time e
Execution of Quantum Sections with Remote Inputs/Outputs.
Multitasking Execution.
Multitasking Software Structure.
Sequencing of Tasks in a Multitasking Structure.
Task Control. e
Assignment of Input/Output Channels to Master, Fast and Auxiliary Tasks
Management of Event Processing.
Execution of TIMER-type Event Processing
Input/Output Exchanges in Event Processing
How to Program Event Processing iy
Application Memory Structure
Memory Structure of the Premium, Atrium and Modicon M340 PLCs. . .
Memory Structure of Modicon M340PLCs
Memory Structure of Premium and Atrium PLCs.
Detailed Description of the Memory Zones
Memory Structure of Quantum PLCs.
Memory Structure of Quantum PLCs
Detailed Description of the Memory Zones
OperatingModesccoiiiiiiiiiinnnnnnnn
Modicon M340 PLCs OperatingModes.,
Processing of Power Outage and Restoral of Modicon M340 PLCs
Processing on Cold Start for Modicon M340 PLCs
Processing on Warm Restart for Modicon M340 PLCs
Automatic Start in RUN for Modicon M340PLCs
Premium, Quantum PLCs OperatingModes
Processing of Power Outage and Restoral for Premium/Quantum PLCs
Processing on Cold Start for Premium/Quantum PLCs.
Processing on Warm Restart for Premium/Quantum PLCs.
Automatic Start in RUN for Premium/Quantum
PLCHALT MOEottt
PLCHALT MOttt e
SystemObjectscciiiiiiiiiii i
System BitS
System Bit Introduction
Description of System Bits %S0t0 %S7
Description of System Bits %S910%S13

35006144 07/2011

Description of System Bits %S1510 %S21........... 154

Description of System Bits %S301t0 %S59.............. 157
Description of System Bits %S6510 %S79........... 160
Description of System Bits %S8010 %S96........................ 165
Description of System Bits %S100t0 %S123...................... 168
6.2 SystemWords. 170
Description of System Words %SWO0to %SW11 171
Description of System Words %SW121t0 %SW29 175
Description of System Words %SW301t0 %SW47 179
Description of System Words %SW481t0 %SW59 181
Description of System Words %SW70to %SW100 183
Description of System Words %SW108 10 %SW116 193
Description of System Words %SW123 10 %SW127 194
6.3 Atrium/Premium-specific SystemWords. 196
Description of System Words %SW60t0 %SW65 197
Description of System Words %SW12810 %SW143 200
Description of System Words %SW144 t0 %SW146 201
Description of System Words %SW147 to %SW152 203
Description of System Word %SW153 204
Description of System Word %SW154 206
Description of Premium/Atrium System Words %SW155 to %SW167. . . 207
6.4 Quantum-specific SystemWords L. 208
Description of Quantum System Words %SW60 to %SW66 209
Description of Quantum System Words %SW98 to %SW109 212
Description of Quantum System Words %SW110 to %SW177 213
Description of Quantum System Words %SW180 to %SW702 216
6.5 Modicon M340-Specific SystemWords. 222
Description of System Words: %SW142 to %SW145, %SW146 and
%SW147, %SW150 to %SW154, %SW160 to %SW167 222
Part lll Data Description.ccciiiiiann. 225
Chapter 7 General OverviewofData 227
General e 228
General Overview of the Data Type Families 229
Overview of Datalnstances 231
Overview of the Data References 233
Syntax Rules for Type\lnstance Names 234
Chapter8 Data Types.ccviiirinnnrnnnrnnnennnnrnnns 235
8.1 Elementary Data Types (EDT) in Binary Format. 236
Overview of Data Types in Binary Format. 237
Boolean Typest 239
Integer TYPES . .ot 244
The TiIme TYPe . .. oot e e 246

35006144 07/2011 5

8.2 Elementary Data Types (EDT)inBCD Format 247

Overview of Data TypesinBCDFormat 248

TheDate Type. . .ot e 250

The Time of Day (TOD) TYPEttt e ae s 251

The Date and Time (DT) Type. oo v i e 252

8.3 Elementary Data Types (EDT)inRealFormat 253

Presentation of the RealData Type. 253

8.4 Elementary Data Types (EDT) in Character String Format........... 258

Overview of Data Types in Character String Format. 258

8.5 Elementary Data Types (EDT) in Bit String Format. 261

Overview of Data Types in Bit String Format. 262

Bit String Types . . . oo 263

8.6 Derived Data Types (DDT/IODDT)coviiii i 265

ATTAY S e 266

SHUCIUIES . . o 269

Overview of the Derived Data Type family (DDT) 270

DDT: MappingRules 272

Overview of Input/Output Derived Data Types (IODDT) 275

8.7 Function Block Data Types (DFB\EFB) 277

Overview of Function Block Data Type Families................... 278

Characteristics of Function Block Data Types (EFB\DFB)............ 280

Characteristics of Elements Belonging to Function Blocks 282

8.8 Generic Data Types (GDT)ottt 285

Overview of GenericData Types.o 285

8.9 Data Types Belonging to Sequential Function Charts (SFC). 287

Overview of the Data Types of the Sequential Function Chart Family . . 287

8.10 Compatibility Between Data Types, 289

Compatibility Between Data Types, 289

Chapter9 Datalnstancescciiiiiinnnnnnnnnnns 293

Data Type Instances 294

Data Instance Attributes. 298

Direct Addressing Data Instances 300

Chapter 10 DataReferences............cciiiiiiiiinnnnnnnnnns 307

References to Data Instances by Value. 308

References to Data InstancesbyName 310

References to Data Instances by Address. 313

DataNamingRules 317

PartIlV ProgramminglLanguage..............couuunnn 319

Chapter 11 Function Block Language FBD. 321

General Information about the FBD Function Block Language 322
Elementary Functions, Elementary Function Blocks, Derived Function

Blocks and Procedures (FFBS) 324

Subroutine Calls. 334

Control Elementso 335

35006144 07/2011

LinK . 336

Text Object e 338

Execution Sequenceofthe FFBs 339

Change Execution Sequence, 342

Loop Planningo e 346

Chapter 12 Ladder Diagram (LD)cciiiiiinnnnnnn 347

General Information about the LD Ladder Diagram Language. 348

CoNtacts e 351

COIlS e 352
Elementary Functions, Elementary Function Blocks, Derived Function

Blocks and Procedures (FFBs) i 354

Control Elements. 364

Operate Blocks and Compare Blocks 365

LiNKS . oo e 367

Text ObJeCt . . .o 370

Edge Recognition e 371

Execution Sequence and Signal Flow. 380

Loop Planning 382

Change Execution Sequence, 383

Chapter 13 SFC Sequencelanguagecocuvuuunnns 389

13.1 General Information about SFC Sequence Language 390

General Information about SFC Sequence Language 391

Link Rules 395

132 StepsandMacro Steps. e 396

(=T o 397

Macro Steps and Macro Sections i 400

13.3 Actions and Action Sections 404

ACHON . . 405

Action Section 407

Qualifier. . ..o 408

13.4 Transitions and Transition Sections 410

Transition.o 411

Transition Section e 413

18,5 JUMP . 415

JUMD L e 415

18,6 LinK ..o 416

LiNK . 416

13.7 BranchesandMerges.ot 417

Alternative Branches and Alternative Joints 418

Parallel Branch and Parallel Joint. 419

13.8 TextObjectso 420

Text Object e e 420

35006144 07/2011 7

13.9

13.10

Chapter 14
14.1

14.2

Chapter 15
15.1

15.2

Single-Token 421

Execution Sequence Single-Token 422
Alternative String 423
Sequence Jumps and Sequence Loops 424
Parallel Strings. 427
Asymmetric Parallel String Selection. 429
Multi-Token 432
Multi-Token Execution Sequencec...uuu. 433
Alternative String 435
Parallel Strings. 438
Jumpintoa Parallel String. 442
JumpoutofaParallel String 444
InstructionList(IL)cciiiiiinn.. 449
General Information about the IL Instruction List. 450
General Information about the IL Instruction List. 451
Operands. oo e e 454
Modifier e e 457
Operators. . .o e 459
Subroutine Call e 468
Labelsand Jumps 469
Comment e 471
Calling Elementary Functions, Elementary Function Blocks, Derived

Function Blocks and Procedures 472
Calling Elementary Functions 473
Calling Elementary Function Blocks and Derived Function Blocks 478
Calling Procedures. 489
Structured Text (ST) ...ttt iiiiea e ens 497
General Information about the Structured Text ST 498
General Information about Structured Text (ST) 499
Operands. oo e e 502
Operators. . . e 504
INStructions e 508
Instructions e 509
ASSIgNMENt 510
Select Instruction IF.. THEN...END_IF. 513
Select Instruction ELSE 514
Select Instruction ELSIF..THEN 515
Select Instruction CASE...OF...END_CASE 516
Repeat Instruction FOR...TO...BY...DO...END_FOR................ 517
Repeat Instruction WHILE...DO...END_WHILE. 520
Repeat Instruction REPEAT...UNTIL...END_REPEAT 521
Repeat Instruction EXIT. e 522
Subroutine Call 523

35006144 07/2011

RETURN . . 524

Empty Instruction. 525

Labelsand Jumps. 526

ComMmMENt. . . 527

15.3 Calling Elementary Functions, Elementary Function Blocks, Derived

Function Blocks and Procedures. 528

Calling Elementary Functions i 529

Call Elementary Function Block and Derived Function Block 535

Procedures e 544

Part V User FunctionBlocks(DFB) 551
Chapter 16 Overview of User Function Blocks (DFB)............ 553
Introduction to User Function Blocks. 554

Implementing a DFB Function Block. 556

Chapter 17 Description of User Function Blocks (DFB).......... 559
Definition of DFB Function Block Internal Data. 560

DFB Parameters e 562

DFB Variables. 566

DFB Code Section.ot 568

Chapter 18 User Function Blocks (DFB) Instance 571
CreationofaDFBInstance. 572
ExecutionofaDFBInstance. 574

Programming Example for a Derived Function Block (DFB)........... 575

Chapter 19 Use of the DFBs from the Different Programming

Languages.c.iiiiiii it it 579

Rules for Using DFBsina Program oot 580

Use of IODDTsinaDFB. ... i 584

Use of a DFB in a Ladder Language Program 587

Use of a DFB in a Structured Text Language Program. 589

Use of a DFB in an Instruction List Program. 592

Use of a DFB in a Program in Function Block Diagram Language. 596

Chapter 20 User DiagnosticsDFBcoiunt. 599
Presentation of User DiagnosticDFBs 599
AppendiCest i i 601
Appendix A EFB Error Codesand Values. 603
Tables of Error Codes for the Base Library. 604

Tables of Error Codes for the Diagnostics Library 606

Tables of Error Codes for the Communication Library 607

Tables of Error Codes for the IO Management Library 611

Tables of Error Codes for the CONT_CTL Library 620

Tables of Error Codes for the Motion Library 627

Tables of Error Codes for the Obsolete Library. 629

Common Floating PointErrors o .. 637
35006144 07/2011 9

Appendix B
B.1

B.2

B.3

B.4

Glossary
Index

IECCompliancecciiiiiiiinnnnnnrrnnnnns 639
General Information regarding IEC61131-3 640
General information about IEC 61131-3 Compliance 640
IEC Compliance Tables.t i 642
Common elements. e 643
ILlanguage elements 654
ST language elements. i 656
Common graphicalelements. 657
LD language elements. 658
Implementation-dependent parameters. oL 659
Error Conditions. e e 662
Extensions of IEC61131-3 i 664
Extensions of IEC 61131-3,2nd Edition 664
Textual language syntax 666
Textual Language Syntaxt 666
... 667
... 695

10

35006144 07/2011

Safety Information =

Important Information

NOTICE
Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label
indicates that an electrical hazard exists, which will result in personal
injury if the instructions are not followed.

personal injury hazards. Obey all safety messages that follow this
symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided,
will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can
result in death or serious injury.

2 This is the safety alert symbol. It is used to alert you to potential

35006144 07/2011 11

PLEASE NOTE

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can
result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially
hazardous situation which, if not avoided, can result in equipment damage.

Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.

12

35006144 07/2011

About the Book

At a Glance

Document Scope

This manual describes the elements necessary for the programming of Premium,
Atrium and Quantum PLCs using the Unity Pro programming workshop.

Validity Note
This documentation is valid from Unity Pro v6.0.

Product Related Information

A WARNING

UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming
of control systems. Only persons with such expertise should be allowed to
program, install, alter, and apply this product.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

User Comments

We welcome your comments about this document. You can reach us by e-mail at
techcomm @ schneider-electric.com.

35006144 07/2011 13

14

35006144 07/2011

General Presentation of Unity Pro

35006144 07/2011

15

General Presentation

16

35006144 07/2011

Presentation

Overview

This chapter describes the general design and behavior of a project created with

Unity Pro.

What’s in this Chapter?

This chapter contains the following topics:

Topic Page
Capabilities of Unity Pro 18
User Interface 22
Project Browser 24
User Application and Project File Formats 25
Configurator 29
Data Editor 32
Program Editor 40
Function Block Diagram FBD 43
Ladder Diagram (LD) Language 45
General Information about SFC Sequence Language 47
Instruction List IL 50
Structured Text ST 51
PLC Simulator 52
Export/Import 53
User Documentation 54
Debug Services 55
Diagnostic Viewer 62
Operator Screen 63

35006144 07/2011

17

Presentation

Capabilities of Unity Pro

Hardware Platforms

Unity Pro supports the following hardware platforms:
e Modicon M340

e Premium
e Atrium

e Quantum

Programming Languages

Block Libraries

Unity Pro provides the following programming languages for creating the user
program:

e Function Block Diagram FBD

Ladder Diagram (LD) language

Instruction List IL

Structured Text ST

Sequential Control SFC

All of these programming languages can be used together in the same project.

[)
[)
[)
[)
All these languages conform to IEC 61131-3.

The blocks that are included in the delivery of Unity Pro extensive block libraries
extend from blocks for simple Boolean operations, through blocks for strings and
array operations to blocks for controlling complex control loops.

For a better overview the different blocks are arranged in libraries, which are then
broken down into families.

The blocks can be used in the programming languages FBD, LD, IL and ST.

Elements of a Program

A program can be constructed from:

o a Master task (MAST)

a Fast task (FAST)

one to four Aux Tasks (not available for Modicon M340)
sections, which are assigned one of the defined tasks
sections for processing time controlled events (Timerx)
sections for processing hardware controlled events (EVTx)
subroutine sections (SR)

18

35006144 07/2011

Presentation

Software Packages

Performance Scope

The following software packages are available:
Unity Pro S

Unity Pro M

Unity Pro L

Unity Pro XL

Unity Pro XLS

Unity Developers Edition (UDE)

The following table shows the main characteristics of the individual software
packages:

Unity Pro S Unity Pro M Unity Pro L Unity Pro XL Unity Pro XLS

Programming languages

Function Block + + + + +
Diagram FBD

Ladder Diagram |+ + + + +
(LD) language

Instruction List IL | + + + + +(2)
Structured Text |+ + + + +(2)
ST

Sequential Lan- | + + + + +(2)
guage SFC

Libraries (1)

Standard library |+ + + + +(2)
Control library + + + + +2)
Communication |+ + + + +(2)
library

Diagnostics li- + + + + +(2)
brary

I/O Management | + + + + +(2)
library

System library + + + + +(2)
Motion control - + + + +(2)
drive library

TCP Open library | - optional optional optional optional (2)
Obsolete library | + + + + +(2)
MFB library + + + + +(2)
Safety library - - - - +

35006144 07/2011

19

Presentation

tics

Unity Pro S Unity Pro M Unity Pro L Unity Pro XL Unity Pro XLS
Memory card file |+ + + + +(2)
management li-
brary
General information
Create and use |+ + + + +(2)
data structures
(DDTs)
Create and use + + + + +(2)
Derived Function
Blocks (DFBs)
Project browser | + + + + +
with structural
and/or functional
view
Managing ac- + + + + +
cess rights
Operator screen | + + + + +
Diagnostic viewer | + + + + +
System diagnos- | + + + + +
tics
Project diagnos- | + + + + +(2)

Application con-
verter

PL7 converter

PL7 converter
Concept Converter

PL7 converter
Concept
Converter

PL7 converter
Concept Converter

Managing multi-
stations

Supported platforms

Modicon M340

BMX P34 1000
BMX P34 20

BMX P34 1000
BMX P34 20e

BMX P34 1000
BMX P34 20e

BMX P34 1000
BMX P34 20

BMX P34 1000
BMX P34 20e

Premium

P57 0244M
P57 CA 0244M
P57 CD 0244M
P57 104M

P57 154M

P57 1634M
P57 204M

P57 254M

P57 2634M
H57 24M

All CPUs except:
P57 554M
P57 5634M

All CPUs

All CPUs

20

35006144 07/2011

Presentation

Unity Pro S Unity Pro M Unity ProL Unity Pro XL Unity Pro XLS
Quantum - - 140 CPU 311 10 CPU 31110 CPU 311 10
140 CPU 434 12 U/A* | CPU 534 14 U/A | CPU 434 12 U/A
140 CPU 534 14 U/A* | CPU 651 50 CPU 534 14 U/A
* Upgrade using Unity | CPU 652 60 CPU 651 50
(OS] CPU 651 60 CPU 651 60
CPU 671 60 CPU 652 60
CPU 671 60
CPU 65160 S
CPU 67160 S
CPU 672 61
Atrium - PCI 57 204 All CPUs All CPUs All CPUs
Simulator + + + + +
Openess
Hyperlinks + + + + +

Unity Pro Server |-
(for OFS, UDE,
UAG)

Software components contained

in the software package

Documentation +
as context help
and PDF

+

+

OS Loader tool + |+
HW Firmware

Unity loader +

+

Naming Convention

+ = available

+ (1) = Availability of the blocks depends of the hardware platforms (see Unity Pro,

Standard, Block Library).

+ (2) = Available on all PLC except platforms CPU 651 60 S, CPU 671 60 S.

- =not available

In the following documentation, "Unity Pro" is used as general term for "Unity Pro S,

"Unity Pro M", "Unity Pro L", "Unity Pro XL" and "Unity Pro XLS".

35006144 07/2011

21

Presentation

User Interface

Overview

The user interface consists of several, configurable windows and toolbars.

H Unlty Pro: My _| Pr0|r-|ct

User interface:

3

Project Browser

= Structural View

4]

[« Station
BN Configuration
"#]-[7]0: XBus
~ &) Cabinet
- (7] Derived Data Types
] Derived FB Types

(] Communication

{"7] Variables & FB instanct

=)) ProgEm—

[»

W9 Data Editor
Yarlables EDT
Filter ————

[F] Ne

count

Start cycle

count ok

2 /f 3 | 4 ‘ 5
Mam . Cyle OK. ‘
e
! | Temp selecfon FID OK

valid coum

O

2] Tasks .
LT MasT Name }—{ }—()*
2] Sections - {7 Filling up
- g process @ Mixerfiling
C] Unused M {9 End offiling]
s {2 Actions -) Initiel mixer ! 8_'5(5) !
L £ Transiions - @ Intal filing 322 i OR_BOOL
- i emplying - AND_BOOLOUH E:lz ouT! j
+ -) Proportioning 4 -l Proporoning 12 I ‘
o0 Process L1
<[] > [l Dat Edior [;MV_SFC.. [LMV_LD (g MY_FED.
[¥]
W (A[S[F[¥]_Generate / Imporl/Export
Ready [OFFLINE [[MBTI2A001 [[NGT BULT
5 6 7
Legend:
Number | Description
1 Menu bar (see Unity Pro, Operating Modes)
2 Toolbar (see Unity Pro, Operating Modes)

22

35006144 07/2011

Presentation

Number | Description

3 Project Browser (see Unity Pro, Operating Modes)

4 Editor window (programming language editors, data editor, etc.)

5 Register tabs for direct access to the editor window

6 Information window (see Unity Pro, Operating Modes) (provides information
about errors which have occurred, signal tracking, import functions, etc.)

7 Status bar (see Unity Pro, Operating Modes)

35006144 07/2011

23

Presentation

Project Browser

Introduction

Structural View

Functional View

The Project Browser displays all project parameters. The view can be shown as
structural (topological) and/or functional view.

Project Browser

T2 Structural View -:*— Functional View
[=)- + Station A = Proportioning Machine A
[=] += Configuration [=]- = Proportioning
'[]-[7] 0:XBus " - [& Program
{ 7] Derived Data Types : [Table
[+] {] Derived FB Types . -[Q@ Screen
[} £ Variables & FB instances '[=}.%27 Filing Feedbox
= {] Communication ' i=E ﬁ Program
= & Programs I {o) ladder1
([£ Tasks L[Table
| E T MAST © [Screen
' |} £ Sections =R Mixing |
o i B process ! =+ ﬁ Program
D B Filling Feeding Box ST1
o 1 R Mixing — [Table
o B Mixing_1:8T+—"| ©--[@ Screen
"B Mixing_2:5T2 (=) <3 Process
"B €1 SR Sections LI - @7 0@:[61”“
T - X [=} £ Table .

The project browser offers the following features in the structural view:

The project browser offers the following features in functional view:

Creation and deletion of

elements

The section symbol shows the section programming language and if it is

protected (in case of an empty section the symbol is grey)

View the element properties
Creation of user directories
Launching the different editors
Start the import/export function

Creation of functional modules
Insertion of sections, animation tables etc. using Drag and Drop from the

structural view
Creation of sections

View the element properties
Launching the different editors
The section symbol shows the section programming language and other

attributes

24

35006144 07/2011

Presentation

User Application and Project File Formats

Introduction

STU File

STA File

Unity Pro manages three types of files for storing user applications and projects.
Each type of file can be used according to specific requirements.

File types can be identified by their extension:
e *STU: Unity Pro File.

e *STA: Unity Pro Archived Application File.

e * XEF: Unity Pro Application Exchange File.

This file type is used for daily working tasks. This format is used by default when
opening or saving a user project.

The following table presents the STU file advantages and drawbacks:

Advantages Drawbacks

® The project can be saved at any stage | ® Not convenient when transferring project
(consistent or inconsistent) through the due to the very large size of the file.
default command.

® Project saving and opening is fast as the | @ Not compatible when updating Unity Pro
entire internal database is present in the from one version to another.
file.

o Automatic creation of BAK files?

1 Each time a STU file is saved, a backup copy is also created, with the same name
as the STU file, and the extension BAK files. By changing the file extension from
BAK to STU, it is possible to revert to the state the project was, the last time it was
saved. BAK files are stored in the same folder as the project STU file.

This file type is used for archiving projects and can be created only after the project
has been generated. This file type allows forward compatibility between the different
versions of Unity Pro.

There is 2 ways to create a STA file:

e STA file can be created manually by accessing the File —Save Archive menu
in the Unity Pro main window.

e STA file is created automatically every time the project is saved as a STU file if
it is in Built state.

NOTE: The STA file created automatically is saved into the same directory and with

the same filename as the STU project file, exept that a “.Auto” suffix is appended

to the filename. If an existing automatic STA file already exists, it is overwritten

without any confirmation.

35006144 07/2011

25

Presentation

NOTE: If the project is in Built state, saving a STU file through a Unity Pro Server

creates a STA file as well.

Opening a STAfile is done by accessing the File —=Open menu in the Unity Pro main

window.

NOTE: In the Open menu window, the selected file type must be

Unity Pro Archived Application File (STA).
e For more information about creating an STA file, see the

Unity Pro Installation Manual (see Unity Pro, Installation manual): Create
Unity Pro Archived Application File (see Unity Pro, Installation manual).

e For more information about opening an STA file, see the

Unity Pro Installation Manual (see Unity Pro, Installation manual): Restoring
Unity Pro Archived Application File (see Unity Pro, Installation manual).

The following table presents the STA file advantages and drawbacks:

Advantages

Drawbacks

o Fast project saving.

® Can be created
only after the
project has been
generated.

® Projects can be shared vie e-mail or low size memory supports.

e Opening of the
project is long, as
the project file is
rebuilt before
operation.

® (Capability to connect in Equal Online Mode to the PLC after
opening the project on a new version of Unity Pro. For additional
information, see Connection/Disconnection (see Unity Pro,
Operating Modes) in the Operating Modes (see Unity Pro,
Operating Modes) manual.

® Allow online modifications with the PLC without any prior
download into the PLC.

® Generated STA file is compatible with all Unity Pro versions.
NOTE: In order to load a STA file created with another version of
Unity Pro, all the features used in the application have to be
supported by the current version.

26

35006144 07/2011

Presentation

XEF File

This file type is used for exporting projects in an XML source format and can be
created at any stage of a project.

Exporting an XEF file is done by accessing the File —Export Project menu in the
Unity Pro main window.

Importing an XEF file is done by accessing the File -Open menu in the Unity Pro
main window.

NOTE: In the Open menu window, the selected file type must be
Unity Pro Application Exchange File XEF.

For more information about creating an XEF file, see the
Unity Pro Installation Manual (see Unity Pro, Installation manual): Create
Unity Pro Application Exchange File (see Unity Pro, Installation manual).

For more information about restoring an XEF file, see the
Unity Pro Installation Manual (see Unity Pro, Installation manual): Restoring
Unity Pro Application Exchange File (see Unity Pro, Installation manual).

The following table presents the XEF file advantages and drawbacks:

Advantages Drawbacks

® The XML source ® Medium size.
format ensures
project compatibility
with any version of
Unity Pro. ® Generation of the project is mandatory to re-assemble the
project binary code.

e Opening of the project takes time while the project is imported
before operation.

® Operating with the PLC requires to rebuild all the project and
perform a download in the processor.

e Connecting to the PLC in Equal Online mode with an XEF file
is not possible. For additional information, see
Connection/Disconnection (see Unity Pro, Operating Modes)
in the Operating Modes (see Unity Pro, Operating Modes)
manual.

Important Information

The STU files are not compatible across Unity Pro versions. In order to use a project
with different Unity Pro versions, users must either store, the:
e Unity Pro Archived Application Files (STA):
With the STA file, it is possible to reuse the current built project with the new
Unity Pro version installed on the computer.
e Unity Pro Application Exchange Files (XEF):
The XEF file must be used if the project has been built.

35006144 07/2011

27

Presentation

Comparative File Types

The following table gives a summary of the three files types:

File Types STU STA XEF

Binary applications Yes Yes No

Source applications Yes Yes Yes

Internal database Yes No No

Comparative file size 10, see (1) |0.03, see (1) 3

Comparative time to save 10 1.6 6

Comparative time to open 1 10 10

Connection to the PLC in Equal | Possible Possible Not possible, see (2)
Online mode

File backup Possible Possible, see (3) | Possible

(1): Compressed files.

(2): The project needs to be first uploaded into the PLC.

(3): The project can be saved only if it has been generated.

NOTE: The values in the table represent a ratio between file types, where the STU

value is the reference.

28

35006144 07/2011

Presentation

Configurator

Configurator Window

The configurator window is split into two windows:

e (atalog window
A module can be selected from this window and directly inserted in the graphical
representation of the PLC configuration by dragging and dropping.

e Graphical representation of the PLC configuration

Representation of the Configurator window:

E-i.i.i-l Local Quantum Bus
Bus: [1] [140 CPUE7160 0100 [¥]

[=]- - LocaIQuantum Bus

[=]- - Analog

C - 140 ACI0300001.00

- 140010400001 00

C L 140 AGO0200001.00
C - 140 ACO 130000100
- 140 A1 330000100
L~ 140 AI3301001.00 Bus Properies

L 40 A0 330000100 Cut
140 AMMO800001.00)

. 14D ARIDZD 1001.00 o oY

C - 14D ATIOAN0001 00 Copy el

- 140 AVI0300001 00 . ew Device
-~ 140 AVO 02000 01.00 C

. Delete Module
[=]- - Communication

© - 140 GRP 811000100 Cpem e
- 140 CRP93%0001.00 Mave Module
« - 140 EA921 0001.00 Power Supply and /0 Budget]
t - 140 NOE 211 000100 =
" {40 NOE 251000100 <] D

One of the following shortcut menus is called depending on the position of the
mouse pointer:
o Mouse pointer on the background allows among others:

e Change CPU,

e Selection of different Zoom factors.

e Mouse pointer on the module allows among others:
e Access to editor functions (delete, copy, move),
e Open the module configuration for defining the module specific parameters,
e Show the I/O properties and the total current.

e Mouse pointer on an empty slot allows among others:
e Insert a module from the catalog,
e Insert a previously copied module including its defined properties.

35006144 07/2011 29

Presentation

Module Configuration

Module Properties

The module configuration window (called via the modules shortcut menu or a
double-click on the module) is used to configure the module. This also includes
channel selection, selection of functions for the channel selected, assignment of
State RAM addresses (only Quantum) etc.

Module configuration window for a Premium 1/0 module:

[Temminal Block Recognition
Cold Connection

(®) Internal Telefast

() Extemal PT100

Il 02:71sxAEY 414 HEE
4] ANA MULTIRANGE

] TSXAEY 414 { [Configuration]

B3 Chanmel0 Symbol R: Scal Filt
ymbol ange cale ilter
[21 Ghannel 1 i 0V <% 7 =
E| hanne\ 1 ThermoK___ [¥[10°C__ [0 v
8] Charnel 3| 7 0V v % T v
3 PHOOECOIN [w]1/10°C 0 v
Task
[MasT [*]

The module properties window (called via the modules shortcut menu) shows the
modules properties such as the power consumption, number of I/O points (only

Premium) and more.

The module properties window for the power supply shows the total current of the

rack:
TSXPSY 2600M:-1
Power Supply | EA
120%
0% 5000 mA 625 mA 500 mA
0%
0%
0%
0%
~ BV v 24R
Used R: For relay
M Overloaded V- For VDG inputs
Available

30

35006144 07/2011

Presentation

Network Configuration

The network configuration is called via the communications folder.

Network configuration:

Project Browser

= Structural View

- Communication
Network

& Ehemetl Inrease

@ Modbus Plus_4
Decrease

Routing Table -
Add User Directory
Add Hyperlink

The network configuration windows allow among others:

e Creation of networks
o Network analysis

e Printout of the network configuration

A window for configuring a network:

. Ethernet_1

Tadel family Wadule address
[TCPAP 104100 Regular connection [*] I%l % l%jl‘

Module IP address

|P address Subnet mask

Gateway address

[0 0 0 0] [0 0 0 0]

[0 0

0

0]

Module serices ———

[fes [w] lOrequest
Global data
[fes [w] Address server

[IP Configuration [Iessage T If0 request T Clobal data TSNMP TAddress semerT Bandwidth]

IP Address configuration
® Configurad

IP address 0 0 a0 0
Subnet mask 0.0.0.0
Gateway address 0.0.0.0

7 Client! Server configuration

Ethernet configuration

%) Ethemet I {8023

After configuration the network is assigned a communications module.

35006144 07/2011

31

Presentation

Data Editor

Introduction

The data editor offers the following features:

e Declaration of variable instances

e Definition of derived data types (DDTs)

e Instance declaration of elements and derived function blocks (EFBs/DFBs)
e Definition of derived function block (DFBs) parameters

The following functions are available in all tabs of the data editor:
Copy, Cut, Paste

Expand/collapse structured data

Sorting according to Type, Symbol, Address etc.

Filter

Inserting, deleting and changing the position of columns

Drag and Drop between the data editor and the program editors
Undo the last change

Export/Import

Variables
The Variables tab is used for declaring variables.
Variables tab:

¥ Data Editor HE

‘Wariables [DDT types T Function blocks T DFB types]
Filter
(Mame [* |™IElementary [Derived [Derived 11O |

v |Address w|Walue w|Comment v |~

Mame

4 Stationd

[+ @ Filing_up

[+ @ Muer flling up

[+ @ End_of_filing

- & Fil_up_A I

0 @ Fil_upp Boal

[+ @ Sync_1 Dint

|+ @ Sync 2 Dint

[@ FilLup_C Baal |
[+ & Starl_mixer Bool =

The following functions are available:

e Defining a symbol for variables

e Assigning data types

e Own selection dialog box for derived data types
e Assignment of an address

32 35006144 07/2011

Presentation

Automatic symbolization of I/O variables

Assignment of an initial value

Entering a comment

View all properties of a variable in a separate properties dialog box

Hardware Dependent Data Types (IODDT)

IODDTs are used to assign the complete 1/O structure of a module to an individual
variable.

Assignment of IODDTs:

¥l Data Editor M=
Variables [DOT types [Function blocks T DFB types 1
(Filer [] MName bIElementary B Derived B4 Derived 110 ‘
MName ~ |Alias Type ~ |Address ~ |Value ~|a
ternp_fleding_box — Int
[l Analog_input_1 . WCHO.2.
@ CH_ERROR Bool %I0.2 0. ERR
[temp_fleding_box ternp_fleding_box |Int %W0200
& EXCH_STS Int HMW0200
& 5TS_IN_PROGR Bool %MW02000
& CVD_IN_PROGR Bool %MW02.001
& ADJ_IN_PROGR Bool %MW02002
& CXCl_RFT It YN0 2,01
@& STS_ERR Bool %MIND 2010
& CMD_ERR Bool HMIND 2011 .
& ADJ_FRR Bool BMIND 2012 Ed
4] [[»

The following functions are available:

Complete I/O structures can be assigned with individual variables using IO DDTs
After entering the variables addresses, all elements of the structure are
automatically assigned with the correct input/output bit or word

Because it is possible to assign addresses later on, standard modules can be
simply created whose names are defined at a later date.

An alias name can be given to all elements of an IODDT structure.

35006144 07/2011

33

Presentation

Derived Data Types (DDT)
The DDT types tab is used for defining derived data types (DDTSs).

A derived data type is the definition of a structure or array from any data type already
defined (elementary or derived).

Tab DDT types:

igfl Data Editor

Variables OOT types T Function blocks I

DFB types

]

M= E

Filter
[[F] Mame [| ‘
Neme Type Comment -
+ @ Standard <Struct>
- & Motor <Siruct
& :top Bool
& feedback Bool
@ slat Bool
@ aam Standard
& Speed Int
& Amp Int
+ (G SFOSTEP_STATE <Struct>
+} O SFCSTEP_TIMES <Siruct

=

The following functions are available:
Definition of nested DDTs (max. 8 levels)
Definition of arrays with up to 6 dimensions
Assignment of an initial value
Assignment of an address
Entering a comment
Analysis of derived data types
Assignment of derived data types to a library
View all properties of a derived data type in a separate properties dialog box
An alias name can be given to all elements of a DDT structure or an array.

34

35006144 07/2011

Presentation

Function Blocks

The Function blocks tab is used for the instance declaration of elements and
derived function blocks (EFBs/DFBs).

Tab Function blocks:

¥ Data Editor = =
Varigbles | DDT bypes] Function blocks DFB types
Filter
| [F] Neme [| lEFB MDFB
MName MNumber ~ |Type = |[Value ~ |Comment -
- SFGControl SFCCMTRL
- <Inputs>

B CHARTREF 1 SFCCHAR. . Link to SFC
& INIT 2 Bool FALSE Reset SFC
@& CLEAR 3 Bool FALSE Reset SFC
@ DISTIME 4 Boal FALSE Supenzion time
@ DISTRANS 5 Bool FALSE Transifions
& DISACT 6 Bool FALSE Action processing
& STEPUN 7 Bool FALSE Slep aver,
@ STEPDEP 8 Bool FALSE SlepOver
@ RESTERR 9 Bool FALSE Supervision time
@ DISRMOTE 10 Bool FALSE Remote control
& ALLTRANS 11 Bool FALSE Al transitions
@ RESSTEPT 12 Bool FALSE Elapsed time

<] | [»

The following functions are available:

Display of the function blocks used in the project
Definition of a symbol for the function blocks used in the project
Automatic enabling of the defined symbols in the project
Enter a comment about the function block

View all parameters (inputs/outputs) of the function block
Assignment of an initial value to the function block inputs/outputs

35006144 07/2011

35

Presentation

DFB Types

The DFB types tab is used for the defining derived function block (DFBs)

parameters.

The creation of DFB logic is carried out directly in one or more sections of the FBD,

LD, IL or ST programming languages.
Tab DFB types:

iyl Data Editor

M= =

Wariables [DDT types T Function blocks I DFB types]
Fitter
{ [M] Name [° | ‘
MName Mu T Yalue |Comment -
- <Inputs>
@ Open Bool
@ close Bool
% vald Baal
& eotopened Bool
4 eofclosed Bool
+ <Quipuls>
! <Inputsfoutputs>
- <Public>
& timer disc Int 1
8 timer opening Int [+]
4] [T»

The following functions are available:
o Definition of the DFB name
e Definition of all parameter of the DFB, such as:
e Inputs
e Outputs
e VAR_IN_OUT (combined inputs/outputs)
e Private variables
e Public variables

Assignment of data types to DFB parameters
Own selection dialog box for derived data types
Assignment of an initial value

Nesting DFBs

Use of several sections in a DFB

Enter a comment for DFBs and DFB parameters
Analyze the defined DFBs

Version management

Assignment of defined DFBs to a library

36

35006144 07/2011

Presentation

Data Usage

Data types and instances created using the data editor can be inserted (context
dependent) in the programming editors.

The following functions are available:

e Access to all programming language editors

e Only compatible data is displayed

e View of the functions, function blocks, procedures and derived data types
arranged according to their library affiliation

e Instance declaration during programming is possible

Data selection dialog box:

GEOFBDEDITOR: Instance selection
— M [~]
1 —_—
AND Variables Function blacks |
N1 ouT L] Name [| ®in stuctre
N2 MName Type Comment | Address [~
[#I @ Emptying SFCSTEP_STATE
[+ @ motor mixer Mator
[+ @ motar emptying Mator
-4 fl_a presel Int Setpaint. [%MWT00
o i _b_presel Int Setpoint. | %MW101
4 bl _c_presel Int Sel paint BaliA 02
- A adjust_tempo_0 Int —
- logonw Real [~
OK ‘ | Cancel

35006144 07/2011

37

Presentation

Online Modifications

It is possible to modify the type of a variable or a Function Block (FB) instance
declared in application or in a Derived Function Block (DFB) directly in online mode
(see Unity Pro, Operating Modes). That means it is not required to stop the
application to perform such a type modification.

These operations can be done either in the data editor or in the properties editor, in
the same way as in offline mode.

A CAUTION

UNEXPECTED APPLICATION BEHAVIOR

When changing the type of a variable, the new value of the variable to be modified

depends on its kind:

e In the case of an unlocated variable, the variable is set to the initial value, if
one exists. Otherwise, it is set to the default value.

e In the case of a located variable, the variable restarts with the initial value if
one exists. Otherwise, the current binary value is unchanged.

Before applying the variable type change, check the impact of the new value of the
variable on the application execution.

Failure to follow these instructions can result in injury or equipment damage.

NOTE: It is not possible to modify the type of a variable declared in Derived Data
Type (DDT) in online mode (see Unity Pro, Operating Modes). The application has
to be switched into offline mode (see Unity Pro, Operating Modes) in order to build
such a modification.

Restrictions About Online Modifications

In the following cases, the online type modification of a variable or of a Function

Block (FB) is not allowed:

e If the variable is used as network global data, the online type modification is not
permitted.

o Whether the current FB can not be removed online, or a new FB can not be added
online, the online type modification of this FB is not allowed. Indeed, some
Elementary Function Blocks (EFB) like the Standard Function Blocks (SFB) do
not allow to be added or removed online. As a result, changing the type of an EFB
instance to a SFB instance is not possible, and conversely.

38

35006144 07/2011

Presentation

In both of these cases, the following dialog box is displayed:

On Line Modification Authorization @

You must build this modification Offline.
° Do you confirm the modification ?

| Ys][N |

NOTE: Due to these limitations, if a Derived Function Block (DFB) contains at least
one instance of a SFB, it is not be possible to add or remove instance of this DFB in
online mode (see Unity Pro, Operating Modes).

35006144 07/2011

39

Presentation

Program Editor

Introduction

A program can be built from:

e Tasks, that are executed cyclically or periodically.

Tasks are built from:

e Sections
e Subroutines

e Event processing, that is carried out before all other tasks.

Event processing is built from:
e Sections for processing time controlled events
e Sections for processing hardware controlled events

Example of a Program:

Project Browser

E= Structural View

-9 Program
oo I
2R] MAST
: ‘ E\‘ﬁ Section
" . [Counting
v - o) Drilling
: o [+ B Washing
' [F]+ SR Sections
C B SR
O i =12
"l FAST
' .-[] Sections
: m SR Sections
RS AUXO
.~ .- Sections
‘ CI SR Sections
'} Events
[} Timer event
C o E Timero
C U E Timert
:]9 1O Events
B Evto
- E Ewt

4 |

[»

40

35006144 07/2011

Presentation

Tasks
Unity Pro supports multiple tasks (Multitasking).

The tasks are executed "parallel" and independently of each other whereby the
execution priorities are controlled by the PLC. The tasks can be adjusted to meet
various requirements and are therefore a powerful instrument for structuring the
project.

A multitask project can be constructed from:

e A Master task (MAST)
The Master task is executed cyclically or periodically.
It forms the main section of the program and is executed sequentially.

e A Fast task (FAST)
The Fast task is executed periodically. It has a higher priority than the Master
task. The Fast task is used for processes that are executed quickly and
periodically.

e One to four AUX task(s))
The AUX tasks are executed periodically. They are used for slow processing and
have the lowest priority.

The project can also be constructed with a single task. In this case, only the Master
task is active.

Event Processing

Event processing takes place in event sections. Event sections are executed with
higher priority than the sections of all other tasks. They are suited to processing that
requires very short reaction times after an event is triggered.

The following section types are available for event processing:
e Sections for processing time controlled events (Timerx Section)
e Sections for processing hardware controlled events (Evix Section)

The following programming languages are supported:
FBD (Function Block Diagram)

LD (Ladder Diagram Language)

IL (Instruction List)

ST (Structured Text)

35006144 07/2011 41

Presentation

Sections

Subroutine

Sections are autonomous program units in which the logic of the project is created.

The sections are executed in the order shown in the project browser (structural
view). Sections are connected to a task.

The same section cannot be belong to more than one task at the same time.

The following programming languages are supported:
e FBD (Function Block Diagram)

LD (Ladder Diagram Language)

SFC (Sequential Function Chart)

IL (Instruction List)

ST (Structured Text)

[}
[}
[}
[}
Subroutines are created as separate units in subroutine sections.
Subroutines are called from sections or from another subroutine.
Nesting of up to 8 levels is possible.

A subroutine cannot call itself (not recursive).

Subroutines are assigned a task. The same subroutine cannot be called by different
tasks.

The following programming languages are supported:
e FBD (Function Block Diagram)

e LD (Ladder Diagram Language)

e IL (Instruction List)

o ST (Structured Text)

42

35006144 07/2011

Presentation

Function Block Diagram FBD

Introduction

The FBD editor is used for graphical function block programming according to IEC
61131-3.

Representation
Representation of an FBD section:

EN Input ENO Output Inversion ST Expression
Inspecllon window Link
1 2 3
Vanable AND OR. AND
\cnnd EN ENO i EN ENO EN ENO — Frrorl
IN1 —| [A=B—] — Resultl
%QX4 23 esu
Cotnment TRUE — %IX1.5.4 —] C=D—
1— %[K1.5.5 —

\ Execution number

. / ; Crossi
Literal Topolagical Link rossing
Addresses 4
XOR
3 EN ENO — Error2
AND —_— [Result2
Tooltip [
condl —|EN ENO [— 4
iz — —VarX /
™3 — AN
E1061 Undefined Symbol "Varx'

Objects

The objects of the FBD (Function Block Diagram) programming language help to
divide a section into a number of:

e Elementary Functions (EFs),
Elementary Function Blocks (EFBs)
Derived Function Blocks (DFBs)
Procedures

Subroutine calls

Jumps

Links

Actual Parameters

Text objects to comment on the logic

35006144 07/2011 43

Presentation

Properties

FBD sections have a grid behind them. A grid unit consists of 10 coordinates. A grid
unit is the smallest possible space between 2 objects in an FBD section.

The FBD programming language is not cell oriented but the objects are still aligned
with the grid coordinates.

An FBD section can be configured in number of cells (horizontal grid coordinates
and vertical grid coordinates).

The program can be entered using the mouse or the keyboard.

Input Aids

The FBD editor offers the following input aids:
e Toolbars for quick and easy access to the desired objects
e Syntax and semantics are checked as the program is being written.
e Incorrect functions and function blocks are displayed in blue
e Unknown words (e.g. undeclared variables) or unsuitable data types are
marked with a red wavy line
e Brief description of errors in the Quickinfo (Tooltip)

e Information for variables and pins can be displayed in a Quickinfo (Tooltip)
e type, name, address and comment of a variable/expression
e type, name and comment of an FFB pin

e Tabular display of FFBs

Actual parameters can be entered and displayed as symbols or topological
addresses

Different zoom factors

Tracking of links

Optimization of link routes

Display of inspection windows

44 35006144 07/2011

Presentation

Ladder Diagram (LD) Language

Introduction

Representation

Objects

The LD editor is used for graphical ladder diagram programming according to IEC
61131-3.

Representation of an LD section:

Left Power Rail
Topological Right Power Rail
/Addresses \
%lX1.5.6 %IX1.5.5 %0QX2
|| . | /1
| = |/]
%IX15.6 /
‘ Execution number Coil
Inspection window X
Contact Function A - Variable
8 Error \
%IX1.5.6 XOR — Cohme | T
— }— EN ENO }—
%Q2 varx
—| ——m1 our
26Q3 [E1061 Undefined Symbol "Varx |
—{ —{me
Tooltip

The objects of the LD programming language help to divide a section into a number
of:

Contacts,

Coils,

Elementary Functions (EFs)

Elementary Function Blocks (EFBs),

Derived Function Blocks (DFBs)

Procedures

Control elements

Operation and compare blocks which represent an extension to IEC 61131-3
Subroutine calls

Jumps

Links

Actual Parameters

Text objects to comment on the logic

35006144 07/2011

45

Presentation

Properties

Input Aids

LD sections have a background grid that divides the section into lines and columns.

The LD programming language is cell oriented, i.e. only one object can be placed in
each cell.

LD sections can be 11-64 columns and 17-2000 lines in size.
The program can be entered using the mouse or the keyboard.

The LD editor offers the following input aids:
e Objects can be selected from the toolbar, the menu or directly using shortcut keys
e Syntax and semantics are checked as the program is being written.
e Incorrect objects are displayed in blue
e Unknown words (e.g. undeclared variables) or unsuitable data types are
marked with a red wavy line
e Brief description of errors in the Quickinfo (Tooltip)

e Information for variables and for elements of an LD section, that can be
connected to a variable (pins, contacts, coils, operation and compare blocks), can
be displayed in a Quickinfo (Tooltip)

e type, name, address and comment of a variable/expression
e type, name and comment of FFB pins, contacts etc.

e Tabular display of FFBs

Actual parameters can be entered and displayed as symbols or topological
addresses

Different zoom factors

Tracking of FFB links

Optimizing the link routes of FFB links

Display of inspection windows

46

35006144 07/2011

Presentation

General Information about SFC Sequence Language

Introduction
The sequence language SFC (Sequential Function Chart), which conforms to IEC
61131-3, is described in this section.

IEC conformity restrictions can be lifted through explicit enable procedures.
Features such as multi token, multiple initial steps, jumps to and from parallel strings
etc. are then possible.

Representation
Representation of an SFC section:

T
Link ~

Inihial Step

Transition condition
{Boolean Vanable)

: T Parallel branch
S_4.2 S.4.5
Step
[A
T 4.2
/ — — — Allernat
%1100 n\fgal“rn %1103

Transition conditign
{return value of a | E1061 Undefined Symbol 'VarX |
T I

Transition section)
S_4.3 S5 4.6 549 S 4.7
AR Jum,
T4 3
I L] I
%1104 %I110.5
ey

5 Transition condition Alternative joint

S 44 S 47 (Topological Boolean address)

T

Parallel joint

Transition condition (Boolean Literal)

MS_4_1

‘\ Macro Step

35006144 07/2011 47

Presentation

Objects

An SFC section provides the following objects for creating a program:
Steps

Macro steps (embedded sub-step sequences)
Transitions (transition conditions)

Transition sections

Action sections

Jumps

Links

Alternative sequences

Parallel sequences

Text objects to comment on the logic

Properties

The SFC editor has a background grid that divides the section into 200 rows and 32
columns.

The program can be entered using the mouse or the keyboard.

Input Aids

The SFC editor offers the following input aids:
e Toolbars for quick and easy access to the desired objects
e Automatic step numbering
e Direct access to actions and transition conditions
e Syntax and semantics are checked as the program is being written.
e Incorrect objects are displayed in blue
e Unknown words (e.g. undeclared variables) or unsuitable data types are
marked with a red wavy line
e Brief description of errors in the Quickinfo (Tooltip)

e Information for variables and for transitions can be displayed in a Quickinfo
(Tooltip)
e type, name, address and comment of a variable/expression
e type, name and comment of transitions

Different zoom factors
Show/hide the allocated actions
Tracking of links

Optimization of link routes

48 35006144 07/2011

Presentation

Step Properties
Step properties:

Step Properties

General [Actions TCommenl l

Step name | (1 Initial Step

Supervision times and delay time
3 'SFCSTEP_TIMES' # Litcrals

- Masamum | ‘
I::l Minimum | ‘

Delay |l#18 ‘

Step Properties

General IActions T Comment l

) Time
Qualifier (@ Literal > Variable

| |

Action
’7@ Variable 3 Section

| Motorl ‘V| D

New Action
Delete
Up

il

Down

\Init Search for selected variable |

\ OK H Cancel H Apply H Help

The step properties are defined using a dialog box that offers the following features:
Definition of initial steps

Definition of diagnostics times

Step comments

Allocation of actions and their qualifiers

35006144 07/2011 49

Presentation

Instruction List IL

Introduction

Representation

Objects

Input Aids

The IL editor is used for instruction list programming according to IEC 61131-3.

Representation of an IL section:

Label Qperators Operands Comments Inspection window
START: LD Varad (*Key 1% / (y\ﬁfé%

ANDN VarB (*and not key 2 *) Ot

by VarC (* Ventilator On *) S

LD VarX (*Undeclared Variable *) Tooltip

| E1061 Undefined Symbol *VarX |

An instruction list is composed of a series of instructions.

Each instruction begins on a new line and consists of:

An operator

A modifier if required

One or more operands if required

A label as a jump target if required

A comment about the logic if required.

The IL editor offers the following input aids:

Syntax and semantics are checked as the program is being written.

e Keywords and comments are displayed in color

e Unknown words (e.g. undeclared variables) or unsuitable data types are
marked with a red wavy line

e Brief description of errors in the Quickinfo (Tooltip)

Tabular display of the functions and function blocks

Input assistance for functions and function blocks

Operands can be entered and displayed as symbols or topological addresses
Display of inspection windows

50

35006144 07/2011

Presentation

Structured Text ST

Introduction

Representation

Objects

Input Aids

The ST editor is used for programming in structured text according to IEC 61131-3.

Representation of an ST section:

Operator Operand Comment
Instruction

D :=B*B-4*A*C; (* Bagis Calculation *)
IF D < 0.0 THEN NROOTS := 0 ;]
ELSIF D = 0.0 THEN

Inspection window NROOTS =1,
X1 =-B/(2.0%A);
ELSE Expression
=<1 NROOTS =2

%QF4.2.3 X1 = (-B + SQRT(D)) / (2.0%A) ;|

Comment | 7 .= (-B - SQRT(D)) / (2.0%A) ;
END IF ;

Tooltip Varx = 15; (* Undeclared Variable *)

L

[E1061 Undefined Symbol 'Varx |

The ST programming language works with "Expressions".

Expressions are constructions consisting of operators and operands that return a
value when executed.

Operators are symbols representing the operations to be executed.

Operators are used for operands. Operands are variables, literals, function and
function block inputs/outputs etc.

Instructions are used to structure and control the expressions.

The ST editor offers the following input aids:
e Syntax and semantics are checked as the program is being written.
e Keywords and comments are displayed in color
e Unknown words (e.g. undeclared variables) or unsuitable data types are
marked with a red wavy line
e Brief description of errors in the Quickinfo (Tooltip)

Tabular display of the functions and function blocks

Input assistance for functions and function blocks

Operands can be entered and displayed as symbols or topological addresses
Display of inspection windows

35006144 07/2011

51

Presentation

PLC Simulator

Introduction

Representation

The PLC simulator enables error searches to be carried out in the project without

being connected to a real PLC.

All project tasks (Mast, Fast, AUX and Event) that run on a real PLC are also
available in the Simulator. The difference from a real PLC is the lack of /O modules
and communication networks (such as e.g. ETHWAY, Fipio and Modbus Plus) non-

deterministic realtime behavior.

Naturally, all debugging functions, animation functions, breakpoints, forcing
variables etc. are available with the PLC simulator.

Representation of a dialog box:

@ PLC Simulator Control

CH2 CHo ERR

CH3 CH1 TER 1O

Simulation

Host PC name: | sg6157.aut.schneider-

Host IP address:| 139.158.106.116

Project name: | Station

FIP

. Reset

Q Power Cycle

——— Clientsconnected ——————

Name of the client: IP address:

local host
sg-avail aut.schneider

127.000.000.001
139.158.107.005

Structure of the Simulator

The simulator controller offers the following views:

e Type of simulated PLC

Current status of the simulated PLC

[}
o Name of the loaded project
[}

IP address and DNS name of the host PC for the simulator and all connected

Client PCs

Dialog box for simulating 1/0O events

Reset button to reset the simulated PLC (simulated cold restart)
Power Off/On button (to simulate a warm restart)

Shortcut menu (right mouse button) for controlling the Simulator

52

35006144 07/2011

Presentation

Export/Import

Introduction

Export

Import

The export and import functions allow you to use existing data in a new project. The
XML export/import format makes is possible to provide or accept data from external
software.

The following objects can be exported:

Complete projects, including configuration
Sections of all programming languages
Subroutine sections of all programming languages
Derived function blocks (DFBs)

Derived data types (DDTSs)

Variable declarations

Operator Screen

All objects that can be exported can naturally be imported as well.

There are two types of import:

e Direct import
Imports the object exactly as it was exported.

e Import with the assistant
The assistant allows you to change the variables names, sections or functional
modules. The mapping of addresses can also be modified.

35006144 07/2011

53

Presentation

User Documentation

User Documentation
Scope of the user documentation:

Documentation * H =

(%= Jlua] @

[=1 - (] Station

Exclude all headings

Include all headings

-+
E Parameter

=1 {F] oo
. E|>‘ Siructure documentation fle
: E|>‘ Yiew

Print

@ fling feeding box (7)

- Mixing (7)

S eNE)

3 E 1] Exclude heading

L & Include headings

[T

C 0 % sRse ‘ Print ‘
: [#] -+ < Evenls (7)
—x@ Animation tables (?)

[Footer

The following are just some of the services provided for documenting the project:
Print the entire project (2) or in sections (3)

Selection between structural and functional view (1)

Adjustment of the result (footer, general information, etc.)

Local printing for programming language editors, configurator, etc.

Special indication (bold) for keywords

Paper format can be selected

Print preview (4)

Documentation save

54 35006144 07/2011

Presentation

Debug Services

Searching for Errors in the User Application

The following are just some of the features provided to optimize debugging in the
project:

Set breakpoints in the programming language editors

Step by step program execution, including step into, step out and step over
Call memory for recalling the entire program path

Control inputs and outputs

Online Mode
Online mode is when a connection is established between the PC and the PLC.

Online mode is used on the PLC for debugging, for animation and for changing the
program.

A comparison between the project of the PC and project of the PLC takes place
automatically when the connection is established.

This comparison can produce the following results:
o Different projects on the PC and the PLC
In this case, online mode is restricted. Only PLC control commands (e.g. start,
stop), diagnostic services and variable monitoring are possible. Changes cannot
be made to the PLC program logic or configuration. However, the downloading
and uploading functions are possible and run in an unrestricted mode (same
project on PC and PLC).
e Same projects on the PC and the PLC
There are two different possibilities:
e ONLINE SAME, BUILT
The last project generation on the PC was downloaded to the PLC and no
changes were made afterwards, i.e. the projects on the PC and the PLC are
absolutely identical.
In this case, all animation functions are available and unrestricted.
e ONLINE EQUAL, NOT BUILT
The last project generation on the PC was downloaded to the PLC, however
changes were made afterwards.
In this case, the animation functions are only available in the unchanged
project components.

35006144 07/2011 55

Presentation

Animation

Different possibilities are provided for the animation of variables:

e Section animation

All programming languages (FBD, LD, SFC, IL and ST) can be animated.

The variables and connections are animated directly in the section.

ST1: [MAST] A=

TIMER(IN = NOT pulze;
= s
pulse = B

IF pulze = 1 THEN
= +1.
END_IF:

CASE OF
1: = TRUE;
2: out2 = TRUE;
ELSE
= FALSE;
=FALSE;

-

l

[«TT |

»

AND
—|EN ENO

— %IX1.54—
— WD1.55—

EN

OR

ENO

FBD1 : [MAST] mEE
[=]

EN
A>B—]
C=D—

AND

ENC

<

>

56

35006144 07/2011

Presentation

e Tooltips

A tooltip with the value of a variable is displayed when the mouse pointer passes

over that variable.

ST1 : [MAST] AE
rs
TIMER(IN = NOT pulse; [

= Fls;
pulse = B

IF pulze = 1 THEN

END_IF:
CASE OF
1: = TRUE;
2: out2 = TRUE;
ELSE
= FALSE; —
= FALSE; =1
v
[« | C

e Inspection window

An inspection window can be created for any variable. This window displays the
value of the variable, the address and any comments (if available). This function

is available in all programming languages.

ST1 : [MAST] mE=
=]

TIMER(IN = NOT pulze;
= Fls;
pulse = B

IF pulse = 1 THEN count
= +1; 7
END_IF;

CASE OF
1: = TRUE:
2: outl = TRUE;
ELSE

out
TRUE

= FALSE; =
= FALSE; =
EIEN C

35006144 07/2011

57

Presentation

e Variables window
This window displays all variables used in the current section.

Variables window
Name ~ |Value Type « |Comment
. Jpump_1 start 1 Bool
- 4 pump_l.cmd 1 Bool
- - 4 pump_1.speed 100 Int
- 4 high_anim 0 Bool
- 4 jack_1_out 1 Bool
- b jack_3_out 0 Bool

4 midle_anim 1 Bool

43 Low_anim 0 Bool
;- 4 hole_anim1 0 Bool
- 4 End_threading.x 0 Bool
- - 4 Unblocking.x 0 Bool

45 hole_anim2 0 Bool
- - 4 End_drilling.x 0 Bool

¢ Animation table
The value of all variables in the project can be displayed, changed or forced in
animation tables. Values can be changed individually or simultaneously together.

et [[[E s M
Name Value |Setvalue |Type Comment -
O start 1 Bool
[=- @ Indexing_blocki... SFCSTEP_STAT
-4t Os Time
-4 x 1 Bool
- - 4 tminErr 0 Bool
- - 4 tmaxErr 0 Bool
O text String
- 4B varl 120 120 Int
4 var2 360 360 Int

58 35006144 07/2011

Presentation

Watch Point

Watch points allow you to view PLC data at the exact moment at which it is created
(1) and not only at the end of a cycle.

Animation tables can be synchronized with the watch point (2).

A counter (3) determines how often the watch point has been updated.
ST section with watch point:

Watch Point
B #f b ©
j‘
i [mm] P
[a]
if pump_ L. start i
then pump_1.cmd: = true;
else pump_1.cmd: = false; =0
/ end_if;
if pump_1.cmd then p 1= + 1 end™if,
@ i =100 then | = 100; end_if;
:=not jack_1_out and not jack_3_oul; @ [*]
4

IR A e]

Name Value |Type Comment -
- - DEE Bool
[= @ Indexing_blocki... SFCST...
EEE) Time
- X Bool
L 4§ tminErr Bool

35006144 07/2011 59

Presentation

Breakpoint
Breakpoints allow you to stop processing of the project at any point.
ST section with breakpoint:

ST1: [MAST] S
FY
TIMER (IN = NOT plse; ||

= Fls;
pulse = 2
Breakpoint

@ IF pulse = 1 THEN
= +1;
END_IF;

CASE OF
1: = TRUE;
2: out2 = TRUE;
ELSE
= FALSE. —|
= FALSE;
[0 | y

4]

Single Step Mode

Single step mode allows you to execute the program step by step. Single step
functions are provided if the project was stopped by reaching a breakpoint or if it is
already in single step mode.

ST section in single step mode:

by
"l

Hﬁ

HIW
OIRT

@

o
--wl ©)
g

Yy

y_dfb 9 5
oy _dfb € IS ST (DFB): test [iest -t.. M= E
17 = [out = i [+]
» MAST call stack
1] Calls (newest to the oldest)
Section |Inslance |Langu \Line
test (test)my_dfb ST (1,4)
test1 ST 2,1)
A1 [
‘Display| ‘ Close ‘

The following functions are provided in single step mode:
Step by step execution of the program

Stepln (1)

StepOut

StepOver

60 35006144 07/2011

Presentation

Bookmarks

e Show Current Step (2)

e Call memory (3)
When the "step into" function is executed several times, the call memory enables
the display of the entire path, starting with the first breakpoint

NOTE: Running the PLC program in step by step mode, as well as entering (Stepin)
in a read/write protected section may lead to the inability to read the program and

exit from the section. The user must switch the PLC in "Stop" mode to get back to

the initial state.

Bookmarks allow you to select code sections and easily find them again.

35006144 07/2011

61

Presentation

Diagnostic Viewer

Description
Unity Pro provides system and project diagnostics.

Errors which occur are displayed in a diagnostics window. The section which caused
the error can be opened directly from the diagnostics window in order to correct the

error.
Diagnostic Viewer
Acknowledgement: 0 « (Message « |[Error a |Symbol « |Range~ |4
Buffer battery error System ...
§ Deleted Buffer battery error System ... %S68 0
§ Peleted Buffer battery error System ... %S68 0
§ Deleted Index overflow System ... %S20 (MAST) 0
v
[T | |1
System alarm Buffer battery error 28/01/2002 21:10:51 A

Faulty device rack:

Faulty device slot:

1|

62 35006144 07/2011

Presentation

Operator Screen

Introduction
Operator windows visualize the automation process.

The operator screen editor makes it easy to create, change and manage operator
screens.

Operator screens are created and accessed via the project browser.

Project Browser

B= Stuctural View

Station
- Configuration
4] Z 0:XBus
Derived Data Types
Derived FB Types
- Variables & FB instances
[/ Elementary Variables
[?) Derived Variahles
[2) 1O-Derived Variables
@ Elementary FB instances
[?) Derived FB Instances
- Communication
Metwork
+ Routing Table
- Program
+ Tasks
+ Evenls
Animation Tables
-
- Farmily_1
[®) Screen_t
® screen2
® soreen_3
+ Family_2
+ Farmily_3
- Documentation

[Tile Page
[?) General Information

35006144 07/2011 63

Presentation

Operator Screen Editor

An operator window contains much information (dynamic variables, overviews,
written text, etc.) and makes it easy to monitor and change automation variables.

Operator Screen

BD A i [m]

X
a

Thread cutting

Drilling |
|

Drilling speed

Insert value

Latch and block

THREAD CUTTING .
End of a cycle O Start

4T] [r]

The operator screen editor offers the following features:

Extensive visualization functions

e Geometric elements
Line, rectangle, ellipse, curve, polygon, bitmap, text

e Control elements
Buttons, control box, shifter, screen navigation, hyperlinks, input field, rotating
field

e Animation elements
Bar chart, trend diagram, dialog, date, disappear, blinking colors, variable
animation

Create a library for managing graphical objects

Copying objects

Creating a list of all variables used in the operator screen

Creating messages to be used in the operator screen

Direct access from the operator screen to the animation table or the cross
reference table for one or more variables

Tooltips give additional information about the variables

Managing operator screens in families

Import/export of individual operator screens or entire families

64

35006144 07/2011

Application Structure

In This Part

What’s in this Part?

This part describes the application program and memory structures associated with
each type of PLC.

This part contains the following chapters:

35006144 07/2011

Chapter Chapter Name Page
2 Description of the Available Functions for Each Type of PLC 67
3 Application Program Structure 69
4 Application Memory Structure 107
5 Operating Modes 121
6 System Objects 147
65

Application Structure

66

35006144 07/2011

Description of the Available

Functions for Each Type of PLC

2

Functions Available for the Different Types of PLC

Programming Languages

All the following languages are available for platforms Modicon M340, Premium,

Atrium and Quantum:

e LD
e FBD
e ST
e |L
e SFC

NOTE: Only LD and FBD languages are available on Quantum Safety PLCs.

Tasks and Processes

The following table describes the available tasks and processes.

Platforms Modicon M340 Premium: TSX Atrium: Quantum: 140 CPU
TSX
Processors P34 1000 | P34 20 | P57 0244 | P57 20 P57 See PCI 57 31eeee | G51ee | 651 60S
P57 1ee P57 3ee P57 6634 | 204/354 43eeee | 652 60 | 671 60S
P57 4ee 53eese | 671 60
H57 24M 672 61
H57 44M
Master task X X X X X X X X X
cyclic or
periodic
Fast task X X X X X X X X -
periodic
Auxiliary tasks |- - - - 4 - - 4 -
periodic
Maximum size 64Kb 16Mb |-
of a section

35006144 07/2011

67

PLC Functions

Platforms

Modicon M340

Premium: TSX

Atrium:

TSX

Quantum: 140 CPU

1/0 type event
processing

32 64

32 64

128

64

64

128

Timer type
event
processing

16 32

32

16

32

Total of I/O
type and Timer
type event
processing

32 64

32 64

128

64

64

128

X or Value available tasks or processes (the value is the maximum number)

- unavailable tasks or processes.

68

35006144 07/2011

Application Program Structure

Subject of this Chapter

This chapter describes the structure and execution of the programs created using
the Unity Pro software.

What’s in this Chapter?

This chapter contains the following sections:

Section Topic Page
3.1 Description of Tasks and Processes 70
3.2 Description of Sections and Subroutines 76
3.3 Mono Task Execution 81
34 Multitasking Execution 89

35006144 07/2011 69

Program Structure

3.1 Description of Tasks and Processes

Subject of this Section

This section describes the tasks and processes that comprise the application

program.

What’s in this Section?

This section contains the following topics:

Topic Page
Presentation of the Master Task 71
Presentation of the Fast Task 72
Presentation of Auxiliary Tasks 73
Overview of Event Processing 75

70

35006144 07/2011

Program Structure

Presentation of the Master Task

General

Structure

Execution

Control

The master task represents the main task of the application program. It is obligatory
and created by default.

The master task (MAST) is made up of sections and subroutines.

Each section of the master task is programmed in the following languages: LD, FBD,
IL, ST or SFC.

The subroutines are programmed in LD, FBD, IL, or ST and are called in the task
sections.

NOTE: SFC can be used only in the master task sections. The number of sections
programmed in SFC is unlimited.

You can choose the type of master task execution:

e cyclic (default selection)
e or periodic (1 to 255ms)

The master task can be controlled by program, by bits and system words.

System objects Description

%SWO0 Task period.

%S30 Master task activation.

%S11 Watchdog error.

%S19 Period overrun.

%SW27 Number of ms spent in the system during the last Mast cycle.
%SW28 Maximum overhead time (in ms) for Modicon M340.
%SW29 Minimum overhead time (in ms) for Modicon M340.
%SW30 Execution time (in ms) of the last cycle.

%SW31 Execution time (in ms) of the longest cycle.
%SW32 Execution time (in ms) of the shortest cycle.

35006144 07/2011

71

Program Structure

Presentation of the Fast Task

General
The fast task is intended for short duration and periodic processing tasks.
Structure
The fast task (FAST) is made up of sections and subroutines.
Each section of the fast task is programmed in one of the following languages: LD,
FBD, IL or ST.
SFC language cannot be used in the sections of a fast task.
Subroutines are programmed in LD, FBD, IL, or ST language and are called in the
task sections.
Execution
The execution of the fast task is periodic.
It is higher priority than the master task.
The period of the fast task (FAST) is fixed by configuration, from 1 to 255ms.
The executed program must however remain short to avoid the overflow of lower-
priority tasks.
Control
The fast task can be controlled by program by bits and system words.
System objects Description
%SWH1 Task period.
%S31 Fast task activation.
%S11 Watchdog error
%S19 Period overrun.
%SW33 Execution time (in ms) of the last cycle.
%SW34 Execution time (in ms) of the longest cycle.
%SW35 Execution time (in ms) of the shortest cycle.
72 35006144 07/2011

Program Structure

Presentation of Auxiliary Tasks

General

Structure

Execution

Control

The auxiliary tasks are intended for slower processing tasks. These are the least
priority tasks.

It is possible to program up to 4 auxiliary tasks (AUX0, AUX1, AUX2 or AUX3) on
the Premium TSX P57 5ee and Quantum 140 CPU 6Beeee PLCs. Auxiliary tasks are
not available for Modicon M340 PLCs.

The auxiliary tasks (AUX) are made up of sections and subroutines.

Each section of the auxiliary task is programmed in one of the following languages:
LD, FBD, IL or ST.

The SFC language is not usable in the sections of an auxiliary task.

A maximum of 64 subroutines can be programmed in the LD, FBD, IL or ST
language. These are called in the task sections.

The execution of auxiliary tasks is periodic .
They are the least priority.
The auxiliary task period can be fixed from 10ms to 2.55s.

The auxiliary tasks can be controlled by program by bits and system words.

System objects | Description

%SW2 Period of auxiliary task 0.
%SW3 Period of auxiliary task 1.
%SW4 Period of auxiliary task 2.
%SW5 Period of auxiliary task 3.
%S32 Activation of auxiliary task 0.
%S33 Activation of auxiliary task 1.
%S34 Activation of auxiliary task 2.
%S35 Activation of auxiliary task 3.
%S11 Watchdog error

%S19 Period overrun.

%SW36 Execution time (in ms) of the last cycle of auxiliary task 0.

35006144 07/2011

73

Program Structure

System objects

Description

%SW39

Execution time (in ms) of the last cycle of auxiliary task 1.

(

%SW42 Execution time (in ms) of the last cycle of auxiliary task 2.

%SW45 Execution time (in ms) of the last cycle of auxiliary task 3.

%SW37 Execution time (in ms) of the longest cycle of auxiliary task 0.
%SW40 Execution time (in ms) of the longest cycle of auxiliary task 1.
%SW43 Execution time (in ms) of the longest cycle of auxiliary task 2.
%SW46 Execution time (in ms) of the longest cycle of auxiliary task 3.
%SW38 Execution time (in ms) of the shortest cycle of auxiliary task 0.
%SW41 Execution time (in ms) of the shortest cycle of auxiliary task 1.
%SW44 Execution time (in ms) of the shortest cycle of auxiliary task 2.
%SW47 Execution time (in ms) of the shortest cycle of auxiliary task 3.

74

35006144 07/2011

Program Structure

Overview of Event Processing

General

Event processing is used to reduce the response time of the application program to
events:

e coming from input/output modules,

e from event timers.

These processing tasks are performed with priority over all other tasks. They are
therefore suited to processing tasks requiring a very short response time in relation
to the event.

The number of event processing tasks (see page 67) that can be programmed
depends on the type of processor.

Structure

An event processing task is monosectional, and made up of a single (unconditioned)
section.

It is programmed in either LD, FBD, IL or ST language.

Two types of event are offered:
e |/O event: for events coming from input/output modules
e TIMER event: for events coming from event timers.

Execution
The execution of an event processing task is asynchronous.

The occurrence of an event reroutes the application program to the processing task
associated with the input/output channel or event timer which caused the event.

Control

The following system bits and words can be used to control event processing tasks
during the execution of the program.

System objects Description

%538 Activation of event processing.

%$S39 Saturation of the event call management stack.

$SW48 Number of 10 events and telegram processing tasks executed.
NOTE: TELEGRAM is available only for PREMIUM (not on Quantum
neither M340)

$SW75 Number of timer type events in the queue.

35006144 07/2011 75

Program Structure

3.2 Description of Sections and Subroutines

Aim of this Section

This section describes the sections and the subroutines that make up a task.

What’s in this Section?

This section contains the following topics:

Topic Page
Description of Sections 7
Description of SFC sections 79
Description of Subroutines 80

76

35006144 07/2011

Program Structure

Description of Sections

Overview of the Sections

Example

Sections are autonomous programming entities.

The identification tags of the instruction lines, the contact networks, etc. are specific
to each section (no program jump to another section is possible).

These are programmed either in:

Ladder language (LD)

Functional block language (FBD)
Instruction List (IL)

Structured Text (ST)

or Sequential Function Charting (SFC)

on condition that the language is accepted in the task.

The sections are executed in the order of their programming in the browser window
(structure view).

An execution condition can be associated with one or more sections in the master,
fast and auxiliary tasks, but not in the event processing tasks.

The sections are linked to a task. The same section cannot belong simultaneously
to several tasks.

The following diagram shows a task structured into sections.

- _ﬁ MAST

- - = Sections

: ‘L — Y Airlock
7~ D ovent
: il ‘B Dryer

|

~ — [7] SR Sections

35006144 07/2011

77

Program Structure

Characteristics of a Section
The following table describes the characteristics of a section.

Characteristic Description

Name 32 characters maximum (accents are possible, but spaces are not
allowed).

Language LD, FBD, IL, ST or SFC

Task or Master, fast, auxiliary, event

processing

Condition A BOOL or EBOOL type bit variable can be used to condition the

(optional) execution of the section.

Comment 256 characters maximum

Protection Write-protection, read/write protection.

78 35006144 07/2011

Program Structure

Description of SFC sections

General
The sections in Sequential Function Chart language are made up of:

e a main chart programmed in SFC
e macro steps (MS) programmed in SFC
e actions and transitions programmed in LD, FBD, ST, or IL

The SFC sections are programmable only in the master task (see detailed
description of SFC sections)

Example

The following diagram gives an example of the structure of an SFC section, and
uses the chart to show the macro step calls that are used.

-] MAsT
BF — — ﬂ Sections Folder
L - [Airlock
:’ — — 19 oven_1
E- — ﬂSequential processing
L — 5 - chan
L g [y Ms .11
: L [ms_2_1
- — =5 Msl12

|
L —E -[MS_4_1

L — — {HwmMs.a2

|

|

|

|

|

r—E —@ Unused Macro
|

|

|

:— - = —C[Actions
|

|

\
\
|
\
|
\
\
\
\
\
\
\
\
‘ - — —g Transitions
\

|

[7B Dryer

35006144 07/2011 79

Program Structure

Description of Subroutines

Overview of Subroutines

Subroutines are programmed as separate entities, either in:

Ladder language (LD),
Functional block language (FBD),
Instruction List (IL),

Structured Text (ST).

The calls to subroutines are carried out in the sections or from another subroutine.

The number of nestings is limited to 8.

A subroutine cannot call itself (non recursive).

Subroutines are also linked to a task. The same subroutine cannot be called from
several different tasks.

Example

The following diagram shows a task structured into sections and subroutines.

_] MAST

— {:I Sections

B0- — ,ﬂ SR Sections

. ‘B Control_1

L — [Detection

Characteristics of a Subroutine

The following table describes the characteristics of a subroutine.

Characteristic

Description

Name

32 characters maximum (accents are possible, but spaces are not
allowed).

Language

LD, FBD, IL or ST.

Task

Master, fast or auxiliary

Comment

512 characters maximum

80

35006144 07/2011

Program Structure

3.3 Mono Task Execution

Subiject of this Section

This section describes how a mono task application operates.

What’s in this Section?

This section contains the following topics:

Topic Page
Description of the Master Task Cycle 82
Mono Task: Cyclic Execution 84
Periodic Execution 85
Control of Cycle Time 86
Execution of Quantum Sections with Remote Inputs/Outputs 87

35006144 07/2011 81

Program Structure

Description of the Master Task Cycle

General

lllustration

The program for a mono task application is associated with a single user task, the
master task (see page 71).

You can choose the type of master task execution:

e cyclic
e periodic

The following illustration shows the operating cycle.

Acquisition of inputs

Program processing

Updating of outputs

Description of the Different Phases

The table below describes the operating phases.

Phase Description

Acquisition of | Writing to memory of the status of the data on the inputs of the discrete and application-specific
inputs modules associated with the task,
These values can be modified by forcing values.

Program Execution of application program, written by the user,

processing

Updating of Writing of output bits or words to the discrete or application-specific modules associated with the
outputs task depending on the state defined by the application.

As for the inputs, the values written to the outputs can be modified by forcing values.

NOTE: During the input acquisition and output update phases, the system also
implicitly monitors the PLC (management of system bits and words, updating of
current values of the real time clock, updating of status LEDs and LCD screens (not
for Modicon M340), detection of changes between RUN/STOP, etc.) and the
processing of requests from the terminal (modifications and animation).

82

35006144 07/2011

Program Structure

Operating Mode

PLC in RUN, the processor carries out internal processing, input acquisition,
processing of the application program and the updating of outputs in that order.

PLC in STOP, the processor carries out:

e internal processing,
e input acquisition (1),
e and depending on the chosen configuration:
e fallback mode: the outputs are set to fallback position.
e maintain mode: the last value of the outputs is maintained.

(1) for Premium , Atrium and Quantum PLCs, input acquisition is inhibited when the
PLC is in STOP.

35006144 07/2011

83

Program Structure

Mono Task: Cyclic Execution

General
The master task operates as outlined below. A description is provided of cyclic
execution of the master task in mono task operation.
Operation
The following drawing shows the execution phases of the PLC cycle.
Processing the Processing
program the program
%l %Q %l %Q
Cycle n Cycle n+1
g L
%l Reading of inputs
%Q Writing of outputs
Description
This type of operation consists of sequencing the task cycles, one after another.
After having updated the outputs, the system performs its own specific processing
then starts another task cycle, without pausing.
Cycle Check

The cycle is checked by the watchdog (see page 86).

84 35006144 07/2011

Program Structure

Periodic Execution

Description

Operation

Operating Mode

Cycle Check

In this operating mode, input acquisition, the processing of the application program
and the updating of outputs are all carried out periodically over a defined period of
1 to 255 ms.

At the start of the PLC cycle, a time out whose current value is initialized to the
defined period starts the countdown.

The PLC cycle must be completed before this time out expires and launches a new
cycle.

The following diagram shows the execution phases of the PLC cycle.

Processing the Processing the
program program
%l %Q %l %Q
Cycle n Cycle n+1
| | -

%l Reading of inputs
%Q Writing of outputs

The processor carries out internal processing, input acquisition, processing of the
application program and the updating of outputs in that order.

e |If the period is not yet over, the processor completes its operating cycle until the
end of the period by performing internal processing.

e If the operating time is longer than that assigned to the period, the PLC signals a
period overrun by setting the system bit %S19 of the task to 1. Processing then
continues and is executed fully (however, it must not exceed the watchdog time
limit). The following cycle is started after the outputs have been implicitly written
for the current cycle.

Two checks are carried out:

e period overrun (see page 86),
e by watchdog (see page 86).

35006144 07/2011

85

Program Structure

Control of Cycle Time

General

The period of master task execution, in cyclic or periodic operation, is controlled by
the PLC (watchdog) and must not exceed the value defined in Tmax configuration
(1500 ms by default, 1.5 s maximum).

Software Watchdog (Periodic or Cyclic Operation)
If watchdog overflow should occur, the application is declared in error, which causes
the PLC to stop immediately (HALT state).

The bit %S11 indicates a watchdog overflow. It is set to 1 by the system when the
cycle time becomes greater than the watchdog.

The word %SW11 contains the watchdog value in ms. This value is not modifiable
by the program.

NOTE:

e The reactivation of the task requires the terminal to be connected in order to
analyze the cause of the error, correct it, reinitialize the PLC and switch it to RUN.

e |tis not possible to exit HALT by switching to STOP. To do this you must
reinitialize the application to ensure consistency of data.

Control in Periodic Operation

In periodic operation, an additional control enables a period overrun to be detected.
A period overrun does not cause the PLC to stop if it remains less than the watchdog
value.

The bit %S19 indicates a period overflow. Itis set to 1 by the system, when the cycle
time becomes greater than the task period.

The word %SWO0 contains the value of the period (in ms). It is initialized on cold
restart by the defined value. It can be changed by the user.

Exploitation of Master Task Execution Times
The following system words can be used to obtain information on the cycle time:

o %SW30 contains the execution time of the last cycle
o %SW31 contains the execution time of the longest cycle
o %SW32 contains the execution time of the shortest cycle

NOTE: These different items of information can also be accessed explicitly from the
configuration editor.

86 35006144 07/2011

Program Structure

Execution of Quantum Sections with Remote Inputs/Outputs

General

Operation

Process

Update query

Quantum PLCs have a specific section management system. It applies to stations
with remote inputs/outputs.

These stations are used with following RIO modules:

e 140 CRA 931 00
e 140 CRA 93200

This system allows remote inputs/outputs to be updated on sections with optimum
response times (without waiting for the entire task cycle before updating the

inputs/outputs).

The following diagram shows the 10 phases when 5 drops are associated to client
task sections.

USER EXEC

Yol

%Q5

—
=it

Yol2

%I3

Q1

%14

2.Q2

%15

Q3

06Q4

cycle

%li inputs of drop No. i
%Qi outputs of drop No. i
i drop number

Y

35006144 07/2011

87

Program Structure

Description
Phase Description
1 Request to update:
e the inputs of the first drop (i=1)
e the outputs of the last drop (i=5)
Processing the program
e Updating the inputs of the first drop (i=1)
® Request to update the inputs of the second drop (i=2)
4 Request to update:
e the inputs of the third drop (i=3)
e the outputs of the first drop (i=1)
5 Request to update:
e the inputs of the fourth drop (i=4)
e the outputs of the second drop (i=2)
6 Request to update:
e the inputs of the last drop (i=5)
e the outputs of the third drop (i=3)
7 Request to update the outputs of the fourth drop (i=4)

Adjustment of the Drop Hold-Up Time Value

In order for the remote outputs to be correctly updated and avoid fallback values to
be applied, the drop hold-up time must be set to at least twice the mast task cycle
time. Therefore the default value, 300 ms, must be changed if the MAST period is
set to the maximum value, 255 ms. The adjustment of the Drop Hold-Up time
(see Modicon Quantum, Hot Standby System, User Manual) must be done on all

configured drops.

88

35006144 07/2011

Program Structure

3.4 Multitasking Execution

Subiject of this Section
This section describes how a multitasking application operates.

What’s in this Section?
This section contains the following topics:

Topic Page
Multitasking Software Structure 90
Sequencing of Tasks in a Multitasking Structure 92
Task Control 94
Assignment of Input/Output Channels to Master, Fast and Auxiliary Tasks 97
Management of Event Processing 99
Execution of TIMER-type Event Processing 100
Input/Output Exchanges in Event Processing 104
How to Program Event Processing 105

35006144 07/2011 89

Program Structure

Multitasking Software Structure

Tasks and Processing
The task structure of this type of application is as follows:

Task/Processing | Designation Description

Master MAST Always present, may be cyclic or periodic.

Fast FAST Optional, always periodic.

Auxiliary AUX0to 3 Optional and always periodic.

Event EVTiand Called by the system when an event occurs on an
TIMERI input/output module or triggered by the event timer.

(see page 99) | These types of processing are optional and can be
used by applications that need to act on inputs/outputs
within a short response time.

lllustration
The following diagram shows the tasks in a multitasking structure and their level of
priority.
Auxiliary Master Fast Event
task task task processing b
AUXi MAST FAST EVTi and [
TIMERI |
|
L — 4
- Priority +
Description

The master (MAST) task is still the application base. The other tasks differ
depending on the type of PLC (see page 67).

Levels of priority are fixed for each task in order to prioritize certain types of
processing.

Event processing can be activated asynchronously with respect to periodic tasks by
an order generated by external events. It is processed as a priority and requires any
processing in progress to be stopped.

90 35006144 07/2011

Program Structure

Precautions

Multitasks: golden rules

A CAUTION

UNEXPECTED MULTITASK APPLICATION BEHAVIOR

The sharing of Inputs/Outputs between different tasks can lead to unforeseen
behavior by the application.

We specifically recommend you associate each output or each input to one task
only.

Failure to follow these instructions can result in injury or equipment damage.

35006144 07/2011

91

Program Structure

Sequencing of Tasks in a Multitasking Structure

General

The master task is active by default.

The fast and auxiliary tasks are active by default if they have been programmed.

Event processing is activated when the associated event occurs.

Operation

The table below describes the execution of priority tasks (this operation is also
illustrated in the diagram below).

Phase

Description

1

Occurrence of an event or start of the fast task cycle.

Execution of lower priority tasks in progress stopped,

Execution of the priority task.

2
3
4

The interrupted task takes over again when processing of the priority task is
complete.

Description of the Task Sequence

The following diagram illustrates the task sequence of multitasking processing with
a cyclic master task, a fast task with a 20ms period and event processing.

Event

Fast

Master

System

Legend:

P

20ms

I: acquisition of inputs

P: program processing

O: updating of outputs

92

35006144 07/2011

Program Structure

Task Control

The execution of fast and event processing tasks can be controlled by the program
using the following system bits:

® %S30 is used to control whether or not the MAST master task is active

® %S31 is used to control whether or not the FAST task is active..

® %S32 to %S35 are used to control whether or not the auxiliary tasks AUXO to
AUXS3 are active.

® %S38 is used to control whether EVTi event processing is active.

NOTE: The elementary functions MASKEVT and UNMASKEVT also allow the
global masking and unmasking of events by the program.

35006144 07/2011

93

Program Structure

Task Control

Cyclic and Periodic Operation

In multitasking operation, the highest priority task shall be used in periodic mode in
order to allow enough time for lower priority tasks to be executed.

For this reason, only the task with the lowest priority should be used in cyclic mode.

Thus, choosing cyclic operating mode for the master task excludes using auxiliary
tasks.

Measurement of Task Durations

The duration of tasks is continually measured. This measurement represents the
duration between the start and the end of execution of the task. This measurement
includes the time taken up by tasks of higher priority which may interrupt the
execution of the task being measured.

The following system words (see page 179) give the current, maximum and
minimum cycle times for each task (value in ms)

Measurement of times | MAST | FAST | AUXO0 AUX1 AUX2 AUX3
Current SSW30 | $SW33 | $SW36 SSW39 SSW42 $3W45
Maximum $SW31 | $SW34 | $SW37 $SW40 $SW43 $SW46
Minimum SSW32 | $SW35 | $SW38 sSW41l SW44 S3W47

NOTE: The maximum and minimum times are taken from the times measured since
the last cold restart.

94

35006144 07/2011

Program Structure

Task Periods

Watchdog

The task periods are defined in the task properties. They can be modified by the
following system words.

System words | Task Values Default values | Observations

%SWO MAST |0..255ms Cyclic 0 = cyclic operation

%$SW1 FAST 1..255ms 5ms -

$SW2 AUX0 |10ms..2.55s |100ms The values of the period are
55W3 AUX1 | 10ms.255s |200ms expressed in 10ms.

$SWa AUX2 10ms..2.55s | 300ms

$SW5 AUX3 10ms..2.55s | 400ms

When the cycle time of the task exceeds the period, the system sets the system bit
%S19 of the task to 1 and continues with the following cycle.

NOTE: The values of the periods do not depend on the priority of tasks. It is possible
to define the period of a fast task which is larger than the master task.

The execution of each task is controlled by a configurable watchdog by using the
task properties.

The following table gives the range of watchdog values for each of the tasks:

Tasks Watchdog values | Default watchdog Associated system word
(min...max) (ms) | value (ms)

MAST 10..1500 250 $SW11l

FAST 10..500 100 -

AUXO0 100..5000 2000 -

AUX1 100..5000 2000 -

AUX2 100..5000 2000 -

AUX3 100..5000 2000 -

If watchdog overflow should occur, the application is declared in error, which causes
the PLC to stop immediately (HALT state).

The word %SW11 contains the watchdog value of the master task in ms. This value
is not modifiable by the program.

35006144 07/2011

95

Program Structure

The bit %S11 indicates a watchdog overflow. It is set to 1 by the system when the
cycle time becomes greater than the watchdog.

NOTE:

e The reactivation of the task requires the terminal to be connected in order to
analyze the cause of the error, correct it, reinitialize the PLC and switch it to RUN.

e |tis not possible to exit HALT by switching to STOP. To do this you must
reinitialize the application to ensure consistency of data.

Task Control

When the application program is being executed, it is possible to activate or inhibit
a task by using the following system bits:

System bits Task

%330 MAST
%531 FAST
$S32 AUXO0
$S33 AUX1

%534 AUX2
%535 AUX3

The task is active when the associated system bit is set to 1. These bits are tested
by the system at the end of the master task.

When a task is inhibited, the inputs continue to be read and the outputs continue to
be written.

On startup of the application program, for the first execution cycle only the master
task is active. At the end of the first cycle the other tasks are automatically activated
except if one of the tasks in inhibited (associated system bit set to 0) by the program.

Controls on Input Reading and Output Writing Phases

The bits of the following system words can be used (only when the PLC is in RUN)
to inhibit the input reading and output writing phases.

Inhibition of phases... MAST FAST AUXO0 AUX1 AUX2 AUX3
reading of inputs $SW8.0 $SW8.1 $SW8.2 $SW8.3 $SW8.4 $SW8.5
writing of outputs $SW9.0 $SW9.1 $SW9.2 %SW9.3 $SW9. 4 %SW9.5

NOTE: By default, the input reading and output writing phases are active (bits of
system words %SW8 and %SW9 set to 0).

On Quantum, inputs/outputs which are distributed via DIO bus are not assigned by
the words %SW8 and %SW9.

96 35006144 07/2011

Program Structure

Assignment of Input/Output Channels to Master, Fast and Auxiliary Tasks

General

Each task writes and reads the inputs/outputs assigned to it.

The association of a channel, group of channels or an input/output module with a
task is defined in the configuration screen of the corresponding module.

The task that is associated by default is the MAST task.

Reading of Inputs and Writing of Outputs on Premium

All the input/output channels of in-rack modules can be associated with a task
(MAST, FAST or AUX 0..3).

Local and remote inputs/outputs (X bus):

For each task cycle, the inputs are read at the start of the task and the outputs are
written at the end of the task.

Remote inputs/outputs on Fipio bus:

In controlled mode, the refreshing of inputs/outputs is correlated with the task
period. The system guarantees that inputs/outputs are updated in a single period.
Only the inputs/outputs associated with this task are refreshed.

In this mode, the period of the PLC task (MAST, FAST or AUX) must be greater than
or equal to the network cycle time.

In free mode, no restriction is imposed on the task period. The PLC task period
(MAST, FAST or AUX) can be less than the network cycle. If this is the case, the
task can be executed without updating the inputs/outputs. Selecting this mode gives
you the possibility of having the lowest possible task times for applications where
speed is critical.

Reading of Inputs and Writing of Outputs on Quantum

Local inputs/outputs:

Each input/output module or group of modules can be associated with a single task
(MAST, FAST or AUX 0..3).

Remote inputs/outputs:

Remote input/output stations can only be associated with the master (MAST) task.
The assignment is made for sections (see page 87), with 1 remote input station and
1 remote output station per section.

35006144 07/2011

97

Program Structure

Distributed inputs/outputs:

Distributed input/output stations can only be associated with the master (MAST)
task.

The inputs are read at the start of the master task and the outputs are written at the
end of the master task.

Example on Premium

With its 8 successive channel modularity (channels 0 to 7, channels 8 to 15, etc.),
the inputs/outputs of the Premium discrete modules can be assigned in groups of 8
channels, independently of the MAST, AUXi or FAST task.

Example: it is possible to assign the channels of a 28 input/output module as
follows:

inputs 0 to 7 assigned to the MAST task,
inputs 8 to 15 assigned to the FAST task,
outputs 0 to 7 assigned to the MAST task,
outputs 8 to 15 assigned to the AUXO task.

98

35006144 07/2011

Program Structure

Management of Event Processing

General

Event processing take priority over tasks.
The following illustration describes the 3 defined levels of priority:

Timer 1/0 module 1/0 module
event 3 event 9 event
TIMERI | EVTi | EVTO
| \
| \
L 4 L 4
Priority 2 Priority 1 Priority 0
i Priority +

Management of Priorities

Control

e EVTO event processing is the highest priority processing. It can itself interrupt
other types of event processing.

e EVTievent processing triggered by input/output modules (priority 1) take priority
over TIMERI event processing triggered by timers (priority 2).

e On Modicon M340, Premium and Atrium PLCs: types of event processing with
priority level 1 are stored and processed in order.

e On Quantum PLC: the priority of priority 1 processing types is determined:
e by the position of the input/output module in the rack,
e by the position of the channel in the module.

The module with the lowest position number has the highest level of priority.
e Event processing triggered by timer is given priority level 2. The processing
priority is determined by the lowest timer number.

The application program can globally validate or inhibit the various types of event
processing by using the system bit %S38. If one or more events occur while they are
inhibited, the associated processing is lost.

Two elementary functions of the language, MASKEVT () and UNMASKEVT (), used
in the application program can also be used to mask or unmask event processing.

If one or more events occur while they are masked, they are stored by the system
and the associated processing is carried out after unmasking.

35006144 07/2011

99

Program Structure

Execution of TIMER-type Event Processing

Description

Reference

ITCNTRL Function

TIMER-type event processing is any process triggered by the ITCNTRL (see Unity
Pro, System, Block Library) function.

This timer function periodically activates event processing every time the preset
value is reached.

The following parameters are selected in the event processing properties.

Parameter

Value

Default value

Role

Time base

1 ms, 10ms,
100ms, 1 sec

10ms

Timer time base. Note: the time base of 1ms
should be used with care, as there is a risk
of overrun if the processing triggering

frequency is too high.

Preset

1..1023

10

Timer preset value. The time period
obtained equals: Preset x Time Base.

Phase

0..1023

The value of the temporal offset between
the STOP/RUN transition of the PLC and
the first restart of the timer from 0.

The temporal value equals:
Phase x Time Base.

NOTE: The Phase must be lower than Preset in TIMER-type Event.

Representation in FBD:

Nb Task Event |

Reset_Timer —

Enable — ENABLE
RESET

ITCNTRL

Hold Timer | oD

EVENT

STATUS |— Status_Timer
VALUE

Current Value

The following table describes the input parameters:

Parameter Type Comment
Enable BOOL Enable input selected
Reset Timer BOOL At 1 resets the timer

100

35006144 07/2011

Program Structure

Parameter Type Comment
Hold Timer BOOL At 1, freezes timer incrementation.
Nb Task Event BYTE Input byte which determines the event

processing number to be triggered.

The following table describes the output parameters:

Parameter Type Comment
Status_Timer WORD Status word.
Current_Value TIME Current value of timer.

Timing Diagram for Normal Operation
Timing diagram.

RESET

ENABLE

HOLD

I
I
I
I
T
Presct x TB 1 !
________ I
| I
o _EAAAN

Event Event Event Event

Normal operation

The following table describes the triggering of TIMER-type event processing
operations (see timing diagram above).

Phase Description
1 When a rising edge is received on the RESET input, the timer is reset to 0.
2 The current value VALUE of the timer increases from 0 towards the preset value

at a rate of one unit for each pulse of the time base.

3 An event is generated when the current value has reached the preset value, the
timer is reset to 0, and then reactivated. The associated event processing is also
triggered, if the event is not masked. It can be deferred if an event processing
task with a higher or identical priority is already in progress.

35006144 07/2011 101

Program Structure

Phase Description

4 When the ENABLE input is at O, the events are no longer sent out. TIMER type
event processing is no longer triggered.

5 When the HOLD input is at 1, the timer is frozen, and the current value stops
incrementing, until this input returns to 0.

Event Processing Synchronization

The Phase parameter is used to trigger different TIMER-type event processing tasks
at constant time intervals.

This parameter set a temporal offset value with an absolute time origin, which is the
last passage of the PLC from STOP to RUN.

Operating condition:

e The event processing tasks must have the same time base and preset values.
e The RESET and HOLD inputs must not be set to 1.

Example: 2 event processing tasks Timer1 and Timer2 to be executed at 70ms
interval.

Timer1 can be defined with a phase equal to 0 and the second Timer2 with a phase
of 70ms (phase of 7 and time base of 10ms).

Any event triggered by the timer associated with the Timer1 processing task

shall be followed after an interval of 70ms by an event from the timer associated with
the Timer2 processing task

102

35006144 07/2011

Program Structure

Timing Diagram: STOP/RUN Transition

Timing diagram of the example provided above with the same preset value of 16
(160ms) for Timer1 and Timer2.

ST(Z)P;RI_H\iU‘ﬂHSiﬁOll

ENABLE

Preset |

A e
Timerl il 60 ‘ ¢ ¢ ‘ | ¢
v v v

I
I
: Event 0 Event 1
|

Preset oo .

2
VALUE :M 3 ‘ ‘ ‘ :/4 ‘
LU AT i * 1
Timer2 hi 70 ‘ 230 ¢ i i ¢ ¢
Phase v

| ‘ Event 1 Event2 Event n
|

v
Event 0

Operation after PLC STOP/RUN

The following table describes the operation of the PLC after a transition from STOP
into RUN (see timing diagram above):

Phase Description

1 ON a STOP RUN transition of the PLC, timing is triggered so that the preset
value is reached at the end of a time period equal to Phase x time base, when
the first event is sent out.

2 The current value VALUE of the timer increases from 0 towards the preset value
at a rate of one unit for each pulse of the time base.

3 An event is generated when the current value has reached the preset value, the
timer is reset to 0, and then reactivated. The associated event processing is also
triggered, if the event is not masked. If can be deferred, if there is an event
processing task of higher or identical priority already in progress.

35006144 07/2011 103

Program Structure

Input/Output Exchanges in Event Processing

General

Operation

With each type of event processing it is possible to use other input/output channels
than those for the event.

As with tasks, exchanges are then performed implicitly by the system before (%l)
and after (%Q) application processing.

The following table describes the exchanges and processing performed.

Phase Description

1 The occurrence of an event reroutes the application program to perform the
processing associated with the input/output channel which caused the event.

All inputs associated with event processing are acquired automatically.

The event processing is executed. It must be as short as possible.

All the outputs associated with the event processing are updated.

Premium/Atrium PLCs

Quantum PLCs

Programming Rule

The inputs acquired and the outputs updated are:

e the inputs associated with the channel which caused the event
e the inputs and outputs used during event processing

NOTE: These exchanges may relate:

e to a channel (e.g. counting module) or

e to a group of channels (discrete module). In this case, if the processing modifies,
for example, outputs 2 and 3 of a discrete module, the image of outputs 0 to 7 is
then transferred to the module.

The inputs acquired and the outputs updated are selected in the configuration. Only
local inputs/outputs can be selected.

The inputs (and the associated group of channels) exchanged during the execution
of event processing are updated (loss of historical values, and thus edges). You
should therefore avoid testing fronts on these inputs in the master (MAST), fast
(FAST) or auxiliary (AUXi) tasks.

104

35006144 07/2011

Program Structure

How to Program Event Processing

Procedure
The table below summarizes the essential steps for programming event processing.

Step Action

1 | Configuration phase (for events triggered by input/output modules)
In offline mode, from the configuration editor, select Event Processing (EVT) and
the event processing number for the channel of the input/output module concerned.

2 | Unmasking phase

The task which can be interrupted must in particular:

® Enable processing of events at system level: set bit %S38 to 1 (default value).

o Unmask events with the instruction UNMASKEVT (active by default).

o Unmask the events concerned at channel level (for events triggered by
input/output modules) by setting the input/output module’s implicit language
objects for unmasking of events to 1. By default, the events are masked.

® Check that the stack of events at system level is not saturated (bit %S39 must
be at 0).

3 | Event program creation phase

The program must:

® Determine the origin of the event(s) on the basis of the event status word
associated with the input/output module if the module is able to generate several
events.

® Carry out the reflex processing associated with the event. This process must be
as short as possible.

e Write the reflex outputs concerned.

Note: the event status word is automatically reset to zero.

35006144 07/2011 105

Program Structure

lllustration of Event Unmasking

This figure shows event unmasking in the MAST task.

(*Unmasking events*)

UNMASKEVT
EN ENO

(*f cold start THEN authorize events®)

%S 76538
| §)—
(*If cold start THEN unmask threshold 0 crossing event: %QW1.1.0.5%)
%31 %QW1.0.1.5
| >_
(*If cold start THEN unmask threshold 1 crossing event: QW1.1.0.6%)
%51 YQW1.0.1.6
b o

lllustration of the Contents of Event Processing

This figure shows the possible contents of event processing (bit test and action).

(*If crossing threshold event 0 THEN set physical output %Q2.0 to 1%
%4W1.0.3.5
{

%0Q2.0
S

{'If crossing threshold event 1 THEN set physical output %Q2.0 to 0)

%Q2.0
R

106

35006144 07/2011

Application Memory Structure

Subject of this Chapter

This chapter describes the application memory structure of Premium, Atrium and
Quantum PLCs.

What’s in this Chapter?
This chapter contains the following sections:

Section Topic Page
4.1 Memory Structure of the Premium, Atrium and Modicon M340 108
PLCs
4.2 Memory Structure of Quantum PLCs 115

35006144 07/2011

107

Memory Structure

4.1 Memory Structure of the Premium, Atrium and

Modicon M340 PLCs

Subject of this Section

This section describes memory structure and detailed description of the memory

zones of the Premium, Atrium and Modicon M340 PLCs.

What’s in this Section?
This section contains the following topics:

Topic Page
Memory Structure of Modicon M340 PLCs 109
Memory Structure of Premium and Atrium PLCs 112
Detailed Description of the Memory Zones 114

108

35006144 07/2011

Memory Structure

Memory Structure of Modicon M340 PLCs

Overview

Structure

Program Backup

The PLC memory supports:

e located application data

e unlocated application data

e the program: task descriptors and executable code, constant words, initial
values and configuration of inputs/outputs

The data and program are supported by the processor module’s internal RAM.
The following diagram describes the memory structure.

‘ Internal- A
Saved data Flash
Internal- Memory
RAM
%MW backup

If the memory card is present, working properly and not write-protected, the program
is saved on the memory card:
e Automatically, after:

e a download

e online modification

e arising edge of the system bit $S66 in the project program

35006144 07/2011

109

Memory Structure

Program Restore

Saved Data

Save_Param

e Manually:
e with the command PLC —Project backup —Backup Save
e in an animation table by setting the system bit 566

A WARNING

LOSS OF DATA - APPLICATION NOT SAVED

The interruption of an application saving procedure by an untimely or rough
extraction of the memory card, may lead to the loss of saved application.The bit
%S65 (see page 160) allows managing a correct extraction (See help page
%65 bit in system bit chapter)

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

The memory card uses Flash technology, therefore no battery is necessary.

If the memory card is present and working properly, the program is copied from the
PLC memory card to the internal memory:
e Automatically after:

e a power cycle

e Manually, with the Unity Pro command PLC —Project backup —Backup
Restore

NOTE: When you insert the memory card in run or stop mode, you have to do a
power cycle to restore the project on the PLC.

Located, unlocated data, diagnostic buffer are automatically saved in the internal
Flash memory at power-off. They are restored at warm start.

The savE PARAM function does both current and initial parameter adjustment in
internal RAM (as in other PLCs). In this case, the internal RAM and the memory card
content are different (%S96 = 0 and the CARDERR LED is on). On cold start (after
application restore), the current parameter are replaced by the last adjusted initial
values only if a save to memory card function (Backup Save or %S66 rising edge)
was done.

110

35006144 07/2011

Memory Structure

Save Current Value

On a %S94 rising edge, the current values replace the initial values in internal
memory. The internal RAM and the memory card content are different (%S96 = 0
and the CARDERR LED is on). On cold start, the current values are replaced by the
most recent initial values only if a save to memory card function (Backup Save or
%S66 rising edge) was done.

Delete Files
There are two ways to delete all the files on the memory card:

e Formatting the memory card (delete all files of the file system partition)
e Deleting the content of directory \DataStorage\ (delete only files added by user)

Both actions are performed using %SW93 (see page 183).

The system word $SW93 can only be used after download of a default application in
the PLC.

A CAUTION

INOPERABLE MEMORY CARD

Do not format the memory card with a non-Schneider tool. The memory card needs
a structure to contain program and data. Formatting with another tool destroys this
structure.

Failure to follow these instructions can result in injury or equipment damage.

%MW Backup

The values of the %MWi can be saved in the internal Flash memory using %SW96
(see page 183). These values will be restored at cold start, including application
download, if the option Initialize of %MW on cold start is unchecked in the
processor Configuration screen (see Unity Pro, Operating Modes).

For sMw words, the values can be saved and restored on cold restart or download if
the option Reset of $Mu on cold restart is not checked in the processor Configuration
screen. With the $swW96 word, management of memory action $Mw internal words

(save, delete) and information on the actions’ states $Mw internal words is possible.

Memory Card Specifics
Two types of memory card are available:

e application: these cards contain the application program and Web pages
e application + file storage: these cards contain the application program, data
files from Memory Card File Management EFBs, and Web pages

35006144 07/2011 111

Memory Structure

Memory Structure of Premium and Atrium PLCs

General
The PLC memory supports:

e located application data,

e unlocated application data,

o the program: task descriptors and executable code, constant words, initial
values and configuration of inputs/outputs.

Structure without Memory Extension Card
The data and program are supported by the internal RAM of the processor module.

The following diagram describes the memory structure.

Located data
Intemnal
RAM Unlocated data

Program

Structure with Memory Extension Card
The data is supported by the internal RAM of the processor module.
The program is supported by the extension memory card.

The following diagram describes the memory structure.

Intemal ‘

RAM Located data
Unlocated data

External A

memory

card Program

112 35006144 07/2011

Memory Structure

Memory Backup
The internal RAM is backed up by a Ni-Cad battery supported by the processor
module.

The RAM memory cards are backed up by a Ni-Cad battery.

Specificities of Memory Cards
Three types of memory card are offered:

e application: these cards contain the application program. The cards offered use
either RAM or Flash EPROM technology

e application + file storage: in addition to the program, these cards also contain
a zone which can be used to backup/restore data using the program. The cards
on offer use either RAM or Flash EPROM technology

o file storage: these cards can be used to backup/restore data using the program.
These cards use SRAM technology.

The following diagram describes the memory structure with an application and file
storage card.

Internal
RAM ‘ Located data
Unlocated data
Extermnal ‘
memory Program
card
Files

NOTE: On processors with 2 memory card slots, the lower slot is reserved for the
file storage function.

35006144 07/2011 113

Memory Structure

Detailed Description of the Memory Zones

User Data

This zone contains the located and unlocated application data.

e |ocated data:
o %M, %S Boolean and %MW,%SW numerical data
e data associated with modules (%I, %Q, %IW, %QW,%KW etc.)

e unlocated data:
e Boolean and numerical data (instances)
e EFB and DFB instances

User Program and Constants

Other Information

This zone contains the executable codes and constants of the application.

e executable codes:
e program code
e code associated with EFs, EFBs and the management of /0O modules
e code associated with DFBs

e constants:
e KW constant words
e constants associated with inputs/outputs
e initial data values

This zone also contains the necessary information for downloading the application:
graphic codes, symbols etc.

Other information relating to the configuration and structure of the application are
also stored in the memory (in a data or program zone depending on the type of
information).

e Configuration: other data relating to the configuration (hardware configuration,
software configuration).

e System: data used by the operating system (task stack, etc.).

e Diagnostics: information relating to process or system diagnostics, diagnostics
buffer.

114

35006144 07/2011

Memory Structure

4.2 Memory Structure of Quantum PLCs

Subiject of this Section

This section describes memory structure and detailed description of the memory

zones of the Quantum PLCs.

What’s in this Section?
This section contains the following topics:

Topic

Page

Memory Structure of Quantum PLCs

116

Detailed Description of the Memory Zones

119

35006144 07/2011

115

Memory Structure

Memory Structure of Quantum PLCs

General
The PLC memory supports:

e located application data (State Ram),

e unlocated application data,

e the program: task descriptors and executable code, initial values and
configuration of inputs/outputs.

Structure without Memory Extension Card
The data and program are supported by the internal RAM of the processor module.

The following diagram describes the memory structure.

A Located data

Unlocated data

Intemal
RAM Program

Operating system (1) - Operating system (1)

Application backup (1)

Y

(1) Only for 140 CPU 31e/43e/53+¢ processors.

Structure with Memory Extension Card
Quantum 140 CPU 6eee processors can be fitted with a memory extension card.

The data is supported by the internal RAM of the processor module.
The program is supported by the extension memory card.
The following diagram describes the memory structure.

Intemal A

RAM Located data
Unlocated data

Extemnal A

memory

card Program

116 35006144 07/2011

Memory Structure

Memory Backup
The internal RAM is backed up by a Ni-Cad battery supported by the processor
module.

The RAM memory cards are backed up by a Ni-Cad battery.

Start-up with Application Saved in Backup Memory

The following table describes the different results according to the PLC state,
according to the PLC mem switch (see Quantum with Unity Pro, Hardware,
Reference Manual), and also indicates if the box "Auto RUN" is checked or not

checked.
PLC State PLC Mem Auto RUN in Results
Switch'! Appl?
NONCONF Start or Off Off Cold Start, application is loaded from Backup memory to RAM
of the PLC. The PLC remains in STOP.
NONCONF Start or Off On Cold Start, application is loaded from Backup memory to RAM

of the PLC. The PLC remains in RUN.
NONCONF Mem Prt or Stop | Not Applicable | No application loaded. PLC power up in NONCONF state.

Configured Start or Off Off Cold Start, application is loaded from Backup memory to RAM
of the PLC. The PLC remains in STOP.

Configured Start or Off On Cold Start, application is loaded from Backup memory to RAM
of the PLC. The PLC remains in RUN.

Configured Mem Prt or Stop | Do not Care Warm Start, no application loaded. PLC powers up in previous
state.

1 Start and Stop are valid for the 434 and 534 models only and Off is valid for the 311 only. Mem Prt is valid on all
models.
2 The Automatic RUN in the application refers to the application that is loaded.

Specificities of Memory Cards
Three types of memory card are offered:

e application: these cards contain the application program. The cards on offer use
either RAM or Flash EPROM technology

e application + file storage: in addition to the program, these cards also contain
a zone which can be used to backup/restore data using the program. The cards
on offer use either RAM or Flash EPROM technology

e file storage: these cards can be used to backup/restore data using the program.
These cards use SRAM technology.

35006144 07/2011 117

Memory Structure

The following diagram describes the memory structure with an application and file
storage card.

Intemal A
RAM Located data

Unlocated data

Y

Extemnal ‘
memory Program
card

Files

Y

NOTE: On processors with 2 memory card slots, the lower slot is reserved for the
file storage function.

118

35006144 07/2011

Memory Structure

Detailed Description of the Memory Zones

Unlocated Data

Located Data

User Program

Operating System

Application Backup

This zone contains unlocated data:

o Boolean and numerical data
e EFB and DFB

This zone contains located data (State Ram):

Address | Object address Data use

O0XXXXX %Qr.m.c.d,%Mi output module bits and internal bits.

TXXXXX %lr.m.c.d, %li input module bits.

3XXXXX %IWr.m.c.d, %IWi input register words of input/output modules.

4XXXXX %QWr.m.c.d, %MWi | output words of input/output modules and internal words.

This zone contains the executable codes of the application.

e program code

e code associated with EFs, EFBs and the management of /O modules

e code associated with DFBs

e initial variable values

This zone also contains the necessary information for downloading the application:
graphic codes, symbols etc.

On 140 CPU 31ee/41ee/510e processors, this contains the operating system for
processing the application. This operating system is transferred from an internal
EPROM memory to internal RAM on power up.

A Flash EPROM memory zone of 1435K8, available on processors 140 CPU
31ee/410e¢/51ee can be used to backup the program and the initial values of variables.

The application stored in this zone is automatically transferred to internal RAM when
the PLC processor is powered up (if the PLC MEM switch is set to off on the
processor front panel).

35006144 07/2011

119

Memory Structure

Other Information

Other information relating to the configuration and structure of the application are
also stored in the memory (in a data or program zone depending on the type of
information).

e Configuration: other data relating to the configuration (hardware configuration,
software configuration).

e System: data used by the operating system (task stack, etc.).

e Diagnostics: information relating to process or system diagnostics, diagnostics
buffer.

120 35006144 07/2011

Operating Modes

Subject of this Chapter

The chapter describes the operating modes of the PLC in the event of power outage

and restoral, the impacts on the application program and the updating of
inputs/outputs.

What’s in this Chapter?
This chapter contains the following sections:

Section Topic Page
5.1 Modicon M340 PLCs Operating Modes 122
5.2 Premium, Quantum PLCs Operating Modes 133
5.3 PLC HALT Mode 145

35006144 07/2011

121

Operating Modes

5.1 Modicon M340 PLCs Operating Modes

Subject of this Section
This section describes the operating modes of the Modicon M340 PLCs.

What’s in this Section?
This section contains the following topics:

Topic Page
Processing of Power Outage and Restoral of Modicon M340 PLCs 123
Processing on Cold Start for Modicon M340 PLCs 125
Processing on Warm Restart for Modicon M340 PLCs 129
Automatic Start in RUN for Modicon M340 PLCs 132

122 35006144 07/2011

Operating Modes

Processing of Power Outage and Restoral of Modicon M340 PLCs

General
If the duration of the outage is less than the power supply filtering time, it has no
effect on the program, which continues to run normally. If this is not the case, the
program is interrupted and power restoration processing is activated.
Filtering time:
PLC Alternating Current Direct Current
BMX CPS 2000 10ms -
BMX CPS 3500
BMX CPS 3540T
BMX CPS 2010 - 1ms
BMX CPS 3020
lllustration

The following illustration shows the different power cycle phases.

RUN or STOP
Application

L

Power failure

J

Save
Context

y

Power Resumption

Invalid context

Valid context

Warm restart Cold start

35006144 07/2011 123

Operating Modes

Operation
The table describes the power outage processing phases.

Phase Description
1 On power outage, the system saves the application context, the values of
application variables, and the state of the system on internal Flash memory.
2 The system sets all the outputs into fallback state (state defined in
configuration).
3 On power restoral, some actions and checks are done to verify if warm restart
is available:

® restoring from internal Flash memory application context,

e verification with memory card (presence, application availability),

e verification that the application context is identical to the memory card
context,

If all checks are correct, a warm restart (see page 129)is done, otherwise a cold
start (see page 125) is carried out.

124 35006144 07/2011

Operating Modes

Processing on Cold Start for Modicon M340 PLCs

Cause of a Cold Start
The following table describes the different possible causes of a cold start.

Causes

Startup characteristics

Loading of an application

Cold start forced in STOP

Restore application from memory card,
when the application is different from the
one in internal RAM

Cold start forced in STOP or RUN mode as
defined in the configuration

Restore application from memory card, with
Unity Pro commands PLC —Project
backup —....

Cold start forced in STOP or RUN mode as
defined in the configuration

RESET button pressed on supply

Cold start forced in STOP or RUN mode as
defined in the configuration

RESET button pressed on supply less than
500ms after a power down

Cold start forced in STOP or RUN mode as
defined in the configuration

RESET button pressed on supply after a
processor error, except in the case of a
watchdog error

Cold start forced in STOP. The start in RUN
mode as defined in the configuration is not
taken into account

Initialization from Unity Pro
Forcing the system bit %S0

Start in STOP or in RUN (retaining the
operating mode in progress at downtime),
initialization only of application

Restoral after power supply outage with loss
of context

Cold start forced in STOP or RUN mode as
defined in the configuration

A CAUTION

LOSS OF DATA ON APPLICATION TRANSFER

Loading or transferring an application to the PLC typically involves initialization of

unlocated variables.
To save the located variables:

e Avoid the initialization of the $Mwi by unchecking Initialize %MWi on cold start
in the configuration screen of the CPU.

It is necessary to assign a topological address to the data if the process requires
keeping the current values of the data when transferring the application.

Failure to follow these instructions can result in injury or equipment damage.

35006144 07/2011

125

Operating Modes

Illlustration

A CAUTION

LOSS OF DATA ON APPLICATION TRANSFER

Do not press the RESET button on the power supply. Otherwise, %MWi is reset
and initial values are loaded.

Failure to follow these instructions can result in injury or equipment damage.

A CAUTION

RISK OF LOSS OF APPLICATION

If there is no memory Card in the PLC during a cold restart the application is lost.

Failure to follow these instructions can result in injury or equipment damage.

The diagram below describes how a cold restart operates.

Acquisition of inputs ‘
\L Processor stopped
TOP program execution Application context
saved

| l

It %eSW10.0=0, Power retum
possible processing of
cold restart \L
Configuration
self-test
Yes J/
Initialization

micro-cut of the application

No

| BOT
W

Setting of bit %S0 to 1

- o and setting of bit
Setting of bit %S0 to 0 %SW10.0 to 0

and setting of bit
“%SW10.0 to 1

v
Updating of outputs

126

35006144 07/2011

Operating Modes

Operation

The table below describes the program execution restart phases on cold restart.

Phase

Description

1

The startup is performed in RUN or in STOP depending on the status of the
Automatic start in RUN parameter defined in the configuration or, if this is in
use, depending on the state of the RUN/STOP input.

Program execution is resumed at the start of the cycle.

The system carries out the following:

Deactivating tasks, other than the master task, until the end of the first master

task cycle.

Initializing data (bits, I/0O image, words etc.) with the initial values defined in the

data editor (value set to 0, if no other initial value has been defined). For %MW

words, the values can be retrieved on cold restart if the two conditions are valid :

e the Initialize of %MW on cold restart option (see Unity Pro, Operating
Modes) is unchecked in the processor’s configuration screen,

e the internal flash memory has a valid backup (see %SW96 (see page 183)).

Note : If the number of %MW words exceeds the backup size (see the memory
structure of M340 PLCs (see page 109)) during the save operation the
remaining words are set to 0.

Initializing elementary function blocks on the basis of initial data.

Initializing data declared in the DFBs: either to 0 or to the initial value declared
in the DFB type.

Initializing system bits and words.

Positioning charts to initial steps.

Cancelling any forcing.

Initializing message and event queues.

Sending configuration parameters to all discrete input/output modules and
application-specific modules.

For this first restart cycle the system does the following:

Relaunches the master task with the %S0 (cold restart) and %S13 (first cycle in
RUN) bits set to 1, and the %SW10 word (detection of a cold restart during the
first task cycle) is set to 0.

Resets the %S0 and %S13 bits to 0, and sets each bit of the word %SW10 to 1
at the end of this first cycle of the master task.

Activates the fast task and event processing at the end of the first cycle of the
master task.

Processing a cold start by program

It is advisable to test the bit %SW10.0 to detect a cold start and start processing
specific to this cold start.

NOTE: It is possible to test the bit %S0, if the parameter Automatic start in
RUN has been selected. If this is not the case, the PLC starts in STOP, the bit %S0
then switches to 1 on the first cycle after restart but is not visible to the program
because it is not executed.

35006144 07/2011

127

Operating Modes

Output Changes

As soon as a power outage is detected, the outputs are set in the fallback position:
e either they are assigned the fallback value,
e or the current value is maintained,

depending on the choice made in the configuration.
After power restoral, the outputs remain at zero until they are updated by the task.

128 35006144 07/2011

Operating Modes

Processing on Warm Restart for Modicon M340 PLCs

Cause of a Warm Restart
A warm restart may be caused by a power restoral without loss of context.

A CAUTION

RISK OF LOSS OF APPLICATION
If there is no Memory Card in the PLC during a warm restart the application is lost.

Failure to follow these instructions can result in injury or equipment damage.

lllustration
The diagram below describes how a warm restart operates.

v
Acquisition of inputs

L

TOP program execution

L

If %S1=1, processing
of warm restart

Outage detected

Yes

Processor stopped
Application context
saved

l

Power restoral

|

Configuration self-test

!

No

Setting of bit %51 to 1

Setting of bit %51 to 0

!

Updating of outputs

I

|

35006144 07/2011

Operating Modes

Operation

The table below describes the program execution restart phases on warm restart.

Phase Description

1 Program execution doesn’t resume from the element where the power outage
occurred. The remaining program is discarded during the warm start. Each
task will restart from the beginning.

2 At the end of the restart cycle, the system carries out the following:

® restore the application’s variable value,

o setbit %S1to 1,

e the initialization of message and event queues,

e the sending of configuration parameters to all discrete input/output and
application-specific modules,

e the deactivation of the fast task and event processing (until the end of the
master task cycle).

3 The system performs a restart cycle during which it:

® relaunches the master task from beginning of cycle,

® resets bit %S1 to 0 at the end of this first master task cycle,

® reactivates the fast task, event processing at the end of this first cycle of the
master task.

Processing a Warm Restart by Program

In the event of a warm restart, if you want the application to be processed in a
particular way, you must write the corresponding program to test that %S1 is set to
1 at the start of the master task program.

SFC Warm start specific features

The Warm start on M340 PLCs is not considered as a real warm start by the CPU.
SFC interpreter does not depend on tasks.

SFC publishes a memory area "ws_data" to the OS that contains SFC-section-
specific data to be saved at a power fail. At the beginning of chart processing the
currently active steps are saved to "ws_data" and processing is marked to be in
"critical section". At the end of chart processing the "critical section" is unmarked.

If a power failure hits into "critical section" this could be detected if this state is active
at the beginning (as the scan is aborted and MAST task is restarted from the
beginning). In this case the workspace might be inconsistent and is restored from
the saved data.

Additional information from SFCSTEP_STATE in located data area is used to
reconstruct the state machine.

When a power failure occurs:
e during first scan %S1 =1 Mast is executed but Fast and Event tasks are not
executed.

130

35006144 07/2011

Operating Modes

Output Changes

On power restoral:

Clears chart, deregisters diagnostics, keeps set actions
sets steps from saved area

sets step times from SFCSTEP_STATE

restores elapsed time for timed actions

NOTE: SFC interpreter is independent, if the transition is valid, the SFC chart
evolves while %S1 is true.

As soon as a power outage is detected, the outputs are set in the fallback position:

either they are assigned the fallback value,
or the current value is maintained,

depending on the choice made in the configuration.

After power restoral, the outputs stay in security mode (equal to 0) until they are
updated by a running task.

35006144 07/2011

131

Operating Modes

Automatic Start in RUN for Modicon M340 PLCs

Description

Automatic start in RUN is a processor configuration option. This option forces the
PLC to start in RUN after a cold restart (see page 125), except after an application
has been loaded onto the PLC.

For Modicon M340 this option is not taken into account when the power supply
RESET button is pressed after a processor error, except in the case of a watchdog
error.

A WARNING

UNEXPECTED SYSTEM BEHAVIOR - UNEXPECTED PROCESS START

The following actions will trigger automatic start in RUN:
e Restoring the application from memory card,
e Unintentional or careless use of the reset button.

To avoid an unwanted restart when in RUN mode use:
e The RUN/STOP input on Modicon M340

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

132 35006144 07/2011

Operating Modes

5.2 Premium, Quantum PLCs Operating Modes

Subiject of this Section
This section describes the operating modes of the Premium and Quantum PLCs.

What’s in this Section?
This section contains the following topics:

Topic Page
Processing of Power Outage and Restoral for Premium/Quantum PLCs 134
Processing on Cold Start for Premium/Quantum PLCs 136
Processing on Warm Restart for Premium/Quantum PLCs 141
Automatic Start in RUN for Premium/Quantum 144

35006144 07/2011 133

Operating Modes

Processing of Power Outage and Restoral for Premium/Quantum PLCs

General
If the duration of the outage is less than the power supply filtering time, it has no
effect on the program which continues to run normally. If this is not the case, the
program is interrupted and power restoral processing is activated.
Filtering time:
PLC Alternating Current Direct Current
Premium 10ms 1ms
Atrium 30ms -
Quantum 10ms 1ms
lllustration

The illustration shows the different types of power restoral detected by the system.

RUN
Application

L

Power failure

i» Awaiting power

Power restoral

l

Yes No

Save

Outage detected Context OK

No

Identical memory
card

Normal program

; Warm restart Cold start
execution

134 35006144 07/2011

Operating Modes

Operation

The table below describes the power outage processing phases.

Phase

Description

1

On power outage the system stores the application context and the time of
outage.

It sets all the outputs in the fallback state (state defined in configuration).

On power restoral, the saved context is compared to the current one, which

defines the type of startup to be performed:

e if the application context has changed (i.e. loss of system context or new
application), the PLC initializes the application: cold start,

e if the application context is the same, the PLC carries out a restart without
initialization of data: warm restart.

Power Outage on a Rack, Other than Rack 0

All the channels on this rack are seen as in error by the processor, but the other
racks are not affected. The values of the inputs in error are no longer updated in the
application memory and are reset to zero in a discrete input module, unless they
have been forced, in which case they are maintained at the forcing value.

If the duration of the outage is less than the filtering time, it has no effect on the
program which continues to run normally.

35006144 07/2011

135

Operating Modes

Processing on Cold Start for Premium/Quantum PLCs

Cause of a Cold Start
The following table describes the different possible causes of a cold start.

Causes Startup characteristics

Loading of an application Cold start forced in STOP

RESET button pressed on processor Cold start forced in STOP or RUN mode as
(Premium) defined in the configuration

RESET button pressed on the processor Cold start forced in STOP
after a processor or system error (Premium).

Movement of handle or insertion/removal of | Cold start forced in STOP or RUN mode as

a PCMCIA memory card defined in the configuration
Initialization from Unity Pro Start in STOP or in RUN (retaining the
Forcing the system bit %S0 operating mode in progress at downtime),

without initialization of discrete input/output
and application-specific modules

Restoral after power supply outage with loss | Cold start forced in STOP or RUN mode as
of context defined in the configuration

A CAUTION

LOSS OF DATA ON APPLICATION TRANSFER

Loading or transferring an application to the PLC typically involves initialization of
unlocated variables.

To save located variables with Premium and Quantum PLCs:
e Save and restore $M and $Mw by clicking PLC —Transfer Data.

For Premium PLCs:
e Avoid the initialization of sMw by unchecking Initialize %MWi on cold start in
the configuration screen of the CPU.

For Quantum PLCs:
e Avoid the initialization of $Mw by unchecking %MW:i Reset in the configuration
screen of the CPU.

It is necessary to assign a topological address to the data if the process requires
keeping the current values of the data when transferring the application.

Failure to follow these instructions can result in injury or equipment damage.

136 35006144 07/2011

Operating Modes

lllustration

A

Acquisition of inputs

L

TOP program execution

If %6SW10.0=0,
possible processing of
cold restart

Power failure >

Yes

The diagram below describes how a cold restart operates.

Processor stopped
Application context
saved

L

Power retun

|

Configuration
self-test

micro-cut

No

| BOT

N

Setting of bit %S0 to 0
and setting of bit
“%SW10.0 to 1

I

Updating of outputs

Initial
of the a|

ization
pplication

Setting of bit %S0 to 1

and setting of bit
%SW10.0to 0

35006144 07/2011

137

Operating Modes

Operation
The table below describes the program execution restart phases on cold restart.

Phase Description

1 The startup is performed in RUN or in STOP depending on the status of the
Automatic start in RUN parameter defined in the configuration or, if this
is in use, depending on the state of the RUN/STOP input.

Program execution is resumed at the start of the cycle.

2 The system carries out the following:

e the initialization of data (bits, I/O image, words etc.) with the initial values
defined in the data editor (value set to 0, if no other initial value has been
defined). For %MW words, the values can be retained on cold restart if the
Reset of %MW on cold restart option is unchecked in the Configuration
screen of the processor

e the initialization of elementary function blocks on the basis of initial data

e the initialization of data declared in the DFBs: either to 0 or to the initial value

declared in the DFB type

the initialization of system bits and words

the deactivation of tasks, other than the master task, until the end of the first

master task cycle

the positioning of charts to initial steps

the cancellation of any forcing

the initialization of message and event queues

the sending of configuration parameters to all discrete input/output modules

and application-specific modules

3 For this first restart cycle the system does the following:

e relaunches the master task with the %S0 (cold restart) and %S13 (first cycle
in RUN) bits set to 1, and the %SW10 word (detection of a cold restart during
the first task cycle) is setto 0

e resets the %S0 and %S13 bits to 0, and sets each bit of the word %SW10 to
1 at the end of this first cycle of the master task

® activates the fast task and event processing at the end of the first cycle of the
master task

Processing a Cold Start by Program

It is advisable to test the bit %SW10.0 to detect a cold start and start processing
specific to this cold start.

NOTE: It is possible to test the bit %S0, if the parameter Automatic start in
RUN has been selected. If this is not the case, the PLC starts in STOP, the bit %S0
then switches to 1 on the first cycle after restart but is not visible to the program
because it is not executed.

138 35006144 07/2011

Operating Modes

Output Changes, for Premium and Atrium

As soon as a power outage is detected, the outputs are set in the fallback position:
e either they are assigned the fallback value, or
e the current value is maintained

depending on the choice made in the configuration.
After power restoral, the outputs remain at zero until they are updated by the task.

Output Changes, for Quantum

As soon as a power outage is detected,

e the local outputs are set to zero

e the outputs of the remote or distributed extension racks are set in the fallback
position

After power restoral, the outputs remain at zero until they are updated by the task.

NOTE: The behavior of forced outputs was changed between Modsoft/NxT/Concept
and Unity Pro.

With Modsoft/NxT/Concept, you cannot force outputs if the Quantum processor
memory protection switch is set to "On".

With Unity Pro, you can force outputs if the Quantum processor memory protection
switch is set to "On".

With Modsoft/NxT/Concept, forced outputs retain their status after a cold start.
With Unity Pro, forced outputs lose their status after a cold start.

A CAUTION

UNEXPECTED APPLICATION BEHAVIOR - FORCED VARIABLES

Check your forced variables and memory protection switch when shifting
betweenModsoft/NxT/Concept and Unity Pro.

Failure to follow these instructions can result in injury or equipment damage.

35006144 07/2011 139

Operating Modes

For Quantum 140 CPU 31¢¢/41ee/570e

These processors have a Flash EPROM memory of 1,435 KB which can be used to
save the program and the initial values of variables.

On power restoral, you can choose the desired operating mode using the PLC MEM
switch on the processor front panel. For detailed information on how this switch
works, you can consult the Quantum manual (see Quantum with Unity Pro,
Hardware, Reference Manual).

o off position: The application contained in this zone is automatically transferred
to internal RAM when the PLC processor is powered up: cold restart of the
application.
on position: The application contained in this zone is not transferred to internal
RAM: warm restart of the application.

140

35006144 07/2011

Operating Modes

Processing on Warm Restart for Premium/Quantum PLCs

Cause of a Warm Restart

A warm restart may be caused:

by a power restoral without loss of context

by the system bit %S1 being set to 1 by the program

by Unity Pro from the terminal

by pressing the RESET button of the power supply module of rack 0 (on Premium
PLC)

lllustration
The diagram below describes how a warm restart operates.
W
Acquisition of inputs i
J/ Processor stopped
TOP program execution Application context
saved
If %S1=1, processing Power restoral
of warm restart
Configuration self-test
Outage detected Setting of bit %51 to 1
||
¥+
Setting of bit %S1to 0
Updating of outputs
L]
35006144 07/2011 141

Operating Modes

Operation
The table below describes the program execution restart phases on warm restart.

Phase | Description

1 Program execution resumes starting from the element where the power outage
occurred, without updating the outputs.

2 | Atthe end of the restart cycle, the system carries out the following:

e the initialization of message and event queues

e the sending of configuration parameters to all discrete input/output and
application-specific modules

e the deactivation of the fast task and event processing (until the end of the
master task cycle)

3 | The system performs a restart cycle during which it:

® re-acknowledges all the input modules

e relaunches the master task with the bits %S1 (warm restart) set to 1

® resets bit %S1 to 0 at the end of this first master task cycle

e reactivates the fast task, the auxiliary tasks and event processing at the end of
this first cycle of the master task

Processing a Warm Restart by Program

In the event of warm restart, if you want the application to be processed in a
particular way, you must write the corresponding program conditional on the test that
%S1 is set to 1 at the start of the master task program.

For Quantum PLCs, the switch on the front panel of the processor can be used to
configure operating modes. For further details, see Quantum documentation
(see Quantum with Unity Pro, Hardware, Reference Manual).

Output Changes, for Premium and Atrium

As soon as a power outage is detected, the outputs are set in the fallback position:
e either they are assigned the fallback value, or
e the current value is maintained.

depending on the choice made in the configuration.

After power restoral, the outputs remain in the fallback position until they are
updated by the task.

NOTE: after a power on while the CPU is not started, outputs are in security mode
state (equal to 0). After the CPU start, if the module didn’t stay powered on, the
maintain state is lost and the output stay in state 0.

142 35006144 07/2011

Operating Modes

Output Changes, for Quantum

As soon as a power outage is detected:

e the local outputs are set to zero

e the outputs of the remote or distributed extension racks are set in the fallback
position

After power restoral, the outputs remain in the fallback position until they are
updated by the task.

Output Changes, for Extension Rack

If power outage occurs on rack where CPU is located:

e Fallback state as soon as CPU loss is detected

e Security state during I/O configuration

e State calculated by CPU after the first run of the task driving this output

After power is restored, the outputs remain in the fallback position until they are
updated by the task

35006144 07/2011

143

Operating Modes

Automatic Start in RUN for Premium/Quantum

Description

Automatic start in RUN is a processor configuration option. This option forces the
PLC to start in RUN after a cold restart (see page 136), except after an application
has been loaded onto the PLC.

For Quantum PLCs, automatic start in RUN also depends on the position of the
switch on the front panel of the processor. For more details, refer to the Quantum
documentation (see Quantum with Unity Pro, Hardware, Reference Manual).

A WARNING

UNEXPECTED SYSTEM BEHAVIOR - UNEXPECTED PROCESS START

The following actions will trigger "automatic start in RUN":

Inserting the PCMCIA card when the PLC is powered up (Premium, Quantum),
Replacing the processor while powered up (Premium, Quantum),
Unintentional or careless use of the reset button,

If the battery is found to be defective in the event of a power outage (Premium,
Quantum).

To avoid an unwanted restart when in RUN mode:

e We stongly recommend to use the RUN/STOP input on Premium PLCs or the
switch on the front of the panel of the processor for Quantum PLCs

e We strongly recommend not to use memorized inputs as RUN/STOP input of
the PLC.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

144 35006144 07/2011

Operating Modes

5.3 PLC HALT Mode

PLC HALT Mode

At a Glance
The following actions switches the PLC to HALT mode:
e using the HALT instruction
e watchdog overflow
e Program execution error (division by zero, overflow, etc.) if the bit %S78
(see page 160) is setto 1.
Precaution

A WARNING

UNEXPECTED APPLICATION BEHAVIOR

When the PLC is in Halt, all tasks are stopped. Check the behavior of the
associated 1/Os to ensure that the consequences of the PLC Halt on the
application are acceptable.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

35006144 07/2011 145

Operating Modes

146 35006144 07/2011

System Objects

Subject of this Chapter
This chapter describes the system bits and words of Unity Pro language.

Note: The symbols, associated with each bit object or system word, mentioned in
the descriptive tables of these objects, are not implemented as standard in the
software, but can be entered using the data editor.

They are proposed in order to ensure the homogeneity of their names in the different
applications.

What’s in this Chapter?
This chapter contains the following sections:

Section Topic Page
6.1 System Bits 148
6.2 System Words 170
6.3 Atrium/Premium-specific System Words 196
6.4 Quantum-specific System Words 208
6.5 Modicon M340-Specific System Words 222

35006144 07/2011 147

System Objects

6.1 System Bits

Subject of this Section
This section describes the system bits.

A WARNING

UNEXPECTED APPLICATION BEHAVIOR

Do not use system objects (%Si, %SWi) as variable when they are not
documented.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

What’s in this Section?
This section contains the following topics:

Topic Page
System Bit Introduction 149
Description of System Bits %S0 to %S7 150
Description of System Bits %S9 to %S13 152
Description of System Bits %S15 to %S21 154
Description of System Bits %S30 to %S59 157
Description of System Bits %S65 to %S79 160
Description of System Bits %S80 to %S96 165
Description of System Bits %S100 to %S123 168

148 35006144 07/2011

System Objects

System Bit Introduction

General

The Modicon M340, Premium, Atrium and Quantum PLCs use %Si system bits
which indicate the state of the PLC, or they can be used to control how it operates.

These bits can be tested in the user program to detect any functional development
requiring a set processing procedure.

Some of these bits must be reset to their initial or normal state by the program.
However, the system bits that are reset to their initial or normal state by the system
must not be reset by the program or by the terminal.

35006144 07/2011

149

System Objects

Description of System Bits %S0 to %S7

Detailed Description
Description of system bits %S0 to %S7:

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S0
COLDSTART

Cold start

Normally on 0, this bit is set on 1 by:

® power restoral with loss of data
(battery fault)

® the user program

o the terminal

® a change of cartridge

This bitis set to 1 during the first complete
restored cycle of the PLC eitherin RUN or
in STOP mode. It is reset to 0 by the
system before the following cycle.

To detect the first cycle in run after cold
start, please refer to $Sw10.

In Safe mode, this bit is not available on
Quantum safety PLCs.

%S0 is not always set in the first scan of
the PLC. If a signal set for every start of
the PLC is needed, %S21 should be used
instead.

For Premium and Quantum, Processing
on Cold Start for Premium/Quantum
PLCs (see page 138)

For Modicon M340, Processing on Cold
Start for Modicon M340 PLCs

(see page 127)

1
(1 cycle)

YES

YES

YES

%S1
WARMSTART

Warm
restart

Normally at O, this bit is set to 1 by:
® power is restored with data save,
e the user program,

o the terminal,

It is reset to O by the system at the end of
the first complete cycle and before the
outputs are updated.

This bit is not available on Quantum
safety PLCs.

%$S1 is not always set in the first scan of
the PLC. If a signal set for every start of
the PLC is needed, %S21 should be used
instead.

YES

YES

YES
(except
for safety
PLCs)

150

35006144 07/2011

System Objects

Bit Function | Description Initial Modicon | Premium | Quantum
Symbol state M340 Atrium
%S4 Timebase | An internal timer regulates the change in | - YES YES YES
TB10MS 10 ms status of this bit. (except
It is asynchronous in relation to the PLC for safety
cycle. PLCs)
Graph:
|5ms ‘Sms‘

This bit is not available on Quantum
safety PLCs.

%S5 Timebase | [dem %S4 - YES YES YES

TB100MS 100 ms (except
for safety
PLCs)

%S6 Time Idem %S4 - YES YES YES

TB1SEC base 1s (except
for safety
PLCs)

%S7 Time Idem %S4 - YES YES YES

TBIMIN base (except

1 min for safety

PLCs)

35006144 07/2011 151

System Objects

Description of System Bits %S9 to %S13

Detailed Description
Description of system bits %S9 to %S13:

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S9
OUTDIS

QOutputs
set to the
fallback
positionon
all buses

Normally at 0, this bit is set to 1 by the

program or the terminal:

e setto 1: sets the bit to O or maintains the
current value depending on the chosen
configuration (X bus, Fipio, AS-i, etc.).

e set to 0: outputs are updated normally.

Note: The system bit acts directly on the
physical outputs and not on the image bits of
the outputs.

Note: On Modicon M340, ethernet I/O
scanner and Global Data are affected by the
%S9 bit.

(1) Note: On Modicon M340, inputs/outputs
distributed via CANopen bus are not affected
by the %S9 bit.

On Modicon M340, after an operating mode,
outputs are in security mode state equal to 0
while the bit is set.

0

YES (1)

YES

NO

%S10
IOERR

Global I/0
detected
error

Normally at 1, this bit is set to 0 when an error
on an in-rack module or device on a network
is detected (e.g. non-compliant configuration,
exchange fault, hardware fault, etc.). The
%$S10 bit is reset to 1 by the system when all
the detected errors have disappeared.

—_

YES

YES

YES

Detected network communication errors with remote devices are not reported on
bits $510, $S16 and $51109.

A CAUTION

UNEXPECTED APPLICATION BEHAVIOR - SPECIFIC VARIABLE BEHAVIOR

Manage detected network communication errors with remote devices with a
method specific to each type of communication modules (NOM, NOE, NWM, CRA,

CRP) or motion modules (MMS):

e communication function blocks status (if they are used
e communication modules status (if they exist)

Failure to follow these instructions can result in injury or equipment damage.

152

35006144 07/2011

System Objects

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%S11 Watchdog | Normally at O, this is set to 1 by the 0 YES YES YES
WDG overflow system as soon as the task execution
time becomes greater than the
maximum execution time (i.e. the
watchdog) declared in the task
properties.
%S12 PLC in RUN | This bit is set to 1 by the system when |0 YES YES YES
PLCRUNNING the PLC is in RUN.
Itis setto 0 by the system as soon as the
PLC is no longer in RUN (STOP, INIT,
etc.).
%S13 First cycle | Switching the PLC from STOP mode to |- YES YES YES
1RSTSCANRUN | after RUN mode (including after a cold start
switching to | with automatic start in run) is indicated
RUN by setting system bit %S13 to 1. This bit
is reset to 0 at the end of the first cycle of
the MAST task in RUN mode.

35006144 07/2011

153

System Objects

Description of System Bits %S15 to %S21

Detailed Description
Description of system bits %S15 to %S21:

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium | Quantum
Atrium

%S15
STRINGERROR

Character
string fault

Normally set to 0, this bit is set to 1 when the
destination zone for a character string
transfer is not of sufficient size (including the
number of characters and the end of string
character) to receive this character string.
The application stops in error state if the
%S78 bit has been to set to 1.

This bit must be reset to 0 by the application.
This bit is not available on Quantum safety
PLCs.

0

YES

YES YES
(except
for safety
PLCs)

%S16
IOERRTSK

Task in-
put/output
fault

Normally set to 1, this bit is set to 0 by the
system when a fault on an in-rack module or
device on Fipio is detected (e.g. non-
compliant configuration, exchange fault,
hardware fault, etc.).

This bit must be reset to 1 by the user.

—_

YES

YES YES

A CAUTION

UNEXPECTED APPLICATION BEHAVIOR - SPECIFIC VARIABLE BEHAVIOR

On Quantum, network communication errors with remote devices detected by
communication modules (NOM, NOE, NWM, CRA, CRP) and motion modules
(MMS) are not reported on bits $510, $S16 and $S119.

Failure to follow these instructions can result in injury or equipment damage.

154

35006144 07/2011

System Objects

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S17
CARRY

Rotate shift
output

Normally at 0.
During a rotate shift operation, this bit
takes the state of the outgoing bit.

0

YES

YES

YES

%S18
OVERFLOW

Overflow or
arithmetic
error

Normally set to 0, this bit is set to 1 in the

event of a capacity overflow if there is:

® aresult greater than + 32 767 or less
than - 32 768, in single length,

e result greater than + 65 535, in
unsigned integer,

® aresult greater than + 2 147 483 647
orless than - 2 147 483 648, in double
length,

e result greater than +4 294 967 296, in

double length or unsigned integer,

real values outside limits,

division by 0,

the root of a negative number,

forcing to a non-existent step on a

drum,

e stacking up of an already full register,

emptying of an already empty register.

There is only one case for which bit $518
is not raised by the Modicon M340 PLCs
when real values are outside limits. It is
only if denormalized operands or some
operations which generate denormalized
results are used (gradual underflow).

It must be tested by the user program after
each operation where there is a risk of
overflow, then reset to 0 by the user if
there is indeed an overflow.

When the %S18 bit switches to 1, the
application stops in error state if the %S78
bit has been to set to 1.

YES

YES

YES

%S19
OVERRUN

Task period
overrun
(periodical
scanning)

Normally set to 0, this bit is set to 1 by the
system in the event of a time period
overrun (i.e. task execution time is greater
than the period defined by the user in the
configuration or programmed into the
%SW word associated with the task). The
user must reset this bit to 0. Each task
manages its own %S19 bit.

YES

YES

YES

35006144 07/2011

155

System Objects

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium | Quantum
Atrium

%S20
INDEXOVF

Index
overflow

Normally set to 0, this bit is set to 1 when
the address of the indexed object
becomes less than 0 or exceeds the
number of objects declared in the
configuration.

In this case, it is as if the index were equal
to 0.

It must be tested by the user program after
each operation where there is a risk of
overflow, then reset to 0 if there is indeed
an overflow.

When the %S20 bit switches to 1, the
application stops in error state if the %S78
bit has been to set to 1.

This bit is not available on Quantum safety
PLCs.

0

YES

YES YES
(except
for safety
PLCs)

%S21
1RSTTASKRUN

First task
cycle

Tested in a task (Mast, Fast, Aux0, Aux1,
Aux2 Aux3), the bit %S21 indicates the
first cycle of this task, including after a
cold start with automatic startin run and a
warm start. %S21 is set to 1 at the start of
the cycle and reset to zero at the end of
the cycle.

Note: The bit %S21 does not have the
same meaning in PL7 as in Unity Pro.

YES

YES YES

156

35006144 07/2011

System Objects

Description of System Bits %S30 to %S59

Detailed Description
Description of system bits %S30 to %S59:

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%S30 Activation/de | Normally set to 1. The master task is 1 YES YES YES
MASTACT activation of | deactivated when the user sets the bit to 0. (except
the master | This bit is taken into consideration by the for safety
task system at the end of each MAST task cycle. PLCs)
This bit is not available on Quantum safety
PLCs.
%S31 Activation/de | Normally set to 1 when the user creates the | 1 YES YES YES
FASTACT activation of | task. The task is deactivated when the user (except
the fast task | sets the bit to 0. for safety
This bit is not available on Quantum safety PLCs)
PLCs.
%S32 Activation/de | Normally set to 1 when the user creates the | 0 NO YES YES
AUXOACT activation of | task. The auxiliary task is deactivated when (except
the auxiliary |the user sets the bit to 0. for safety
task 0 This bit is not available on Quantum safety PLCs)
PLCs.
%S33 Activation/de | Normally set to 1 when the user creates the | 0 NO YES YES
AUXI1ACT activation of | task. The auxiliary task is deactivated when (except
the auxiliary |the user sets the bit to 0. for safety
task 1 This bit is not available on Quantum safety PLCs)
PLCs.
%S34 Activation/de | Normally set to 1 when the user creates the | 0 NO YES YES
AUX2ACT activation of | task. The auxiliary task is deactivated when (except
the auxiliary | the user sets the bit to 0. for safety
task 2 This bit is not available on Quantum safety PLCs)
PLCs.
%S35 Activation/de | Normally set to 1 when the user creates the | 0 NO YES YES
AUX3ACT activation of | task. The auxiliary task is deactivated when (except
the auxiliary | the user sets the bit to 0. for safety
task 3 This bit is not available on Quantum safety PLCs)
PLCs.
%S38 Enabling/in- | Normally set to 1. Events are inhibited 1 YES YES YES
ACTIVEVT | hibition of when the user sets the bit to 0. (except
events This bit is not available on Quantum safety for safety
PLCs. PLCs)
35006144 07/2011 157

System Objects

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%S39 Saturation in | This bit is set to 1 by the system to indicate | 0 YES YES YES
EVTOVR event that one or more events cannot be (except
processing | processed following saturation of the for safety
queues. PLCs)
The user must reset this bit to 0.
This bit is not available on Quantum safety
PLCs.
%S40 Rack 0 The %S40 bit is assigned to rack 0. 1 YES YES NO
RACKOERR |input/output | Normally set to 1, this bit is set to 0 when a
fault fault occurs on the rack’s 1/Os.
In this case:
® the %S10 bit is set to 0,
® the I/O processor LED is on,
® the %Ir.m.c.Err module bit is set to 1.
This bit is reset to 1 when the fault
disappears.
%S41 Rack 1 Idem %S40 for rack 1. 1 YES YES NO
RACK1ERR |input/output
fault
%S42 Rack 2 Idem %S40 for rack 2. 1 YES YES NO
RACK2ERR | input/output
fault
%S43 Rack 3 Idem %S40 for rack 3. 1 YES YES NO
RACK3ERR | input/output
fault
%S44 Rack 4 Idem %S40 for rack 4. 1 YES YES NO
RACK4ERR | input/output
fault
%S45 Rack 5 Idem %S40 for rack 5. 1 YES YES NO
RACK5ERR | input/output
fault
%S46 Rack 6 Idem %S40 for rack 6. 1 YES YES NO
RACK6ERR | input/output
fault
%S47 Rack 7 Idem %S40 for rack 7. 1 YES YES NO
RACK7ERR | input/output
fault

158

35006144 07/2011

System Objects

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%S50 Updating of | Normally set to 0, this bitis setto 1 orO by |0 YES YES YES
RTCWRITE |time and the program or the terminal.
date via e set to 0: update of system words
words %SW50 to %SW53 by the date and time
%SW50 to supplied by the PLC real-time clock.
%SW53 e setto 1: system words %SW50 to
%SW53 are no longer updated,
therefore making it possible to modify
them.
® The switch from 1 to 0 updates the real-
time clock with the values entered in
words %SW50 to %SW53.
%S51 Time loss in | This system-managed bit set to 1 indicates | — YES YES YES
RTCERR real time that the real-time clock is missing or that its
clock system words (%SW50 to %SW53) are
meaningless. In this case the clock must be
reset to the correct time.
%S59 Incremental | Normally set to 0, this bit can be setto 1 or | 0 YES YES YES
RTCTUNING | update ofthe | O by the program or the terminal:
time and e set to 0: the system does not manage
date via the system word %SW59,
word e setto 1: the system manages edges on
%SW59 word %SW59 to adjust the date and
current time (by increment).
35006144 07/2011 159

System Objects

Description of System Bits %S65 to %S79

Detailed Description
Description of system bits $565 to $579:

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium

%S65 Card disable | It is necessary to generate a rising 0 YES NO NO
CARDIS edge on the bit 5565 before extracting

the card, in order to ensure the
information consistency.

In fact, on rising edge detection, the
current accesses are finished
(reading and writing of files,
application saving), then the card
accessing LED is off (CARDERR light
is unchanged).

Then, the card can be extracted,
CARDERR LED is on.

Inserting the card: the accessing LED
is on and CARDERR LED shows the
status (%565 is unchanged).

The user has to reset $565 to 0 to
allows edge detection later.

If a rising edge has been generated on
the bit $565 and that the card hasn’t
been extracted, the reset to 0 of the bit
doesn’t make the card accessible. To
make the card accessible again it has
to be extracted and re-inserted or the
PLC has to be re-initialited (Reset
button from the power supply).

160 35006144 07/2011

System Objects

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium

%S66 Application | This bit is set to 1 by the user to start |0 YES NO NO
LEDBATT backup a backup operation (transfer

APPLIBCK application from RAM to card). The

system will detect the rising edge to
start the backup. The state of this bitis
polled by the system every second. A
backup takes place only if the
application in RAM is different from
the one in the card.

This bit is set to 0 by the system when
the backup is finished.

Warning: Before doing a new backup
by setting bit $566 to 1, you must test
that bit $S66 has been set to 0 by the
system (meaning that the previous
backup has finished).Never use $566
if it is set to 1. This may lead to a loss
of data.

Bit %S66 is particularly useful after
replacement of init value %S94 and
save-param.

35006144 07/2011 161

System Objects

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S67
PCMCIABATO

State of the
application
memory
card battery

This bit is used to monitor the status of
the main battery when the memory
card is in the upper PCMCIA slot.
This applies to Atriums, Premiums
and Quantums

(CPU 140 CPU 671 60/60S,

140 CPU 672 61,

140 CPU 651 60/60S,

140 CPU 652 60 and

140 CPU 651 50):

e set to 1: main voltage battery is
low. The application is kept but the
battery must be replaced following
the predictive maintenance
(see Premium and Atrium using
Unity Pro, Processors, racks and
power supply modules,
Implementation manual)
procedure),

e set to 0: main battery voltage is
sufficient (application always
kept).

® Bit $567 is supported by Unity
version > 2.02.

NOTE: With “blue” PCMCIAs
(PV>=04), bit 5567 is not set to 1
when main battery is absent, though
with “green“ PCMCIAs (PV<04), bit
%567 is setto 1 in the same condition.

NO

YES

YES

%S68
PLCBAT

State of
processor
battery

This bit is used to check the operating

state of the backup battery for saving

data and the program in RAM.

e set to 0: battery present and
operational

e setto 1: battery missing or non-
operational

NO

YES

YES

162

35006144 07/2011

System Objects

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S75
PCMCIABAT1

State of the
data storage
memory

card battery

This bit is supported by Unity Pro
equal or greater to version 2.02. It is
used to monitor the main battery
status when the memory card is in the
lower PCMCIA slot.

For Premium processors, %S75 is
supported by the following
processors: TSX P57 4ee,

TSX P57 5¢¢ and TSX P57 Gee.
NOTE: For all others Premium
processors, $575 shows a low battery
level only when the battery is already
at a critical level.

For Quantum processors, $575 is
supported by the following
processors:

140 CPU 672 61*,140 CPU 671

60/60S*, 140 CPU 651 60/60S™,

140 CPU 652 60, and

140 CPU 651 50.

%S75 is:

e setto 1 when the main battery
voltage is low. The application is
kept but the battery must be
replaced following the predictive
maintenance (see Premium and
Atrium using Unity Pro,
Processors, racks and power
supply modules, Implementation
manual) procedure,

e set to 0 when the main battery
voltage is sufficient (application
always kept).

* Data stored on a memory card in
slot B is not processed in safety
projects.

NO

YES

YES

%S76
DIAGBUFFCONF

Configured
diagnostics
buffer

This bit is set to 1 by the system when
the diagnostics option has been
configured — a diagnostics buffer for
storage of errors found by diagnostics
DFBs is then reserved.

This bit is read-only.

YES

YES

YES

35006144 07/2011

163

System Objects

® at 0 (default value), standard
management: bit value is changed
even if the bit is forced.

o if setto 1 by the user: write bits
request on forced bits do not
change their value. There is no
error in the response of the
request.

As other accesses, the history bit is
always updated, whatever the forcing
state.

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%S77 Full This bitis set to 1 by the system when | 0 YES YES YES
DIAGBUFFFFULL |diagnostics |the bufferthatreceives errors fromthe
buffer diagnostics function blocks is full.
This bit is read-only.
%S78 Stop inthe | Normally at 0, this bit can be setto 1 |0 YES YES YES
HALTIFERROR event of by the user, to program a PLC stop on
error application fault: $s15, $518, %20.
On Quantum safety PLCs, the Halt
state is replaced by the Error state
when you are in Safe mode. Note also
that 515 and %20 are not available.
%S79 Modbus This bit change the behavior of the 0 NO NO YES
MBFBCTRL forced bit Quantum Modbus server regarding
control forced bits:

164

35006144 07/2011

System Objects

Description of System Bits %S80 to %S96

Detailed Description
Description of system bits %S80 to %S96:

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S80
RSTMSGCNT

Reset message
counters

Normally set to 0, this bit can be set
to 1 by the user to reset the
message counters %SW80 to
%SW86.

0

YES

YES

YES

%S82

MB+PCMCIA
polling adjust

This bit is used to change the
request exchange mode with
MB+MBP100 PCMCIA.

By default (value 0), the system
sends a request to the card and will
poll for a reponse in the next Mast
cycle.This mode is recommended
for small Mast duration.

When set to 1, the system sends a
request to the card and waits for a
response.This mode is
recommended for large Mast
duration.

NO

YES

NO

%S90
COMRFSH

Refresh
common words

Normally set to 0, this bit is set to 1
on receiving common words from
another network station.

This bit can be set to 0 by the
program or the terminal to check the
common words exchange cycle.

NO

YES

NO

%S91
LCKASYNREQ

Lock asynchro-
nous request

When this bit is set to 1, the
asynchronous communication
requests processed in the
monitoring task are entirely
executed without interruption from
the other MAST or FAST tasks, thus
ensuring the data is read or written
consistently.

Reminder: the request server of the
monitoring task is addressed via
gate 7 (X-Way).

NO

YES

NO

35006144 07/2011

165

System Objects

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S92
EXCHGTIME

Measurement
mode of the
communication
function

Normally set to 0, this bit can be set
to 1 by the user to set
communication functions to
performance measurement mode.
The communication functions’ time-
out parameter (see Unity Pro,
Communication, Block Library) (in
the management table) then
displays the round trip exchange
time in milliseconds.

Note: The communication functions
are executed with a time base of
100 ms.

0

YES

YES

NO

%S94
SAVECURRVAL

Saving
adjustment
values

Normally at O, this bit can be setto 1
by the user to replace the initial
values of the declared variables with
a ‘Save’ attribute (e.g.: DFB
variables) with the current values.
For Modicon M340, on a %S94
rising edge, the internal RAM and
the memory card content are
different (%S96 = 0 and the
CARDERR LED is on). On cold
start, the current values are replaced
by the most recent initial values only
if a save to memory card function
(Backup Save or %S66 rising edge)
was done.

The system resets the bit %S94 to 0
when the replacement has been
made.

Note: this bit must be used with care:
do not set this bit permanently to 1
and use the master task only.

This bit is not available on Quantum
safety PLCs.

When used with the TSX MFP ¢ or
TSX MCP eflash PCMCIA memory
the saving adjustment values is not
available.

YES

YES

YES
(except
for safety
PLCs)

166

35006144 07/2011

System Objects

or unusable (bad format,
unrecognized type, etc.), or the
card content is inconsistent with
Internal Application RAM.

e Setto 1 when the card is correct
and the application is consistent
with CPU Internal Application

RAM.

Bit Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium

%S96 Backup This bit is set to 0 or 1 by the system. | - YES NO NO
BACKUPPROGOK | program OK e Setto 0 when the card is missing

A CAUTION

APPLICATION UPLOAD NOT SUCCESSFUL
The bit $594 must not be set to 1 during an upload.
If the bit $594 is set to 1 then the upload may be impossible.

Failure to follow these instructions can result in injury or equipment damage.

A CAUTION

LOSS OF DATA

The bit $594 must not be used with the TSX MFP e or the TSX MCP e flash
PCMCIA memory. The function of this system bit is not available with this type of
memory.

Failure to follow these instructions can result in injury or equipment damage.

35006144 07/2011

167

System Objects

Description of System Bits %S100 to %S123

Detailed Description
Description of system bits %S100 to %S123:

Bit Function | Description Initial | Modicon | Premium | Quantum
SYMBOL state | M340 Atrium
%S100 Protocol on | This bit is set to 0 or 1 by the system - NO YES NO
PROTTERINL |terminal according to the state of the INL/DPT shunt

port on the console.

e if the shunt is missing (%S100=0), then
the master Uni-Telway protocol is used,

e if the shunt is present (%S100=1) then
the protocol used is the one indicated
by the application configuration.

%S117 Detected Normally set to 1, this bit is set to 0 by the | - No No YES
ERIOERR RIO error | system when a detected error occurs in a
on Ethernet | device on the Ethernet RIO.

I/0 network | This bit is reset to 1 by the system when all
the detected errors disappear.

%S118 General Normally set to 1, this bit is set to 0 by the | - YES YES YES
REMIOERR Remote I/O | system when a fault occurs on a device
fault connected to the RIO (Fipio for Premium or

Drop S908 for Quantum) remote
input/output bus.

This bit is reset to 1 by the system when
the fault disappears.

This bit is not updated if an error occurs on
the other buses (DIO, ProfiBus, ASI).

%S119 General in- | Normally set to 1, this bit is set to 0 by the |- YES YES YES
LOCIOERR rack 1/0 system when a fault occurs on an I/O
fault module placed in one of the racks.

This bit is reset to 1 by the system when
the fault disappears.

A CAUTION

%S119 for Quantum PLCs

On Quantum, network communication errors with remote devices detected by
communication modules (NOM, NOE, NWM, CRA, CRP) and motion modules
(MMS) are not reported on bits $510, $S16 and $S119.

Failure to follow these instructions can result in injury or equipment damage.

168 35006144 07/2011

System Objects

Bit
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%S120
DIOERRPLC

DIO bus fault
(CPU)

Normally set to 1, this bit is set to 0 by
the system when a fault occurs on a
device connected to the DIO bus
managed by the Modbus Plus link
built into the CPU.

This bit is not available on Quantum
safety PLCs.

In the Diagnostic viewer some
information are available (if the entry
is selected) to clarify error type on the
bus. This information can identify the
correct remote bus with the bus
number (RIO, DIO).

NO

NO

YES
(except for
safety
PLCs)

%S121
DIOERRNOM1

DIO bus fault
(NAME No. 1)

Normally set to 1, this bit is set to 0 by
the system when a fault occurs on a
device connected to the DIO bus
managed by the first 140 NAME 2ee
module.

This bit is not available on Quantum
safety PLCs.

In the Diagnostic viewer some
information are available (if the entry
is selected) to clarify error type on the
bus. This information can identify the
correct remote bus with the bus
number (RIO, DIO).

NO

NO

YES
(except for
safety
PLCs)

%S122
DIOERRNOM2

DIO bus fault
(NAME No. 2)

Normally set to 1, this bit is set to 0 by
the system when a fault occurs on a
device connected to the DIO bus
managed by the second 140 NAME
2ee module.

This bit is not available on Quantum
safety PLCs.

In the Diagnostic viewer some
information are available (if the entry
is selected) to clarify error type on the
bus. This information can identify the
correct remote bus with the bus
number (RIO, DIO).

NO

NO

YES
(except for
safety
PLCs)

%S123
ADJBX

Adjust Bus X

This bit is used by the system and
cannot be used by the user
application.

YES

YES

NO

35006144 07/2011

169

System Objects

6.2 System Words

Subject of this Section

This section describes the Modicon M340, Atrium, Premium and Quantum system
words.

A WARNING

UNEXPECTED APPLICATION BEHAVIOR

Do not use system objects (%Si, %SWi) as variable when they are not
documented.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

What’s in this Section?
This section contains the following topics:

Topic Page
Description of System Words %SWO0 to %SW11 171
Description of System Words %SW12 to %SW29 175
Description of System Words %SW30 to %SW47 179
Description of System Words %SW48 to %SW59 181
Description of System Words %SW70 to %SW100 183
Description of System Words %SW108 to %SW116 193
Description of System Words %SW123 to %SW127 194

170 35006144 07/2011

System Objects

Description of System Words %SWO0 to %SW11

Detailed Description
Description of system words $Sw0 to $Sw11.

Word Function | Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%SWO0 Master This word is used to modify the period of |0 YES YES YES
MASTPERIOD |task the master task via the user program or via (except
scanning | the terminal. for safety
period The period is expressed in ms (1...255 ms) PLCs)
%$SwW0=0 in cyclic operation.
On a cold restart: it takes the value defined
by the configuration.
This word is not available on Quantum
safety PLCs.
%SW1 Fast task | This word is used to modify the period of |0 YES YES YES
FASTPERIOD |scanning |the fasttask via the user program or via the (except
period terminal. for safety
The period is expressed in milliseconds PLCs)
(1...255 ms).
On a cold restart, it takes the value defined
by the configuration.
This word is not available on Quantum
safety PLCs.
%SW2 Auxiliary | This word is used to modify the period of |0 NO YES (1) |YES (1)
AUXOPERIOD |task the tasks defined in the configuration, via (except
%SW3 scanning | the user program or via the terminal. for safety
AUX1PERIOD | period The period is expressed in tens of ms PLCs)
%SW4 (10ms to 2.55s).
AUX2PERIOD
%SW5 (1) only on 140 CPU 6e and TSX 57 5ee
AUX3PERIOD PLCs.
These words are not available on Quantum
safety PLCs.
%SW6 IP Ad- Gives the IP address of the CPU Ethernet | - YES NO NO
%SW7 dress port. Modification is not taken into account.
Is 0 if the CPU does not have an Ethernet
link.
35006144 07/2011 171

System Objects

Word Function | Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%SW8 Acquisi- | Normally set to O, this bit can be setto 1 or |0 YES(1) YES (3) | YES(2)
TSKINHIBIN |tion of 0 by the program or the terminal. (except
taskinput | It inhibits the input acquisition phase of for safety
monitor- | each task: PLCs)
ing ® 3sSW8.0 = 1 inhibits the acquisition of

inputs relating to the MAST task.

® 33SW8.1 = 1 inhibits the acquisition of
inputs relating to the FAST task.

® 3SW8.2 to 5 = 1 inhibits the
acquisition of inputs relating to the AUX
0...3 tasks.

(1) Note: On Modicon M340, inputs/outputs
distributed via CANopen bus are not
affected by the word $SwW8.

(2) Note: On Quantum, inputs/outputs
distributed via DIO bus are not affected by
the word $SwW8.

(3) Note: On PREMIUM, inputs/outputs
distributed via ETY and ETY PORT are not
affected by the word $sw8. High End CPU
Ethernet Port is affected by the word %$sws.
This word is not available on Quantum
safety PLCs.

172 35006144 07/2011

System Objects

task; outputs relating to this task are no
longer managed.

® 3SW9.1 = 1 assigned tothe FAST
task; outputs relating to this task are no
longer managed.

® 3SW9.2 to 5 = 1 assigned tothe
AUX 0...3 tasks; outputs relating to
these tasks are no longer managed.

(3) Note: On Modicon M340, inputs/outputs
distributed via CANopen bus are not
affected by the word $SwW9.

On Modicon M340, after an operating
mode, outputs are in security mode state
equal to 0 while the bit is set.

(4) Note: On Quantum, inputs/outputs
distributed via DIO bus are not affected by
the word &Sw9.

This word is not available on Quantum
safety PLCs.

Word Function | Description Initial | Modicon | Premium | Quantum

Symbol state | M340 Atrium

%SW9 Monitor- | Normally set to 0, this bit can be setto 1 or | 0 YES (3) |YES YES (4)

TSKINHIBOUT |ing of 0 by the program or the terminal. (except
task out- | Inhibits the output updating phase of each for safety
put up- task. PLCs)
date ® 3SW9.0 = 1 assigned to the MAST

A CAUTION

On Premium/Atrium:

On Quantum:

UNEXPECTED APPLICATION BEHAVIOR

Before setting the %SW9 value to 1, ensure that the output behavior will remain
appropriate:

Module outputs located on the X Bus automatically switch to the configured
mode(fallback or maintain). On the Fipio bus, certain devices do not manage
fallback mode, then only maintain mode is possible.

All outputs, as well as the local or remote rack (RIO) are maintained in the state
that preceded the switch to 1 of the %SW9 bit corresponding to the task.

The Distributed Inputs/Outputs (DIO) are not assigned by the system word %SW9.
Failure to follow these instructions can result in injury or equipment damage.

35006144 07/2011

173

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium | Quantum
Atrium

%SW10
TSKINIT

First cycle
after cold
start

If the value of the current task bit is set

to 0, this means that the task is

performing its first cycle after a cold

start.

® 3SW10.0: assigned to the MAST
task.

® 2SW10.1:assigned to the FAST
task.

® 3SW10.2 to 5:assigned to the AUX
0...3 tasks.

This word is not available on Quantum
safety PLCs.

0

YES

YES YES
(except
for safety
PLCs)

%SW11
WDGVALUE

Watchdog
duration

Reads the duration of the watchdog.
The duration is expressed in
milliseconds (10...1500 ms). This word
cannot be modified.

YES

YES YES

174

35006144 07/2011

System Objects

Description of System Words %SW12 to %SW29

Detailed Description
Description of system words $SW12 to $SwW29:

Word Function Description Initial state | Modicon | Premium | Quan-
Symbol M340 Atrium tum
%SW12 Processor | For Premium: Uni-Telway address of | - YES YES NO
UTWPORTADDR | serial port | terminal port (in slave mode) as (see
address defined in the configuration and %SW12
loaded into this word on cold start. below)

The modification of the value of this
word is not taken into account by the
system.

For Modicon M340: Gives the
Modbus slave address of the CPU
serial port. Modification is not taken
into account. Is 0 if the CPU does not
have a Serial Port link.

%SW12 Mode ofthe | For Quantum safety PLC only, this 16#A501 NO NO YES
APMODE application | word indicates the operating mode of Only on
processor | the application processor of the CPU safety
module. PLCs

e 16#A501 = maintenance mode
o 16#5AFE = safe mode

Any other value is interpreted as an
error.

Note: In a HotStand By safety
system, this word is exchanged from
the primary to the standby PLC to
inform the standby PLC of the safe or
maintenance mode.

%SW13 Main This word indicates the following for | 254 NO YES NO
XWAYNETWADDR | address of | the main network (Fipway or Ethway): | (16#00FE) (see
the station | @ the station number (least %SW13
significant byte) from 0 to 127, below)

e the network number (most
significant byte) from 0 to 63,

(value of the micro-switches on the
PCMCIA card).

35006144 07/2011 175

System Objects

Word Function | Description Initial state | Modicon | Premium | Quan-
Symbol M340 Atrium tum
%SW13 Mode ofthe | For Quantum safety PLC only, this - NO NO YES
INTELMODE Intel word indicates the operating mode of Only on
processor | the Intel Pentium processor of the safety
CPU module. PLCs
® 16#501A = maintenance mode
® 16#5AFE = safe mode
Any other value is interpreted as an
error.
Note: In a HotStand By safety
system, this word is exchanged from
the primary to the standby PLC to
inform the standby PLC of the safe or
maintenance mode.
%SW14 Commer- | This word contains the current - YES YES YES
OSCOMMVERS cial version | Operating System (OS) version of the
of PLC pro- | PLC processor.
cessor Example: 16#0135
version: 01
issue number: 35
%SW15 PLC This word contains the commercial | - YES YES YES
OSCOMMPATCH | processor | version of the PLC processor patch.
patch It is coded onto the least significant
version byte of the word.
Coding: 0 = no patch, 1 = A, 2 =B...
Example: 16#0003 corresponds to
patch C.
%SW16 Firmware | This word contains the Firmware - YES YES YES
OSINTVERS version version number in hexadecimal of the
number PLC processor firmware.
Example: 16#0011
version: 2.1
VN: 17

176

35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial state

Modicon
M340

Premium
Atrium

Quan-
tum

%SW17
FLOATSTAT

Error status
on floating
operation

When an error in a floating arithmetic

operation is detected, bit $518 is set

to 1 and $Sw17 error status is

updated according to the following

coding:

® 35wW17.0 = Invalid operation /
result is not a number,

® 35wWl17.1 =Denormalized
operand/resultis acceptable (flag
not managed by Modicon M340 or
Quantum Safety PLCs),

® 3SWl17.2=Divisionby0/resultis
infinity,

® 25wW17.3 = Overflow/ resultis
infinity,

® 25W17.4 =Underflow/resultis O,

® 2SW17.51to0 15 =not used.

This word is reset to 0 by the system
on cold start, and also by the program
for re-usage purposes.

YES

YES

YES
Only on
safety
PLCs

%SD18:
%SW18 and
%SW19
100MSCOUNTER

Absolute
time
counter

%$SW18 represents the least
significant bytes and $Sw1 9 the most
significant bytes of the double word
%$SD18, which is incremented by the

system every 1/10™ of a second. The
application can read or write these
words in order to perform duration
calculations.

%$SD18 isincremented systematically,
even in STOP mode and equivalent
states. However, times when the PLC
is switched off are not taken into
account, since the function is not
linked to the real-time scheduler, but
only to the real-time clock.

For Quantum safety PLC, knowing
that the 2 processors must process
exactly the same data, the value of
%SD18 is updated at the beginning of
the mast task, and then frozen during
the application execution.

YES

YES

YES

35006144 07/2011

177

System Objects

Word
Symbol

Function

Description

Initial state

Modicon
M340

Premium
Atrium

Quan-
tum

%SD20:
%SW20 and
%SW21
MSCOUNTER

Absolute
time
counter

For M340 and Quantum PLCs £sD20
is incremented every 1/1000th of a
second by the system (even when the
PLC is in STOP, $SD20 is no longer
incremented if the PLC is powered
down). $sD20 can be read by the
user program or by the terminal.
$SD20 is reset on a cold start.
%$SD20 is not reset on a warm start.
For Premium

TSX P57 1¢4M/2¢4M/34M/C024M/0
24M and TSX PCI57 204M/354M
PLCs, $5SD20 is incremented by 5
every 5/1000th of a second by the
system. For all the others Premium
PLCs, $5D20 is time counter at 1 ms
like Quantum and M340 PLCs.

For Quantum safety PLC, knowing
that the 2 processors must process
exactly the same data, the value of
%SD18 is updated at the beginning of
the mast task, and then frozen during
the application execution.

YES

YES

YES

%SW23

Rotary
switch
value

The least significant byte contains the
Ethernet processor rotary switch.

It can be read by the user program or
by the terminal.

YES

NO

NO

%SW26

Number of
requests
processed

This system word allows to verifiy on
server side the number of requests
processed by PLC per second.

YES

NO

NO

%SW27
%SW28
%SW29

System
overhead
time

® 3SW27 is the last system
overhead time.

® 3SW28 contains the maximum
system overhead time.

® 3%SW29 contains the minimum
system overhead time.

The system overhead time depends
on the configuration (number of I/0...)
and on the current cycle requests
(communication, diagnostics).
System overhead time = Mast Cycle
Time - User code execution time.
These can be read and written by the
user program or by the terminal.

YES

NO

NO

178

35006144 07/2011

System Objects

Description of System Words %SW30 to %SW47

Detailed Description

Description of system words %SW30 to %SW35:

Word Function Description Initial | Modicon | Premium | Quantum
Symbol state | M340
%SW30 Master task This word indicates the - YES YES YES
MASTCURRTIME |executiontime |executiontime of the last master
task cycle (in ms).
%SW31 Maximum This word indicates the longest |- YES YES YES
MASTMAXTIME master task master task execution time
execution time | since the last cold start (in ms).
%SW32 Minimummaster | This word indicates the shortest | - YES YES YES
MASTMINTIME task execution | master task execution time
time since the last cold start (in ms).
%SW33 Fast task This word indicates the - YES YES YES
FASTCURRTIME |execution time | execution time of the last fast (except for
task cycle (in ms). safety
This word is not available on PLCs)
Quantum safety PLCs.
%SW34 Maximum fast | This word indicates the longest | - YES YES YES
FASTMAXTIME task execution | fast task execution time since (except for
time the last cold start (in ms). safety
This word is not available on PLCs)
Quantum safety PLCs.
%SW35 Minimum fast This word indicates the shortest | - YES YES YES
FASTMINTIME task execution | fast task execution time since (except for
time the last cold start (in ms). safety
This word is not available on PLCs)
Quantum safety PLCs.

NOTE: Execution time is the time elapsed between the start (input acquisition) and
the end (output update) of a scanning period. This time includes the processing of
event tasks, the fast task, and the processing of console requests. In Quantum
HSBY configuration, $SwW30,%sW31 and $SwW32 includes the time of Copro Data
exchange between Primary and Stand By CPU

35006144 07/2011

179

System Objects

Description of system words %SW36 to %SW47.

Word Function Description Initial | Modicon | Quantum |Premium
Symbol state | M340

%SW36 Auxiliary Those words indicate the execution |- NO YES (1) YES (1)
AUXOCURRTIME |task time of the last cycle of the AUX 0...3 (except
%SW39 execution tasks (in ms). for safety
AUX1CURRTIME |time PLCs)
%SW42 (1) only on 140 CPU 6 and

AUX2CURRTIME TSX P57 5ee PLCs.

%SW45 These words are not available on

AUX3CURRTIME Quantum safety PLCs.

%SW37 Maximum | Those words indicate the longest - NO YES (1) YES (1)
AUXOMAXTIME auxiliary task execution time of AUX 0...3 (except
%SW40 task tasks since the last cold start (in ms). for safety
AUX1IMAXTIME execution PLCs)
%SW43 time (1) only on 140 CPU 6¢* and TSX

AUX2MAXTIME P57 5ee PLCs.

%SW46 These words are not available on

AUX3MAXTIME Quantum safety PLCs.

%SW38 Minimum Those words indicate the shortest - NO YES (1) YES (1)
AUXOMINTIME auxiliary task execution time of AUX 0...3 (except
%SW41 task tasks since the last cold start (in ms). for safety
AUXIMINTIME execution PLCs)
%SW44 time (1) only on 140 CPU 6¢* and TSX

AUX2MINTIME P57 5ee PLCs.

%SW47 These words are not available on

AUX3MINTIME Quantum safety PLCs.

180 35006144 07/2011

System Objects

Description of System Words %SW48 to %SW59

Detailed Description
Description of system words $Sw48 to $SW59.

Word Function Description Initial | Modicon |Premium | Quantum
Symbol state | M340 Atrium
%SW48 Number of | This word indicates the 10 events and |0 YES YES YES
IOEVTNB events telegram processed since the last cold (except
start. This word can be written by the for safety
program or the terminal PLCs)
This word is not available on Quantum
safety PLCs.
NOTE: TELEGRAM is available only
for PREMIUM (not on Quantum or
M340).
%SW49 Real-time System words containing date and - YES YES YES
DAYOFWEEK clock current time (in BCD):
%SW50 function ® 3swW49: day of the week:
SEC e 1= Monday,
%SW51 e 2 =Tuesday,
HOURMIN e 3 = Wednesday,
%SW52 ® 4 = Thursday,
MONTHDAY e 5 = Friday,
%SW53 e 6 = Saturday,
YEAR e 7 = Sunday,
® 32sW50: Seconds (16#SS00),
® 3swW51: Hours and Minutes
(16#HHMM),
® 3SW52: Month and Day
(16#MMDD),
® 323W53: Year (16#YYYY).
These words are managed by the
system when the bit $550 is set to 0.
These words can be written by the user
program or by the terminal when the bit
%550 is setto 1.
35006144 07/2011 181

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%SW54
STOPSEC
%SW55
STOPHM
%SW56
STOPMD
%SW57
STOPYEAR
%SW58
STOPDAY

Real-time
clock
function on
last stop

System words containing date and
time of the last power failure or PLC
stop (in Binary Coded Decimal):
® 3SW54: Seconds (00SS),
® %SW55: Hours and Minutes
(HHMM),
® 25W56: Month and Day (MMDD),
$Sw57: Year (YYYY),
® 3SwW58: the most significant byte
contains the day of the week (1 for
Monday through to 7 for Sunday),
and the least significant byte
contains the code for the last stop:
® 1 =change from RUN to STOP
by the terminal or the dedicated
input,
e 2 =stop by watchdog (PLC task
or SFC overrun),
® 4 =power outage or memory
card lock operation,
® 5 = stop on hardware fault,
® 6 = stop on software fault.
Details on the type of software
fault are stored in $SwW125.

YES

YES

YES

%SW59
ADJDATETIME

Adjustment
of current
date

Contains two 8-bit series to adjust the
current date.

The action is always performed on the
rising edge of the bit.

This word is enabled by bit $559=1.
In the following illustration, bits in the
left column increment the value, and
bits in the right column decrement the
value:

+ - Type of value
Bits 0 & | | Day of the week
1 9| | Seconds
2 10| | Minutes
3 11| | Hours
4 12| | Days
5 13| | Months
6 14 | | Years
7 15| | Centuries

YES

YES

YES

182

35006144 07/2011

System Objects

Description of System Words %SW70 to %SW100

Detailed Description
Description of system words $SW70 to $SW100.

Word Function | Description Initial | Modicon | Premium | Quan-
Symbol state | M340 Atrium tum
%SW70 Real-time | System word containing the number of | - YES YES YES
WEEKOFYEAR clock the week in the year: 1 to 52 (in BCD).
function
%SW71 Position | This word provides the image of the 0 NO NO YES
KEY SWITCH of the positions of the switches on the front
switches | panel of the Quantum processor. This
on the word is updated automatically by the
Quantum | system.
frontpan- | ® %swW71.0 = 1 switchinthe "Memory
el protected" position,
® 3SW71.1 = 1 switchinthe "STOP"
position,
® 3SW71.2 = 1switchinthe "START"
position,
® 3SW71.8 = 1 switchinthe "MEM"
position,
® 3SW71.9 = 1 switchinthe "ASCII"
position,
® 2SW71.10 = 1 switchinthe "RTU"
position,
® 3SwW71.3to7and11lto 15 are not
used.
%SW75 Timer- This word contains the number timer 0 YES YES (1) YES
TIMEREVTNB type type events in the queue. (except
event (1): Not available on the following for
counter | processors: TSX 57 1¢/2¢/3¢/4¢/5e. safety
This word is not available on Quantum PLCs)
safety PLCs.
%SW76 Diagnos- | Result of the last registration 0 YES YES YES
DLASTREG tics func- | @ =0 if the recording was successful,
tion: e =1 if the diagnostics buffer has not
recording been configured,
e =2 if the diagnostics buffer is full.
35006144 07/2011 183

System Objects

Word Function | Description Initial | Modicon | Premium | Quan-
Symbol state | M340 Atrium tum
%SW77 Diagnos- | Result of the last de-registration 0 YES YES YES
DLASTDEREG tics func- | @ =0 if the non-recording was

tion: successful,

non-re- e =1 if the diagnostics buffer has not

cording been configured,

o =21 if the error identifier is invalid,
e =22 if the error has not been

recorded.

%SW78 Diagnos- | Number of errors currently in the 0 YES YES YES
DNBERRBUF tics func- | diagnostics buffer.

tion:

number

of errors
%SW80 Message | These words are updated by the 0 YES YES YES
MSGCNTO manage- |system, and can also be reset using
%SW81 ment %$580.
MSGCNT1 For Premium:

® 3SwW80: Number of message sent by
the system to the terminal port (Uni-
Telway port)

® 3SwW81: Number of message
received by the system to the
terminal port (Uni-Telway port)

For Modicon M340:

® 33W80: Number of message sent by
the system to the terminal port
(Modbus serial port),

® 33W81: Number of message
received by the system to the
terminal port (Modbus serial port).

For Quantum:

® 3swW80: Number of Modbus
messages sent by the system as
client on all communication ports.

NOTE: Modbus messages sent by the

system as Master are not counted in this

word.

® 33W81: Number of Modbus
messages received by the system as
client on all communication port.
NOTE: Modbus messages received as
response to the requests sent by the
system, as Master, are not counted in
this word.

184 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quan-
tum

%SW82
%SW83

Message
manage-
ment

These words are updated by the

system, and can also be reset using

2580.

For Premium:

® 3Sw82: Number of messages sent
by the system to the PCMCIA
module,

® 3Sw83: Number of messages
received by the system from the
PCMCIA module.

For Quantum:

® 335wW82: Number of Modbus
messages sent or received on serial
port 1,

® 335wW83: Number of Modbus
messages sent or received on serial
port 2.

0

NO

YES

YES

%SW84
MSGCNT4
%SW85
MSGCNT5

Premi-
um: Tele-
gram
manage-
ment
Modicon
M340:
Message
manage-
ment

These words are updated by the

system, and can also be reset using

%$580.

For Premium:

® 3sSw84: Number of telegrams sentby
the system,

® 3Sw85: Number of telegrams
received by the system.

For Modicon M340:

® %SW84: Number of messages sent
to the USB port,

® %SW85: Number of messages
received by the USB port.

YES

YES

NO

%SW86
MSGCNT6

Message
manage-
ment

This word is updated by the system, and

can also be reset using $580.

For Premium:

® Number of messages refused by the
system.

For Modicon M340:

® Number of messages refused by the
system, not treated because of lack
of resources for example.If the
message is refused by Modbus
Server then it corresponds to
Modbus exception messages, sent
by the CPU to the remote Modbus
client.

YES

YES

NO

35006144 07/2011

185

System Objects

Word Function | Description Initial | Modicon | Premium | Quan-
Symbol state | M340 Atrium tum
%SW87 Commu- | Number of requests processed by 0 YES YES YES
MSTSERVCNT nication | synchronous server per master (MAST)
flow man- | task cycle.
agement | The requests processed may come
from all communication ports (having
access to the server Modbus/UNI-TE,
each of them having its own limitation).
This means also that requests from
other clients, then communication EFs
like IO Scanner, connected HMI and so
on should be counted.
%SW88 Premi- For Premium: 0 YES YES NO
ASNSERVCNT um: Com- | ® %sw88: Number of requests
%SW89 municatio processed by asynchronous server
APPSERVCNT n flow per master (MAST) task cycle,
manage- |® %Sw89: Number of requests
ment processed by server functions
Modicon (immediately) per master (MAST)
M340: task cycle.
HTTP For Modicon M340:
and FTP | g " 51788: Number of HTTP requests
requgsts received by the processor’'s Web
received server per second,
by the e 35w89: Number of FTP requests
pro’ces- received by the FTP server per
sorsWeb second.
server
and FTP
server
per sec-
ond

186

35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quan-
tum

%SW90
MAXREQNB

Maxi-
mum
number
of re-
quests
pro-
cessed
per mas-
ter task
cycle

This word is used to set a maximum
number of requests (all protocols
included: UNI-TE, Modbus, etc.) which
can be processed by the server of the
PLC per master task cycle.(Requests
sent by the PLC as client are not
concerned.)
This number of requests must be
between a minimum and a maximum
(defined as N+4) depending on the
model.
For M340 range:
® BMX P34 10¢¢/20¢¢/: N =8 (minimum
2, maximum 8 + 4 = 12),

For Premium range:

® TSX 57 0e: N =4 (minimum 2,
maximum 4 + 4 = 9),

® TSX 57 1e: N =4 (minimum 2,
maximum 4 + 4 = 8),

® TSX 57 2¢: N =8 (minimum 2,
maximum 8 + 4 = 12),

® TSX 57 3e: N =12 (minimum 2,
maximum 12 + 4 = 16),

® TSX 57 4e: N =16 (minimum 2,
maximum 16 + 4 = 20),

® TSX 57 5 N =16 (minimum 2,
maximum 16 + 4 = 20)

For Quantum range:

® 140 CPU 31e¢/43e¢/53¢¢/: N = 10
(minimum 5, maximum 10 + 4 = 14),

® 140 CPU 6¢°: N = 20 (minimum 5,
maximum 20 + 4 = 24),

NOTE: Requests may come from
various modules or embedded
communication ports. The
communication exchange capacity of
each port is limited, therefore the
maximum request value set in $SW90
might not be reached.

N

YES

YES

YES

35006144 07/2011

187

System Objects

Word Function | Description Initial | Modicon | Premium | Quan-
Symbol state | M340 Atrium tum
Continued Maxi- The Word is initialized by the system N YES YES YES
%SW90 mum with N (default value) If the value 0 is
MAXREQNB number | entered, it is the value N that is taken

of re- into account. If a value between 1 and

quests minimum is entered, it is the minimum

pro- value that is taken into account. If a

cessed value greater than maximum is entered,
per mas- | it is maximum value that is taken into
ter task account.

cycle The number of requests to be
processed per cycle should take into
account requests from all
communication ports (having access to
the server.) This means that requests
from other clients than communication
EFs, like 10 Scanner, connected HMI
and so on should also be taken into

account.
%SW91-92 Function | e %sw91l: Number of function blocks |0 YES YES NO
blocks messages sent per second,
message |® %Sw92: Number of function block
rates messages received per second.

Can be read by the user program or by
the terminal.

These counters does not include other
outgoing requests coming from an 10
Scanner for example.

188 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quan-
tum

%SW93

Memory
card file
system
format
com-
mand &
status

Can be read and written by the user
program or the terminal. This word is
used by the customer to format or clean
up the memory card:
The format operation deletes the web
pages. To recover them, perform one of
the two following actions
® Use FTP.
® Before performing the format,
save the web pages using FTP.

o After performing the format,
reload the web pages via FTP.

e Reinstall the firmware operating
system of the processor.

The clean up operation deletes the
content of the data storage directory.
Formatting or clean up is possible only
in Stop mode:
® 3SW93.0 = 1 arising edge starts
the format operation.
® 3SW93.1 gives the file system
status after a format or a clean Up
operation request:
® 3SW93.1 = O invalidfile system
or command under progress,
® 3swW93.1 = 1 valid file system.

® 3SW93.2 = 1 arising edge starts
the clean up operation.

0

YES

NO

NO

%SW94
%SW95

Applica-
tion modi-
fication
signature

These two words contain a 32-bit value

that changes at every application

modification except when:

e updating upload information,

® replacing the initial value with the
current value,

® saving the parameter command.

They can be read by the user program
or by the terminal.

YES

NO

NO

35006144 07/2011

189

System Objects

Word Function | Description Initial | Modicon | Premium | Quan-
Symbol state | M340 Atrium tum
%SW96 Com- This word is used to copy or delete the |- YES NO NO

CMDDIAGSAVEREST |mandand | current value of $Mw to or from internal
Diagnos- | flash memory (see page 109) and to
tic of give the action’s status. It can be read
Save and | by the user program or by the terminal:
Restore |® 3%sw96.0: Request to copy current
value of $Mw to internal Flash
memory. Set to 1 by the user to
request a save, and set to 0 by the
system when a save is in progress.
NOTE: You must stop the processor
before copying via %SW96.0.

® 3SW96.1 is setto 1 by the system
when a save is finished, and set to 0
by the system when a save is in
progress.

® 33SW96.2 = 1 indicates an error on
a save or restore operation (see
%$SW96.8 to 15 for error code
definitions).

® 3SW96.3 = 1 indicates thata
restore operation is in progress.

® 3SW96.4 may be setto 1 by the user
to delete %MW area in internal Flash
memory.

® 3SW96.7 = 1 indicates thatinternal
memory has valid $Mw backup.

%SW96 Com- ® 2SW96.8to 15 are error codes - YES NO NO
CMDDIAGSAVEREST | mandand when $5SW96.2 is setto 1:

Diagnos- ® 3SW96.9 = 1indicates that the

tic of saved $MW number is less than

Save and the configured number,

Restore

® 3SW96.8 = 1and
$SW96.9 = 1 mean that the
saved %MW number is greater
than the configured number,

® $SW96.8 = 1,%SW96.9 =1
and $SW96.10 = 1 indicate a
write error in internal flash
memory.

190 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quan-
tum

%SW97
CARDSTS

Card sta-
tus

Can be read by the user program or by
the terminal. Indicates the status of the
card.

$SW97:

0000 = no error.

0001 = application backup or file write
sent to a write-protected card.

0002 = card not recognized, or
application backup damaged.

0003 = backup of the application
requested, but no card available.

0004 = card access error, for example
after a card has been removed not
properly.

0005 = no file system present in the
card, or file system not compatible. Use
$SwW93. 0 to format the card.

YES

NO

NO

%SW99'
INPUTADR/SWAP'

Commu-
nication
redun-
dancy
manage-
ment(1)

NOTE: This word is used for Premium
and Quantum module but has a different
function.

Word used to manage the redundancy
of network modules.

When a problem is detected on a
communication module used to access
a network number x (X-WAY), it is
possible to switch to another
communication module (connected to
the same network) by entering the
network number in the $SW99 word.
$SW99 is reset to 0 by the system.

NO

YES'!

NO

35006144 07/2011

191

System Objects

Word Function | Description Initial | Modicon | Premium | Quan-
Symbol state | M340 Atrium tum
%SW992 CRA NOTE: This word is used for Premium |0 NO NO YES2

compati- | and Quantum module but has a different
bility high | function (see Modicon Quantum,
status Change Configuration On The Fly, User
register Guide).

Word used to manage the CCOTF
compatibility when a new module is
inserted.

When a module is inserted in the RIO
drop the corresponding bit is at 1 and
indicates that the module is connected
on the drop and CCOTF compatible.

CRA_COMPAT HIGH?

%SW100 CCOTF | Word is incremented each time a 0 NO NO YES

CCOTF_COUNT counting | CCOTF modification is performed in a

status PLC.

register $SW100 = XXYY where:

® XX is incremented each time an I/O
configuration is done in RUN state in
a RIO drop,

® YY is incremented each time an I/O
configuration is done in RUN state in
local rack.

192 35006144 07/2011

System Objects

Description of System Words %SW108 to %SW116

Detailed Description
Description of system words %SW108 to %SW116.

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Quantum

Premium
Atrium

%SW108
FORCEDIOIM

Forced bit
counting
status
register

Word %SW108:

® increments each time an discrete bit
(%1,%Q or %M) is forced

® decrements each time an discrete bit is
unforced

0

YES

YES

YES

%SW109
FORCEDANA

Forced
analog
channel
counting
status
register

Word %SW109:

e increment each time an analog channel
is forced

® decrement each time an analog
channel is unforced

YES

NO

YES

%SW116
REMIOERR

Fipio I/O
error

Normally set to 0, each bit for this word

signifies the Fipio exchange status of the

exchange in which it is being tested.

This word is to be reset to 0 by the user.

More details on bits of word %SW116:

® %SW116.0 = 1 explicit exchange error
(variable has not been exchanged on
the bus)

® %SW116.1 = 1 time-out on an explicit
exchange (no reply at the end of time-
out)

® %SW116.2 = 1 maximum number of
explicit exchanges achieved at the
same time

® %SW116.3 =1 a frame is invalid

® %SW116.4 = 1 the length of frame
received is greater than the length that
was declared

® %SW116.5 = reserved on 0

® %SW116.6 =1 a frame is invalid, or an
agent is initializing

® %SW116.7 = 1 absence of a
configured device

® %SW116.8 = 1 channel fault (at least
one device channel is indicating a fault)

® %SW116.9 to 15 = reserved on 0

NO

NO

YES

35006144 07/2011

193

System Objects

Description of System Words %SW123 to %SW127

Detailed Description
Description of system words %SW123 to %SW127.

Word Function | Description Initial | Modicon | Premium | Quantum
Symbol state | M340 Atrium
%SW123 System This system word is used by the system |- YES YES NO
ADJBUSX allowance | and cannot be used by the user application

to BUS X
%SW124 Type of The last type of system fault encountered |- YES YES YES
CPUERR processor | is written into this word by the system

or system | (these codes are unchanged on a cold

error restart):

® 16#30: system code fault

® 16#53: time-out fault during 1/0
exchanges

® 16#60 to 64: stack overrun

e 16#65: Fast task period of execution is
too low

® 16#81: detection of backplane
(see Premium and Atrium using Unity
Pro, Processors, racks and power
supply modules, Implementation
manual) error
NOTE: 16#81 system code is not
managed by Quantum PLCs
NOTE: If this error is detected, all racks
have to be re-initialized.

® 16#90: system switch fault: Unforeseen
IT

194 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

Modicon
M340

Premium
Atrium

Quantum

%SW125
BLKERRTYPE

Last fault
detected

The code of the last fault detected is given

in this word:

The following error codes cause the PLC

to stop if %S78 is setto 1. %S15, %S18

and %S20 are always activated

independently of %S78:

® 16#2258: execution of HALT instruction

o 16#DE87: calculation error on floating-
point numbers (%S18, these errors are
listed in the word %SW17)

o 16#DEBO: Watchdog overflow (%S11)

o 16#DEFO: division by 0 (%S18)

o 16#DEF1: character string transfer
error (%S15)

o 16#DEF2: arithmetic error; %S18

o 16#DEF3: index overflow (%S20)

NOTE: The following codes 16#8xF4,
16#9xF4, and 16#DEF7 indicate an error
on Sequencial Function Chart (SFC).

YES

YES

YES

%SW126
ERRADDRO
%SW127
ERRADDR1

Blocking
error
instruction
address

Address of the instruction that generated

the application blocking error.

For 16 bit processors, TSX P57 1ee/2ee:

® %SW126 contains the offset for this
address

® %SW127 contains the segment
number for this address.

For 32 bit processors:

® %SW126 contains the least significant
word for this address

® %SW127 contains the most significant
word for this address

YES

YES

YES

35006144 07/2011

195

System Objects

6.3 Atrium/Premium-specific System Words

Subject of this Section

This section describes the system words %SW128 to %SW167 for Premium and
Atrium PLCs.

A WARNING

UNEXPECTED APPLICATION BEHAVIOR

Do not use system objects (%Si, %SWi) as variable when they are not
documented.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

What’s in this Section?
This section contains the following topics:

Topic Page
Description of System Words %SW60 to %SW65 197
Description of System Words %SW128 to %SW143 200
Description of System Words %SW144 to %SW146 201
Description of System Words %SW147 to %SW152 203
Description of System Word %SW153 204
Description of System Word %SW154 206
Description of Premium/Atrium System Words %SW155 to %SW167 207

196 35006144 07/2011

System Objects

Description of System Words %SW60 to %SW65

Detailed Description

Description of system words %SW60 to %SW65 on Premium and Atrium Hot
Standby.

Word
Symbol

Function

Description

Initial
state

Premium

Atrium

%SW60
HSB CMD

Premium
Hot
Standby
command
register

Meaning of the different bits of the word %SW60:
%SW60.1

=0 sets PLC A to OFFLINE mode.
=1 sets PLC A to RUN mode.

%SW60.2

=0 sets PLC B to OFFLINE mode.
=1 sets PLC B to RUN mode.

%SW60.4 OS Version Mismatch

=0 If OS Versions Mismatch with Primary,
Standby goes to Offline mode.

=1 If OS Versions Mismatch with Primary PLC,
Standby stays in standby mode.

Firmware OS Mismatch.This relate to main
processor OS version, embedded copro OS
version, monitored ETY OS version and enables
a Hot Standby system to operate with different
versions of the OS running on the Primary and
Standby.

0

YES

NO

35006144 07/2011

197

System Objects

Word Function | Description Initial | Premium | Atrium
Symbol state
%SW61 Premium | Meaning of the different bits of the word %SW61.0to |0 YES NO
HSB_STS Hot %SW61.6:

Standby ® %SW61.0 and %SW61.1 Status of local PLC.

status ® %SW61.1=0 and %SW61.0=1: OFFLINE mode.

register ® %SW61.1=1 and %SW61.0=0: Primary mode.

® %SW61.1=1 and %SW61.0=1: Standby mode.

® %SW61.2 and %SW61.3 Status of remote PLC.
® %SW61.3=0 and %SW61.2=1: OFFLINE mode.
® %SW61.3=1 and %SW61.2=0: Primary mode.
® %SW61.3=1 and %SW61.2=1: Standby mode.
® %SW61.3=0 and %SW61.2=0: the remote PLC
is not accessible (Power off, no communication).

® %SW61.4 is set=1: whenever a logic mismatch is
detected between the Primary and Standby
controllers.
® %SW61.5is setto 0 or 1, depending on the
Ethernet copro MAC address:
o =0 the PLC with the lowest MAC dress becomes
PLC A.
o =1 the PLC with the highest MAC address
becomes PLC B.

® %SW61.6: this bit indicates if the CPU-sync link

between the two PLC is valid:

® %SW61.6=0: the CPU-sync link is valid.The
content of bit 5 is significant.

® %SW61.6=1: the CPU-sync link is not valid. In
this case, the contents of the bit 5 is not
significant because the comparison of the two
MAC addresses cannot be performed.

198 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

Premium | Atrium

%SW61
HSB_STS

Premium
Hot
Standby
status
register

Meaning of the different bits of the word %SW61.7 to
%SW61.9:

%SW61.7: this bit indicates if there is a Main
Processor OS version mismatch between Primary
and Standby:

o =0: no OS version firmware mismatch.

o =1: OS version mismatch. If OS version
mismatch is not allowed in the command register
(bit 4 = 0), the system will not work as redundant
as soon as the fault is signaled.

%SW61.8: this bit indicates if there is a COPRO OS
version mismatch between Primary and Standby:
o =0: no COPRO OS version mismatch.

o =1: COPRO OS version mismatch. If OS version
mismatch is not allowed in the command register
(bit 4 = 0), the system will not work as redundant
as soon as the fault is signaled.

%SW61.9: this bit indicates if at least one ETY

module does not have the minimum version:

o =0: all the ETY modules have the minimum
version.

o =1: at least one ETY module doesn’t have the
minimum version. In this case, no Primary PLC
could start.

0

YES NO

%SW61
HSB_STS

Premium
Hot
Standby
status
register

Meaning of the different bits of the word %SW61.10
and %SW61.15:

%SW61.10: this bit indicates if there is a Monitored
ETY OS version mismatch between Primary and
Standby:

e =0: no Monitored ETY OS version mismatch.

o =1: Monitored ETY OS version mismatch. If OS
version mismatch is not allowed in the command
register (bit 4 = 0), the system will not work as
redundant as soon as the fault is signaled.

%SW61.15: If %SW 61.15 is set = 1, the setting
indicates that Ethernet Copro device is set up
correctly and working.

YES NO

%SW62
HSBY REVERSEOQ
%SW63
HSBY_REVERSEL
%SW64
HSBY REVERSE2
%SW65
HSBY REVERSE3

Premium
Transfer
word

These four words are reverse registers reserved for the
Reverse Transfer process. These four reverse
registers can be written to the application program (first
section) of the Standby controller and are transferred at
each scan to the Primary controller.

YES NO

35006144 07/2011

199

System Objects

Description of System Words %SW128 to %SW143

Detailed Description
Description of system words %SW128 to SW143:

Word Function Description Initial

Symbol state

%SW128...143 Faulty Fipio | Each bitin this group of words indicates the state of a device connected | 0

ERRORCNXi connection | to the Fipio bus.

wherei=0to 15 point Normally set to 1, the presence of a 0 in one of these bits indicates the
occurrence of a fault on this connection point. For a non-configured
connection point, the corresponding bit is always 1.

Table showing correspondence between word bits and connection point address:

Bit0 |Bit1 |Bit2 | Bit3 | Bit4 | Bit5|Bit6 | Bit7 | Bit8 |Bit9 | Bit 10 | Bit 11 | Bit 12 | Bit 13 | Bit 14 | Bit 15

%SW128 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%SW129 |16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 27 28 29 30 31

%SW130 (32 |33 |34 |35 |36 |37 |38 |39 |40 |41 |42 43 44 45 46 47

%SW131 48 |49 |50 |51 |52 |53 |54 |55 |56 |57 |58 59 60 61 62 63

%SW132 |64 |65 |66 |67 |68 |69 |70 |71 |72 |73 |74 75 76 77 78 79

%SW133 (80 |81 |82 |83 (84 |85 |86 |87 |88 |89 |90 91 92 93 94 95

%SW134 |96 |97 |98 |99 |100 101 [102 |103 |104 |105 |106 |107 |108 |109 |[110 |111

%SW135 | 112 | 113 | 114 |115 116 | 117 |118 |119 | 120 | 121 [122 |123 |124 |125 |126 |[127

%SW136 | 128 | 129 | 130 [131 | 132 | 133 |134 | 135 | 136 | 137 (138 |139 |[140 |141 |142 |143

%SW137 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 |153 | 154 |155 |156 |157 |158 |159

%SW138 | 160 | 161 | 162 |163 164 | 165 |166 |167 | 168 | 169 (170 |171 |172 |173 |174 |175

%SW139 (176 (177 |178 |179 | 180 | 181 | 182 | 183 | 184 | 185 |186 |187 [188 |189 |190 |[191

%SW140 | 192 | 193 | 194 | 195 | 196 | 197 [198 | 199 |200 (201 |202 |203 |204 |205 |206 |207

%SW141 208 (209 | 210 [211 (212 |213 |214 |215 |216 |217 (218 |219 |220 |221 |222 |223

%SW142 | 224 | 225 | 226 |227 (228 |229 |230 |231 |232 | 233 (234 |235 (236 [237 |238 |239

%SW143 | 240 | 241 | 242 | 243 | 244 | 245 |246 | 247 | 248 |249 |250 |251 |252 |253 |254 |255

200 35006144 07/2011

System Objects

Description of System Words %SW144 to %SW146

Detailed Description
Description of system words %SW144 to %SW146.

Word
Symbol

Function

Description

Initial
state

%SW144
BAOPMOD

Fipio bus
arbiter function
operating
mode

This system word is used to start and stop the bus arbiter function and the
producer / consumer function. It can modify the starting, automatic and
manual modes of the bus in the event of a stop.
® %SW144.0
e =1: producer / consumer function in RUN.
® = 0: producer / consumer function in STOP (no variables are
exchanged on the bus).

® %SW144.1
® =1: bus arbiter is in RUN 0.
® =0: bus arbiter is in STOP (no variables or message scanning is
carried out on the bus).

® %SW144.2
o = 1: automatic start in the event of an automatic bus stop.
e =0: manual start in the event of an automatic bus stop.

® %SW144.3 to 15 reserved, %SW144.3 = 1, %SW144.4 to 15 = 0.

0

%SW145
BAPARAM

Modification of
Fipio Bus
Arbiter
Parameters

The bits are set to 1 by the user, and reset to 0 by the system when

initialization has been carried out.

® %SW145.0 = 1: modification of the priority of the bus arbiter; the most
significant byte for this system word contains the value of the priority of
the bus arbiter which is to be applied to the bus.

® %SW145.1 and %SW145.2 are reserved.

%SW145.3 to %SW145.7 reserved on 0.

® %SW145.8 to %SW145.15: this byte contains the value which is applied
to the bus, according to the value of bit 0.

These parameters can be modified when the bus arbiter is in RUN, but for
them to be taken into account by the application, the BA must be stopped
then restarted.

35006144 07/2011

201

System Objects

Word Function Description Initial
Symbol state
%SW146 | Fipio bus The least significant byte indicates the status of the producer / consumer 0
BASTATUS | arbiter function | function.
display The most significant byte indicates the status of the bus arbiter function.
Byte value:
® 16#00: the function does not exist (no Fipio application).
e 16#70: the function has been initialized but is not operational (in STOP).
® 16#FO0: the function is currently being executed normally (in RUN).
UNINTENDED SYSTEM BEHAVIOR
Modifying the %SW144 and %SW145 system words can cause the PLC to stop.
Failure to follow these instructions can result in injury or equipment damage.
202

35006144 07/2011

System Objects

Description of System Words %SW147 to %SW152

Detailed Description
Description of system words %SW147 to %SW152:

Word Function Description Initial
Symbol state
%SW147 MAST network A value which is not zero indicates (in ms) the value of the MAST task | 0
TCRMAST cycle time network cycle time (TCRMAST).
%SW148 FAST network A value which is not zero indicates (in ms) the value of the first FAST | 0
TCRFAST cycle time task network cycle time (TCRFAST).
%SW150 Number of This word indicates the number of frames sent by the Fipio channel |0
NBFRSENT frames sent manager.
%SW151 Number of This word indicates the number of frames received by the Fipio 0
NBFRREC frames received | channel manager.
%SW152 Number of This word indicates the number of messages resent by the Fipio 0
NBRESENTMSG | messages resent | channel manager.

35006144 07/2011 203

System Objects

Description of System Word %SW153

Detailed Description
Description of system word %SW153:

Word Function Description Initial
Symbol state
%SW153 List of Fipio channel | Each bit is set to 1 by the system, and reset to 0 by the user. 0
FipioERRO manager faults See the list below.

Description of the Bits

e Dbit 0 = "overrun station fault": corresponds to loss of a MAC symbol while
receiving — this is linked to the receiver reacting too slowly.

e bit 1 = "message refusal fault": indicates that a message with acknowledgment
was refused, or that it was not acknowledged in the first place. receiving MAC.

e bit 2 = "interrupt variable refusal fault".

e bit 3 ="underrun station fault": corresponds to the station being unable to respect
transfer speed on the network.

e bit 4 ="physical layer fault": corresponds to a prolonged transmission absence in
the physical layer.

e bit 5 = "non-echo fault": corresponds to a fault which occurs when the transmitter
is currently sending, with a transmission current in the operating range, and when
at the same time there is detection of an absence of signal on the same channel.

e Dbit 6 = "talking fault": corresponds to a fault whereby the transmitter is controlling
the line for longer than the maximum set operating limit. This fault is caused, for
example, by deterioration of the modulator, or by a faulty data link layer.

e bit 7 = "undercurrent fault": corresponds to a fault whereby the transmitter
generates, when solicited, a current weaker than the minimum set operating limit.
This fault is caused by increased line impedance (e.g. open line, etc.).

e bit 8 ="pierced frame fault": indicates that a pause has been received in the frame
body, after identifying a delimiter at the start of the frame, and before identifying
a delimiter at the end of the frame. The appearance of a pause in normal
operating conditions takes place after a delimiter has been identified at the end
of a frame.

e bit 9 = "Receiving frame CRC fault": indicates that the CRC calculated on a
normally received frame and the CRC contained within this frame have different
values.

e Dbit 10 = "Receiving frame code fault": indicates that certain symbols, belonging
exclusively to delimitation sequences at the start and end of frames, have been
received within the body of the frame.

e bit 11 = "received frame length fault": more than 256 bytes have been received
for the frame body.

204 35006144 07/2011

System Objects

e bit 12 = "unknown frame type received": within the frame body, the first byte
identifies the type of frame link. A set number of frame types are defined in the
WorldFip standard link protocol. Any other code found within a frame is therefore
an unknown frame type.

e bit 13 = "a truncated frame has been received": a frame section is recognized by
a sequence of symbols delimiting the end of the frame, while the destination
station awaits the arrival of a delimiter sequence for the start of the frame.

e bit 14 = "unused, non-significant value".

e bit 15 = "unused, non-significant value"

35006144 07/2011 205

System Objects

Description of System Word %SW154

Detailed Description

Description of system word %SW154:

Word Function Description Initial
Symbol state
%SW154 List of Fipio channel | Each bit is set to 1 by the system and reset | 0
FipioERR1 | manager faults to 0 by the user.

See the list below.

Description of the Bits

bit 0 = "aperiodic sequence time-out": indicates that the messages or aperiodic
variables window has overflowed its limit within an elementary cycle of the macro-
cycle.

bit 1 = "refusal of messaging request": indicates that the message queue is
saturated - for the time being the bus arbiter is in no position to latch onto nor to
comply with a request.

bit 2 = "urgent update command refused": indicates that the queue for urgent
aperiodic variables exchange requests is saturated - for the time being the bus
arbiter is in no position to latch onto nor to comply with a request.

bit 3 = "non-urgent update command refused": indicates that the queue for non-
urgent aperiodic variable exchange requests is saturated - for the time being the
bus arbiter is in no position to latch onto nor to comply with a request.

bit 4 = "pause fault": the bus arbiter has not detected any bus activity during a time
period larger than the standardized WorldFip time period.

bit 5 = "a network collision has occurred on identifier transmission": indicates
activity on the network during theoretical pause periods. Between a transmission
and awaiting a reply from the bus arbiter, there should be nothing circulating on
the bus. If the bus arbiter detects activity, it will generate a collision fault (for
example, when several arbiters are active at the same time on the bus).

bit 6 = "bus arbiter overrun fault": indicates a conflict on accessing the bus arbiter
station memory.

bit 7 = "unused, non-significant value".

bit 8 to bit 15 = reserved on 0.

206

35006144 07/2011

System Objects

Description of Premium/Atrium System Words %SW155 to %SW167

Detailed Description
Description of system words %SW155 to %SW167:

Word Function Description Initial
Symbol state
%SW155 Number of explicit | Number of explicit exchanges currently being processed on Fipio, |0
NBEXPLFIP exchanges on Fipio | carried out by instructions (READ_STS, REA_PARAM, etc.).

Also takes into account the explicit exchanges carried out by

requests (READ_IO_OBJECT, WRITE_IO_OBJECT, etc.)

Note: The number of explicit exchanges is always less than 24.
%SW160 to Operating status of | The words %SW160 to %SW167 are respectively associated with | 0
%SW167 the PLC modules racks O to 7.
PREMRACKO to Bits 0 to 15 of each of these words are associated with the modules
PREMRACK7 located in positions 0 to 15 of these racks.

The bit is set to 0 if the module is faulty, and set to 1 if the module is

operating correctly.

Example: %SW163.5 =0

The module located in slot 5 of rack 3 is faulty.

35006144 07/2011 207

System Objects

6.4 Quantum-specific System Words

Subject of this Section

This section describes the system words %SW60 to %SW640 for Quantum PLCs.

A WARNING

UNEXPECTED APPLICATION BEHAVIOR

documented.

equipment damage.

Do not use system objects (%Si, %SWi) as variable when they are not

Failure to follow these instructions can result in death, serious injury, or

What’s in this Section?
This section contains the following topics:

Topic Page
Description of Quantum System Words %SW60 to %SW66 209
Description of Quantum System Words %SW98 to %SW109 212
Description of Quantum System Words %SW110 to %SW177 213
Description of Quantum System Words %SW180 to %SW702 216

208

35006144 07/2011

System Objects

Description of Quantum System Words %SW60 to %SW66

Detailed Description
System words’ description %SW60 to %SW66.

Word
Symbol

Function

Description

Initial
state

%SW60
HSB_CMD

Quantum
Hot
Standby
command
register

Different bits meaning of the word %SW60:

® %SW60.0 = 1 invalidates the commands entered in the display
(keypad).

® %SW60.1
® 0 sets PLC A to OFFLINE mode.
e 1 sets PLC A to ONLINE mode.

® %SW60.2
o 0 sets PLC B to OFFLINE mode.
o 1 sets PLC B to ONLINE mode.

NOTE: The Primary CPU controller goes to RUN Offline only if the
secondary CPU is RUN Standby.

At Startup of the Secondary PLC, the secondary CPU goes to Online mode
(RUN Standby) only if both bits %SW60.1 and %SW60.2 are set to 1
(regardless of A/B assignment).

If bits %SW60.1 and %SW60.2 are set to 0 simultaneously, a switchover
occurs:

® Primary controller goes RUN Offline, and,

e Standby controller now operates as RUN Primary.

To complete the switchover, bits %SW60.1 and %SW60.2 must be set back
to 1. This makes the Offline CPU going back to Online mode (Run Standby).

The OFFLINE/ONLINE mode controlled by the %SW60.1 and %SW60.2
bits is not linked to the LCD Keypad ONLINE/OFFLINE mode (see Modicon
Quantum, Hot Standby System, User Manual).

® 3SW60.3
e 0 If an application mismatch is detected, Standby CPU is forced to
OFFLINE mode.
o 1 Standby CPU operates normally even if a mismatch occurs.

® %SW60.4
® (0 authorizes an update of the firmware only after the application has
stopped.
o 1 authorizes an update of the firmware without the application
stopping.
® %SW60.5=1 application transfer request from the Standby to the
primary.
® %SW60.8
® 0 address switch on Modbus port 1 during a primary swap.
® 1 no address switch on Modbus port 1 during a primary swap.

0

35006144 07/2011

209

System Objects

Word Function | Description Initial
Symbol state
%SW60 Quantum | continued: 0
HSB CMD Hot ® %SW60.9

Standby ® 0 address switch on Modbus port 2 during a primary swap.

command ® 1 no address switch on Modbus port 2 during a primary swap.

register

® %SW60.10
e (0 address switch on Modbus port 3 during a primary swap.
® 1 no address switch on Modbus port 3 during a primary swap.

%SW61 Quantum | Meaning of the different bits of the word %SW61: 0
HSB_STS status ® %SW61.0 and %SW61.1 PLC operating mode bits
register ® %SW61.1 =0, %SW61.0 = 1: OFFLINE mode.

® %SW61.1 =1, %SW61.0 = 0: primary mode.
® %SW61.1 =1, %SW61.0 = 1: secondary mode (Standby).

® %SW61.2 and %SW61.3 operating mode bits from the other PLC
® %SW61.3 =0, %SW61.2 = 1: OFFLINE mode.
® %SW61.3 =1, %SW61.2 = 0: primary mode.
® %SW61.3 =1, %SW61.2 = 1: secondary mode (Standby).
® %SW61.3 =0, %SW61.2 = 0: the remote PLC is not accessible
(switched off, no communication).

® %SW61.4 =0 the applications are identical on both PLCs.
® %SW61.5

e (the PLC is used as unit A.

e 1the PLC is used as unit B.

® %SW61.6 indicates if the CPU-sync link between the two PLC is valid
® 0 The CPU-sync link is operating properly. The contents of bit 5 are
significant.
e 1 the CPU-sync link is not valid. In this case, the contents of the bit 5
is not significant because the comparison of the two MAC addresses
cannot be performed.

® %SW61.7
® 0 Same PLC OS version.
e 1 Different PLC version.

® %SW61.8
® 0 Same Copro OS version.
e 1 Different Copro version.

® %SW61.12
e 0 Information given by bit 13 is not relevant
e 1 Information given by bit 13 is valid

® %SW61.13
o 0 NOE address set to IP
e 1 NOE address setto IP + 1

® %SW61.15
e (0 Hot Standby not activated.
e 1 Hot Standby activated.

210 35006144 07/2011

System Objects

Word Function | Description Initial
Symbol state
%SW62 Hot These 4 words may be modified is the Hot Standby MAST task first section | 0
HSBY REVERSEO |Standby | of the user application program.
%SW63 reverse They are then transferred automatically from the Standby processor to
HSBY REVERSEL |transfer update the Primary PLC.
%SW64 word They may be read on the Primary PLC and used in the Hot Standby
HSBY REVERSE2 application.
%SW65
HSBY REVERSE3
%SW66 Status of | Meaning of the bytes of the word %SW66 (XXYY): 0
CCOTF_STATUS |an Ether- | ® XX: The higher byte of the word is associated with the CCOTF status
net /0 code. its values are (in hex):
configura- e (0: Idle
tion ® 1D: Process succeed
change e 1E: System is busy processing the most recent CCOTF request
® 22: Remote drop not reachable
o 23: Request is rejected by Remote Drop specified in CCOTF request
® YY: The lower byte of the word is associated with the CCOTF
processing status. Its values are (in hex):
e 00: Idle
® 01:In progress
® (02: Completed without detected error, additional CCOTF changes
allowed
® 03: Completed with a detected error, additional CCOTF changes not
allowed
® (04: Completed with a fatal detected error, additional CCOTF
changes not allowed

35006144 07/2011 211

System Objects

Description of Quantum System Words %SW98 to %SW109

Detailed Description
Description system words %SW98 to %SW109:

Word Function Description Initial
Symbol state
%SW98 CRA compatibility | Meaning of the different bits of the word %SW98: 0
CRA_COMPAT_ LOW low status register | ® %SW98.0 is not used and is set to 0 by default.

® %SW98.1 to %SW98.15
e =0 sets the drop 2 to 16 is not compatible.
e =1 sets the drop 2 to 16 is compatible.

%SW99 CRA compatibility | Meaning of the different bits of the word %SW99: 0
CRA COMPAT HIGH high status ® %SW99.0 to %SW99.15
register o =0 sets the drop 17 to 32 is not compatible.
e =1 sets the drop 17 to 32 is compatible.
%SW100 CCOTF counting | Meaning of the different bits of the word %SW100: 0
CCOTF_COUNT status register o XXYY

e XX increments each time an I/O configuration is
done in RUN state in a RIO drop,

® YY increments each time an 1/O configuration is
done in RUN state in the Local rack.

NOTE: On a RUN-to-STOP mode transition, %SW100 is
reset to 0.

NOTE: When a byte reaches its maximum value of 255,
the counter is reset to 1.

%SW101 ERIO CCOTF Meaning of the bytes of the word %SW101: 0
ERIO_ CCOTF_COUNT counting status o XXYY
register ® XX Reserved

® YY increments each time an Ethernet /0O
configuration changes.
NOTE: When the counter reaches its maximum value of
255, itis resetto 1.

NOTE: On a cold-start, warm-start or application
download, %SW101 is reset to 0.

%SW108 Forced bit Word %SW108: 0
FORCED DISCRETE COUNT | counting status ® increments each time an discrete bit (%l,%Q or %M)
register is forced
® decrements each time an discrete bit is unforced
%SW109 Forced analog Word %SW109: 0
FORCED ANALOG COUNT channel counting | ® increment each time an analog channel is forced
status register ® decrement each time an analog channel is unforced

212 35006144 07/2011

System Objects

Description of Quantum System Words %SW110 to %SW177

Detailed Description

Description of system words %SW110 to %SW177; these words are active on
Quantum 140 CPU Gee eee P| Cs.

BW OTHER MSG

service and other
services

the percentage of load relating to messaging.
The Most Significant Byte of this word measures
the percentage of load relating to other services.

Word Function Description Initial
Symbol state
%SW110 number of This system word gives information on the size of |0
unrestricted memory | the unrestricted memory area for %M.
area for %M
%SW111 number of This system word gives information on the size of |0
unrestricted memory | the unrestricted memory area for %6MW.
area for %MW
%SW128 Number of The Most Significant Byte of this word indicates | 0
NB_P502 CNX connections open the number of TCP connections open on the
Ethernet link TCP/IP port 502.
%SW129 Number of This word indicates the number of TCP 0
NB DENIED CNX connections refused | connections refused on the Ethernet link TCP/IP
port 502.
%SW130 Number of This word indicates the number of TCP messages |0
NB_P502 REF messages refused | refused on the Ethernet link TCP/IP port 502.
%SW132 and %SW133 Number of This double word %SDW132 indicates the number | 0
NB_SENT_ MSG messages sent of messages sent on the Ethernet link TCP/IP port
502.
%SW134 and %SW135 Number of This double word %SDW134 indicates the number | 0
NB_RCV_MSG messages received | of messages received on the Ethernet link TCP/IP
port 502.
%SW136 Number of devices | This word indicates the number of devices 0
NB_IOS_ CNX scanned scanned on the Ethernet link TCP/IP port 502.
%SW137 Number of 1O This word indicates the number of messages 0
NB IOS MSG Scanning messages | received per second from the IO Scanning service
received on the Ethernet link TCP/IP port 502.
%SW138 Global Data Global Data coherence error 0
GLBD ERROR coherence error
%SW139 Global Data and 10 | The Least Significant Byte of this word measures |0
BW_GLBD_ IOS Scanning service the percentage of load relating to IO Scanning.
load The Most Significant Byte of this word measures
the percentage of load relating to Global Data.
%SW140 Load for messaging | The Least Significant Byte of this word measures | 0

35006144 07/2011

213

System Objects

ERIO DROP ERROR

error status

associated with the detected Ethernet RIO Drop
status.

The bit is set to 0 if at least one 1/0O module in the
drop has detected error.

Itis set to 1 if all modules are operating correctly.
%SW152.0: Drop No. 1

%SW152.1: Drop No. 2

%SW153.14: Drop No. 31

Word Function Description Initial
Symbol state
%SW141 and %SW142 IP Address This double word %SDW141 receives the IP 0
IP ADDR address of the Ethernet link.
%SW143 and %SW144 IP subnetwork mask | This double word %SDW143 receives the 0
IP_NETMASK subnetwork mask of the Ethernet link.
%SW145 and %SW146 Default Ethernet This double word %SDW145 receives the address | 0
IP GATEWAY gateway address of the default Ethernet gateway.
%SW147 to %SW149 MAC Addresses The words %SW147, %SW148,%SW149 code 0
MAC ADDRI to 3 the addresses MAC 1, MAC 2 and MAC 3

respectively.
%SW150 Coprocessor version | This word codes the coprocessor version for 0

140 CPU 671 60 and 140 CPU 672 61 PLCs.

The version is displayed in hexadecimal format.
%SW151 Status of Ethernet This word codes the status of the Ethernet link. 0
BOARD_STS link e Bit 0 =0 if the Ethernet link is stopped

e Bit1=0

e Bit 2: 0= half duplex mode, 1=full duplex

e Bit3=0

e Bits 4 to 11: =7 for Quantum, =6 for Hot

Standby Quantum

e Bit 12: 0 = 10 Mbits link, 1= 100 Mbits link

® Bit 13: 0 = 10/100Base-TX link (twisted pair)

e Bit14:0

e Bit 15: 0 = Ethernet link inactive, 1= Ethernet

link active

%SW152 to %SW153 Detected ERIO Drop | The bits of words %SW152 to %SW153 are -

214

35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

%SW160 to %SW167
REFRESH IO

Device operating
status determined by
10 scanning

The bits of words %SW160 to %SW167 are
associated with devices that have been IO
scanned.

The bitis set to 0 if the device has a detected error.

It is set to 1 if the device is operating correctly.
%SW160.0: device No. 1.

%SW160.1: device No. 2.

%SW167.15: device No. 128.

Note: These system words are only available for
Quantum coprocessors, and are unavailable for
NOE modules.

%SW168 to %SW171
VALID GD

Operating status of
Global Data

The bits of words %SW168 to %SW171 are
associated with Global Data.

The bitis set to 0 if the device has a detected error.
It is set to 1 if the device is operating correctly.
%SW168.0: device No. 1.

%SW168.1: device No. 2.

%SW171.15: device No. 64.

%SW172 to %SW173
ERIO CONNECT STATUS

Standalone and Hot
Standby Primary
Detected Ethernet
RIO
Communications
Drop error status

The bits of words %SW172 to %SW173 are
associated with the Ethernet RIO Drop connection
status.

The bit is set to 0 if the connection between the
PLC and the Drop is not operating correctly.

Itis setto 1 if the connection is operating correctly.

%SW172.0: Drop No. 1

%SW172.1: Drop No. 2

%SW173.14: Drop No. 31

NOTE: In a Hot Standby system, these are for the
Primary CPU.

%SW176 to %SW177
SDBY ERIO_ CONNECT_STATUS

Hot Standby
Detected Ethernet
RIO
Communications
Drop error status

The bits of words %SW176 to %SW177 are
associated with Ethernet RIO Drop connection
status.

The bit is set to 0 if the connection is not operating
correctly.

Itis setto 1 if the connection is operating correctly.

%SW176.0: Drop No. 1

%SW176.1: Drop No. 2

%SW177.14: Drop No. 31

NOTE: In a Hot Standby system, these are for the
Standby CPU. They are not significant in a
Standalone PLC.

35006144 07/2011

215

System Objects

Description of Quantum System Words %SW180 to %SW702

Detailed Description
Description of system words %SW180 to %SW702:

Word Function Description Initial
Symbol state
%SW180 to %SW339 | Health bits of the | Words %SW180 and %SW181 are associated with PLC stations | 0
TOHEALTH1j PLC modules 1 for Standalone and Hot Standby local PLC’s main (1) and

i=1..32, j=1..5 Including Hot extension (2) racks:

Standby CPUs | ® %SW180: module health bits of the station 1, rack 1
® %SW181: module health bits of the station 1, rack 2

Words %SW182 and %SW183 are associated with PLC stations
1 for only the Hot Standby peer PLC’s main (1) and extension (2)
racks:

® %SW182: module health bits of the station 1, rack 1

® %SW183: module health bits of the station1, rack 2

NOTE: SW182 - %SW183 are not used in a Standalone PLC.

o SW184 is reserved.

Words %SW185 and %SW2339 are associated with PLC stations
2to 32. Each station has 5 words available but only the first 2 are
used:

%SW185: module health bits of the S908 station 2, rack 1
%SW186: module health bits of the S908 station 2, rack 2
SW187 is reserved.

SW188 is reserved.

SW189 is reserved.

%SW335: module health bits of the S908 station 32, rack 1
%SW336: module health bits of the S908 station 32, rack 2
SWa337 is reserved.
SWa338 is reserved.
SWa339 is reserved.

Bits 0 to 15 of each of these words are associated with the
modules located in positions 16 to 1 of these racks.

The bit equals 0 if the module is inoperative and equals 1 if the
module is operating correctly.

Example: %SW185.5 = 0: the module located in station 2, rack
1, slot 11 is inoperative.

Note: Modules 140 XBE 100 00 (see Quantum with Unity Pro,
Hardware, Reference Manual) require special management.
These words are not available on Safety PLCs.

%SW340 Slot number of | Slot number of the processor with the built-in Modbus Plus link | -
MB+DIOSLOT the processor for connection to the first DIO network. The slot number is coded
with Modbus from 0 to 15.
Plus link This word is not available on Quantum safety PLCs.

216 35006144 07/2011

System Objects

Word Function Description Initial
Symbol state
%SW341 to %SW404 | Operating status | The words %SW341 to %SW404 are associated with the -
MB+IOHEALTH1 of the distributed | distributed stations (DIO): 64 words associated with the 64 DIO
i=1..64 station modules | stations of the first network.
of the first DIO | %SW341: operating status of the station 1 modules.
network %SW342: operating status of the station 2 modules.
%SW404: operating status of the station 64 modules.
Bits 0 to 15 of each of these words are associated with the
modules located in positions 16 to 1 of these stations.
The bit is set to 0 if the module is faulty, and set to 1 if the module
is operating correctly.
Example: %SW362.5 =0
The module located in station 22 slot 11 of the first DIO network
is faulty.
Note: For modules 140 CRA 29 es the value of this bit is not
significant, and is always set to 0.
These words are not available on safety PLCs and DIO network.
%SW405 Slot number of | Slot number of module 140 NAME 2ee for connection to the -
NOM1DIOSLOT the first interface | second DIO network.
module of the The slot number is coded from 0 to 15.
DIO network This word is not available on Quantum safety PLCs.
%SW406 to %SW469 | Operating status | The words %SW406 to %SW469 are associated with the -
NOM1DIOHEALTHi of the distributed | distributed stations (DIO): 64 words associated with the 64 DIO
i=1..64 station modules | stations of the second network.
of the second %SW406: operating status of the station 1 modules.
DIO network %SW407: operating status of the station 2 modules.
%SW469: operating status of the station 64 modules.
Bits 0 to 15 of each of these words are associated with the
modules located in positions 16 to 1 of these stations.
The bit is set to 0 if the module is faulty, and set to 1 if the module
is operating correctly.
Example: %SW412.5 =0
The module located in station 7 slot 11 of the second DIO
network is faulty.
Note: For modules 140 CRA 2ee ses the value of this bit is not
significant, and is always set to 0.
These words are not available on safety PLCs and DIO network.
%SW470 Slot number of | Slot number of module 140 NAME 2¢e for connection to the third | -
NOM2DIOSLOT the second DIO network.
interface module | The slot number is coded from 0 to 15.
of the DIO This word is not available on Quantum safety PLCs.
network
35006144 07/2011 217

System Objects

Word Function Description Initial
Symbol state
%SW471 to %SW534 | Operating status | The words %SW471 to %SW534 are associated with the -
NOM2DIOHEALTHi of the distributed | distributed stations (DIO): 64 words associated with the 64 DIO
i=1..64 station modules | stations of the third network.

of the third DIO | %SW471: operating status of the station 1 modules.

network %SW472: operating status of the station 2 modules.

%SW534: operating status of the station 64 modules.

Bits 0 to 15 of each of these words are associated with the
modules located in positions 16 to 1 of these stations.

The bit is set to 0 if the module is faulty, and set to 1 if the module
is operating correctly.

Example: %SW520.5 =0

The module located in station 86 slot 11 of the third DIO network
is faulty.

Note: For modules 140 CRA 2¢e eee the value of this bit is not
significant, and is always set to 0.

These words are not available on safety PLCs and DIO network.

218 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
state

%SW535
RIOERRSTAT

RIO error on
start-up

This word stores the start-up error code. This word is always set
to 0 when the system is running; in the event of error, the PLC
does not start up, but generates a stop status code

01:
02:
03:
04:
10:
11:

12

36

I/0 assignment length

Remote I/O link number

Number of stations in the I/0O assignment
I/0O assignment checksum

Length of the station descriptor

I/O station number

: Station autonomy time
13:
14:
15:
16:
17:
18:
20:
21:
22:
23:
25:
26:
28:
30:
31:
32:
33:
34:
35:

ASCII port number

Number of station modules

Station already configured

Port already configured

More than 1024 output points

More than 1024 input points
Module slot address

Module rack address

Number of output bytes

Number of input bytes

First reference number

Second reference number

Internal bits outside the 16 bit range
Unpaired odd output module
Unpaired odd input module
Unpaired odd module reference
Reference 1x after register 3x
Reference of dummy module already used
Module 3x is not a dummy module

: Module 4x is not a dummy module

%SW536
CAERRCNTO
%SW537
CAERRCNT1%SW538
CAERRCNT2

Communication
status on cable A

The words %SW536 to %SW538 are the communication error
words on cable A.

%SW536:

® most significant byte: counts framing errors

® |east significant byte: counts overruns of the DMA
receiver.

%SW537:
® most significant byte: counts receiver errors
® |east significant byte: counts incorrect station receptions.

%SW538:

® %SW538.15 = 1, short frame
%SW538.14 = 1, no end-of-frame
%SW538.3 = 1, CRC error
%SW538.2 = 1, alignment error
%SW538.1 = 1, overrun error
%SW538.13 to 4 and 0 are unused

35006144 07/2011

219

System Objects

Word Function Description Initial
Symbol state
%SW539 Communication | The words %SW539 to %SW541 are the communication error | -
CBERRCNTO status on cable B | words on cable B.
%SW540 ® %SW539:
CBERRCNT1 to ® most significant byte: counts framing errors
%SW541 ® least significant byte: counts overruns of the DMA
CBERRCNT2 receiver.
® %SW540:
® most significant byte: counts receiver errors
® least significant byte: counts incorrect station receptions.
® %SW541:
® %SW541.15 =1, short frame
® %SW541.14 = 1, no end-of-frame
® %SW541.3 =1, CRC error
® %SW541.2 = 1, alignment error
® %SW541.1 =1, overrun error
® %SW541.13 to 4 and 0 are unused
%SW542 Global The words %SW542 to %SW544 are the global communication | -
GLOBERRCNTO communication | error words.
%SW543 status ® %SW542: displays the global communication status.
GLOBERRCNT1 ® %SW542.15 = 1, communication operating correctly
%SW544 ® %SW542.14 = 1, communication on cable A operating
GLOBERRCNT?2 correctly
® %SW542.13 = 1, communication on cable B operating
correctly
® %SW542.11 to 8 = lost communications counter
® %SW542.7 to 0 = retry totalizer counter.
® %SW543: is the global error totalizer counter for cable A:
® most significant byte: counts the errors detected
e |east significant byte: counts "non-responses”.
® %SW544: is the global error totalizer counter for cable B:
® most significant byte: counts the errors detected
® least significant byte: counts "non-responses".
%SW545 to %SW547 | Status of the For the PLCs where station 1 is reserved for local input/outputs, |-
MODUNHEALTH1 local station the status words %SW545 to %SW547 are used in the following
IOERRCNT1 way.
TORETRY1 ® %SW545: status of the local station.
® %SW545.15 = 1, all modules are operating correctly.
® %SW545.14 to 8 = unused, always set to 0.
® %SW545.7 to 0 = number of times the module has
appeared defective; the counter loops back at 255.
® %SW546: this is used as a counter for 16-bit input/output bus
errors.
® %SW547: this is used as a counter for 16-bit input/output bus
repetitions.
220 35006144 07/2011

System Objects

Word Function Description Initial
Symbol state
%SW548 to %SW640 | Status of The words %SW548 to %SW640 are used to describe the status | -
MODUNHEALTH1 decentralized of the decentralized stations. Three status words are used for
IOERRCNT1 stations each station.

TORETRY1 ® %SW548: displays the global communication status for

(i=2..32) station 2:

® %SW548.15 = 1, communication operating correctly

® %SW548.14 = 1, communication on cable A operating
correctly

® %SW548.13 = 1, communication on cable B operating
correctly

® %SW548.11 to 8 = lost communications counter

® %SW548.7 to 0 = retry totalizer counter.

® %SW549: is the global error totalizer counter for cable A
station 2:
® most significant byte: counts the errors detected
e least significant byte: counts "non-responses".

® %SW550: is the global error totalizer counter for cable B
station 2:
® most significant byte: counts the errors detected
® |east significant byte: counts "non-responses".

The words:
%SW551 to 553 are assigned to station 3
%SW554 to 556 are assigned to station 4

%SW638 to 640 are assigned to station 32

%SW641 to %SW702 | Ethernet RIO The words %SW641 to %SW702 are the module health bits: 0
ERIO MOD HEALTH Module Health | %SW641: health bits of the modules on rack 1, drop 1
bit status %SW642: health bits of the modules on rack 2, drop 1
NOTE: Rack 1 is the Main rack., Rack 2 is the Extension rack.

%SW701: health bits of the modules on rack 1, drop 31
%SW?702: health bits of the modules on rack 2, drop 31

Bits 0 to 15 of each of these words are associated with the
modules located in positions 16 to 1 of the 140 CRA 312 00 Drop
module.

The bit is set to 0 if the module has a detected error

Itis set to 1 if the module is operating correctly.

35006144 07/2011 221

System Objects

6.5 Modicon M340-Specific System Words

Description of System Words: %SW142 to %SW145, %SW146 and %SW147,
%SW150 to %SW154, %SW160 to %SW167

Detailed Description

Description of system words $Sw142 to $SW145, $SW146 and $SW147, $SW150 to
$SW154, $SW160 to $SW167:

Word Function Description Initial
Symbol State
%SW142 to %SW145 | Modicon M340 Inhibit the 1/O error raised by the system when a configured |-

device on the CANopen bus is not present.

This inhibition can be managed with 4 system words
%SW142,143,144,145.

These System words implement a bitlist indicating CANopen
node error to inhibit:

® bit 0 of $SW142 concerns device at node address 1.

e bit 1 of $sW142 concerns device at node address 2.

[I

® bit15 of $swW145 concerns device at node address 64.

Bit values :

e |[f the bit is at 0 and device not present, then an error is
raised.

e |[f the bit is at 1 and device not present, then no error is
raised.

NOTE: The default value is 0.

NOTE: This inhibition can be performed on the fly, but in order
for it to be taken into account, the CANopen Master must be
reset (by setting bit 5 of the output word .%QW0.0.2.0 to 1).

NOTE: The system words %SW142 to %SW145 are
available since SV 2.1 of the CPU OS.

%SW146 and Modicon M340 Those 2 system words contain the unique SD card serial
%SW147 number (32bits).If there is not an SD card or an unrecognized
SD card, the 2 system words are set to 0.This information can
be used to protect an application (see Modicon M340 Using
Unity Pro, Processors, Racks, and Power Supply Modules,
Setup Manual) against duplication.

NOTE: The system words %SW146 and %SW147 are
available since SV 2.1 of the CPU OS.

222 35006144 07/2011

System Objects

Word
Symbol

Function

Description

Initial
State

%SW150 to %SW154

CANopen Modicon
M340

Informations concerning the last SDO abort transfert:
® 3SwW150: Low word of the SDO abort code.
%$Sw151: High word of the SDO abort code.
%$SW152: Node number of the SDO transfert.
%$SW153: Index number of the SDO transfert.

°
°
°
® 3SW154: Sub-index number of the SDO transfert.

%SW160 to %SW167
PREMRACKO to
PREMRACK7

Premium and
Modicon M340
Rack 0 to 7 error

Words $swW160 to $SW167 are associated, respectively, to
racks 0 to 7.

Bits 0 to 15 of each of these words are associated with the
modules located in positions 0 to 15 of these racks.

The bit is at 0 if the module is in fault, and at 1 if the module
is operating correctly.

Example: $sw163.5=0 The module located in position 5 on
rack 3 is in fault.

In case of half racks, 2 contiguous half racks make a complete
normal rack, referenced by only one Swi.

35006144 07/2011

223

System Objects

224 35006144 07/2011

Data Description

In This Part

What’s in this Part?

This part describes the different data types that can be used in a project, and how
to implement them.

This part contains the following chapters:

Chapter Chapter Name Page
7 General Overview of Data 227
8 Data Types 235
9 Data Instances 293
10 Data References 307

35006144 07/2011

225

Data Description

226 35006144 07/2011

General Overview of Data

Subject of this Chapter
This chapter provides a general overview of:

e the different data types
e the data instances
e the data references

What’s in this Chapter?
This chapter contains the following topics:

Topic Page
General 228
General Overview of the Data Type Families 229
Overview of Data Instances 231
Overview of the Data References 233
Syntax Rules for Type\lnstance Names 234

35006144 07/2011 227

General Overview of Data

General

Introduction
A data item designates an object which can beinstantiated such as:

e avariable,
e a function block.

Data is defined in three phases. These are:

e the data types phase, which specifies the following:
e its category,
e its format.

e the datainstances phase, which defines its storage location and property, which
is:
e |ocated, or
e unlocated.

e the data references phase, which defines its means of access:
e by immediate value,
e by name,
e by address.

lllustration
The following are the three phases that characterize the data:

Instantiate Reference

Instantiating a data item consists in allocating it a memory slot according to its type.

Referencing a data item consists in defining a reference for it (name, address, etc.)
allowing it to be accessed in the memory.

228 35006144 07/2011

General Overview of Data

General Overview of the Data Type Families

Introduction
A data type is a piece of software information which specifies for a data item:

its structure

its format

a list of its attributes
its behavior

These properties are shared by all instances of the data type.

lllustration
The data type families are filed in different categories (dark gray).

Data types

Function blocks

Variables

Definitions
Data type families and their definitions.

Family Definition

EDT Elementary data types, such as:
Bool

Int

Byte

Word

Dword

etc.

35006144 07/2011 229

General Overview of Data

Family Definition
DDT Derived Data Types, such as:
e tables, which contain elements of the same type:
e Bool tables (EDT tables)
e tables of tables (DDT tables)
e tables of structures (DDT tables)
e structures, which contain elements of the different types:
® Bool structures, Word structures, etc. (EDT structures)
® structures of tables, structures of structures, structures of
tables/structures (DDT structures)
® Bool structures, table structures, etc. (EDT and DDT structures)
® structures concerning input/output data (IODDT structures)
e Structures containing variables that restore the status properties of an
action or transition of a Sequential Function Chart
EFB Elementary Function Blocks written in C language. These comprise:
® input variables
e internal variables
® output variables
® 3 processing algorithm
DFB Derived Function Blocks written in automation languages (Structured Text,

Instruction List, etc.). These comprise:
® input variables

e internal variables

e output variables

® a processing algorithm

230

35006144 07/2011

General Overview of Data

Overview of Data Instances

Introduction

A data instance is an individual functional entity, which has all the characteristics of
the data type to which it belongs.

One or more instances can belong to a data type.
The data instance can have a memory allocation that is:

e unlocated or
e |ocated

lllustration
Memory allocation of instances (dark gray) belonging to the different types.

. Function
Variables
- bIOCkS

35006144 07/2011 231

General Overview of Data

Definitions
Definition of the memory allocations of data instances.

Data instance | Definition
Unlocated The memory slot of the instance is automatically allocated by the system

and can change for each generation of the application.
The instance is located by a name (symbol) chosen by the user.

Located The memory slot of the instance is fixed, predefined and never changes.
The instance is located by a name (symbol) chosen by the user and a
topological address defined by the manufacturer, or by the topological
address of the manufacturer only.

232 35006144 07/2011

General Overview of Data

Overview of the Data References

Introduction

Illlustration

A data reference allows the user to access the instance of this data either by:

e immediate value, true only for data of type EDT

e address settings, true only for data of type EDT

e name (symbol), true for all EDT, DDT, EFB, DFB data types, as well as for SFC
objects

Possible data references according to data type (dark gray).

: Function
Variables
- bIOCkS

35006144 07/2011

233

General Overview of Data

Syntax Rules for Type\instance Names

Introduction

The syntax of names of types and variables can be written up with or without the
extended character set. This option can be selected in the Language extensions
tab of the Tools->Project settings menu.

o With Allow extended character set option selected, the application is compliant
with the IEC standard

e With Allow extended character set option not selected, the user has a certain
degree of flexibility, but the application is not compliant with the IEC standard

The extended character set used for names entered into the application concerns:

o DFB (Derived Function Block) user function blocks or DDT (Derived data type)

e theinternal elements composing a DFB/EFB function block data type or a derived
data type (DDT)

e the data instances

If the "Allow extended ..." Checkbox is Selected

The names entered are strings made up of alphanumeric characters and the
Underscore character.

The rules are as follows:

e the first character of the name is an alphabetic character or an Underscore
e two Underscore characters cannot be used consecutively

If the "Allow extended ..." Checkbox is not Selected

The names entered are strings made up of alphanumeric characters and the
Underscore character.

Additional characters are authorized such as:

e characters corresponding to ASCII codes 192 to 223 (except for code 215)
e characters corresponding to ASCII codes 224 to 255 (except for code 247)

The rules are as follows:

e the first character of the name is an alphanumeric character or an Underscore
e Underscore characters can be used consecutively

234 35006144 07/2011

Data Types

Subject of this Chapter

This chapter describes all the data types that can be used in an application.

What'’s in this Chapter?

This chapter contains the following sections:

Section Topic Page
8.1 Elementary Data Types (EDT) in Binary Format 236
8.2 Elementary Data Types (EDT) in BCD Format 247
8.3 Elementary Data Types (EDT) in Real Format 253
8.4 Elementary Data Types (EDT) in Character String Format 258
8.5 Elementary Data Types (EDT) in Bit String Format 261
8.6 Derived Data Types (DDT/IODDT) 265
8.7 Function Block Data Types (DFB\EFB) 277
8.8 Generic Data Types (GDT) 285
8.9 Data Types Belonging to Sequential Function Charts (SFC) 287
8.10 Compatibility Between Data Types 289

35006144 07/2011

235

Data Types

8.1 Elementary Data Types (EDT) in Binary Format

Subject of this Section
This section describes Binary format data types. These are:

e Boolean types
e Integer types
e Time types

What’s in this Section?
This section contains the following topics:

Topic Page
Overview of Data Types in Binary Format 237
Boolean Types 239
Integer Types 244
The Time Type 246

236 35006144 07/2011

Data Types

Overview of Data Types in Binary Format

Introduction

The data types in Binary format belong to the EDT (Elementary data type) family,
which includes single rather than derived data types (tables, structures, function
blocks).

Reminder Concerning Binary Format

A data item in binary format is made up of one or more bits, where each of these is
represented by one of the base 2 figures (0 or 1).

The scale of the data item depends on the number of bit(s) of which it is made.

Example:
B 1-bit Format
7 Bit position 0

‘u 10 n‘| I 1 0| gbit Format

Most significant Least significant
nibble nibble
A data item can be:

e signed. Here the highest ranking bit is the sign bit:
e 0 indicates a positive value
e 1 indicates a negative value

The range of values is:
{ Bits — 1}
[_2 ’2-_8135—1.-_1]

e unsigned. Here all the bits represent the value
The range of values is:

[0, 2581 1]

Bits=number of bits (format).

35006144 07/2011 237

Data Types

Data Types in Binary Format

List of data types:

Type Designation Format (bits) | Default value

BOOL Boolean 8 0=(False)

EBOOL Boolean with forcing and edge 8 0=(False)
detection

INT Integer 16 0

DINT Double integer 32 0

UINT Unsigned integer 16 0

UDINT Unsigned double integer 32 0

TIME Unsigned double integer 32 T=0s

238

35006144 07/2011

Data Types

Boolean Types

At a Glance
There are two types of Boolean. These are:

e BOOL type, which contains only the value FALSE (=0) or TRUE (=1)
e EBOOL type, which contains the value FALSE (=0) or TRUE (=1) but also
information concerning the management of falling or rising edges and forcing

Principle of the BOOL Type
This type takes up one memory byte, but the value is only stored in one bit.

The default value for this type is FALSE (=0).
It is accessible via an address containing the offset of the corresponding byte:

Address settings:

Memory

Offset

In the case of the word extracted bit, it is accessible via an address containing the
following information:

e an offset of the corresponding byte
e the rank defining its position in the word

Address settings:

Memory

Offset

Rank

35006144 07/2011 239

Data Types

Principle of the EBOOL Type

This type takes up one memory byte which contains:

e the bit for the value (V),

e the history bit (H) for managing rising or falling edges. Each time the object’s
status changes, the value is copied to this bit,

e the bit containing the forcing status (F). Equal to O if the object is not forced and
equal to 1 if the object is forced.

The default value for the bits associated with the EBOOL type is FALSE (=0).
It is accessible via an address specifying the offset of the corresponding byte:
Address settings:

Memory

Offset

Historical Trend Diagram

The trend diagram below shows the main statuses of the value and history bits
associated with the EBOOL type.

The rising edges of the value bit (1, 4) are copied to the history bit in the next PLC
cycle (2, 5). The falling edges of the value bit (2, 7) are copied to the history bit of
the next PLC cycle (3, 8).

Yalue

Y

History bit

\j

240

35006144 07/2011

Data Types

Trend Diagram and Forcing

The trend diagram below shows the main statuses of the value, history and forcing

bits associated with the EBOOL type.

The rising edges of the value bit (1, 4) are copied to the history bit in the next PLC
cycle (2, 5). The falling edges of the value bit (2, 7) are copied to the history bit in

the next PLC cycle (3, 8). Between (4 and 5), the forcing bit equals 1, while the value
and history bits remain at 1.

Stalus change
action

w 8 © 0 8 ©

Value bit

Forcing bit

Y

History bit

PLC Variables Belonging to Boolean Types

List of variables

Variable Type
Internal bit EBOOL
System bit BOOL
Word extracted bit BOOL
%I inputs

Module error bit BOOL
Channel error bit BOOL
Input bit EBOOL
%Q outputs

Output bit EBOOL

Y

35006144 07/2011

241

Compatibility between BOOL and EBOOL

The operations authorized between these two types of variables are:

e value copying
e address copying

Copies between types

BOOL destination

EBOOL destination

BOOL source

Yes

Yes

EBOOL source

Yes

Yes

Compatibility between

the parameters of elementary

functions (EF)

Effective parameter
(external to EF)

Formal BOOL parameter
(internal to EF)

Formal EBOOL parameter
(internal to EF)

BOOL Yes No
EBOOL In->Yes Yes
In-Out ->No
Out ->Yes

Compatibility between

the parameters of block functions (EFB\DFB)

Effective parameter
(external to FB)

Formal BOOL parameter
(internal to FB)

Formal EBOOL parameter
(internal to FB)

BOOL Yes In ->Yes
In-Out ->No
Out -> Yes
EBOOL In ->Yes Yes
In-Out ->No
Out -> Yes

Compatibility between

array variables

ARRAYIi..j) OF BOOL

ARRAY[i..j) OF EBOOL

destination destination
ARRAY]Ji..j) OF BOOL | Yes No
source
ARRAYIi..j) OF No Yes

EBOOL source

35006144 07/2011

Data Types

Compatibility

Compatibility between static variables

BOOL (%MW:xi) direct EBOOL (%Mi) direct
addressing addressing

BOOL (Var:BOOL) Yes No

declared variable

EBOOL (Var:EBOOL) | No Yes

declared variable

EBOOL data types follow the rules below:
e A EBOOL type variable cannot be passed as a BOOL type input/output

parameter.

e EBOOL arrays cannot be passed as ANY type parameters of an FFB.
e BOOL and EBOOL arrays are not compatible for instructing assignment (same
rule as for FFB parameters).

e On Quantum:

e EBOOL type located variables cannot be passed as EBOOL type input/output

parameters.

e EBOOL arrays cannot be passed as parameters of a DFB.

35006144 07/2011

243

Data Types

Integer Types

At a Glance

Integer Type (INT)

Integer types are used to represent a value in different bases. These are:

e base 10 (decimal) by default. Here the value is signed or unsigned depending on

the integer type

e base 2 (binary). Here the value is unsigned and the prefix is 2#
e base 8 (octal). Here the value is unsigned and the prefix is 8#
e base 16 (hexadecimal). Here the value is unsigned and the prefix is 16#

NOTE: In decimal representation, if the chosen type is signed, the value can be
preceded by the + sign or - sign (the + sign is optional).

Signed type with a 16-bit format.

This table shows the range in each base.

Base from... to...
Decimal -32768 32767
Binary 2#1000000000000000 2#0111111111111111
Octal 8#100000 8#077777
Hexadecimal 16#8000 16#7FFF
Double Integer Type (DINT)
Signed type with a 32-bit format.
This table shows the range in each base.
Base from... to...
Decimal -2147483648 2147483647
Binary 2#10000000000000000000000000000000 2#011111111111111111111111111111 11
Octal 8#20000000000 8#17777777777
Hexadecimal | 16#80000000 16#7FFFFFFF

244

35006144 07/2011

Data Types

Unsigned Integer Type (UINT)
Unsigned type with a 16-bit format.
This table shows the range in each base.

Base from... to...

Decimal 0 65535

Binary 2#0 2#1111111111111111
Octal 8#0 8#177777
Hexadecimal 16#0 16#FFFF

Unsigned Double Integer Type (UDINT)
Unsigned type with a 32-bit format.
This table shows the range in each base.

Base from... to...

Decimal 0 4294967295

Binary 2#0 2#11111111111111111111111111111111
Octal 8#0 8#H377TTTTTTT7

Hexadecimal 16#0 16#FFFFFFFF

35006144 07/2011 245

Data Types

The Time Type

At a Glance
The Time type T# or TIME# is represented by an unsigned double integer (UDINT)
(see page 244) type.
It expresses a duration in milliseconds, which approximately represents a maximum
duration of 49 days.
The units of time authorized to represent the value are:

e days (D)
e hours (H)

o minutes (M)

e seconds (S)

e milliseconds (MS)

Entering a Value

This table shows the possible ways of entering the maximum value of the Time type,
according the authorized units of time.

Diagram Comment

T#4294967295MS value in milliseconds

T#4294967S_295MS value in seconds\milliseconds
T#71582M_47S_295MS value in minutes\seconds\milliseconds
T#1193H_2M_47S_295MS value in hours\minutes\seconds\milliseconds
T#49D_17H_2M_47S_295MS value in days\hours\minutes\seconds\milliseconds

246 35006144 07/2011

Data Types

8.2 Elementary Data Types (EDT) in BCD Format

Subject of this section
This section describes BCD format (Binary Coded Decimal) data types. These are:

e Date type
e Time of Day type (TOD)
e Date and Time (DT) type

What’s in this Section?
This section contains the following topics:

Topic Page
Overview of Data Types in BCD Format 248
The Date Type 250
The Time of Day (TOD) Type 251
The Date and Time (DT) Type 252

35006144 07/2011 247

Data Types

Overview of Data Types in BCD Format

Introduction

Reminder Concerning BCD Format

The data types in BCD format belong to the EDT (Elementary data type) family,
which includes single rather than derived data types (tables, structures, function

blocks).

The Binary Coded Decimal (BCD) format is used to represent decimal numbers
between 0 and 9 using a group of four bits (half-byte).

In this format, the four bits used to code the decimal numbers have a range of
unused combinations.

Correspondence table:

Decimal

Binary

0

0000

—_

0001

0010

0011

0100

0101

0110

0111

1000

Ol N/ o] p»~|w| DN

1001

1010 (unused)

1011 (unused)

1100 (unused)

1101 (unused)

1110 (unused)

Pl I I I N

1111 (unused)

Example of coding using a 16 bit format:

Decimal value 2 4 5 0
2450
Binary value 0010 0100 0101 0000

248

35006144 07/2011

Data Types

Example of coding using a 32 bit format:

Data Types in BCD Format

Decimal value 7 8 9 9 3 0 1 6
78993016

Binary value 0111|1000 |1001 |1001 |0011 |0000 |0001 |0O110
Three data types:

Type Designation Scale (bits) Default value

DATE Date 32 D#1990-01-01
TIME_OF_DAY Time of day 32 TOD#00:00:00
DATE_AND_TIME | Date and Time 64 DT#1990-01-01-00:00:00

35006144 07/2011

249

Data Types

The Date Type

At a Glance

Syntax Rules

The Date type in 32 bit format contains the following information:

e the year coded in a 16-bit field (4 most significant half-bytes)
e the month coded in an 8-bit field (2 half bytes)
e the day coded in an 8-bit field (2 least significant half bytes)

Representation in BCD format of the date 2001-09-20:

Year (2001)

Month (09) Day (20)

0010 0000 0000 0001

0000 1001 0010 0000

The Date type is entered as follows: D#<Year>-<Month>-<Day>

This table shows the lower/upper limits in each field.

Field Limits Comment
Year [1990,2099]
Month [01,12] The left 0 is always displayed, but can be omitted at the
time of entry
Day [01,31] For the months 01\03\05\07\08\10\12
[01,30] For the months 04\06\09\11
[01,29] For the month 02 (leap years)
[01,28] For the month 02 (non leap years)
Example:
Entry Comments
D#2001-1-1 The left 0 of the month and the day can be omitted

d#1990-02-02

The prefix can be written in lower case

250

35006144 07/2011

Data Types

The Time of Day (TOD) Type

At a Glance

Syntax Rules

The Time of Day type coded in 32 bit format contains the following information:

e the hour coded in an 8-bit field (2 most significant half-bytes)
e the minutes coded in an 8-bit field (2 half bytes)
e the seconds coded in an 8-bit field (2 half bytes)

NOTE: The 8 least significant bits are unused.

Representation in BCD format of the time of day 13:25:47:

Hour (13)

Minutes (25) Seconds (47) Least significant byte

0001 0011

0010 0101 0100 0111 Unused

The Time of Day type is entered as follows: TOD#<Hour>:<Minutes>:<Seconds>

This table shows

the lower/upper limits in each field.

Field Limits Comment

Hour [00,23] The left 0 is always displayed, but can be omitted at the time of entry
Minute [00,59] The left 0 is always displayed, but can be omitted at the time of entry
Second |[00,59] The left 0 is always displayed, but can be omitted at the time of entry
Example:

Entry Comment

TOD#1:59:0 The left 0 of the hours and seconds can be omitted

tod#23:10:59 The prefix can be written in lower case

Tod#0:0:0 The prefix can be mixed (lower\upper case)

35006144 07/2011

251

Data Types

The Date and Time (DT) Type

At a Glance
The Date and Time type coded in 64 bit format contains the following information:
e The year coded in a 16-bit field (4 most significant half-bytes)
e the month coded in an 8-bit field (2 half bytes)
e the day coded in an 8-bit field (2 half bytes)
e the hour coded in an 8-bit field (2 half bytes)
e the minutes coded in an 8-bit field (2 half bytes)
e the seconds coded in an 8-bit field (2 half bytes)
NOTE: The 8 least significant bits are unused.
Example: Representation in BCD format of the date and Time 2000-09-20:13:25:47.
Year (2000) Month (09) | Day (20) Hour (13) | Minute (25) | Seconds (47) | Least significant
byte
0010 0000 0000 0000 | 0000 1001 | 0010 0000 |0001 0011 |00100101 |01000111 Unused

Syntax Rules

The Date and Time type is entered as follows:

DT#<Year>-<Month>-<Day>-<Hour>:<Minutes>:<Seconds>

This table shows the lower/upper limits in each field.

Field Limits Comment
Year [1990,2099]
Month [01,12] The left 0 is always displayed, but can be omitted during entry
Day [01,31] For the months 01\03\05\07\08\10\12

[01,30] For the months 04\06\09\11

[01,29] For the month 02 (leap years)

[01,28] For the month 02 (non leap years)
Hour [00,23] The left 0 is always displayed, but can be omitted during entry
Minute [00,59] The left 0 is always displayed, but can be omitted during entry
Second [00,59] The left 0 is always displayed, but can be omitted during entry

Example:

Entry Comment
DT#2000-1-10-0:40:0 The left 0 of the month\hour\second can be omitted
dt#1999-12-31-23:59:59 The prefix can be written in lower case
Dt#1990-10-2-12:02:30 The prefix can be mixed (lower\upper case)

252

35006144 07/2011

Data Types

8.3

Elementary Data Types (EDT) in Real Format

Presentation of the Real Data Type

Introduction

The data types in Binary format belong to the EDT (Elementary data type) family,
which includes single rather than derived data types (tables, structures, function
blocks).

Reminder Concerning Real Format

The Real format (floating point in ANSI/IEEE 754 standard) is coded in 32 bit format
which corresponds to the single decimal point floating numbers.

The 32 bits representing the floating point value are organized in three distinct fields.
These are:
e S, the sign bit which can have the value:

e 0, for a positive floating point number

e 1, for a negative floating point number

e e, the exponential coded in an 8 bit field (integer in binary format)
o f, the fixed-point part coded in a 23 bit field (integer in binary format)

Representation:

30 23 22 0

‘ S ‘ Exponential e Fixed point part f ‘

The value of the fixed-point part (Mantissa) is between [0, 1[, and is calculated using
the following formula.

F=22*M

Number Types that Can Be Represented

These are the numbers which are:
e normalized

e denormalized

e of infinite values

e with values +0 and -0

35006144 07/2011

253

Data Types

This table gives the values in the different fields according to number type.

e f S Number type

10, 255] [0, 1] Oor1 normalized

0 [0, 1] near (1.4E45) denormalized DEN
255 0 0 + infinity (INF)
255 0 1 - infinity (-INF)
255 10,1[and bit22=0 |Oor1 SNAN

255]0,1[and bit22=1 |Oor1 ONAN

0 0 0 +0

0 0 1 -0

NOTE:

Standard IEC 559 defines two classes of NAN (not a number): QNAN and SNAN.
® QNAN: is a NAN whose bit 22 is set to 1
e SNAN: is a NAN whose bit 22 is set to 0

They behave as follows:

e ONAN do not trigger errors when they appear in operands of a function or an
expression.

e SNAN trigger an error when they appear in operands of a function or an arithmetic
expression (See %SW17 (see page 175) and %S18 (see page 154)).

This table gives the calculation formula of the value of the floating-point number:

Floating-point number Value
Normalized . -
(71) le_é— 27) % (1 +f)
Denormalized (DEN)
5 .-126
(-1 x2S

NOTE: A real number between -1.1754944e-38 and 1.1754944e-38 is a
denormalized DEN. When an operand is a DEN, the result is not guaranteed. The bits
%SW17 (see page 175) and %S18 (see page 154) are raised except for the
Modicon M340. The Modicon M340 PLCs are able to use the denormalized
operands but, due to the format, with a loss of precision. Underflow is signaled
depending on the operation only when the result is O (total underflow) or when the
result is a denormalized (gradual underflow, with loss of precision).

254 35006144 07/2011

Data Types

The Real Type

Presentation:
Type Scale (bits) Default value
REAL 32 0.0

Range of values (grayed out parts):

i E—+ L

-3.4028235e+38 -1.1754944e-38 0.0 1.1754944e-38 3.40282356+38

When a calculation result is:

o between -1.1754944e-38 and 1.1754944e-38, it is a DEN

less than -3.4028234e+38, the symbol -INF (for -infinite) is displayed
greater than +3.4028234e+38, the symbol INF (for +infinite) is displayed
undefined (square root of a negative number), the symbol NAN is displayed

Examples of inaccuracy on normalized value
7.986 will be coded by the application as:

E=129 M=8359248

0 1000001 11111111000110101010000

Using the formula:

10— 127 / 507 \
1) ><2(L,n 12 jX[14 83§,i;48]
\ = J

= (7.986000061035145625)

The number 7.986 should have a significant of:

(1986 _

2

)2

/

8359247,872)
As the significant is expressed as an integer, it can only be coded as 8359248
(rounded to the nearest limit).

No number can be coded between the significant 8359247 and 8359248, or
between the real number 7.985999584197998046875 and 7.98600006103515625

The weight of the less significant bit (gap) is, in absolute precision:

,(120-127) n
= 277 = 0,000000476837158203125

35006144 07/2011 255

Data Types

The gap becomes very important for big values as shown below:

Value [M=8359248
ange=2 =Valie=?2
100 000 000 Between 226 and 227 6
E = =8
2127 5127 RERE .
= T 2 = 2,02x10°

NOTE: The gap corresponds to the weight of the less significant bit.

In order to get an expected resolution, it is necessary to define the maximum range
for the calculation according the following formula:

e - ‘[-H(p x 2")‘
' Ln(2)
p being the accuracy and e the exponent (e = E-127)
For instance, if the accuracy needs to be = 0.001, the fixed-point part will be:

F= ()" %2 x 1+ 2)2 21 16384
with:
‘LH(H 001 x *B)‘
13 = L0001 X2)]
ILn(2)

Beyond of this limit F, the accuracy will be lost.

Typical case: Counters

Floating must be used carefully, especially when it needs to add a small number to
itself.

In case of small increments, the counter won’t count properly, giving wrong results
and stopping to rise when the increment will be lower than the less significant bit of
the counter.

To get correct values, it is recommended to count on an double integer (UDINT) and
multiply the result by the increment.

Example:

e Increment a value by 0.001 from 33000 to 1000000,

e Count from 33000000 to 1000000000 (value times 1000) with 1 as increment,
e Get the result multiplying the value by 0.001.

256

35006144 07/2011

Data Types

The accuracy F minimum per range will be:

From...to... F (minimum)
3300...65536 0.004
65536...131072 0.008
524288...1000000 0.063

This counter can raise up to 4294967295 x 0.001 = 4294967.5 with a minimum

accuracy of 0.5

NOTE: The real value here are the binary value encoded. It may differs from the

display in an operator screen as rounding is done (4.294968e+006)

35006144 07/2011

257

Data Types

8.4

Elementary Data Types (EDT) in Character String
Format

Overview of Data Types in Character String Format

Introduction

Data types in character string format belong to the EDT (Elementary data type)
family, which includes single rather than derived data types (tables, structures,
function blocks).

The Character String Type

Syntax Rules

The character string format is used to represent a string of ASCII characters, with
each character being coded in an 8 bit format.

The characteristics of character string types are as follows:

e 16 characters by default in a string (excluding end of string characters)

e a string is composed of ASCII characters between 16#20 and 16#FF
(hexadecimal representation)

e in an empty string, the end of string character (code ASCII "ZERQ") is the first
character of the string

e the maximum size of a string is 65535 characters

The size of the character string can be optimized during the definition of the type
using the STRING[<size>] command, <size> being an unsigned integer UINT
capable of defining a string of between 1 and 65535 ASCII characters.

NOTE: The ASCII characters 0-127 are common to all languages, but the
characters 128-255 are language dependent. Be careful is the language of the Unity
Pro is not the same as the OS language. If the two languages are not the same,
CHAR MODE communication can be disturbed and sending characters greater than
127 cannot be guaranteed to be correct. In particular, if the “Stop on Reception”
character is greater than 127, it is not taken into account.

The entry is preceded by and ends with the quote character " (ASCII code 16#27).

The $ (dollar) sign is a special character, followed by certain letters which indicate:
$L or $l, go to the next line (line feed)

$N or $n, go to the start of the next line (new line)

$P or $p, go to the next page

$R or $r, carriage return

$T or $t tabulation (Tab)

258

35006144 07/2011

Data Types

Examples

e $3, represents the character $ in a string
e §', represents the quote character in a string

The user can use the syntax $nn to display, in a STRING variable, caracters which
must not be printed. It can be a carriage return (ASCII code 16#0D) for instance.

Entry examples:

Type Entry Contents of the string
* represents the end of string character
* represents empty bytes
STRING ‘ABCD’ ABCDs************ (16 characters)
STRING[4] ‘john’ johne
STRING[10] ‘It$’s john’ It's johne*
STRINGI5] 7 L
STRINGI[5] '$” ok
STRING[5] ‘the number’ the noe
STRING[13] '0123456789’ 0123456789~
STRINGI[5] ‘SR$L’ <cr><|f>e***
STRING[5] '$$1.00° $1.00

STRING Type Variable Declaration

A STRING type variable can be declared in two different ways:
e STRING and
e STRING[<Number of elements>]

Behavior differs depending on usage:

Type Variable FFB input parameter EF output parameter FB output
declaration parameter
STRING Fixed size: The size is equal to the actual | The size is equal to the actual | Fixed size of
16 characters | size of the input parameter. size of the input parameter. 16 characters
STRING[<n>] | Fixed size: The size is equal to the actual | The EF writes a maximum of | The FB writes a
n characters size of the input parameter n characters. maximum of
limited to n characters. n characters.

35006144 07/2011

259

Data Types

Strings and the ANY Pin

When you use a STRING type variable as an ANY type parameter, it is highly
recommended to check that the size of the variable is less than the maximum
declared size.

Example:

Use of STRING on the SEL function (Selector).
Stringl: STRING[8]

String2: STRING[4]

String3: STRING[4]

Stringl: "AAAAAAAA' ;

String3:= 'CC’;

Scenario 1:

String2:= 'BBBB’;

(* the size of the string is equal to the maximum declared size
*)

Stringl:= SEL(FALSE, String2, String3);

(* the result will be: ’BBBBAAAA’ ¥*)

Scenario 2:

String2:= ’'BBB’;

(* the size of the string is less than the maximum declared
size *)

Stringl:= SEL(FALSE, String2, String3);
(* the result will be: "BBB’ *)

260

35006144 07/2011

Data Types

8.5 Elementary Data Types (EDT) in Bit String Format

Subiject of this Section

This section describes data types in bit string format. These are:

e Byte type
e Word type
e Dword type

What’s in this Section?

This section contains the following topics:

Topic Page
Overview of Data Types in Bit String Format 262
Bit String Types 263

35006144 07/2011 261

Data Types

Overview of Data Types in Bit String Format

Introduction

Data types in bit string format belong to the EDT (Elementary data type) family,
which includes single rather than derived data types (tables, structure, function
blocks).

Reminder Concerning Bit String Format

The particularity of this format is that all of its component bits do not represent a
numerical value, but a combination of separate bits.

The data belonging to types of this format can be represented in three bases. These
are:

e hexadecimal (16#)
e octal (8#)
e binary (2#)

Data Types in Bit String Format
Three data types:

Type Scale Default value
(bits)

BYTE 8

WORD 16

DWORD |32

262 35006144 07/2011

Data Types

Bit String Types

The Byte Type

The Word Type

The Byte type is coded in 8 bit format.
This table shows the lower/upper limits of the bases which can be used.

Base Lower limit Upper limit
Hexadecimal 16#0 16#FF
Octal 8#0 8#377
Binary 2#0 2#11111111

Representation examples:

Data content

Representation in one of the bases

00001000 16#8
00110011 8#63
00110011 2#110011

The Word type is coded in 16 bit format.
This table shows the lower/upper limits of the bases which can be used.

Base Lower limit Upper limit
Hexadecimal 16#0 16#FFFF

Octal 8#0 8#177777

Binary 2#0 2#1111111111111111

Representation examples:

Data content

Representation in one of the bases

0000000011010011 16#D3
1010101010101010 8#125252
0000000011010011 2#11010011

35006144 07/2011

263

Data Types

the Dword Type

The Dword type is coded in 32 bit format.

This table shows the lower/upper limits of the bases which can be used.

Base Lower limit Upper limit

Hexadecimal 16#0 16#FFFFFFFF

Octal 8#0 8#37777777777

Binary 2#0 2#11111111111111111111111111111111

Representation examples:

Data content

Representation in one of the bases

00000000000010101101110011011110

16#ADCDE

00000000000000010000000000000000

8#200000

00000000000010101011110011011110

2#10101011110011011110

264

35006144 07/2011

Data Types

8.6 Derived Data Types (DDT/IODDT)

Subiject of this Section
This section presents Derived Data Types. These are:

e tables (DDT)

e structures
e structures concerning input/output data (IODDT)
e structures concerning other data (DDT)

What’s in this Section?
This section contains the following topics:

Topic Page
Arrays 266
Structures 269
Overview of the Derived Data Type family (DDT) 270
DDT: Mapping Rules 272
Overview of Input/Output Derived Data Types (IODDT) 275

35006144 07/2011 265

Data Types

Arrays

What Is an Array?

It is a data item that contains a set of data of the same type, such as:
e clementary data (EDT),

for example:

e a group of BOOL words,

e a group of UINT integer words,

e etc.

e derived data (DDT),
for example:
e a group of WORD tables,
e a group of structures,
e etic.

Characteristics

An array is characterized by two parameters:
e a parameter which defines its organization (array dimension(s)),
e a parameter that defines the type of data it contains.

NOTE: The most complex organization is the array with six dimensions.
The syntax comprising these two parameters is:

ARRAY[<dimension{s) of array>] OF <data type>
»

<dimension 1>,<dimension 2>,<dimension n>

.

<minimum limit>.. <maximum limit>

<minimum limit> strictly less than <maximum limit>

266 35006144 07/2011

Data Types

Defining and Instancing an Array

Examples

Definition of an array type:

X: ARRAY([1..10] OF BOOL

Instancing an array

Tab 1: X
Tab 2: ARRAY[1..10] OF BOOL

The instances Tab_1 and Tab_2 are of the same type and the same dimension, the
only difference being that during instancing:

e the Tab_1 type takes the name X,

e the Tab_2 type must be defined (unnamed table).

NOTE: It is beneficial to name the type, as any modification that has to be made will
only be done so once, otherwise there will be as many modifications as there are
instances.

This table presents the instances of arrays of different dimensions:

Entry Comments

Tab_1: ARRAY[1..2] OF BOOL 1 dimensional array with 2 Boolean words

Tab_2: ARRAY[-10..20] OF WORD 1 dimensional array with 31 WORD type
structures (structure defined by the user)

Tab_3: ARRAY[1..10, 1..20] OF INT 2 dimensional arrays with 10x20 integers

Tab_4: ARRAYI[0..2, -1..1, 201..300, 0..1] OF | 4 dimensional arrays with 3x3x100x2 reals

REAL

NOTE: Many functions (READ_VAR, WRITE_VAR for example) don’t recognize the
index of an array of words starting by a number different from 0. If you use such an
index the functions will look at the number of words in the array, but not at the
starting index set in the definition of the array.

A WARNING

UNEXPECTED APPLICATION BEHAVIOR - INVALID ARRAY INDEX

When applying functions on variables of array type, check that the functions are
compatible with the arrays starting index value when this value is greater than 0.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

35006144 07/2011

267

Data Types

Access to a data item in array Tab_1 and Tab_3:

Tab_1[2]
;To access second element

Tab 3[4][18]
;To access eighteenth element of the fourth sub-array

Inter-Arrays Assignment Rules
There are the 4 following arrays:

Tab 1:ARRAY[L..l0] OF INT
Tab 2:ARRAY[1..10] OF INT
Tab 3:ARRAY[L..ll] OF INT
Tab 4:ARRAY[101..110] OF TINT

Tab 1:=Tab 2; Assignment authorized
Tab 1:=Tab 3; Assignment refused (non-IEC compliant)
Tab 1:=Tab 4; Assignment refused (non-IEC compliant)

268 35006144 07/2011

Data Types

Structures

What is a Structure?
It is a data item containing a set of data of a different type, such as:

e a group of BOOL, WORD, UNINT, etc. , (EDT structure),
e a group of tables (DDT structure),
e a group of REAL, DWORD, tables, etc., (EDT and DDT structures).

NOTE: You can create nested structures (nested DDTs) over 8 levels. Recurring
structures (DDT) are not allowed.

Characteristics
A structure is composed of data which are each characterized by:

e atype,
e aname, which enables it to be identified,
e a comment (optional) describing its role.

Definition of a structure type:

IDENT
Surnams: STRING[12]
First name: STRING[16]
Age: UINT

;The IDENT type structure contains a UINT type data item and two
STRING type data

Definition of two data instances of an IDENT type structure:

or1_1: IDENT
n_2: IDENT

;The instances Person 1 and Person 2 are of IDENT Structure type

Access to the Data of a Structure
Access to the data of the Person_1 IDENT-type instance:

Person_1.Name ;To access name of Person_1

Person_1.Age ;To access age of Person_ 1

35006144 07/2011 269

Data Types

Overview of the Derived Data Type family (DDT)

Introduction

The DDT (Derived Data Type) family includes "derived" data types such as:

e tables
e structures

Illustration:

Tables Structures

Characteristics
A data item belonging to the DDT family is made up of:

e the type name (see page 234) (32 characters maximum) defined by the user (not
obligatory for tables but recommended) (see page 267)

e the type (structure or table)

e an optional comment (of a maximum of 1024 characters). Authorized characters
correspond to the ASCII codes 32 to 255

e the description (in the case of a structure) of these elements
e the element name (see page 234) (32 characters maximum)

o the element type

e an optional comment (1024 characters maximum) describing its role. The
authorized characters correspond to the ASCII codes 32 to 255

270 35006144 07/2011

Data Types

Examples

e information such as:

e type version number

e date of the last modification of the code or of the internal variables or of the

interface variables

e an optional descriptive file (32767 characters) describing the block function

and its different modifications

Definition of types

COORD
X INT
Yo INT

JCOORD type structure

SEGMENT

Origin: CCORD

Destination: COORD
; SEGMENT type structure containing 2 COORD
structures

OUTLINE: ARRAY[0..99] OF SEGMENT
JOUTLINE type table containing 100 SEGMENT
structures

DRAW
Color: INT
Anchor: COORD
Pattern: ARRAY[(0..15,0..15] OF WORD
Contour: QUTLINE

Access to the data of a DRAW-type structure instance

Cartoon: DRAW
;Instance of DRAW type structure

Cartoon.Pattern[15, 15]

NOTE: The total size of a table or of a structure does not exceed 64 Kbytes.

type

type

;Access to last data item in the Pattern table of the

Cartoon structure

Cartoon.Contour[0].0rigin.x

;Access to data item X of the COORD structure belonging to

the first SEGMENT structure of the Contour table.

35006144 07/2011

271

Data Types

DDT: Mapping Rules

At a Glance

The DDTs are stored in the PLC’s memory in the order in which its elements are
declared.

However, the following rules apply.

Principle for Premium and Quantum

The storage principle for Premium and Quantum is as follows:
e the elements are stored in the order in which they are declared in the structure,
e the basic element is the byte (alignment of data on the memory bytes),
e each element has an alignment rule:
e the BOOL and BYTE types are indiscriminately aligned on the odd or even
bytes,
e all the other elementary types are aligned on the even bytes,
e the structures and tables are aligned according to the alignment rule for the
BOOL and BYTE types if they only contain BOOL and BYTE elements, otherwise
they are aligned on the memory’s even bytes.

A WARNING

RISK OF INCOMPATIBILITY AFTER CONCEPT CONVERSION

With the Concept programming application, the data structures do not handle any
shift in offsets (each element is set one after the other in the memory, regardless
of its type). Consequently, we recommend that you check everything, in particular
the consistency of the data when using DDTs located on the "State RAM" (risk of
shifts) or functions for communication with other devices (transfers with a different
size from those programmed in Concept).

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

272 35006144 07/2011

Data Types

Principle for Modicon M340

Examples

The storage principle for Modicon M340 PLCs is as follows:
e clements are stored in the order in which they are declared in the structure,
e the basic element is the byte,
e one alignment rule and function of the element:
e the BOOL and BYTE types are aligned on either even or uneven bytes,
e the INT, WORD and UINT types are aligned on even bytes,
e the DINT, UDINT, REAL, TIME, DATE, TOD, DT and DWORD are aligned on
double words,
e structures and tables are aligned according to the rules of their elements.

A WARNING

BAD EXCHANGES BETWEEN A MODICON M340 AND A PREMIUM OR
QUANTUM.

Check if the structure of the exchanged data have the same alignments in the two
projects.

Otherwise, the data will not be exchanged properly.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NOTE: It is possible that the alignment of data are not the same when the project is
transferred from the simulator of Unity Pro to a M340 PLC. So check the structure
of the data of the project.

NOTE: Unity Pro (see Unity Pro, Operating Modes) indicates where the alignment
seems to be different. Check the corresponding instances in the data editor. See the
page of Project settings (see Unity Pro, Operating Modes) to know how enable this
option.

The table below gives some examples of data structures. In the following examples,
structure type DDTs are addressed to $Mwi. The word’s 18t byte corresponds to the
least significant 8 bits and the word’s 2ond byte corresponds to the most significant
8 bits.

For all the following structures, the first variable is mapped to the address $MwW100:

First Memory Address Description of the structure
Modicon M340 Premium Para_PWM1

sMW100 (15t byte) $MW100 (15! byte) t_period: TIME

sM102 (1% byte) sM102 (15! byte) t_min: TIME

35006144 07/2011

273

Data Types

First Memory Address

Description of the structure

sMW104 (15t byte)

sMw104 (15 byte)

in_max: REAL

Mode_TOTALIZER

sMW103 (2" byte)

sMW103 (2" byte)

Reserved for the alignment

$MW100 (15! byte) sMW100 (15 byte) hold: BOOL
sMW100 (2™ byte) sMW100 (2™ byte) rst: BOOL
Info_TOTALIZER
$MW100 (15t byte) sM100 (15 byte) outc: REAL
sMW102 (15t byte) sMw102 (15! byte) cter: UINT
sMW103 (15t byte) sMw103 (15! byte) done: BOOL
(

The table below gives two examples of data structures with arrays:

First Memory Address Description of the structure
Modicon M340 Premium EHC105_Out
MW100 (15t byte) sMW100 (15! byte) Quit: BYTE

SMW100 (2" byte)

sMW100 (2™ byte)

Control: ARRAY [1..5] OF BYTE

sMw104 (15t byte)

sMw103 (15t byte)

Final: ARRAY [1..5] OF DINT

Cc

PCfg_ex

sMW100 (15 byte)

sMw100 (15! byte)

Profile_type: INT

sM101 (15t byte)

sMw101 (15t byte)

Interp_type: INT

sMw102 (15t byte)

Nb_of_coords: INT

$MW103 (15t byte)

2Mw103 (15! byte)

Nb_of_points: INT

sMW104 (15t byte)

sMw104 (15t byte)

reserved: ARRAY [0..4] OF BYTE

(

(
$MW102 (15t byte)
(

(

(

<MW106 (2" byte)

sMW106 (2™ byte)

Reserved for the alignment of
variable Master_offset on even
bytes

sMW108 (15t byte)

sMw107 (15! byte)

Master_offset: DINT

sMw110 (15! byte)

sMw109 (15t byte)

Follower_offset: INT

$MW111 (entire word)

Reserved for the alignment

274

35006144 07/2011

Data Types

Overview of Input/Output Derived Data Types (IODDT)

At a Glance

The IODDTs (Input Output Derived Data Types) are predefined by the
manufacturer, and contain language objects of the EDT family belonging to the
channel of an application-specific module.

Illustration:

< I0DDT

%

(structures

§

The IODDT types are structures whose size (the number of elements of which they

are composed) depends on the channel or the input\output module that they
represent.

A given inpuf\output module can have more than one IODDT.
The difference with a conventional structure is that:

e the IODDT structure is predefined by the manufacturer
e The elements comprising the IODDT structure do not have a contiguous memory
allocation, but rather a specific address in the module

35006144 07/2011 275

Data Types

Examples
IODDT structure for an input\output channel of an analog module

ANA_ TN GEN PANA TN GEN type structure
Value:INT ;Input value
Err: BCOL ;Channel error

Access to the data of an instance of the ANA_IN_GEN type:

Cistern Level: ANA TN GEN
; ANR_ TN _GEN type instance which corresponds for exampls

to a tank level senscr

Cistern Level.Value ;Reading of the channel input value
Cistern Level.Err ;Reading of channel error bit

Access by direct addressing:
For channel O of module 2 of rack 0 we obtain:
Cistern Level corresponds te FCHO.Z.0

Cistern Level.Value corresponds to %IW0.Z2.0.0
Cistern Level Err corresponds to $I0.Z2.0.ERR

276

35006144 07/2011

Data Types

8.7 Function Block Data Types (DFB\EFB)

Subiject of this Section
This section describes function block data types. These are:

e user function blocks (DFB)
e elementary function blocks (EFB)

What’s in this Section?
This section contains the following topics:

Topic Page
Overview of Function Block Data Type Families 278
Characteristics of Function Block Data Types (EFB\DFB) 280
Characteristics of Elements Belonging to Function Blocks 282

35006144 07/2011

277

Data Types

Overview of Function Block Data Type Families

Introduction
Function block data type families are:

e the Elementary Function Block (EFB) (see page 229) type family
e the User function block (DFB) (see page 229) type family

Function blocks

s i
EFB DFB

Illustration:

Function blocks are entities containing:

e input and output variables acting as an interface with the application

® a processing algorithm that operates input variables and completes the output
variables

e private and public internal variables operated by the processing algorithm

lllustration
Function block:

Algorithm

A A
P Input Qutput p
p p
| |
i Input Output i
c c
a Input/ a
t Output t
i i
0 0
n n

Internal L

variables

278 35006144 07/2011

Data Types

User Function Block (DFB)

The user function block types (Derived Function Blocks) are developed by the user
using one or more languages (according to the number of sections). These
languages are:

Ladder language

Structured Text language
Instruction List language

e Functional block language FBD

A DFB type can have one or more instances where each instance is referenced by
a name (symbol) and possesses DFB data types.

Elementary Function Block (EFB)
Elementary Function Blocks (EFBs) are provided by the manufacturer and are
programmed in C language.
The user can create his own EFB for which he will need an optional software tool
"SDKC".

An EFB type can have one or more instances where each instance is referenced by
a name (symbol) and possesses EFB type data.

35006144 07/2011 279

Data Types

Characteristics of Function Block Data Types (EFB\DFB)

Type Definition

Characteristics

The type of an EFB or DFB function block is defined by:

the type name (see page 234), defined by the user for the DFBs,

an optional comment. The authorized characters correspond to the ASCII codes

32 to 255,

the application interface data:

e the inputs, not accessible in read\write mode from the application, but read by
the function block code,

e the inputs\outputs, not accessible in read\write mode from the application, but
read and written by the function block code,

e the outputs, accessible in read only from the application and read and written
by the function block code.

the internal data:

e public internal data, accessible in read\write mode from the application, and
read and written by the function block code,

e private internal data, not accessible from the application, but read and written
by the function block code.

the code:

e for DFBs, this is written by the user in PLC language (Structured Text,
Instruction List, Ladder language, function block language), and is structured
in a single section if the IEC option is active, or may be structured in several
sections if this option is inactive

e for EFBs, this is written in C language.

information such as:

e type version number,

e date of the last modification of the code, or of the internal variables, or of the
interface variables.

e an optional descriptive file (32767 characters), describing the block function
and its different modifications.

This table gives the characteristics of the elements that make up a type:

Element EFB DFB

Name 32 characters 32 characters
Comment 1024 characters 1024 characters
Input Data 32 maximum 32 maximum
Input/Output data 32 maximum 32 maximum
Output data 32 maximum 32 maximum

280

35006144 07/2011

Data Types

Element

EFB

DFB

Number of interfaces
(Inputs+Qutputs+Inputs/Outputs)

32 maximum (2)

32 maximum (2)

Public data No limits (1) No limits (1)
Private data No limits (1) No limits (1)
Programming language C language Language:

® Structured Text,
® |Instruction List,
e Ladder language,
e function block.

Section

A section is defined by:

® aname (maximum 32
characters),

e a validation condition,

® acomment (maximum 256
characters),

® a protection:
e without,
® read only,
e read\write mode.

A section cannot access declared
variables in the application, except
for:

® system double words %SDi,

e system words %SWi,

e system bits %Si.

(1): the only limit is the size of the PLC’s memory.

(2): the EN input and ENO output are not taken into account.

35006144 07/2011

281

Data Types

Characteristics of Elements Belonging to Function Blocks

What is an element?

Each element (interface data or internal data) is defined by:
e aname (see page 234) (maximum 32 characters), defined by the user,

e atype,
which can belong to the following families:

e Elementary Data Types (EDT),
e Derived Data Type (DDT),

e Function Block data types (EFB\DFB).

e an optional comment (maximum 1024 characters). The authorized characters

correspond to the ASCII codes 32 to 255,

e an initial value,
e an access right from the application program (sections of the application or
section belonging to the DFBs see "Definition of the function block type (interface
and internal variables)" (see page 280),
e an access right from communication requests,
e a public variables backup flag.

Authorized Data Types for an Element Belonging to a DFB

The authorized data types are:

Element of the DFB | EDT types | DDT types ANY... Function
block types
IODDT | Unnamed | ANY_ARRAY | other
tables

Input data Yes No Yes Yes Yes Yes (2) No
Input/output data Yes (1) Yes Yes Yes Yes Yes (2) No

Output data Yes No Yes No Yes Yes (2) (3) |No

Public data Yes No Yes No Yes No No

Private data Yes No Yes No Yes No Yes

(1): not authorized for the EBOOL type static data used on Quantum PLCs

(2): not authorized for BOOL and EBOOL type data

(3): must be completed during the execution of the DFB, and not usable outside the

DFB

282

35006144 07/2011

Data Types

Authorized Data Types for an Element Belonging to an EFB
The authorized data types are:

Element of the EFB | EDT DDT types ANY... Function
types block types
IODDT | Unnamed ANY_ARRAY | other
tables

Input data Yes No No Yes Yes Yes (1) No
Input/output data Yes Yes No Yes Yes Yes (1) No

Output data Yes No No No Yes Yes (1) (2) |No

Public data Yes No No No Yes No No

Private data Yes No No No Yes No Yes

(1): not authorized for BOOL and EBOOL type data

(2): must be completed during the execution of the EFB, and not usable outside the
EFB

Initial Values for an Element Belonging to a DFB

This table specifies whether the initial values can be entered from the DFB type
definition or the DFB instance:

Element of the DFB From the DFB type From the DFB instance
Input data (no ANY... type) Yes Yes

Input data (of ANY... type) No No

Input/output data No No

Output data (no ANY... type) Yes Yes

Output data (of ANY... type) No No

Public data Yes Yes

Private data Yes No

Initial Values for an Element Belonging to an EFB

This table specifies whether the initial values can be entered from the EFB type
definition or the EFB instance:

Element of the EFB From the EFB type From the DFB instance
Input data (no ANY... type Yes Yes

See generic data types

(see page 285))

Input data (of ANY... type) No No

Input/output data No No

35006144 07/2011 283

Data Types

Element of the EFB From the EFB type From the DFB instance
Output data (no ANY... type) | Yes Yes

Output data (of ANY... type) |No No

Public data Yes Yes

Private data Yes No

A WARNING

UNEXPECTED APPLICATION BEHAVIOR - INVALID ARRAY INDEX

When using EFBs and DFBs on variables of array type, only use arrays with
starting index=0.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

284 35006144 07/2011

Data Types

8.8 Generic Data Types (GDT)

Overview of Generic Data Types

At a Glance

Generic Data Types are conventional groups of data types (EDT, DDT) specifically
intended to determine compatibility among these conventional groups of data types.

These groups are identified by the prefix ‘ANY_ARRAY’, but these prefixes can
under no circumstances be used to instance the data.

Their field of use concerns function block (EFB\DFB) and elementary function (EF)
data type families, in order to define which data types are compatible with their
interfaces for the following :

e inputs
e input/outputs
e outputs

Available Generic Data Types
The generic data types available in Unity Pro are the following types:

ANY_ARRAY_WORD
ANY_ARRAY_UINT
ANY_ARRAY_UDINT
ANY_ARRAY_TOD
ANY_ARRAY_TIME
ANY_ARRAY_STRING
ANY_ARRAY_REAL
ANY_ARRAY_INT
ANY_ARRAY_EBOOL
ANY_ARRAY_DWORD
ANY_ARRAY_DT
ANY_ARRAY_DINT
ANY_ARRAY_DATE
ANY_ARRAY_BYTE
ANY_ARRAY_BOOL

35006144 07/2011 285

Data Types

Example
This gives us the following DFB:

FBI 1
Parts_Counter
%l04.1 — Part_OK
Pre Val || Preset

Nb_parts_attained | “%M2

The Preset input parameter may be defined of GDT-type.

NOTE: The authorized objects for the various parameters are defined in this table
(see page 561).

286 35006144 07/2011

Data Types

8.9 Data Types Belonging to Sequential Function
Charts (SFC)

Overview of the Data Types of the Sequential Function Chart Family

Introduction

The Sequential Function Chart (SFC) data type family includes derived data types,
such as the structures that restore the properties and status of the chart and its
component actions.

Each step is represented by two structures. These are:

e the SFCSTEP_STATE structure
e the SFCSTEP_TIMES structure

Illustration:
SFC
p LN

»

NOTE: The two structure types SFCSTEP_STATE and SFCSTEP_TIMES are also
linked to each Macro step of the sequential function chart.

Definition of the SFCSTEP_STATE Structure Type

This structure includes all types of data linked to the status of the step or of the
Macro step.

These data types are:
e x: BOOL elementary data type (EDT) containing the value TRUE when the step
is active,

e t: TIME elementary data type (EDT) containing the activity time of the step. When
deactivated, the step value is maintained until the next activation,

35006144 07/2011 287

Data Types

o tminErr: BOOL elementary data type (EDT) containing the value TRUE if the
activity time of the step is less than the minimum programmed activity time,

e tmaxErr: BOOL elementary data type (EDT) containing the value TRUE if the
activity time of the step is greater than the maximum programmed activity time,

These data types are accessible from the application in read only mode.

Definition of the SFCSTEP_TIMES Structure Type

This structure includes all types of data linked to the definition of the runtime
parameters of the step or of the Macro step.

These data types are:

e delay: TIME elementary data type (EDT), defining the polling delay time of the
transition situated downstream from the active step,

e tmin: TIME elementary data type (EDT) containing the minimum value during
which the step must at least be executed. If this value is not respected the data
tmin.Err switches to the value TRUE,

o tmax: TIME elementary data type (EDT) containing the maximum value during
which the step must at least be executed. If this value is not respected the data
tmax.Err switches to the value TRUE.

These data types are only accessible from the SFC editor.

Data Access Syntax of the Structure SFCSTEP_STATE

The instance names of this structure correspond to the names of the steps or macro
steps of the sequential function chart

Syntax Comment
Name_Step.x Used to find out the status of the step (active\inactive)
Name_Step.t Used to find out the current or total activation time for the step

Name_Step.tminErr | Used to find out if the minimum activation time of the step is less than
the time programmed in Name_Step.tmin

Name_Step.tmaxErr | Used to find out if the maximum activation time of the step is greater
than the time programmed in Name_Step.tmax

288 35006144 07/2011

Data Types

8.10 Compatibility Between Data Types

Compatibility Between Data Types

Introduction

The following is a presentation of the different rules of compatibility between types
within each of the following families:

the Elementary Data Type (EDT) family
the Derived Data Type (DDT) family
the Generic Data Type (GDT) family

The Elementary Data Type (EDT) Family
The Elementary Data Type (EDT) family contains the following sub-families:

the binary format data type sub-family

the BCD format data type sub-family

the Real format data type sub-family

the character string format data type sub-family
the bit string format data type sub-family

There is no compatibility whatsoever between two data types, even if they belong to
the same sub-family.

Derived Data Type (DDT) Family
The Derived Data Type (DDT) family contains the following sub-families:

the table type sub-family

the structure type sub-family:

e structures concerning input/output data (IODDT)
e structures concerning other data

35006144 07/2011

289

Data Types

Rules concerning the structures:
Two structures are compatible if their elements are:

e of the same name
e of the same type
e organized in the same order

There are four types of structure:

ELEMENT 1

My Element: INT

Other Element: BOOL
;ELEMENT 1 type structure

ELEMENT 2

My Element: INT

Other Element: BOOL
FELEMENT 2 type structure

ELEMENT 3

Element: INT

Other Element: BOOL
;ELEMENT 3 type structure

ELEMENT 4

Other Element: BOOL

My Element: INT
ELEMENT 4 type structure

Compatibility between the structure types

Types ELEMENT_1 ELEMENT_2 ELEMENT_3 ELEMENT_4
ELEMENT_1 YES NO NO
ELEMENT_2 YES NO NO
ELEMENT_3 NO NO NO
ELEMENT_4 NO NO NO

290 35006144 07/2011

Data Types

Rules concerning the tables
Two tables are compatible if:

e their dimensions and the order of their dimensions are identical
e each corresponding dimension is of the same type

There are five types of table:

TABil: ARRAY[10..20]0F INT
;Table one dimension of TAER 1 type

TAB Z: ARRAY[Z0..30]0F INT
;Table one dimension of TAR 2 type

TARE 3: ARRAY[20..30]CF INT
rTable one dimension of TAB_3 type

TAR 4: RRRAY[20..30]0F TEB 1
;i Table one dimension of TAE 4 type

TAB 5: ARRAY[20..30,10..20]0F INT
;Table two dimensions of type TAB 5

Compatibility between the table types:

Type... and type... are...

TAB_1 TAB_2 incompatible
TAB_2 TAB_3 compatible
TAB_4 TAB_5 compatible
TAB_4[25] TAB_5[28] compatible

35006144 07/2011

291

Data Types

The Generic Data Type (GDT) Family

The Generic Data Type (GDT) family is made up of groups organized hierarchically
which contain data types belonging to the following families:

e Elementary Data Types (EDT)
e Derived Data Types (DDT)

Rules:

A conventional data type is compatible with the genetic data types related to it
hierarchically.

A generic data type is compatible with the generic data types related to it
hierarchically.

Example:

The INT type 1is compatible with the ANY INT or ANY NUM or
BNY MAGNITUDE types.

The INT type 1s not compatible with the ANY BIT or ANY REAL types.
The AWY INT generic type is compatible with the ANY NUM type.

The ANY INT generic type is not compatible with the ANY REAL type.

292 35006144 07/2011

Data Instances

What’s in this Chapter?

This chapter describes data instances and their characteristics.

These instances can be:

e unlocated data instances
e |ocated data instances

e direct addressing data instances

What’s in this Chapter?

This chapter contains the following topics:

Topic Page
Data Type Instances 294
Data Instance Attributes 298
Direct Addressing Data Instances 300

35006144 07/2011

293

Data Instances

Data Type Instances

Introduction

What is a data type instance? (see page 231)

A data type instance is referenced either by:

e a name (symbol), in which case we say the data is unlocated because its
memory allocation is not defined but is carried out automatically by the system,

e a name (symbol) and a topological address defined by the manufacturer, in
which case we say the data is located since its memory allocation is known,

e a topological address defined by the manufacturer, in which case we say the
data is direct addressing, and its memory allocation is known.

Unlocated Data Instances

Unlocated data instances are managed by the PLC operating system, and their
physical location in the memory is unknown to the user.

Unlocated data instances are defined using data types belonging to one of the
following families:

e Elementary Data Types (EDT)

e Derived Data Types (DDT)

e Function Block data types (EFB\DFB)

e Sequential Function Chart data types (SFC)

Examples:

Var_l: BOOL
;Instance of EDT family of Beoolean type with 1 byte memory allocation

Var_2: UDINT
jInstance of EDT family of double unsigned integer type with 4 byte

memory allocation

Var_3: ARRAY[1..l10]JOF INT
;Instance of DDT family of table type with 20 byte memcry allccation

COORD
X INT
Y INT
Var 4: COORD
;Instance of DDT family of COORD type structure with 4 byte memory
allocation

NOTE: Sequential Function Chart (SFC) data type instances are created when they
are inserted in the application program, with a default name that the user can modify.

294

35006144 07/2011

Data Instances

Located Data Instances

Localizing a variable (defined by a symbol) consists in creating an adress in the
variable editor.

Located data instances have a predefined memory location in the PLC, and this
location is known by the user:

e Topological adress for input/output modules

e Global adress (M340, Premium) or State RAM (Quantum)

Located data instances are defined using data types belonging to one of the
following families:

e Elementary Data Types (EDT)

e Derived Data Types (DDT)

e Input/Output Derived Data Types (IODDT)

The list below shows the datas instances that should be located on a %MW , %KW
adresses type:

INT,

UINT,

WORD,

BYTE,

DATE,

DT,

STRING,

TIME,

TOD,

DDT structure type,
Table.

EBOOL or EBOOL tables, datas instances have to be located on a $M, $Q or %I
adresses type.

IODDT datas instances type have to be located by $CH module channel type.

NOTE: Double-type instances of located data (DINT, DUNIT, DWORD) or floating
(REAL) should be located by 2Mw, KW adresses type. Only I/O objects instances
type localization is possible with $MD<i>, $KD<i>, $QD, $ID, $MF<i>, $KF<i>, $QF,
$IF type by using their topological address (for example %MD0.6.0.11,
%MF0.6.0.31).

NOTE: For Modicon M340, the index (i) value must be even (see page 273) for
double-type instances of located data ($Mw and $KW).

35006144 07/2011 295

Data Instances

Examples:

Varfl : EBCOL AT %M100
;Instance of EDT family of Boolean type (with 1 byte memory
allocation) predefined in %M100

Var Z: BOOL AT %IZ.1.0.ERR
;Instance of EDT <family of Boolean type (with 1 byte memory
allocation) predefined in %I2.1.0.ZRR

Var_3: INT AT SMW1O0
;Instance of EDT family of integer type (with 2 byte memory
allocation) predefined in 3MW1O0

Var_4: : DINT AT MWL
;Prohibited for Modicon M340. Double type located data instances must
have a topological address even (%MW2, SMW1O.....).

VarfS: WORD AT BMW10
;Instance of EDT family of WORD type (with 2 byte memory allocation)
predefined in %MW10

Var 6: ARRAY[1..l10]JCF INT AT %Mw50
;Instance of EDT family of tabkle type (with 20 byte memory
allocation) predefined from BMW50

COCRD
X: INT
¥i: INT

Var_7: COORD AT %MW20
;Instance of DDT family of COCRD structure type (with 4 byte memory
allocation) predefined from MW2Z0

Var78: DINT AT %MDO.5.0.11

;Instance of EDT family of DINT type (with 4 byte memory allocatiocn)
predefined from the topologic address of the I/0 object of the
application-specific module.

Var 9: REAL AT %MF0.6.0.31

;Instance of EDT family of REAL type (with 4 byte memory allocaticn)
predefined from the topologic address of the I/0 object of the
application-specific module.

NOTE: Sequential Function Chart (SFC) data type instances are created the
moment they are inserted in the application program, with a default name that the
user can modify.

296 35006144 07/2011

Data Instances

Direct Addressing Data Instances

Direct addressing data instances have a predefined location in the PLC memory or
in an application-specific module, and this location is known to the user.

Direct addressing data instances are defined using types belonging to the
Elementary Data Type (EDT) family.

Examples of direct addressing data instances:

Internal Constant System Input/Output Network
%Mi %Si %Q, %l

%MWi %KWi %SWi %QW, %IW %NW
%MDi (1) %KDi (1) %QD, %ID

%MFi (1) %KFi (1) %QF, %IF

Legend

(1) Not available for Modicon M340

NOTE: Located data instances can be used by a direct addressing in the program

Example:
e Var_1: DINT AT sMW10

;%MW10 and %MW11 are both used. $MD10 direct adressing can be used or
Var_1 in the program.

35006144 07/2011

297

Data Instances

Data Instance Attributes

At a Glance
The attributes of a data instance are its defining information.
This information is:

e its name (see page 234) (except for the direct addressing data instances
(see page 300))

e its topological address (except for unlocated data type instances)

e its data type, which can belong to one of the following families:

Elementary Data Type (EDT)

Derived Data Type (DDT)

Function Block data type (EFB\DFB)

Sequential Function Chart data type (SFC)

e an optional descriptive comment (1024 characters maximum). Authorized
characters correspond to the ASCII codes 32 to 255

Name of a Data Instance

This is a symbol (32 characters maximum) chosen by the user which is used to
reference the instance and must be unique.

Certain names cannot be used, for example:

e key words used in text languages
e names of program sections

e names of data types that are predefined or chosen by the user (structures, tables)
e names of DFB/EFB data types that are predefined or chosen by the user

e names of Elementary Functions (EF) that are predefined or chosen by the user

Names of Instances Belonging to the SFC Family

The names of instances are declared implicitly while the user drafts his sequential
function chart. They are default names supplied by the manufacturer which the user
can modify.

Manufacturer-supplied default names:

SFC object Name

Step S_<section name>_<step No.>

Step of Macro step S_<section name>_<macro step No.>_<step No.>
Macro step MS_<section name>_<step No.>

Nested macro step MS_<section name>_<macro step No.>_<step No.>
Input step of Macro step S_IN<section name>_<macro step No.>

Output step of Macro step S_OUT<section name>_<macro step No.>

298 35006144 07/2011

Data Instances

SFC object Name
Transition T_<section name>_<transition No.>
Transition of Macro step T_<section name>_<macro step No.>_<transition No.>

Names of Instances Belonging to the Function Block Family

Instance names are implicitly declared while the user inserts the instances into the
sections of the application program. They are default names supplied by the
manufacturer which the user may modify.

Syntax of manufacturer-supplied default names:

FB_<name of tunction bleck type> <instance No.>

NOTE: Instance names do not include the name of the section in which the instance
is used, since it can be used in different sections of the application.

Access to an Element of a DDT Family Instance
The access syntax is as follows:

For structure type data
<Instance name>.<Element name>

For table type data
<Instance name>[Element index

Rule:

The maximum size of the access syntax is 1024 characters, and the possible limits
of a derived data type are as follows:

e 10 nesting levels (tables/structures)
e 6 dimensions per table
e 4 digits (figures) to define the index of a table element

35006144 07/2011 299

Data Instances

Direct Addressing Data Instances

At a Glance

Access Syntax

What is a direct addressing data instance? (see page 297)

The syntax of a direct addressing data instance is defined by the % symbol followed
by a memory location prefix and in certain cases some additional information.

The memory location prefix can be:

M, for internal variables

K, for constants (Premium and Modicon M340)
S, for system variables

N, for network variables

I, for input variables

Q, for output variables

%M Internal Variables

Access syntax:

Syntax Format Example Program
access rights
Bit %M<i> or 3 bits (EBOOL) | %M1 R/W
%MX<i>
Word %MW<i> 16 bits (INT) %MW10 R/W
Word extracted | %MW<i>.<j> 1 bit (BOOL) %MW15.5 R/W
bit
Double word %MD<i> (1) 32 bits (DINT) | %MD8 R/W
Real (floating %MF<i> (1) 32 bits (REAL) | %MF15 R/W
point)
Legend
(1): Not available for Modicon M340.

<i> represents the instance number (starts a 0 for Premium and 1 for Quantum).

For Modicon M340 double-type instance (double word) or floating instance (real)
must be located in an integer type %MW. The index <i> of the %MW has to be even.

NOTE: The %M<i> or %MX<i> data detect edges and manage forcing.

300

35006144 07/2011

Data Instances

Memory organization:

GTMWO

GoMW 1

GMW?2

oMW 3

EMW4

MW 5

GoMDO

F%MFO
GMD2

9%MF2

G%MD4

%MF4

GMDI

9oMF1

%MD3

%MF3

Not available for Modicon M340

NOTE: The modification of %MW-xi> involves the corresponding modifications of

%MD<i> and %MF<i>.

%K Constants
Access syntax:

Syntax Format Program access
rights
Word constant YoKW<i> 16 bits (INT) R
Double word constant %KD<i> (1) 32 bits (DINT) R
Real (floating point) %KF<i> (1) 32 bits (REAL) R
constant
Legend

(1): Not available for Modicon M340.

<i> represents the instance number.

NOTE: The memory organization is identical to that of internal variables. It should

be noted that these variables are not available on Quantum PLCs.

35006144 07/2011

301

Data Instances

%Il Constants
Access syntax:

Syntax Format Program access
rights
Bit constant Yol<i> 3 bits (EBOOL) R
Word constant %lW<i> 16 bits (INT) R

<i> represents the instance number.

NOTE: These data are only available on Quantum and Momentum PLCs.

%S System Variables
Access syntax:

Syntax Format Program

access rights
Bit %S<i> or %SX<i> | 1 bit (BOOL) R/W or R
Word %SW<i> 32 bits (INT) R/W or R

<i> represents the instance number.

NOTE: The memory organization is identical to that of internal variables. The %S<i>
and %SX<i> data are not used for detection of edges and do not manage forcing.

%N Network Variables

These variables contain information, which has to be exchanged between several
application programs across the communication network.

Access syntax:

Syntax Format Program

access rights
Common word %NW<n>.<s>.<d> 16 bits (INT) R\W or R
Word extracted bit %NW<n>.<s>.<d>.<j> 1 bit (BOOL) R\W or R

<n> represents the network number.

<s> represents the station number.

<d> represents the data number.

<j> represents the position of the bit in the word.

302 35006144 07/2011

Data Instances

Case with Input/Output Variables
These variables are contained in the application-specific modules.

Access syntax:

Syntax Example Program
access
rights

Input/Output structure (IODDT) | %CH<@mod>.<c> %CH4.3.2 R
%I inputs
BOOL type module error bit %l<@mod>.MOD.ERR | %l4.2.MOD.ERR | R
BOOL type channel error bit %l<@mod>.<c>.ERR %14.2.3.ERR R
BOOL or EBOOL type bit %l<@mod>.<c> %14.2.3 R
%l<@mod>.<c>.<d> %14.2.3.1 R
INT type word %IW<@mod>.<c> %IW4.2.3 R
%IW<@mod>.<c>.<d> | %IW4.2.3.1 R
DINT type double word %|D<@mod>.<c> %ID4.2.3 R
%ID<@mod>.<c>.<d> | %ID4.2.3.2 R
Read type REAL (floating point) | %lF<@mod>.<c> %IF4.2.3 R
%lF<@mod>.<c>.<d> | %lF4.2.3.2 R
%Q outputs
EBOOL type bit %Q<@mod>.<c> %Q4.20.3 R/W
%Q<@mod>.<c>.<d> | %Q4.20.30.1 R/W
INT type word %QW<@mod>.<c> %QW4.2.3 R/W
%QW<@mod>.<c>.<d> | %QW4.2.3.1 R/W
DINT type double word %QD<@mod>.<c> %QD4.2.3 R/W
%QD<@mod>.<c>.<d> | %QD4.2.3.2 R/W
Read type REAL (floating point) | %QF<@mod>.<c> %QF4.2.3 R/W
%QF<@mod>.<c>.<d> | %QF4.2.3.2 R/W
%M variables (Premium)
INT type word %MW<@mod>.<c> %MW4.2.3 R/W

%MW<@mod>.<c>.<d> | %MW4.2.3.1 R/W

DINT type double word %MD<@mod>.<c> %MD4.2.3 R/W

%MD<@mod>.<c>.<d> | %MD4.2.3.2 R/W

Read type REAL (floating point) | %MF<@mod>.<c> %MF4.2.3 R/W
%MF<@mod>.<c>.<d> | %MF4.2.3.2 R/W

35006144 07/2011

303

Data Instances

Syntax Example Program
access
rights

%K Constants (Modicon M340 and Premium)
INT type word %KW<@mod>.<c> %KW4.2.3 R

%KW<@mod>.<c>.<d> | %KW4.2.3.1 R

DINT type double word %KD<@ mod>.<c> %KD4.2.3 R

%KD<@mod>.<c>.<d> | %KD4.2.3.12 R

Read type REAL (floating point) | %KF<@mod>.<c> %KF4.2.3 R
%KF<@mod>.<c>.<d> | %KF4.2.3.12 R

<@mod = \.<e>\<r>.<m>
 bus number (omitted if station is local).

<e> device connection point number (omitted if station is local, the connection point
is also called Drop for Quantum users).

<r> rack number.
<m> module slot
<c> channel number (0 to 999) or MOD reserved word.

<d> data number (0 to 999) or ERR reserved word (optional if O value). For
Modicon M340 <d> is always even.

304 35006144 07/2011

Data Instances

Examples: local station and station on bus for Modicon M340 PLCs.

Configuration Modicon M340

%l10.1.5
(rack 0, module 1, channel 5)

Configuration Modicon M340
—=£&I&L == il

il %0}

Line end
CANopen Bus No. 3 /

10

STB interface module ATV31 XPSMC 16 LEXIUM 05
%lW\3.110.0.0.17 %IW\3.101\0.0.0.1

(bus 3 adresse device 1 (bus 3 adresse device 10
channel 0 data 17) channel 0 data 1)

35006144 07/2011

305

Data Instances

Examples: local station and station on bus for Quantum and Premium PLCs.

Quantum example Premium example

@ 3

PﬁA|R|‘|:] ||' ||' 0] |I' .
| | 1T
I

I
“‘ L
e

%IW0.4.1.5

I
“%IW1.4.15
(rack 1, module 4, channel 1, data 5) (rack 0, module 4, channel 1, data 5)

a

= =

P |C [NA[RITL ‘I-' vl ||-]
Local rack

| |
4 RIO (No. 3)

|
[PRIl|Il‘[P‘RII

s Bus No. 2
“ H ‘ H
| ‘ | |

%IW\3.2\1.4.1.5
(bus 3, drop (device) 2, rack 1, module 4
channel 1 data 5)

— |

|l

I L

-

RI‘I [l

il
T

%IW\2.7\0.5.1.5
(bus module 5 channel 1
data 5)

!
-

He — = DIO (No. 2
() Available for Unity versions
higher than V1.0

DIV [V |1 DI‘I ‘I-'

T
|
|

%IWN2.1\1.3.4.5
(bus 2, drop (device) 1, rack 1, module 3
channel 4 data 5)

U]
7

0

.

306 35006144 07/2011

Data References

10

What’s in this Chapter?
This chapter provides the references of data instances.
These references can be:

e value-based references,
e name-based references,
e address-based references.

What’s in this Chapter?
This chapter contains the following topics:

Topic Page
References to Data Instances by Value 308
References to Data Instances by Name 310
References to Data Instances by Address 313
Data Naming Rules 317

35006144 07/2011 307

Data References

References to Data Instances by Value

Introduction
What is a data instance reference? (see page 233)

At a Glance

A reference to a data instance by a value is an instance which does not have a name
(symbol) or topological address.

This corresponds to an immediate value which can be assigned to a data type
instance belonging to the EDT family.

Standard IEC 1131 authorizes immediate values on instances of the following data
types:

e Booleans
e BOOL
e EBOOL

e integers
e INT
UINT
DINT
UDINT
TIME

e reals
e REAL

e dates and times
e DATE
e DATE AND TIME
e TIME OF DAY

e character strings
e STRING
The programming software goes beyond the scope of the standard by adding the bit
string types.
e BYTE

e WORD
e DWORD

308 35006144 07/2011

Data References

Examples of Inmediate Values:

This table associates immediate values with types of instance

Immediate value

Type of instance

‘l am a character string’

STRING

TH#1s TIME
D#2000-01-01 DATE
TOD#12:25:23 TIME_OF_DAY
DT#2000-01-01-12:25:23 DATE_AND_TIME
16#FFFO WORD
UINT#16#9AF (typed value) UINT
DWORD#16#FFFF (typed value) DWORD

35006144 07/2011

309

Data References

References to Data Instances by Name

Introduction
What is a data instance reference? (see page 233)

References to Instances of the EDT Family
The user chooses a name (symbol) which can be used to access the data instance:

Valve_State: EBOOL

Hopper Content: UINT
Oven_Temperature: INT AT $MW100

Encoder_Value: WORD

References to Instances of the DDT Family
Tables:
The user chooses a name (symbol) which can be used to access the data instance:

51

o car 11 of the color cor -ncding to element 5 of

310 35006144 07/2011

Data References

Structures:

The user chooses a name (symbol) which can be used to access the data instance:

Giving the 2 structure

STRING[Z20]
“ode: UDINT
STRING: [20]

IDENT
Surname: STRING[15]
First name: STRING[15]

Age: UINT
Date of Birth: DATE
Location: ADDRESS

Person 1 :IDENT
;Instance name

structure of IDENT tvpe

Person_1l.Age
z :5 Lo the age of Pe

Person_l.Location.Town
2 ¢ to the location where Pe

1.1 resides

35006144 07/2011 311

Data References

References to Instances of the DFB\EFB Families
The user chooses a name (symbol) which can be used to access the data instance.
@iving the DFB type:

Parts_Counter

%l0.415__ |pat OK
SoMW100_ [Preset
Num_parts_attained ——— %M2

Num_Parts_Prog

Screw Counter:
Instance name of

unter type

Screw Counter.Num Parts Prog
z s to public variable MNum Parts Prog

Screw Counter.Num parts attained
z to the output interface Num _parts attained

312 35006144 07/2011

Data References

References to Data Instances by Address

Introduction
What is a data instance reference? (see page 233)

At a Glance

Itis only possible to reference a data instance by address for certain data instances
that belong to the EDT family. These instances are:

e internal variables (%M<i>, %MW<i>, %MD<i>, %MF<i>)
e constants (%KW-<i>, %KD<i>, %KF<i>)
e inputs/outputs (%l<address>, %Q<address>)

NOTE: Instances %MD<i>, %MF<i>, %KD<i>, and %KF<i> are not available for
Modicon M340.

Reference by Direct Addressing
Addressing is considered direct when the address of the instance is fixed, or, in
other words, when it is written into the program.
Examples:

%M1
Access to first bit of the memory

BMW12
Accegs to twelfth word of the memory

%MD4
Accege to fourth double word of the memory

%KF100
;Accegs to hundredth fleoating pointing word of the memory

%Q00.4.0.5
Access to fifth bit of the output module in position 4
of rack 0

35006144 07/2011 313

Data References

References by Indexed Address
Addressing is considered indexed when the address of the instance is completed

with an index.

The index is defined either by:

e a value belonging to an Integer type

e an arithmetical expression made up of Integer types
An indexed variable always has a non-indexed equivalent:

EMW<i> [<index>] <=> SMW<j>

The rules for calculating <j> are as follows.

Object<i>[index]

Object<j>

%M<i[index]

<j>=<i> + <index>

%MW<i>[index]

<j>=<i> + <index>

%KW<i>[index]

<j>=<i> + <index>

%MD<i>[index]

<j>=<i> + (<index> x 2)

%KD<i>[index]

<j>=<i> + (<index> x 2)

%MF<i>[index]

<j>=<i> + (<index> x 2)

%KF<i>[index]

<j>=<i> + (<index> x 2)

Examples:

$MD6 [10] <=> %MDZ6

SMWLO [My_Var+8] <=>

During compilation of the program, a check verifies that:
e the index is not negative

SFMW20 (with My _Var=2)

e the index does not exceed the space in the memory allocated to each of these

three data types

314

35006144 07/2011

Data References

Word Extract Bits

Byte Extract Bits

Itis possible to extract one of the 16 bits of single words (%MW, %SW; %KW, %IW,
%QW).

The address of the instance is completed with the rank of the extracted bit (<j>).

WORD<i> . <3j>

Examples:

%MW10.4
Bit No. 4 of word $MWlD

%SW8 .4
Bit No. 4 of system word %SW8

%KW100.14
Bit No. 14 of constant Kwl0O

%QwW0.5.1.0.10
Bit No. 10 of word O of channel 1 of output module 5 of rack O

It is possible to extract one of the bits of a byte
The address of the extracted bit is accessible via:

e The name of the corresponding byte.
e The rank defining its position in the byte. (a number between 0 and 7)

Example:

MyByte is a variable of type BYTE. MyByte.i is a valid BOOL if 0 <=i<=7
MyByte.0, MyByte.3 and MyByte.7 are valid BOOL.

MyByte.8 is invalid.

35006144 07/2011

315

Data References

Bit and Word Tables
These are a series of adjacent objects (bits or words) of the same type and of a

defined length.

OBJECT«<i> :L

Presentation of bit tables:

Type Address Write access
Discrete 1/O input bits Yolx.i:L No

Discrete 1/0 output bits %Qx.i:L Yes

Internal bits Y% Mi:L Yes

Presentation of word tables:

Type Address Write access
Internal words %MWi:L Yes
%MDi:L
%MFi:L
Constant words %KWi:L No
%KDi:L
%KFi:L
System words %SW50:4 Yes
Examples:
%M2: 65

Defines an EBOOL table from %M2 to %ME6

%MW125:30

Defines an INT table from $MW12G5 to %MW 154

316

35006144 07/2011

Data References

Data Naming Rules

Introduction

In an application the user chooses a name to:

e define a type of data

e instantiate a data item (symbol)
e identify a section

Some rules have been defined in order to avoid conflicts occurring. This means that
it is necessary to differentiate between the different domains of application of data

What is a Domain?

Itis an area of the application from which a variable can or cannot be accessed, such

as:

e the application domain which includes:

e the various application tasks

e the sections of which it is composed

e the domains for each data type such as:
e structures/tables for the DDT family

Rules

e EFB/DFBs for the function block family

This table defines whether or not it is possible to use a name that already exists in
the application for newly-created elements:

Application Content -> | Section SR DDT/IODDT |FB type |FB Instances EF Variable
New elements (below)

Section No No Yes Yes Yes Yes Yes

SR No No Yes Yes No (1) No
DDT/IODDT No No No No (4) No No (4) |No

FB type Yes Yes No No (3) No (3)

FB Instances No No No Yes No Yes No

EF Yes @) No No No No No
Variable Yes No Yes Yes No (1) No

(1): An instance belonging to the application domain cannot have the same name as
an EF.

(2): An instance belonging to the type domain (internal variable) can have the same
name as an EF. The EF in question cannot be used in this type.

35006144 07/2011

317

Data References

(3): The creation or import of EFB/DFBs with the same name as an existing instance
are prohibited.

(4): An DDT/IODDT element might have the same name of an FB/EF, however it is
not advised as the FB/EF should not be used in the application.

NOTE: A number of additional considerations to the rules given in the table are listed
below, specifying that:

e Within a type, an instance (internal variable) cannot have the same name as the
type name of the object to which it belongs,

e There is no conflict between the name of an instance belonging to a section of
the application and the name of the instance belonging to a section of a DFB,

e There is no conflict between the name of a section belonging to a task and the
name of the section belonging to a DFB.

318

35006144 07/2011

Programming Language

IV

Contents of this Part

What’s in this Part?

This part describes the syntax of the programming languages that are available.

This part contains the following chapters:

Chapter Chapter Name Page
11 Function Block Language FBD 321
12 Ladder Diagram (LD) 347
13 SFC Sequence Language 389
14 Instruction List (IL) 449
15 Structured Text (ST) 497

35006144 07/2011

319

Programming Language

320 35006144 07/2011

Function Block Language FBD

11

Overview

This chapter describes the function block language FBD which conforms to
IEC 61131.

What’s in this Chapter?
This chapter contains the following topics:

Topic Page

General Information about the FBD Function Block Language 322
Elementary Functions, Elementary Function Blocks, Derived Function Blocks 324
and Procedures (FFBs)

Subroutine Calls 334
Control Elements 335
Link 336
Text Object 338
Execution Sequence of the FFBs 339
Change Execution Sequence 342
Loop Planning 346

35006144 07/2011 321

Function Block Language FBD

General Information about the FBD Function Block Language

Introduction

The FBD editor is used for graphical function block programming according to
IEC 61131-3.

Representation of an FBD Section
Representation:

EN Input ENO Qutput Inversion ST Expression
Link
Variable AND OR AND
\coud [>—EN ENO ‘ EN ENO v » ¥ EN ENO —I=Errorl
INL — e A<Bl>— —> Resultl
TRUE [>— %IX1.5.4 [>— C=D [—
1 > %IX1.55 [>—
/ g \
Literals Topological Link Crossing
Addresses
XOR
EN ENO [—1>Error2
1= Result2
N4 [—
Objects

The objects of the FBD programming language (Function Block Diagram) help to

divide a section into a number of:

e EFs and EFBs (Elementary Functions (see page 324) and Elementary Function
Blocks (see page 325)),

e DFBs (Derived Function Blocks) (see page 326),

e Procedures (see page 326) and

e Control Elements (see page 335).

These objects, combined under the name FFBs, can be linked with each other by:
e Links (see page 336) or
e Actual Parameters (see page 327).

Comments regarding the section logic can be provided using text objects (see Text
Object, page 338).

322 35006144 07/2011

Function Block Language FBD

Section Size
One FBD section consists of a window containing a single page.
This page has a grid background. A grid unit consists of 10 coordinates. A grid unit
is the smallest possible space between 2 objects in an FBD section.
The FBD programming language is not cell oriented but the objects are still aligned
with the grid coordinates.

An FBD section can be configured in number of cells (horizontal grid coordinates
and vertical grid coordinates).

IEC Conformity

For a description of the extent to which the FBD programming language conforms
to IEC, see IEC Conformity (see page 639).

35006144 07/2011 323

Function Block Language FBD

Elementary Functions, Elementary Function Blocks, Derived Function Blocks
and Procedures (FFBs)

Introduction

FFB is the generic term for:

e Elementary Function (EF) (see page 324)

e Elementary Function Block (EFB) (see page 325)
e DFB (Derived Function Block) (see page 326)

o Procedure (see page 326)

Elementary Function

Elementary functions (EF) have no internal states. If the input values are the same,
the value on the output is the same every time the function is called. For example,
the addition of two values always gives the same result.

An elementary function is represented graphically as a frame with inputs and one
output. The inputs are always represented on the left and the output is always on the
right of the frame.

The name of the function, i.e. the function type, is displayed in the center of the
frame.

The execution number (see page 339) for the function is shown to the right of the
function type.

The function counter is shown above the frame. The function counter is the
sequential number of the function within the current section. Function counters
cannot be modified.

Elementary Function

1

DIV

—INI OUT—
— N2

With some elementary functions, the number of inputs can be increased.

324 35006144 07/2011

Function Block Language FBD

Elementary Function Block

Elementary function blocks (EFBs) have internal states. If the input values are the
same, the value on the output can be different each time the function is called. e.g.
for a counter the value on the output is incremented.

An elementary function block is represented graphically as a frame with inputs and
outputs. The inputs are always represented on the left and the outputs always on the
right of the frame.

Function blocks can have more than one output.

The name of the function block; i.e. the function block type, is displayed in the center
of the frame.

The execution number (see page 339) for the function block is shown to the right of
the function block type.

The instance name is displayed above the frame.

The instance name serves as a unique identification for the function block in a
project.

The instance name is created automatically and has the following structure: FBI n
FBI = Function Block Instance
n = sequential number of the function block in the project

This automatically generated name can be modified for clarification. The instance
name (max. 32 characters) must be unique throughout the project and is not case-
sensitive. The instance name must conform to general naming conventions.

NOTE: To conform to IEC61131-3, only letters are permitted as the first character
of the name. If you want to use a numeral as your first character however, this must
be enabled explicitly.

Elementary Function Block

FBI 1

CTU !
—CTU Ql—
—R
—PV cvi—

35006144 07/2011

325

Function Block Language FBD

DFB

Derived function blocks (DFBs) have the same properties as elementary function
blocks. The user can create them in the programming languages FBD, LD, IL, and/or
ST.

The only difference to elementary function blocks is that the derived function block
is represented as a frame with double vertical lines.

Derived Function Block

FBI 1

DFB_EXAMP
—|IN1 OUT1 | —

—| IN3 ouUT?|—

Procedure
Procedures are functions viewed technically.

The only difference to elementary functions is that procedures can occupy more
than one output and they support data type VAR _IN OUT.

Procedures are a supplement to IEC 61131-3 and must be enabled explicitly.
To the eye, procedures are no different than elementary functions.
Procedure

.

PROC EXAMP
—IN1 OUT1 —
—IN2 OUT2 —
—I0l ——— 01—

326 35006144 07/2011

Function Block Language FBD

Parameters

Inputs and outputs are required to transfer values to or from an FFB. These are
called formal parameters.

Objects are linked to formal parameters; these objects contain the current process
states. They are called actual parameters.

Formal and actual parameters:

Actual Parameters

FBI 2

Actual Parameters
CTU
Clock — CTU
%113 —R
MUX(1,varl,var2) — PV CVi— Current_Value

2 — Output

Formal Parameters

At program runtime, the values from the process are transferred to the FFB via the
actual parameters and then output again after processing.

Only one object (actual parameter) of the following types may be linked to FFB

inputs:

e Variable

e Address

e Literal

e ST Expression (see page 499)
ST expressions on FFB inputs are a supplement to IEC 61131-3 and must be
enabled explicitly.

e Link

The following combinations of objects (actual parameters) can be linked to FFB
outputs:
e one variable
e a variable and one or more connections (but not for VAR_IN_OUT
(see page 333) outputs)
e an address
e an address and one or more connections (but not for VAR_IN_OUT
(see page 333) outputs)
e one or more connections (but not for VAR_IN_OUT (see page 333) outputs)

The data type of the object to be linked must be the same as that of the FFB
input/output. If all actual parameters consist of literals, a suitable data type is
selected for the function block.

Exception: For generic FFB inputs/outputs with data type ANY BIT, itis possible to
link objects of data type INT or DINT (not UINT and UDINT).

This is a supplement to IEC 61131-3 and must be enabled explicitly.

35006144 07/2011

327

Function Block Language FBD

Example:
Allowed:

AND
IntvVvarl —IN1 OUT — IntVar3
IntVarz2 —IN2
Not allowed:
.1
AND_WORD

IntVarl —IN1 OUT — IntVar3
Intvar:z iz

(In this case, AND INT must be used.)

Not all formal parameters have to be assigned an actual parameter. However, this
does not apply in the case of negated pins. These must always be assigned an
actual parameter. This is also the case with some formal parameter types. These
types are shown in the following table.

Table of formal parameter types:

Parameter type EDT |STRING |ARRAY |ANY_ARRAY IODDT |STRUCT |FB |ANY
EFB: Input - - - - / - / -
EFB: VAR_IN_OUT + + + + + + / +
EFB: Output - - + + + - / +
DFB: Input - - - - / - / -
DFB: VAR_IN_OUT + + + + + + / +
DFB: Output - - + / / - / +
EF: Input - - - - + - + -
EF: VAR_IN_OUT + + + + + + / +
EF: Output - - - - - - / -
Procedure: Input - - - - + - + -

328

35006144 07/2011

Function Block Language FBD

Parameter type

EDT |STRING |ARRAY |ANY_ARRAY IODDT |STRUCT |FB | ANY

Procedure: + + + + + + / +
VAR_IN_OUT
Procedure: Output - - - - - - / +

+ Actual parameter required

- Actual parameter not required

!/ not applicable

Public Variables

FFBs that use actual parameters on the inputs that have not yet received any value
assignment, work with the initial values of these actual parameters.

If no value is allocated to a formal parameter, then the initial value will be used for
executing the function block. If no initial value has been defined then the default
value ("0") is used.

If a formal parameter is not assigned a value and the function block/DFB is
instanced more than once, then the subsequent instances are run with the old value.

NOTE: Unassigned data structures will always be initialized with value "0", initial
values can not be defined.

In addition to inputs and outputs, some function blocks also provide public variables.

These variables transfer statistical values (values that are not influenced by the
process) to the function block. They are used for setting parameters for the function
block.

Public variables are a supplement to IEC 61131-3.
The assignment of values to public variables is made using their initial values.

Public variables are read via the instance name of the function block and the names
of the public variables.

35006144 07/2011

329

Function Block Language FBD

Private Variables

Example:

FBI |

] 1 (The function block has the public variables AREA NR
D_ACT and OP_CTRL)

—ED ERR (—

— DTIMEL ACT —

— DTIMEA
— TRIGR
— UNLOCK
—REACT

Instance Name Public Variable
1

2

AND

FEI_1.0P CTRL —INI OUT|— Var3
VarZz —IN2

In addition to inputs, outputs and public variables, some function blocks also provide
private variables.

Like public variables, private variables are used to transfer statistical values (values
that are not influenced by the process) to the function block.

Private variables can not be accessed by user program. These type of variables can
only be accessed by the animation table.

NOTE: Nested DFBs are declared as private variables of the parent DFB. So their
variables are also not accessible through programming, but trough the animation
table.

Private variables are a supplement to IEC 61131-3.

Programming Notes

Attention should be paid to the following programming notes:

e FFBs are only executed if the input EN=1 or if the input EN is grayed out (see also
EN and ENO (see page 331)).

e Boolean inputs and outputs can be inverted.

e Special conditions apply when using VAR_IN_OUT variables (see page 333).

e Function block/DFB instances can be called multiple times (see also Multiple
Function Block Instance Call (see page 331)).

330

35006144 07/2011

Function Block Language FBD

Multiple Function Block Instance Call

EN and ENO

Function block/DFB instances can be called more than once; other than instances
from communication EFBs and function blocks/DFBs with an ANY output but no ANY
input: these can only be called once.

Calling the same function block/DFB instance more than once makes sense, for

example, in the following cases:

e |f the function block/DFB has no internal value or it is not required for further
processing.

In this case, memory is saved by calling the same function block/DFB instance
more than once since the code for the function block/DFB is only loaded once.
The function block/DFB is then handled like a "Function".

e [f the function block/DFB has an internal value and this is supposed to influence
various program segments, for example, the value of a counter should be
increased in different parts of the program.

In this case, calling the same function block/DFB means that temporary results
do not have to be saved for further processing in another part of the program.

One EN input and one ENO output can be used in all FFBs.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms defined by
the FFB are not executed and ENO is set to "0".

If the value of EN is equal to "1" when the FFB is invoked, the algorithms defined by
the FFB will be executed. After the algorithms have been executed successfully, the
value of ENO is set to "1". If an error occurs when executing these algorithms, ENO
is set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined
by the FFB is executed (same as if EN equals to "1"), Please refer to Maintain output
links on disabled EF (see Unity Pro, Operating Modes).

If ENO is set to "0" (caused by EN=0 or an error during execution):
e Function blocks
e EN/ENO handling with function blocks that (only) have one link as an output

parameter:

FUNCBLOCK _1 FUNCBLOCK 2
—EN ENO— —EN ENO —
—IN1 ouT IN1 OUT —

IN2 —IN2

If EN of FUNCBLOCK 1 is set to "0", the link on output OUT of FUNCBLOCK 1
maintains the old status it had during the last correctly executed cycle.

35006144 07/2011

331

Function Block Language FBD

e EN/ENO handling with function blocks that have one variable and one link as
output parameters:

FUNCBLOCK 1

FUNCBLOCK 2

—{EN ENO |— —EN ENO
—{INI OUT | OUTL —INL ouT
—mn —{IN2

If EN of FUNCBLOCK 1 is set to "0", the link on output OUT of FUNCBLOCK 1
maintains the old status it had during the last correctly executed cycle. The
OUT1 variable on the same pin either retains its previous status or can be
changed externally without influencing the link. The variable and the link are
saved independently of each other.

e Functions/Procedures
As defined in IEC61131-3, the outputs from deactivated functions (EN input set to
"0") are undefined. (The same applies to procedures.)
Here nevertheless an explanation of the output statuses in this case:
e EN/ENO handling with function/procedure blocks that (only) have one link as
an output parameter:

FUNC PROC 1 FUNC PROC 2
—EN ENO— —EN ENO
—INL ouT INI ouUT
—IN2 —IN2

If EN of FUNC_PROC_1 is set to "0", the value of the link on output 0UT of
FUNC_PROC_1 depends on the project setting Maintain output links on
disabled EF available since Unity Pro 4.1.
If this project setting is set to “0”, the value of the link is set to “0”.
If this project setting is set to “1”, the link maintains the old value it had during
the last correctly executed cycle.
Please refer to Maintain output links on disabled EF (see Unity Pro, Operating
Modes).

e EN/ENO handling with function/procedure blocks that have one variable and
one link as output parameters:

FUNC PROC 1 FUNC PROC 2
—{EN ENO |— —EN ENO
—{INI OUT | OUTL —INL ouT
—mn —{IN2

If EN of FUNC_PROC 1 is set to "0", the value of the link on output OUT of
FUNC_PROC_1 depends on the project setting Maintain output links on
disabled EF available since Unity Pro 4.1.

332 35006144 07/2011

Function Block Language FBD

If this project setting is set to “0”, the value of the link is set to “0”.

If this project setting is set to “1”, the link maintains the old value it had during
the last correctly executed cycle.

Please refer to Maintain output links on disabled EF (see Unity Pro, Operating
Modes).

The oUT1 variable on the same pin either retains its previous status or can be
changed externally without influencing the link. The variable and the link are

saved independently of each other.

The output behavior of the FFBs does not depend on whether the FFBs are invoked
without EN/ENO or with EN=1.

NOTE: For disabled function blocks (EN = 0) with an internal time function (e.g.
function block DELAY), time seems to keep running, since it is calculated with the
help of a system clock and is therefore independent of the program cycle and the
release of the block.

VAR_IN_OUT Variable

FFBs are often used to read a variable at an input (input variables), to process it and
to output the altered values of the same variable (output variables).

This special type of input/output variable is also called a VAR _IN OUT variable.
The link between input and output variables is represented by a line in the FFB.
VAR_IN OUT variable

-

EXAMP1
Inputl IN1 OuUT1 Outputl
Input2 N2 OUT2 Output2
Comb IN OUT —I0] ——— 101 Comb_IN_OUT

The following special features are to be noted when using FFBs with VAR _IN OUT

variables.

e AllVAR IN OUT inputs must be assigned a variable.

e Via graphical links only VAR IN OUT outputs with VAR IN OUT inputs can be
connected.

e Only one graphical link can be connected to a VAR _IN OUT input/output.

e A combination of variable/address and graphical connections is not possible for
VAR IN_OUT outputs).

e No literals or constants can be connected to VAR IN OUT inputs/outputs.

e No negations can be used on VAR IN OUT inputs/outputs.

o Different variables/variable components can be connected to the VAR IN oUT
inputand the VAR _IN OUT output. In this case the value of the variables/variable
component on the input is copied to the at the output variables/variable
component.

35006144 07/2011

333

Function Block Language FBD

Subroutine Calls

Calling a Subroutine

In FBD, subroutines are called using the following blocks.

SR_CALL
Condition —{EN CENO —
MySR — SR_NAME

If the status of EN is 1, the respective subroutine (variable name inSR_Name) is
called.

The output ENO is not used to display the error status for this type of block. The
output ENO is always 1 for this type of block and is used to call multiple subroutines
simultaneously.

The following construction makes it possible to call multiple subroutines
simultaneously.

SR _CALL SR_CALL
Condition — EN LNO LN LNO— - - - - -
MySR1 — SR_NAME MySR2 SR_NAME

The subroutine to be called must be located in the same task as the FBD section
called.

Subroutines can also be called from within subroutines.
Subroutine calls are a supplement to IEC 61131-3 and must be enabled explicitly.

In SFC action sections, subroutine calls are only allowed when Multitoken Operation
is enabled.

334

35006144 07/2011

Function Block Language FBD

Control Elements

Introduction

Control elements are used for executing jumps within an FBD section and for
returning from a subroutine (SRx) or derived function block (DFB) to the main
program.

Control Elements
The following control elements are available.

Designation Representation Description

Jump NEXT When the status of the left link is 1, a jump is made to a label (in the current
> section).
; To generate a conditional jump, a jump object is linked to a Boolean FFB
output.
To generate an unconditional jump, the jump object is assigned the value 1 for
example, using the AND function.

Label LABEL: Labels (jump targets) are indicated as text with a colon at the end.

This text is limited to 32 characters and must be unique within the entire
section. The text must conform to general naming conventions.

Jump labels can only be placed between the first two grid points on the left
edge of the section.

Note: Jump labels may not "cut through" networks, i.e. an assumed line from
the jump label to the right edge of the section may not be crossed by any
object. This is also valid for links.

Return RETURN objects can not be used in the main program.
< RETURN > e Ina DFB, a RETURN object forces the return to the program which called
the DFB.

® The rest of the DFB section containing the RETURN object is not
executed.

® The next sections of the DFB are not executed.

The program which called the DFB will be executed after return from the

DFB.

If the DFB is called by another DFB, the calling DFB will be executed after
return.

e Ina SR, a RETURN object forces the return to the program which called the
SR.
® The rest of the SR containing the RETURN object is not executed.

The program which called the SR will be executed after return from the SR.

35006144 07/2011 335

Function Block Language FBD

Link

Description
Links are vertical and horizontal connections between FFBs.

OR

*

FFE Input

AND

varl [>—

FFE Cutput

Representation
The link coordinates are identified by a filled circle.

OR

AND

OR

Crossed links are indicated by a "broken" link.

AND OR

AND QR

336 35006144 07/2011

Function Block Language FBD

Programming Notes
Attention should be paid to the following programming notes:

Links can be used for any data type.

The data types of the inputs/outputs to be linked must be the same.

Several links can be connected with one FFB output. Only one may be linked with

an FFB input however.

Inputs and outputs may be linked to one-another. Linking more than one output

together is not possible. That means that no OR connection is possible using

links in FBD. An OR function is to be used in this case.

Overlapping links with other objects is permitted.

Links may not be used to create loops since the sequence of execution in this

case cannot be clearly determined in the section. Loops must be created using

actual parameters (see Loop Planning, page 346).

To avoid links crossing each other, links can also be represented in the form of

connectors.

The source and target for the connection are labeled with a name that is unique

within the section.

The connector name has the following structure depending on the type of source

object for the connection:

e For functions: "Function counter/formal parameter" for the source of the
connection

e For function blocks: "Instance name/formal parameter" for the source of the
connection

FBI 2 4
1
TON AND
— 1IN OUT— FEL_20UT == —IN1 OUT|
—PT ET— == FBI_20UT—IN2

35006144 07/2011

337

Function Block Language FBD

Text Object

Description

Text can be positioned as text objects using FBD Function Block language. The size
of these text objects depends on the length of the text. The size of the object,
depending on the size of the text, can be extended vertically and horizontally to fill
further grid units. Text objects may not overlap with FFBs; however they may
overlap with links.

338 35006144 07/2011

Function Block Language FBD

Execution Sequence of the FFBs

Introduction

The execution sequence is determined by the position of the FFBs within the section
(executed from left to right and from top to bottom). If the FFBs are then linked
graphically, the execution sequence is determined by the signal flow.

The execution sequence is indicated by the execution number (number in the top
right corner of the FFB frame).

Execution Sequence on Networks

For network execution sequences, the following rules apply:

Executing a section is completed network by network based on the FFB links
from above and below.

Links may not be used to create loops since the sequence of execution in this
case cannot be clearly determined. Loops must be created using actual
parameters (see Loop Planning, page 346).

The execution sequence for networks that are not linked is determined by the
graphic sequence (from top-right to bottom-left). This execution sequence can be
influenced (see Change Execution Sequence, page 342).

Processing on a network is ended completely before the processing begins on
another network for which outputs are used on the previous network.

No element of a network is deemed to be processed as long as the status of all
inputs of this element are not calculated.

Processing on a network is only ended if all outputs on this network have been
processed.

Signal Flow within a Network

For execution sequences within a network, the following rules apply:

An FFB is only processed if all elements (FFB outputs etc.) with which its inputs
are linked are processed.

The execution sequence of FFBs that are linked with various outputs of the same
FFB runs from top to bottom.

The execution sequence of FFBs is not influenced by the location within the
network.

This does not apply if more than one FFB is linked to the same output of the
“calling" FFB. In this case, the execution sequence is determined by the graphic
sequence (from top to bottom).

35006144 07/2011

339

Function Block Language FBD

Priorities

Priorities in Defining the Signal Flow Within a Section.

Priority | Rule Description
1 Link Links have the highest priorities in defining the signal flow
within a FBD section.
User Definition User Access to Execution Sequence.
3 Network by Processing on a network is ended completely before the
Network processing begins on another network.
4 Output Sequence | FFBs that are linked to the outputs of the same "calling"
FFB are processed from top to bottom.
5 Rung by Rung Lowest priority. (Only applies if none of the other rules

apply).

340

35006144 07/2011

Function Block Language FBD

Example
Example of the Execution Sequence of Objects in an FBD Section:

9

1
- AND
14
13 4 10
3 AND
2
NW2 AND — — AND
—EN ENG _
15
3 20
AND
8
— AND
7
21
10
AND 7
AND
16 _
)
W3 AND 18
— 1 11
— AND

AND
—EN ENG

N4

35006144 07/2011

341

Function Block Language FBD

Change Execution Sequence

Introduction

Original Situation

The execution order of networks and the execution order of objects within a network
are defined by a number of rules (see page 340).

In some cases the execution order suggested by the system should be changed.

The procedure for defining/changing the execution sequence of networks is as
follows:

e Using links instead of actual parameters

o Network positions

e Explicit execution sequence definition

The procedure for defining/changing the execution sequence of networks is as
follows:
e FFB positions

The following diagram shows two networks for which the execution sequences are
simply defined by their positions within the section, without taking into account the
fact that blocks . 4/.5 and . 7/. 8 require a different execution sequence.

4

13 5
. AND
AND A -
5
3
AND
B [——
& 7
4 5
AND AND
—EN ENO —t> s

AND

342

35006144 07/2011

Function Block Language FBD

Link Instead of Actual Parameters

By using a link instead of a variable the two networks are executed in the proper
sequence (see also Original Situation, page 342).

—EN

Network Positions

AND

ENO

4

AND

1 AND

AND

AND

5
| E—Y

AND

The correct execution sequence can be achieved by changing the position of the
networks in the section (see also Original Situation, page 342).

3

EN

AND

7

ENO

AND

AND

AND

AND

Bl—

AND

35006144 07/2011

343

Function Block Language FBD

Explicit Definition

FFB Positions

The correct execution sequence can be achieved by explicitly changing the
execution sequence of an FFB. To indicate that which FFB’s had their execution
order changed, the execution number is shown in a black field (see also Original
Situation, page 342).

3 4
1 AND
AN A L
5
5
LMD
B [—r
6 7
2 3
AND AND
—{EN ENO A

AND

NOTE: Only one reference of an instance is allowed, e.g. the instance ".7" may only
be referenced once.

The position of FFBs only influences the execution sequence if more than one FFB
is linked to the same output of the "calling" FFB (see also Original Situation,
page 342).

In the first network, block positions . 4 and . 5 are switched. In this case (common
origins for both block inputs) the execution sequence of both blocks is switched as
well (processed from top to bottom).

344

35006144 07/2011

Function Block Language FBD

In the second network, block positions . 7 and . 8 are switched. In this case (different
origins for the block inputs) the execution sequence of the blocks is not switched
(processed in the order the block outputs are called).

.5

3 2
; AND
AND BB -
4
3
AND
A p—|
6 8
4 8
AND ANT
—Ew ENO — B
7
]
AND
1 A

35006144 07/2011 345

Function Block Language FBD

Loop Planning

Non-Permitted Loops

Configuring loops exclusively via links is not permitted since it is not possible to
clearly specify the signal flow (the output of one FFB is the input of the next FFB,
and the output of this one is the input of the first).

Non-permitted Loops via Links

5 .6

OR AND

IN1 —

i A

Generating Via an Actual Parameter

This type of logic must be resolved using feedback variables so that the signal flow
can be determined.

Feedback variables must be initialized. The initial value is used during the first
execution of the logic. Once they have been executed the initial value is replaced by
the actual value.

Pay attention to the two different types of execution sequences (number in brackets
after the instance name) for the two blocks.

Loop generated with an actual parameter: Type 1

OR AND

INL— — OUTL

Loop generated with an actual parameter: Type 2

5 6

-
-

OR AND

N1 — — ouT2 oOUT2 —

[—

346 35006144 07/2011

Ladder Diagram (LD)

12

Overview

This chapter describes the ladder diagram language LD which conforms to
IEC 611311.

What’s in this Chapter?
This chapter contains the following topics:

Topic Page
General Information about the LD Ladder Diagram Language 348
Contacts 351
Coils 352

Elementary Functions, Elementary Function Blocks, Derived Function Blocks 354
and Procedures (FFBs)

Control Elements 364
Operate Blocks and Compare Blocks 365
Links 367
Text Object 370
Edge Recognition 371
Execution Sequence and Signal Flow 380
Loop Planning 382
Change Execution Sequence 383

35006144 07/2011 347

Ladder Diagram (LD)

General Information about the LD Ladder Diagram Language

Introduction
This section describes the Ladder Diagram (LD) according to IEC 61131-3.
The structure of an LD section corresponds to a rung for relay switching.

The left power rail is located on the left-hand side of the LD editor. This left power
rail corresponds to the phase (L ladder) of a rung. With LD programming, in the
same way as in a rung, only the LD objects which are linked to a power supply, that
is to say connected to the left power rail, are "processed". The right power rail
corresponds to the neutral wire. However, all coils and FFB outputs are linked with
it directly or indirectly, and this creates a power flow.

A group of objects which are linked together one below the other, and have no links
to other objects (excluding the power rail), is called a network or a rung.

348 35006144 07/2011

Ladder Diagram (LD)

Representation of an LD Section

Representation:
%4 IX20 9 MX50 Nomnally Horizontal Boolean Link Coll o ax100
[] [| . I
L] {
%MX60
} I ™-Vertical Boolean Link
omal
™ Normnally
%QX100 NEXT Jum
lp | >'/ "
|
N Contact for detecting
positive transitions
Ty ol
Label (Jump target
o (Jump target)
NEXT:
EN Input ENO Output Inversion ST Expression
FFB Link
Variable AND / OR AND Error
D EN ENO i EN ENO ¥ EN ENO
N1 [— [y A<=B[— 1> Resultl
TRUE [>— %IX1.54 [— C=D [>—
%’ 1 [— 2alX1.5.5 [— / \
: / : Crossing
Literals Topological Link
Addresses
XOR Error2
———EN ENO
\ > Result2
) N4 [
Left Power Rail

Objects

/

Right Power Rail

The objects of the LD programming language help to divide a section into a number

of:
e Contacts (see page 351)
e Coils (see page 352)

e EFs and EFBs (Elementary Functions (see page 354) and Elementary Function

Blocks (see page 355))

35006144 07/2011

349

Ladder Diagram (LD)

DFBs (Derived Function Blocks (see page 356))

Procedures (see page 356)

Control Elements (see page 364) and

Operation and Comparison blocks (see page 365) that represent an extension to
IEC 61131-3

These objects can be connected with each other by means of:
e Links (see page 367) or
e Actual Parameters (see page 357) (FFBs only).

Comments regarding the section logic can be provided using text objects (see Text
Object, page 370).

Section Size
One LD section consists of a window containing a single page.
This page has a grid that divides the section into rows and columns.
A width of 11-64 columns and 17-2000 lines can be defined for LD sections.

The LD programming language is cell oriented, i.e. only one object can be placed in
each cell.

Processing Sequence

The processing sequence of the individual objects in an LD section is determined by
the data flow within the section. Networks connected to the left power rail are
processed from top to bottom (link to the left power rail). Networks that are
independent of each other within the section are processed according to their
position (from top to bottom) (see also Execution Sequence and Signal Flow,
page 380).

IEC Conformity

For a description of IEC conformity for the LD programming language, see IEC
Conformity (see page 639).

350 35006144 07/2011

Ladder Diagram (LD)

Contacts

Introduction

Contact Types

A contact is an LD element that transfers a status on the horizontal link to its right
side. This status is the result of a Boolean AND operation on the status of the
horizontal link on the left side with the status of the relevant Boolean actual

parameter.

A contact does not change the value of the relevant actual parameter.

Contacts take up one cell.

The following are permitted as actual parameters:

e Boolean variables

e Boolean constants

e Boolean addresses (topological addresses or symbolic addresses)

e ST expression (see page 499) delivering a Boolean result (e.g. VarA OR VarB)
ST expressions as actual parameters for contacts are a supplement to IEC
61131-3 and must be enabled explicitly

The following contacts are available:

Designation

Representation

Description

Normally open

.

In the case of normally open contacts, the status of the
left link is transferred to the right link if the status of the
relevant Boolean actual parameter (indicated with xxx)
is ON. Otherwise, the status of the right link is OFF.

Normally closed

e

In the case of normally closed contacts, the status of
the left link is transferred to the right link if the status of
the relevant Boolean actual parameter (indicated with
xxx) is OFF. Otherwise, the status of the right link is
OFF.

Contact for
detecting
positive
transitions

XXX

ek

With contacts for detection of positive transitions, the
right link for a program cycle is ON if a transfer of the
relevant actual parameter (labeled by xxx) goes from
OFF to ON and the status of the left link is ON at the
same time. Otherwise, the status of the right link is 0.
Also see Edge Recognition, page 371.

Contact for
detecting
negative
transitions

XXX

-

With contacts for detection of negative transitions, the
right link for a program cycle is ON if a transfer of the
relevant actual parameter (labeled by xxx) goes from
ON to OFF and the status of the left link is ON at the
same time. Otherwise, the status of the right link is 0.
Also see Edge Recognition, page 371.

35006144 07/2011

351

Ladder Diagram (LD)

Coils

Introduction

A coil is an LD element which transfers the status of the horizontal link on the left
side, unchanged, to the horizontal link on the right side. The status is stored in the
respective Boolean actual parameter.

Normally, coils follow contacts or FFBs, but they can also be followed by contacts.
Coils take up one cell.

The following are permitted as actual parameters:
e Boolean variables
e Boolean addresses (topological addresses or symbolic addresses)

Coil Types
The following coils are available:

Designation Representation | Description
Coll Xxx With coils, the status of the left link is transferred to the
relevant Boolean actual parameter (indicated by xxx)
4{ }7 and the right link.
negated coil - With negated coils, the status of the left link is copied
onto the right link. The inverted status of the left link is
4@}* copied to the relevant Boolean actual parameter
(indicated by xxx). If the left link is OFF, then the right
link will also be OFF and the relevant Boolean actual
parameter will be ON.
Coil for XXX With coils that detect positive transitions, the status of
detecting the left link is copied onto the right link. The relevant
positive 4{'3}7 actual parameter of data type EBOOL (indicated by
transitions xxx) is 1 for a program cycle, if a transition of the left
link from O to 1 is made.
Also see Edge Recognition, page 371.
Coil for XXX With coils that detect negative transitions, the status of
detecting the left link is copied onto the right link. The relevant
negative 4<N>* actual Boolean parameter (indicated by xxx) is 1 for a
transitions program cycle, if a transition of the left link from 1 to 0
is made.
Also see Edge Recognition, page 371.

352 35006144 07/2011

Ladder Diagram (LD)

Designation

Representation

Description

Set caoll

XXX

e

With set coils, the status of the left link is copied onto
the right link. The relevant Boolean actual parameter
(indicated by xxx) is set to ON if the left link has a
status of ON, otherwise it remains unchanged. The
relevant Boolean actual parameter can be reset
through the reset coil.

Also see Edge Recognition, page 371.

Reset coil

XXX

——

With reset coils, the status of the left link is copied onto
the right link. The relevant Boolean actual parameter
(indicated by xxx) is set to OFF if the left link has a
status of ON, otherwise it remains unchanged. The
relevant Boolean actual parameter can be set through
the set coil.

Also see Edge Recognition, page 371.

Stop coil

XXX

)

With halt coils, if the status of the left link is 1, the
program execution is stopped immediately. (With stop
coils the status of the left link is not copied to the right
link.)

Call coil

XXX

With call coils, the status of the left link is copied to the
right link. If the status of the left link is ON then the
respective sub-program (indicated by xxx) is called.
The subroutine to be called must be located in the
same task as the calling LD section. Subroutines can
also be called from within subroutines.

Subroutines are a supplement to IEC 61131-3 and
must be enabled explicitly.

In SFC action sections, call coils (subroutine calls) are
only allowed when Multitoken Operation is enabled.

35006144 07/2011

353

Ladder Diagram (LD)

Elementary Functions, Elementary Function Blocks, Derived Function Blocks
and Procedures (FFBs)

Introduction

FFB is the generic term for:

e Elementary Function (EF) (see page 354)

e Elementary Function Block (EFB) (see page 355)
e Derived Function Block (DFB) (see page 356)

o Procedure (see page 356)

FFBs occupy 1 to 3 columns (depending on the length of the formal parameter
names) and 2 to 33 lines (depending on the number of formal parameter rows).

Elementary Function

Functions have no internal states. If the input values are the same, the value on the
output is the same every time the function is called. For example, the addition of two
values always gives the same result.

An elementary function is represented graphically as a frame with inputs and one
output. The inputs are always represented on the left and the output is always on the
right of the frame.

The name of the function, i.e. the function type, is displayed in the center of the
frame.

The execution number (see page 380) for the function is shown to the right of the
function type.

The function counter is shown above the frame. The function counter is the
sequential number of the function within the current section. Function counters
cannot be modified.

Elementary Function

.1

DIV
EN ENO—
— IN1 OUT —
—IN2

With some elementary functions, the number of inputs can be increased.

354 35006144 07/2011

Ladder Diagram (LD)

Elementary Function Block

Elementary function blocks have internal states. If the input values are the same, the
value on the output can be different each time the function is called. e.g. for a
counter the value on the output is incremented.

An elementary function block is represented graphically as a frame with inputs and
outputs. The inputs are always represented on the left and the outputs always on the
right of the frame. The name of the function block, i.e. the function block type, is
displayed in the center of the frame. The instance name is displayed above the
frame.

Function blocks can have more than one output.

The name of the function block, i.e. the function block type, is displayed in the center
of the frame.

The execution number (see page 380) for the function block is shown to the right of
the function block type.

The instance name is displayed above the frame.

The instance name serves as a unique identification for the function block in a
project.

The instance name is created automatically and has the following structure: TYPE n
where TYPE is the function block type name: TYPE n

e TYPE = Function block type name

e n = sequential number of the function block in the project

NOTE: Prior to Unity Pro V6.0, the instance name was created automatically with
the structure FBI n, where FBI = Function Block Instance

This automatically generated name can be modified for clarification. The instance
name (max. 32 characters) must be unique throughout the project and is not case-
sensitive. The instance name must conform to general naming conventions.

NOTE: To conform to IEC61131-3, only letters are permitted as the first character
of the name. If you want to use a numeral as your first character however, this must
be enabled explicitly.

Elementary Function Block

CTU 1
1
CTU
EN ENO—
__l¢TUu Q—
—R
— RV CVi—

35006144 07/2011

355

Ladder Diagram (LD)

DFB

Derived function blocks (DFBs) have the same properties as elementary function

blocks. The user can create them in the programming languages FBD, LD, IL, and/or
ST.

The only difference to elementary function blocks is that the derived function block
is represented as a frame with double vertical lines.

Derived Function Block

DFB_EXAMP 1

1
DFB_EXAMP

EN ENOC |—

—|IN1 OUT1 |—

—| IN2

—| IN3 ouT?2 |—

Procedure
Procedures are functions viewed technically.

The only difference to elementary functions is that procedures can occupy more
than one output and they support data type VAR _IN OUT.

To the eye, procedures are no different than elementary functions.
Procedures are a supplement to IEC 61131-3 and must be enabled explicitly.
Procedure

1
PROC EXAMP

EN ENO —
— IN1 OUT!1 —
— IN2 ouT2

— 101 —— 101

356 35006144 07/2011

Ladder Diagram (LD)

Parameters

Inputs and outputs are required to transfer values to or from an FFB. These are
called formal parameters.

Objects are linked to formal parameters; these objects contain the current process
states. They are called actual parameters.

Formal and actual parameters:

Actual Parameters FBL 1

CcTu
EN ENO — Actual Parameters

Clock — CTU J— Output
%I1.1.3 —R

MUX(1,varl.var2) — py OV Current Value

Formal Parameters

At program runtime, the values from the process are transferred to the FFB via the
actual parameters and then output again after processing.

Only one object (actual parameter) of the following types may be linked to FFB
inputs:

e Contact

Variable

Address

Literal

ST Expression

ST expressions on FFB inputs are a supplement to IEC 61131-3 and must be
enabled explicitly.

e Link

The following combinations of objects (actual parameters) can be linked to FFB
outputs:
e one or more coils
e one or more contacts
e one variable
e a variable and one or more connections (but not for VAR_IN_OUT
(see page 363) outputs)
an address
e an address and one or more connections (but not for VAR_IN_OUT
(see page 363) outputs)
e one or more connections (but not for VAR_IN_OUT (see page 363) outputs)

35006144 07/2011

357

Ladder Diagram (LD)

The data type of the object to be linked must be the same as that of the FFB
input/output. If all actual parameters consist of literals, a suitable data type is
selected for the function block.

Exception: For generic FFB inputs/outputs with data type ANY BIT, it is possible to
link objects of data type INT or DINT (not UINT and UDINT).

This is a supplement to IEC 61131-3 and must be enabled explicitly.
Example:
Allowed:

AND
IntvVarl —IN1 OUT — IntVar3
IntvVarz — IN2
Not allowed:
.1
AND_WORD

IntVarl — IN1 OUT — IntVar3
Intvar:z N2

(In this case, AND INT must be used.)

Not all formal parameters have to be assigned an actual parameter. However, this
does not apply in the case of negated pins. These must always be assigned an
actual parameter. This is also the case with some formal parameter types. These
types are shown in the following table.

Table of formal parameter types:

Parameter type EDT STRING | ARRAY |ANY_ARRAY |IODDT |STRUCT |FB ANY
EFB: Input - + + + / + / +
DFB: Output - - + / / - / +
EFB: VAR_IN_OUT | + + + + + + / +
DFB: Input - + + + / + / +
DFB: VAR_IN_OUT | + + + + + + / +
EFB: Output - - + + + . / +
EF: Input - - + + + + + +
EF: VAR_IN_OUT |+ + + + + + / +
EF: Output - - - - - - / R
Procedure: Input - - + + + + + +

358

35006144 07/2011

Ladder Diagram (LD)

Parameter type EDT STRING | ARRAY |ANY_ARRAY |IODDT |STRUCT |FB ANY
Procedure: + + + + + + / +
VAR_IN_OUT

Procedure: Output | - - - - - - / +

+ Actual parameter required

- Actual parameter not required

!/ not applicable

FFBs that use actual parameters on the inputs that have not yet received any value
assignment, work with the initial values of these actual parameters.

If no value is allocated to a formal parameter, then the initial value will be used for
executing the function block. If no initial value has been defined then the default
value (0) is used.

If a formal parameter is not assigned a value and the function block/DFB is
instanced more than once, then the subsequent instances are run with the old value.

Public Variables
In addition to inputs/outputs, some function blocks also provide public variables.

These variables transfer statistical values (values that are not influenced by the
process) to the function block. They are used for setting parameters for the function
block.

Public variables are a supplement to IEC 61131-3.
The assignment of values to public variables is made using their initial values.

Public variables are read via the instance name of the function block and the names
of the public variables.

Example:
FEI_I
b_acT (Th.e function block has the public
variables AREA_NE and OP_CTRL.)
—ED ERR[—
— DTIMEL ACT —
—|DTIMEA
—TRIGR
— UNLOCK
—{REACT
Instance Name Public Variable
\ 1
1
AND
FBI_1.0P_CTRL —IN1 QUT — var3

Vard —IN2

35006144 07/2011 359

Ladder Diagram (LD)

Private Variables

In addition to inputs, outputs and public variables, some function blocks also provide
private variables.

Like public variables, private variables are used to transfer statistical values (values
that are not influenced by the process) to the function block.

Private variables can not be accessed by user program. These type of variables can
only be accessed by the animation table.

NOTE: Nested DFBs are declared as private variables of the parent DFB. So their
variables are also not accessible through programming, but trough the animation
table.

Private variables are a supplement to IEC 61131-3.

Programming Notes

Attention should be paid to the following programming notes:

e FFBs will only be processed when they are directly or indirectly connected to the
left bus bar.

o |f the FFB will be conditionally executed, the EN input may be pre-linked through
contacts or other FFBs (also see EN and ENO (see page 361)).

e Boolean inputs and outputs can be inverted.

Special conditions apply when using VAR_IN_OUT variables (see page 363).

e Function block/DFB instances can be called multiple times (also see).Multiple
Function Block Instance Call (see page 360)

Multiple Function Block Instance Call

Function block/DFB instances can be called more than once; other than instances
from communication EFBs and function blocks/DFBs with an ANY output but no ANY
input: these can only be called once.

Calling the same function block/DFB instance more than once makes sense, for

example, in the following cases:

e [f the function block/DFB has no internal value or it is not required for further
processing.

In this case, memory is saved by calling the same function block/DFB instance
more than once since the code for the function block/DFB is only loaded once.
The function block/DFB is then handled like a "Function".

e [f the function block/DFB has an internal value and this is supposed to influence
various program segments, for example, the value of a counter should be
increased in different parts of the program.

In this case, calling the same function block/DFB means that temporary results
do not have to be saved for further processing in another part of the program.

360

35006144 07/2011

Ladder Diagram (LD)

EN and ENO

One EN input and one ENO output can be used in all FFBs.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms defined by
the FFB are not executed and ENO is set to "0".

If the value of EN is equal to "1" when the FFB is invoked, the algorithms defined by
the FFB will be executed. After the algorithms have been executed successfully, the
value of ENO is set to "1". If an error occurs when executing these algorithms, ENO
is set to "0".

If the EN pin is not assigned a value, when the FFB is invoked, the algorithm defined
by the FFB is executed (same as if EN equals to "1"), Please refer to Maintain output
links on disabled EF (see Unity Pro, Operating Modes).

If ENO is set to "0" (caused by EN=0 or an error during execution):
e Function blocks
e EN/ENO handling with function blocks that (only) have one link as an output
parameter:

FUNCBLOCK 1

FUNCBLOCK _2

—EN ENO— —EN ENO
—IN1 ouT IN1 ouT
—IN2 —IN2

If EN of FUNCBLOCK 1 is set to "0", the link on output OUT of FUNCBLOCK 1
maintains the old status it had during the last correctly executed cycle.

e EN/ENO handling with function blocks that have one variable and one link as
output parameters:

FUNCBLOCK 1

FUNCBLOCK _2

—EN ENO— —EN ENO
—INI1 OUT — OUT1 —IN1 ouT
—IN2 —IN2

If EN of FUNCBLOCK 1 is set to "0", the link on output OUT of FUNCBLOCK 1
maintains the old status it had during the last correctly executed cycle. The
OUT1 variable on the same pin either retains its previous status or can be
changed externally without influencing the link. The variable and the link are
saved independently of each other.

e Functions/Procedures
As defined in IEC61131-3, the outputs from deactivated functions (EN input set to
"0") are undefined. (The same applies to procedures.)
Here nevertheless an explanation of the output statuses in this case:

35006144 07/2011

361

Ladder Diagram (LD)

e EN/ENO handling with function/procedure blocks that (only) have one link as

an output parameter:

—EN
—INL
—IN2

FUNC PROC 1
ENO
OUT

EN
INI
IN2

FUNC PROC 2
ENO
ouT

If EN of FUNC_PROC 1 is set to "0", the value of the link on output OUT of
FUNC_PROC_1 depends on the project setting Maintain output links on
disabled EF available since Unity Pro 4.1.

If this project setting is set to “0”, the value of the link is set to “0”.

If this project setting is set to “1”, the link maintains the old value it had during
the last correctly executed cycle.

For detailed information, please refer to Maintain output links on disabled EF
(see Unity Pro, Operating Modes).

EN/ENO handling with function/procedure blocks that have one variable and
one link as output parameters:

FUNC _PROC 1 FUNC_PROC_2
—{EN ENO |— —EN ENO
—N1 OUT — OUT1 —IN1 ouT
—mn —{IN2

If EN of FUNC_PROC 1 is set to "0", the value of the link on output OUT of
FUNC_PROC_1 depends on the project setting Maintain output links on
disabled EF available since Unity Pro 4.1.

If this project setting is set to “0”, the value of the link is set to “0”.

If this project setting is set to “1”, the link maintains the old value it had during
the last correctly executed cycle.

For detailed information, please refer to Maintain output links on disabled EF
(see Unity Pro, Operating Modes).

The oUT1 variable on the same pin either retains its previous status or can be
changed externally without influencing the link. The variable and the link are
saved independently of each other.

The output behavior of the FFBs does not depend on whether the FFBs are invoked
without EN/ENO or with EN=1.

NOTE: For disabled function blocks (EN = 0) with an internal time function (e.g.
function block DELAY), time seems to keep running, since it is calculated with the
help of a system clock and is therefore independent of the program cycle and the
release of the block.

362

35006144 07/2011

Ladder Diagram (LD)

VAR_IN_OUT-Variable

FFBs are often used to read a variable at an input (input variables), to process it and
to output the altered values of the same variable (output variables).

This special type of input/output variable is also called a VAR IN OUT variable.

The link between input and output variables is represented by a line in the FFB.

VAR IN OUT variable

1

EXAMP1 !
EN ENO —
Inputl —IN1 OUTL — Outputl
Input2 —| IN2 OUT2 — Output2
Comb_IN OUT —{I01 —— 101 Comb_IN OUT

The following special features are to be noted when using FFBs with VAR IN OUT

variables.

e AllVAR IN OUT inputs must be assigned a variable.

e Via graphical links only VAR IN OUT outputs with VAR IN OUT inputs can be
connected.

e Only one graphical link can be connected to a VAR _IN OUT input/output.

e A combination of variable/address and graphical connections is not possible for
VAR IN_OUT outputs.

o No literals or constants can be connected to VAR _IN_ OUT inputs/outputs.

e No negations can be used on VAR _IN OUT inputs/outputs.

o Different variables/variable components can be connected to the VAR IN OUT

inputand the VAR _IN OUT output. In this case the value of the variables/variable
component on the input is copied to the at the output variables/variable
component.

35006144 07/2011

363

Ladder Diagram (LD)

Control Elements

Introduction

Control elements are used for executing jumps within an LD section and for
returning from a subroutine (SRx) or derived function block (DFB) to the main

program.

Control elements take up one cell.

Control Elements

The following control elements are available.

Designation

Representation

Description

Jump

NEXT

—>

When the status of the left link is 1, a jump is made to a label (in the current
section).

To generate an unconditional jump, the jump object must be placed directly on the
left power rail.

To generate a conditional jump, a jump object is placed at the end of a series of
contacts.

Label

LABEL:

Labels (jump targets) are indicated as text with a colon at the end.

This text is limited to 32 characters and must be unique within the entire section.
The text must conform to general naming conventions.

Jump labels can only be placed in the first cell directly on the power rail.

Note: Jump labels may not "cut through" networks, i.e. an assumed line from the
jump label to the right edge of the section may not be crossed by any object. This
also applies to Boolean links and FFB links.

Return

< RETURN >

RETURN objects can not be used in the main program.

e In a DFB, a RETURN object forces the return to the program which called the
DFB.
® The rest of the DFB section containing the RETURN object is not executed.
® The next sections of the DFB are not executed.

The program which called the DFB will be executed after return from the DFB.
If the DFB is called by another DFB, the calling DFB will be executed after
return.

® Ina SR, a RETURN object forces the return to the program which called the SR.
® The rest of the SR containing the RETURN object is not executed.

The program which called the SR will be executed after return from the SR.

364

35006144 07/2011

Ladder Diagram (LD)

Operate Blocks and Compare Blocks

Introduction

In addition to the objects defined in IEC 61131-3, there are several other blocks for
executing ST instructions (see page 499) and ST expressions (see page 499) and

for simple compare operations. These blocks are only available in the LD

programming language.

Objects
The following objects are available:

Designation | Representation Description

instructions:

® (RETURN,

® JUMP,
IF,

® CASE,

® FOR

e efc.)

Example:

Operate OPERATE When the status of the left link is 1, the ST instruction in the block
block is executed.
RES := <FCT_NAME>(... All ST instructions (see page 499) are allowed except the control

For operate blocks, the state of the left link is passed to the right
link (regardless of the result of the ST instruction).

A block can contain up to 4096 characters. If not all characters can
be displayed then the beginning of the character sequence will be
followed by suspension points (...).

An operate block takes up 1 line and 4 columns.

In1 In2 Qut1
—| }—|Inst|uclinm:}—{ Hlnstluulinne:‘*(}*

In the example, Instructionl is executed if In1=1.
Instruction?2 is executed if In1=1 and In2=1 (the result of
Instructionl has no meaning for the execution of
Instruction2). Outl becomes 1 if In1=1 and In2=1 (the
results of Instructionl and Instruction2 have no meaning
for the status of out1).

35006144 07/2011

365

Ladder Diagram (LD)

Designation

Representation

Description

Horizontal
Matching
Block

COMPARE
4 <obj1 OP obj2> F

Horizontal compare blocks used to execute a compare expression
(<, >, <=, >=, =, <>) in the ST programming language. (Note: The
same functionality is also possible using ST expressions

(see page 499).)

A compare block performs an AND of its left In-pin and the result
of its compare condition and assigns the result of this AND
unconditionally to its right Out-pin.

For example, if the state of the left link is 1 and the result of the
comparison is 1, the state of the right link is 1.

A horizontal matching block can contain up to 4096 characters. If
not all characters can be displayed then the beginning of the
character sequence will be followed by suspension points (...).

A horizontal matching block takes up 1 line and 2 columns.
Example:

In1 In2 QOut1
omparc; Compare2;
=

In the example, Comparel is executed if Inl=1. Compare? is
executed if In1=1, In2=1 a the result of Comparel=1. Outl
becomes 1 if In1=1, In2=1, the result of Comparel=1 and the
result of Compare2=1.

366

35006144 07/2011

Ladder Diagram (LD)

Links

Description
Links are connections between LD objects (contacts, coils and FFBs etc.).

There are 2 different types of links:
e Boolean Links
Boolean links consist of one or more segments linking Boolean objects (contacts,
coils) with one another.
There are different types of Boolean links as well:
e Horizontal Boolean Links
Horizontal Boolean links enable sequential contacts and coil switching.
e Vertical Boolean Links
Vertical Boolean links enable parallel contacts and coil switching.

e FFB Links
FFB connections are a combination of horizontal and vertical segments that
connect FFB inputs/outputs with other objects.

Connections:

Horizontal Boolean Link

1
1T
—

%

Vertical Boolean Link }

XXX X

—{ }—{/'—_EN ENG EN ENO—

o

FFB Link

XXX
EN ENO—

XK

—EN ENO —

35006144 07/2011 367

Ladder Diagram (LD)

General Programming Notes

Attention should be paid to the following general programming notes:

e The data types of the inputs/outputs to be linked must be the same.

o Links between parameters with variable lengths (e.g. ANY ARRAY INT) are not
allowed.

e Several links can be connected with one output (right-hand side of one contact,
one coil or one FFB output). However, only one link can be connected with an
input (left-hand side of one contact, one coil or one FFB output).

e Unconnected contacts, coils and FFB inputs are specified as "0" by default.

e Links may not be used to create loops since the sequence of execution in this
case cannot be clearly determined in the section. Loops must be created using
actual parameters (see Non-Permitted Loops, page 382).

Notes on Programming Boolean Links

Notes on Programming Boolean Links:

e Overlapping Boolean links with other objects is not permitted.

e The signal flow (power flow) is from left to right for Boolean links. Therefore,
backwards links are not allowed.

e If two Boolean links are crossed, the links are connected automatically. Since
crossing Boolean links is not possible, links are not indicated in any special way.

Notes on Programming FFB Links

Notes on Programming FFB Links:

e At least one side of an FFB link must be connected with an FFB input or output.

e To differentiate them from Boolean links, FFB links are shown with a doubly thick
line.

e The signal flow (power flow) in FFB links is from the FFB output to the FFB input,
no matter which direction they are made in. Therefore, backwards links are
allowed.

e Only FFB inputs and FFB outputs may be linked to one-another. Linking more
than one FFB outputs together is not possible. That means that no OR
connection is possible in LD using FFB links.

e Overlapping FFB links with other objects is permitted.

e Crossing FFB links is also permitted. Crossed links are indicated by a "broken"
link.

AND OR.
AND OR

368 35006144 07/2011

Ladder Diagram (LD)

e Connection points between more FFB links are shown with a filled circle.

OR

AND

COR

e To avoid links crossing each other, FFB links can also be represented in the form
of connectors.
The source and target for the FFB connection are labeled with a name that is
unique within the section.
The connector name has the following structure depending on the type of source
object for the connection:
e For functions: "Function counter/formal parameter" for the source of the

connection
3 4
1 2
AND AND
— 1 OUT — 3C0T == — I CUT —
—{INz2 == 300T — IN2

e For function blocks: "Instance name/formal parameter" for the source of the

connection
3 4
1 2
TCH AND
— Iy CUT — FHE_200T == — I CUT —
—PT ETr— == FE_200T — 1M2

e For contacts: "OUT1_sequential number"

OOT1_3 == - T —

== QLT 3—|IN2

Vertical Links
The "Vertical Link" is special. The vertical link serves as a logical OR. With this form
of the OR link, 32 inputs (contacts) and 64 outputs (coils, links) are possible.

35006144 07/2011 369

Ladder Diagram (LD)

Text Object

Introduction

Text can be positioned as text objects in the Ladder Diagram (LD). The size of these
text objects depends on the length of the text. The size of the object, depending on
the size of the text, can be extended vertically and horizontally to fill further grid
units. Text objects may overlap with other objects.

370 35006144 07/2011

Ladder Diagram (LD)

Edge Recognition

Introduction

During the edge recognition, a bit is monitored during a transition from 0 -> 1
(positive edge) or from 1 -> 0 (negative edge).

For this, the value of the bit in the previous cycle is compared to the value of the bit
in the current cycle. In this case, not only the current value, but also the old value,
are needed.

Instead of a bit, 2 bits are therefore needed for edge recognition (current value and
old value).

Because the data type BOOL only offers one single bit (current value), there is
another data type for edge recognition, EBOOL (expanded BOOL). In addition to edge
recognition, the data type EBOOL provides an option for forcing. It must also be
saved whether forcing the bit is enabled or not.

The data type EBOOL saves the following data:

e the current value of the bit in Value bit

e the old value of the bit in History bit
(the content of the value bit is copied to the History bit at the beginning of each
cycle)

e Information whether forcing of the bit is enabled in Force-Bit
(0 = Forcing disabled, 1 = Forcing enabled)

Restrictions for EBOOL

A CAUTION

UNINTENDED EQUIPMENT OPERATION

To perform a good edge detection the $M must be updated at each task cycle.
When performing a unique writing, the edge will be infinite.

Failure to follow these instructions can result in injury or equipment damage.

Using an EBOOL variable for contacts to recognize positive (P) or negative (N) edges
or with an EF called RE or FE, you have to adhere to the restrictions described
below.

35006144 07/2011 371

Ladder Diagram (LD)

EBOOL with %M not written inside program

An EBOOL variable with a $M address, which is not written inside your program but
directly, for example by an animation table, an operator screen or an HMI, will not
work in the expected way. The edge is TRUE infinitely because the $Mis only written
one time.

NOTE: To avoid this issue the %M has to be written at the end of the task to update
the old value information.

The old value is only updated, when the %M bit is written, so if you write the bit only
one time, the edge detection will be infinite.

Old Value Current Value | Edge Detect Description

0 0 0 state 0 (before writing the bit)

0 1 1 Write 1 in the bit (e.g. by animation
table).

0 1 1 If you do not write again, the edge
remains infinitely.

1 1 0 Write 1 again in the bit, the old value
is updated and the edge detection is
setto 0.

EBOOL with %M written inside program

For an EBOOL variable with a $M address, which is written inside your program, you

have to adhere to the restrictions described below:

e Do not use the bit with a SET or RESET coil. In this case the old value is not
updated. So you can perform an infinite edge.

e Do not write the bit conditionally. A simple logic as
IF NOT $M1 THEN %M1 := TRUE; END_IF leads to an infinite edge,
because it is written only one time.

EBOOL with %l

For an EBOOL variable with a $I address you have to adhere to the restriction

described below:

o When using multitasking the test of $ T edge must be performed in the task where
it is updated. The use of the edge detection of a T scheduled in a task of higher
priority must be avoided.

Example: If you have a fast task, which updates a %1, do not use a edge detection
in the mast task. Depending on the scheduling you can detect the edge or not.

372 35006144 07/2011

Ladder Diagram (LD)

Recognizing Positive Edges

A contact to recognize positive edges is used to recognize positive edges. With this
contact, the right connection for a program cycle is 1 when the transition of the
associated actual parameter (2) is from 0 to 1 and, at the same time, the status of
the left connection is 1. Otherwise, the status of the right link is 0.

In the example, a positive edge of the variable 2 is supposed to be recognize and B
should therefore be set for a cycle.

A B
e (]
Anytime the value bit of A equals 1 and the history bit equals 0, B is set to 1 for a
cycle (cycle 1, 4, and 9).

A Value bit ‘ : ; " 5 -

A History Bit

\

B: Value bit

¥

Recognizing Negative Edges

A contact to recognize negative edges is used to recognize negative edges. With
this contact, the right connection for a program cycle is 1 when the transition of the
associated actual parameter (2) is from 1 to 0 and, at the same time, the status of
the left connection is 1. Otherwise, the status of the right link is 0.

In the example, a negative edge of the variable A is supposed to be recognize and
B should therefore be set for a cycle.

IS

35006144 07/2011 373

Ladder Diagram (LD)

Anytime the value bit of A equals 0 and the history bit equals 1, Bis setto 1 for a
cycle (cycle 2 and 8).

e | . | -
& History B m
1]_l

B: Walue bit

\J

Y

v

Forcing Bits

When forcing bits, the value of the variable determined by the logic will be
overwritten by the force value.

In the example, a negative edge of the variable A is supposed to be recognized and
B should therefore be set for a cycle.

A B
SL
Anytime the value bit or force bit of A equals 0 and the history bit equals 1, B is set
to 1 for a cycle (cycle 1 and 8).

m 8 8 8 6 8 0 B O 0O

A Value bit m ’T -
A History Bit ’_‘ ‘ .
B: Value bit m m

A

\

\

374 35006144 07/2011

Ladder Diagram (LD)

Using BOOL and EBOOL Variables
Edge recognition behavior using BOOL or EBOOL variables types can be different:
e When using a BOOL variable, the system manages the history by allowing edge

detection during the contact execution.
e When using an EBOOL variable, the history bit is updated during the coil

execution.
The following examples show the different behavior depending on the variable type.

Variable 2 is define as BOOL, whenever 2 is set to 1, $Mw1 is incremented by 1.

| | | OPERATE ——
P %MW1:=%MW1+1;

35006144 07/2011 375

Ladder Diagram (LD)

Variable B is defined as EBOOL, the behavior is different when compared with
variable A. While B is set to 1, $MW2 is incremented by 1 because the history bit is

not updated.

| | | OPERATE
P %MW2:=%MW2+1;

Variable C is defined as EBOOL, the behavior is identical than variable A. The history
bit is updated.

C
OPERATE
P %MW3:=%MW3+1;
C C
S
N
C
| |
| |
|
%MW3

376 35006144 07/2011

Ladder Diagram (LD)

Forcing of Coils Can Cause the Loss of Edge Recognition
Forcing of coils can cause the loss of edge recognition.

In the example, when A equals 1, B should equal 1, and with a rising edge from 2,
the coil B will be set for a cycle.

In this example, the variable B is first assigned to the coil, and then to the link to
recognize positive edges.

(-
e

m e @8 W e 8 n e o

A Walue bit

Y

B: Value bit

Y

B: Force-Bit

)

B: History Bit

Y

C: Value bit : : - : : - - : : _—

L

At the beginning of the second cycle, the value bit of B equals 0. When forcing B
within this cycle, the force bit and value bit are set to 1. While processing the first
line of the logic in the third cycle, the history bit of the coil (B) will also be set to 1.

35006144 07/2011 377

Ladder Diagram (LD)

Problem:

During edge recognition (comparison of the value bit and the history bit) in the
second line of the logic, no edge is recognized, because due to the updating, the
value bit and history bit on line 1 of B are always identical.

Solution:

In this example, the variable B is first assigned to the link to recognize positive edges
and then the coil.

e ()
O

moe o® ow e e N B 9

A Value bit -
B Value bit -
B Fome-Bit -
B: History Bit : -
C: Value bit | | | I ‘ | | | | -

At the beginning of the second cycle, the value bit of B equals 0. When forcing B
within this cycle, the force bit and value bit are set to 1. While processing the first
line of the logic in the third cycle, the history bit of the link (B) will remain set to 0.

Edge recognition recognizes the difference between value bits and history bit and
sets the coil (C) to 1 for one cycle.

Using Set Coil or Reset Coil Can Cause the Loss of Edge Recognition

Using set coil or reset coil can cause the loss of edge recognition with EBOOL
variables.

The variable above the set/reset coil (variable C in the example) is always affected
by the value of the left link.

If the left link is 1, the value bit (variable C in the example) is copied to the history bit
and the value bit is set to 1.

378

35006144 07/2011

Ladder Diagram (LD)

If the left link is 0, the value bit (variable C in the example) is copied to the history bit,
but the value bit is not changed.

This means that whatever value the left link has before the set or reset coil, the
history bit is always updated.

In the example, a positive edge of the variable C should be recognized and set D for

a cycle.
Code line Behavior in LD Corresponds to in ST
1 Original situation: ¢ = 0, History bit=0 IF A AND B
{ <S> END IF;
A=1,
B=1,
Cc =1, History bit=0
2 IF NOT (A) AND NOT (B)
A . ¢ THEN C := 0;
—/ / (R) ELSE C := C;
END IF;
A=1, N
B=1,
c =1, History =1
3 -

c D
{1

C =1, History =1

D = 0, as the value bit and history bit of C are
identical.

The rising edge of C, shown in code line 1, is
not recognized by the code in line 2, as this

forces the history bit to be updated.

(If the condition is FALSE, the present value of
C is again assigned to C, see ELSE statement
in code line 2 in ST example.)

35006144 07/2011

379

Ladder Diagram (LD)

Execution Sequence and Signal Flow

Execution Sequence of Networks

The following rules apply to network execution sequences:

Executing a section is completed network by network based on the object links
from above and below.

Links may not be used to create loops since the sequence of execution in this
case cannot be clearly determined. Loops must be created using actual
parameters (see Loop Planning, page 382).

The execution sequence of networks which are only linked by the left power rail,
is determined by the graphical sequence (from top to bottom) in which these are
connected to the left power rail. This does not apply if the sequence is influenced
by control elements.

Processing on a network is ended completely before the processing begins on
another network.

No element of a network is deemed to be processed until the status of all inputs
of this element have been processed.

Processing on a network is only ended if all outputs on this network have been
processed. This also applies if the network contains one or more control
elements.

Signal Flow within a Network
For signal flow within a network (rungs), the following rules apply:

The signal flow for Boolean links is:
e left to right with horizontal Boolean links and
e from top to bottom with vertical Boolean links.

The signal flow with FFB links is from the FFB output to the FFB input, regardless
of which direction they are made in.

An FFB is only processed if all elements (FFB outputs etc.) to which it's inputs are
linked are processed.

The execution sequence of FFBs that are linked with various outputs of the same
FFB runs from top to bottom.

The execution sequence of objects is not influenced by their positions within the
network.

The execution sequence for FFBs is represented as execution number by the
FFB.

380

35006144 07/2011

Ladder Diagram (LD)

Priorities
Priorities when defining the signal flow within a section:

Priority | Rule Description

1 Link Links have the highest priorities in defining the signal flow
within an LD section.

2 Network by Processing on a network is ended completely before the

Network processing begins on another network.

3 Output sequence | Outputs of the same function block or outputs to vertical
links are processed from top to bottom.

4 Rung by Rung Lowest priority. The execution sequence of networks which
are only linked by the left power rail, is determined by the
graphical sequence (from top to bottom) in which these are
connected to the left power rail. (Only applies if none of the
other rules apply).

Example

Example of the execution sequence of objects in an LD section:

22

| 10
— | INT_TO_BOOL,
10y] 6 3
A 5 —EN ENO—
ADD INT TC BOGL 1 T a 1)(b=
EN ENO ——EN ENO _{
Vard [>— — — ® | | s >7
@ | G -
Varb [—
P
s
e
21
9
ADD
EN ENO —
VarC [>—
VarD [

NOTE: The execution numbers for contacts and coils is not shown. They are only
shown in the graphic to provide a better overview.

35006144 07/2011 381

Ladder Diagram (LD)

Loop Planning

Non-Permitted Loops

Creating loops using links alone is not permitted because it is not possible to clearly
define the signal flow (the output of one FFB is the input of the next FFB, and the
output of this one is the input of the first again).

Non-permitted loops via links:

5 6
1 2
AND AND
— | EN ENO EN ENO [—

|— IN2 —

Generating Via an Actual Parameter

This type of logic must be generated using feedback variables so that the signal flow
can be determined.

Feedback variables must be initialized. The initial value is used during the first

execution of the logic. Once they have been executed the initial value is replaced by
the actual value.

Pay attention to the two different types of execution sequences (number in brackets
after the instance name) for the two blocks.

Loop generated with an actual parameter: Type 1

5 6
2
AND
— BN ENO EN ENO

N1—] — OUT1

OUT1— IN2 —|

Loop generated with an actual parameter: Type 2

AND AND
EN ENO[EN ENO|
™N1—] — oUTL OUT1 —

T IN2

382

35006144 07/2011

Ladder Diagram (LD)

Change Execution Sequence

Introduction

Original Situation

The order of execution in networks and the execution order of objects within a
network are defined by a number of rules (see page 380).

In some cases the execution order suggested by the system should be changed.

The procedure for defining/changing the execution sequence of networks is as
follows:

e Using Links Instead of Actual Parameters

o Network Positions

The procedure for defining/changing the execution sequence of networks is as
follows:
e Positioning of Objects

The following representation shows two networks for which the execution
sequences are only defined by their position within the section, without taking into
account that block 0.4/0.5 and 0.7/0. 8 require another execution sequence.

1

ADD ! J 4
—EN ENO ADD

w
=

ADD }b— e ENO —
EN ENO — A [—— —

ADD

EN ENO ADD

—EN ENO —

ol
R

ADD

EN ENO EN ENO[—

ADD
EN ENO—

gm

35006144 07/2011

383

Ladder Diagram (LD)

Link Instead of Actual Parameter

By using a link instead of a variable the two networks are run in the proper sequence
(see also Original Situation, page 383).

1

T

)

ATD
ENO ADD 7
3
ADD —EN ENO —
EN ENO — A [
ADD z 3
EN ENO |— ADD 8
L ENO |—
4
ADD 4+ ADD 3
EN ENO EN ENG|—
— | —)
8
ADD §
EN ENG |—

384

35006144 07/2011

Ladder Diagram (LD)

Network Positions

The correct execution sequence can be achieved by changing the position of the

networks in the section (see also Original Situation, page 383).

6

) I

7

1 2
ADD ADD
ENO EN ENO | —
— —= A
8
3
ADD
ENO —
—B
4 1 g
ADD 3
7
EN ENO P ADD
ADD — £ ENO
EN ENO |[— A D
5 5
ADD
g
EN ENO ADD
— e ENO
B [>—

35006144 07/2011

385

Ladder Diagram (LD)

Positioning of Objects

The position of objects can only have an influence on the execution order if several
inputs (left link of Contacts/Coils, FFB inputs) are linked with the same output of the
object "to be called" (right link of Contacts/Coils, FFB outputs) (see also Original
Situation, page 383).

Original situation:

3
ADD
| | 71 L
—{ | {1 EN ENO
— —a
2
4
ADD
EN ENO |[—
— I—=
C
| | r)
[[IS
D
3 4
11 12
ADD ADD
—{ }—{ ya ‘—EN ENO EN ENG —
— I—E
5
13
. ADD
EN ENO | —
14 -
ADD
 —r] ENO|— G
_{H%

In the first network, block positions 0.1 and 0. 2 are switched. In this case (common
origins for both block inputs) the execution sequence of both blocks is switched as
well (processed from top to bottom). The same applies when switching coils ¢ and
D in the second network.

386 35006144 07/2011

Ladder Diagram (LD)

In the third network, block positions 0. 4 and 0. 5 are switched. In this case (different
origins for the block inputs) the execution sequence of the blocks is not switched
(processed in the sequence that the block outputs are called in). The same applies
when switching coils G and H in the last network.

1

3

ADD
—{ } } Vi } EN ENO —

—] —a
2
4
ADD
EN ENO |—
— B
c
\ \ }7
| [IS
D
3
» 5
ADD 13
—{ }—{ /! l—EN ENO = ADD
—] EN ENO |—
| —E
4
é 12
ADD
ADD 14 —EN ENO —
T

——EN ENO|— &

-
1S

35006144 07/2011 387

Ladder Diagram (LD)

388 35006144 07/2011

SFC Sequence Language

13

Overview
This chapter describes the SFC sequence language which conforms to IEC 611311.

What'’s in this Chapter?
This chapter contains the following sections:

Section Topic Page
13.1 General Information about SFC Sequence Language 390
13.2 Steps and Macro Steps 396
13.3 Actions and Action Sections 404
134 Transitions and Transition Sections 410
13.5 Jump 415
13.6 Link 416
13.7 Branches and Merges 417
13.8 Text Objects 420
13.9 Single-Token 421
13.10 Multi-Token 432

35006144 07/2011 389

SFC Sequence Language

13.1 General Information about SFC Sequence
Language

Overview
This section contains a general overview of the SFC sequence language.

What’s in this Section?
This section contains the following topics:

Topic Page
General Information about SFC Sequence Language 391
Link Rules 395

390 35006144 07/2011

SFC Sequence Language

General Information about SFC Sequence Language

Introduction

The sequence language SFC (Sequential Function Chart), which conforms to
IEC 61131-3, is described in this section.

Structure of a Sequence Controller

IEC conforming sequential control is created in Unity Pro from SFC sections (top
level), transition sections and action sections.

These SFC sections are only allowed in the Master Task of the project. SFC
sections cannot be used in other tasks or DFBs.

In Single Token, each SFC section contains exactly one SFC network (sequence).
In Multi-Token, an SFC section can contain one or more independent SFC networks.

Objects

An SFC section provides the following objects for creating a program:
Step (see page 397)

Macro Step (embedded sub-step) (see page 400)

Transition (transition condition) (see page 411)

Jump (see page 415)

Link (see page 416)

Alternative branch (see page 418)

Alternative junction (see page 418)

Parallel branch (see page 419)

Parallel junction (see page 419)

Comments regarding the section logic can be provided using text objects (related
topics Text Object, page 420).

35006144 07/2011 391

SFC Sequence Language

Representation of an SFC Section

Appearance:
—
Link - S_4_1
T Initial Step
T Transition condition
(Boolean Variable)
' T Parallel branch
S 42 S 45

Step (associated to an action)

/ T 4.3 T Alternative branch

%110, %I110.2 %I110.
Transition conditipn
(return value of a
transition section
S_4.3 S_ 4.6 S_ 4.9 S 4.7
A Jump

— ———
%104 Qfol10.F
\

Transition condition

Alternative junction

S 44 S 47 (Topological Boolean address)
T Parallel junction

I

1|
Transition condition (Boolean Literal)
MS_4_1
\ Macro Step

I

Return_Var

392 35006144 07/2011

SFC Sequence Language

Structure of an SFC Section

An SFC section is a "Status Machine", i.e. the status is created by the active step
and the transitions pass on the switch/change behavior. Steps and transitions are
linked to one another through directional links. Two steps can never be directly
linked and must always be separated by a transition. The active signal status
processes take place along the directional links and are triggered by switching a
transition. The direction of the chain process follows the directional links and runs
from the end of the preceding step to the top of the next step. Branches are
processed from left to right.

Every step has zero or more actions. A transition condition is necessary for every
transition.

The last transition in the chain is always connected to another step in the chain (via
a graphic link or jump symbol) to create a closed loop. Step chains are therefore
processed cyclically.

SFCCHART STATE Variable

When an SFC section is created, it is automatically assigned a variable of data type
SFCCHART_STATE. The variable that is created always has the name of the
respective SFC section.

This variable is used to assign the SFC control blocks to the SFC section to be
controlled.

Token Rule

The behavior of an SFC network is greatly affected by the number of tokens
selected, i.e. the number of active steps.

Explicit behavior is possible by using one token (single token). (Parallel branches
each with an active token [step] per branch as a single token). This corresponds to
a step chain as defined in IEC 61131-3).

A step chain with a number of maximum active steps (Multi Token) defined by the

user increases the degree of freedom. This reduces/eliminates the restrictions for

enforcing unambiguousness and non-blocking and must be guaranteed by the user.
Step chains with Multi Token do not conform to IEC 61131-3.

35006144 07/2011 393

SFC Sequence Language

Section Size

IEC Conformity

An SFC section consists of a single-page window.

Because of performance reasons, it is strongly recommended to create less than
100 SFC sections in a project (makro section are not counted).

The window has a logical grid of 200 lines and 32 columns.

Steps, transitions and jumps each require a cell.

Branches and links do not require their own cells, they are inserted in the
respective step or transition cell.

A maximum of 1024 steps can be placed per SFC section (including all their
macro sections).

A maximum of 100 steps can be active (Multi Token) per SFC section (including
all their macro sections) .

A maximum of 64 steps can be set manually at the same time per SFC section
(Multi Token).

A maximum of 20 actions can be assigned to each SFC step.

The nesting depth of macros, i.e. macro steps within macro steps, is to 8 levels.

For a description of the extent to which the SFC programming language conforms
to IEC, see IEC Conformity (see page 639).

394

35006144 07/2011

SFC Sequence Language

Link Rules

Link Rules

The table indicates which object outputs can be linked with which object inputs.

From object output of

To object input of

Step Transition
Alternative Branch
Parallel joint
Transition Step
Jump

Parallel Branch

Alternative joint

Alternative Branch Transition
Alternative joint Step
Jump

Parallel Branch

Alternative joint

Parallel Branch Step
Jump
Alternative joint (only with Multi-Token
(see page 432))

Parallel joint Transition

Alternative branch (only with Multitoken
(see page 432))

Alternative joint

35006144 07/2011

395

SFC Sequence Language

13.2 Steps and Macro Steps

Overview

This section describes the step and macro step objects of the SFC sequence

language.

What’s in this Section?

This section contains the following topics:

Topic Page
Step 397
Macro Steps and Macro Sections 400

396

35006144 07/2011

SFC Sequence Language

Step
Step Types
The following types of steps exist:
Type Representation | Description
"Normal" Step I A step becomes active when the previous step becomes inactive (a delay
S 1.2 that may be defined must pass) and the upstream transition is satisfied. A
step normally becomes inactive when a delay that may be defined passes
and the downstream transition is satisfied. For a parallel joint, all previous
steps must satisfy these conditions.
Zero or more actions belong to every step. Steps without action are known
as waiting steps.
Initial step I The initial status of a sequence string is characterized by the initial step.
S 1.1 After initializing the project or initializing the sequence string, the initial step
is active.
Initial steps are not normally assigned with any actions.
With Single-Token (Conforming with IEC 61131-3) only one initial step is
allowed per sequence.
With Multi-Token, a definable number (0 to 100) of initial steps are possible.
Macro Step I See Macro Step, page 400
MS_1_1
Input step see Input Step, page 400
MS_1_1_IN
Output step see Output Step, page 401
MS_1_1_0UT
Step Names
When creating a step, it is assigned with a suggested number. The suggested
number is structured as follows S i j, whereas i is the (internal) current number
of the section and 7 is the (internal) current step number in the current section.
You can change the suggested numbers to give you a better overview. Step names
(maximum 32 characters) must be unique over the entire project, i.e. no other step,
variable or section etc. may exist with the same name. There are no case
distinctions. The step name must correspond with the standardized name
conventions.
35006144 07/2011 397

SFC Sequence Language

Step Times

Each step can be assigned a minimum supervision time, a maximum supervision

time and a delay time:

o Minimum Supervision Time
The minimum supervision time sets the minimum time for which the step should
normally be active. If the step becomes inactive before this time has elapsed, an
error message is generated. In animation mode, the error is additionally identified
by a colored outline (yellow) around the step object.
If no minimum supervision time or a minimum supervision time of 0 is entered,
step supervision is not carried out.
The error status remains the same until the step becomes active again.

e Maximum Supervision Time
The maximum supervision time specifies the maximum time in which the step
should normally be active. If the step is still active after this time has elapsed, an
error message is generated. In animation mode, the error is additionally identified
by a colored outline (pink) around the step object.
If no maximum supervision time or a maximum supervision time of 0 is entered,
step supervision is not carried out.
The error status remains the same until the step becomes inactive.

o Delay Time
The delay time (step dwell time) sets the minimum time for which the step must
be active.

NOTE: The defined times apply for the step only, not for the allocated actions.
Individual times can be defined for these.

Setting the Step Times
The following formula is to be used for defining/determining these times:
Delay time< minimum supervision time< maximum supervision time

There are 2 ways to assign the defined values to a step:
e As a duration literal
e Use of the data structure SFCSTEP TIMES

SFCSTEP_TIMES Variable

Every step can be implicitly allocated a variable of data type SFCSTEP_TIMES. The
elements for this data structure can be read from and written to (read/write).

The data structure is handled the same as any other data structure, i.e. they can be
used in variable declarations and therefore accessing the entire data structure (e.g.
as FFB parameter) is possible.

398 35006144 07/2011

SFC Sequence Language

Structure of the Data Structure:

Element Name Data type Description
"VarName".delay TIME Delay Time
"VarName".min TIME Minimum Supervision Time
"VarName" .max TIME Maximum Supervision Time

SFCSTEP_STATE Variable

Every step is implicitly allocated a variable of data type SFCSTEP STATE. This step
variable has the name of the allocated step. The elements for this data structure can
only be read (read only).

You can see the SFCSTEP_STATE variables in the Data Editor. The Comment for
a SFCSTEP STATE variable is the comment entered as a property of the step itself.
Please refer to "Defining the properties of steps" (see Unity Pro, Operating Modes)
in the Unity Pro Operating Modes Manual.

The data structure cannot be used in variable declarations. Therefore, accessing the
entire data structure (e.g. as FFB parameter) is not possible.

Structure of the Data Structure:

Element Name

Data type

Description

"StepName".t

TIME

Current dwell time in the step. If the step is deactivated, the value of
this element is retained until the step is activated again.

"StepName".x

BOOL

1: Step active
0: Step inactive

"StepName".tminErr

BOOL

This element is a supplement to IEC 61131-3.

1: Underflow of minimum supervision time

0: No underflow of minimum supervision time

The element is automatically reset in the following cases:
e |f the step is activated again

e |f the sequence control is reset

e |f the command button Reset Time Error is activated

"StepName".tmaxErr

BOOL

This element is a supplement to IEC 61131-3.

1: Overflow of maximum supervision time

0: No overflow of maximum supervision time

The element is automatically reset in the following cases:
e |[f the step is exited

e |f the sequence control is reset

e |f the command button Reset Time Error is activated

35006144 07/2011

399

SFC Sequence Language

Macro Steps and Macro Sections

Macro Step

Input Step

Macro steps are used for calling macro sections and thus for hierarchical structuring
of sequential controls.

Representation of a Macro Step:

|
MS_1_1

Macro steps have the following properties:

e Macro steps can be positioned in "Sequence Control" sections and in macro
sections.

e The number of macro steps is unlimited.

e The nesting depth, i.e. macro steps within macro steps is to 8 levels.

e Each macro step is implicitly allocated a variable of data type SFCSTEP STATE,
see SFCSTEP_STATE Variable, page 399.

e Macro steps can be allocated a variable of data type SFCSTEP TIMES, see
SFCSTEP_TIMES Variable, page 398.

e Macro steps can NOT be allocated with actions.

e Each macro step can be replaced with the sequence string in the allocated macro
section.

Macro steps are a supplement to IEC 61131-3 and must be enabled explicitly.

Every macro section begins with an input step.
Representation of an input step:

MS_1_1_IN

Input steps have the following properties:

e Input steps are automatically placed in macro sections by the SFC editor.

e Only 1 individual input step is placed for each macro section.

e An input step cannot be deleted, copied or inserted manually.

e Each input step is implicitly allocated a variable of data type SFCSTEP_ STATE,
see SFCSTEP_STATE Variable, page 399.

e Input steps can be allocated a variable of data type SFCSTEP_TIMES, see
SFCSTEP_TIMES Variable, page 398.

e Input steps can be allocated actions.

400

35006144 07/2011

SFC Sequence Language

Output Step
Every macro section ends with an output step.
Representation of an output step:

1
MS_1_1_0UT|

Output steps have the following properties:

e Output steps are automatically placed in macro sections by the SFC editor.
Only 1 individual output step is placed for each macro section.

An output step cannot be deleted, copied or inserted manually.

Output steps can NOT be allocated with actions.

Output steps can only be assigned a delay time. Assigning supervision times is
not possible, see Step Times, page 398.

Macro Section

A macro section consists of a single sequence string having principally the same
elements as a "sequence control" section (e.g. steps, initial step[s], macro steps,
transitions, branches, joints, etc.).

Additionally, each macro section contains an input step at the beginning and an
output step at the end.

Each macro step can be replaced with the sequence string in the allocated macro
section.

Therefore, macro sections can contain 0, 1 or more initial steps, see also Step
Types, page 397.
e Single-Token
e 0 Initial steps
are used in macro sections, if there is already an initial step in the higher or
lower section.
e 1 Initial step
is used in macro sections, if there are no initial steps in the higher or lower
section.

o Multi-Token
A maximum of 100 initial steps can be placed per section (including all their
macro sections).

35006144 07/2011 401

SFC Sequence Language

Using macro sections:

Sequence control section Macro section Macro section
Ms_1_1 Ms_1.2
S 11 MS_1_1_IN MS 1.2 IN
L —— L
I
MS_1.1 S.1.6 MS_1.2 s 111

— I — —
S_1_3 5_1.7 S_1_9 MS_1 2 OUT
L ——
MS_1_1_OUT|

The name of the macro section is identical to the name of the macro step that it is
called from. If the name of the macro step is changed then the name of the
respective macro section is changed automatically.

A macro section can only be used once.

Macro Step Processing
Macro Step Processing:

Phase

Description

1

A macro step is activated if the previous transition condition is TRUE.
At the same time, the input step in the macro section is activated.

The sequence string of the macro section is processed.
The macro step remains active as long as at least one step in the macro section
is active.

If the output step of the macro section is active then the transitions following the
macro step are enabled.

The macro step becomes inactive when the output step is activated which
causes the following transition conditions to be enabled and the transition
condition to be TRUE. At the same time, the output step in the macro section is
activated.

402

35006144 07/2011

SFC Sequence Language

Step Names

When creating a step, it is assigned with a suggested number.

Meanings of the Suggested Numbers:

Step Type

Suggested Number

Description

Macro Step

MS i j

MS = Macro Step

i = (internal) current (sequential) number of the current section

j = (internal) current (sequential) macro step number of the current
section

Input step

MS k 1 IN

MS = Macro Step

k = (internal) current (sequential) number of the calling section

1 = (internal) current (sequential) macro step number of the calling
section

IN = Input Step

Output step

Ms k 1 oUT

MS = Macro Step

k = (internal) current (sequential) number of the calling section

1 = (internal) current (sequential) macro step number of the calling
section

oUT = Output Step

"Normal" Step
(within a macro
section)

S km

S = Step
k = (internal) current (sequential) number of the calling section
m = (internal) current (sequential) step number of the calling section

You can change the suggested numbers to give you a better overview. Step names
(maximum 28 characters for macro step names, maximum 32 characters for step
names) must be unique within the entire project, i.e. no other step, variable or
section (with the exception of the name of the macro section assigned to the macro
step) etc. may exist with the same name. There are no case distinctions. The step
name must correspond with the standardized name conventions.

If the name of the macro step is changed then the name of the respective macro
section and the steps within it are changed automatically.

For example If MS_1 1 is renamed to MyStep then the step names in the macro
section are renamed to MyStep IN, MyStep 1, ..., MyStep n, MyStep OUT.

35006144 07/2011

403

SFC Sequence Language

13.3 Actions and Action Sections

Overview

This section describes the actions and action sections of the SFC sequence

language.

What’s in this Section?

This section contains the following topics:

Topic Page
Action 405
Action Section 407
Qualifier 408

404

35006144 07/2011

SFC Sequence Language

Action

Introduction

Action Variable

Actions have the following properties:

An action can be a Boolean variable (action variable (see page 405)) or a section
(action section (see page 407)) of programming language FBD, LD, IL or ST.

A step can be assigned none or several actions. A step which is assigned no
action has a waiting function, i.e. it waits until the assigned transition is
completed.

If more than one action is assigned to a step they are processed in the sequence
in which they are positioned in the action list field.

Exception: Independent of their position in the action list field, actions with the
qualifier (see page 408) p1 are always processed first and actions with the
qualifier PO are processed last.

The control of actions is expressed through the use of qualifiers (see page 408).
A maximum of 20 actions can be assigned to each step.

The action variable that is assigned to an action can also be used in actions from
other steps.

The action variable can also be used for reading or writing in any other section of
the project (multiple assignment).

Actions that are assigned an qualifier with duration can only be activated one
time.

Only Boolean variables/addresses or Boolean elements of multi-element
variables are allowed as action variables.

Actions have unique names.

The name of the action is either the name of the action variable or the name of
the action section.

The following are authorized as action variables:

Address of data type BOOL
An action can be assigned to a hardware output using an address. In this case,
the action can be used as enable signal for a transition, as input signal in another
section and as output signal for the hardware.
Simple variable or element of a multi-element variable of data type BOOL
The action can be used as an input signal with assistance from a variable in
another section.
e Unlocated Variable
With unlocated variables, the action can be used as enable signal for a
transition and as input signal in another section.
e |ocated Variable
With located variables the action can be used as an enabling signal for a
transition, as an input signal in another section and as an output signal for the
hardware.

35006144 07/2011

405

SFC Sequence Language

Action Names

If an address or a variable is used as an action then that name (e.g. %Q10.4,
Variable1) is used as the action name.

If an action section is used as an action then the section name is used as the action
name.

Action names (maximum 32 characters) must be unique over the entire project, i.e.
no other transition, variable or section etc. may exist with the same name. There are
no case distinctions. The action name must correspond with the standardized name
conventions.

406 35006144 07/2011

SFC Sequence Language

Action Section

Introduction

An action section can be created for every action. This is a section which contains
the logic of the action and it is automatically linked with the action.

Name of the Action Section

The name of the action section is always identical to the assigned action, see Action
Names, page 406.

Programming Languages
FBD, LD, IL and ST are possible as programming languages for action sections.

Properties of Action Sections

Action sections have the following properties:

e Action sections can have any amount of outputs.

e Subroutine calls are only possible in action sections when Multitoken operation is
enabled.
Note: The called subroutines are not affected by the controller of the sequence
string, i.e.
o the qualifier assigned to the called action section does not affect the

subroutine

e the subroutine also remains active when the called step is deactivated

e No diagnosis functions, diagnosis function blocks or diagnosis procedures may
be used in action sections.

e Action sections can have any amount of networks.

e Action sections belong to the SFC section in which they were defined and can be
assigned any number of actions within this SFC section (including all of their
macro sections).

e Action sections which are assigned an qualifier with duration, can only be
activated one time.

e Action sections belong to the SFC section that they were defined in. If the
respective SFC section is deleted then all action sections of this SFC section are
also deleted automatically.

e Action sections can be called exclusively from actions.

35006144 07/2011 407

SFC Sequence Language

Qualifier

Introduction

Each action that is linked to a step must have a qualifier which defines the control
for that action.

Available Qualifiers

The following qualifiers are available:

Qualifier Meaning Description

N /None Not Stored If the step is active then action is 1 and if the step is inactive the action is 0.

R Overriding The action, which is set in another step with the qualifier s, is reset. The activation of

reset any action can also be prevented.

Note: Qualifiers are automatically declared as unbuffered. This means that the value
is reset to 0 after stop and cold restart, e.g. when voltage is on/off. Should a buffered
output be required, please use the RS or SR function block from the standard block
library.

S Set (saved) The set action remains active, even when the associated step becomes inactive. The

action only becomes inactive, when it is reset in another step of the current SFC
section, using the qualifier R.

Note: If an action variable is modified outside of the current SFC section, it may no
longer reflect the action’s activation state.

Section_1 Section_2
. 4 IF S2.x= true THEN
- S Al A1l:= false;
END_IF;
S_1_2
S_1_3

Note: A maximum of 100 actions are permitted using the s qualifier per SFC Section.

408

35006144 07/2011

SFC Sequence Language

Qualifier

Meaning

Description

L

Time limited

If the step is active, the action is also active. After the process of the time duration,
defined manually for the action, the action returns to 0, even if the step is still active.
The action also becomes 0 if the step is inactive.

Note: For this qualifier, an additional duration of data type TIME must be defined.

Delayed

If the step is active, the internal timer is started and the action becomes 1 after the
process of the time duration, which was defined manually for the action. If the step
becomes inactive after that, the action becomes inactive as well. If the step becomes
inactive before the internal time has elapsed then the action does not become active.
Note: For this qualifier, an additional duration of data type TIME must be defined.

Pulse

If the step becomes active, the action becomes 1 and this remains for one program
cycle, independent of whether or not the step remains active.

DS

Delayed and
saved

If the step becomes active, the internal timer is started and the action becomes active
after the process of the manually defined time duration. The action first becomes
inactive again when qualifier R is used for a reset in another step. If the step becomes
inactive before the internal time has elapsed then the action does not become active.
Note: For this qualifier, an additional duration of data type TIME must be defined.

Pl

Pulse (rising
edge)

If the step becomes active (0->1-edge), the action becomes 1 and this remains for
one program cycle, independent of whether or not the step remains active.

Note: Independent of their position in the action list field, actions with the qualifier p1
are always processed first. More information can be found in the Action

(see page 405) of the SFC sequence language.

PO

Pulse (falling
edge)

If the step becomes inactive (1->0-edge), the action becomes 1 and this remains for
one program cycle.

Note: Independent of their position in the action list field, actions with the qualifier PO
are always processed last. More information can be found in the Action

(see page 405) of the SFC sequence language.

35006144 07/2011

409

SFC Sequence Language

13.4 Transitions and Transition Sections

Overview

This section describes the transition objects and transition sections of the SFC

sequence language.

What’s in this Section?

This section contains the following topics:

Topic Page
Transition 411
Transition Section 413

410

35006144 07/2011

SFC Sequence Language

Transition

Introduction

A transition provides the condition through which the checks of one or more pre-
transition steps pass on one or more consecutive steps along the corresponding
link.

Transition Condition

Transition Name

Every transition is allocated with a transition condition of data type BOOL.

The following are authorized as transaction conditions:
e an address (input or output)

e avariable (input or output)

e a Literal or

e a Transition Section (see page 413)

The type of transition condition determines the position of the name.

Transition Condition Position of the Name
® Address
e Variable
Trans_Yariable
e Literal

]r

® Transition Section Y

If an address or a variable is used as a transition condition then the transition name
is defined with that name (e.g. $110.4, variablel).

If a transition section is used as a transition condition then the section name is used
as the transition name.

Transition names (maximum 32 characters) must be unique over the entire project,
i.e. no other transition, variable or section (with the exception of the assigned
transition section) etc., may exist with the same name. There are no case
distinctions. The transition name must correspond with the standardized name
conventions.

35006144 07/2011

411

SFC Sequence Language

Enabling a Transition
A transition is enabled if the steps immediately preceding it are active. Transitions
whose immediately preceding steps are not active are not normally analyzed.

NOTE: If no transition condition is defined, the transition will never be active.

Triggering a Transition

A transition is triggered when the transition is enabled and the associated transition
conditions are satisfied.

Triggering a transition leads to the disabling (resetting) of all immediately preceding
steps that are linked to the transition, followed by the activation of all immediately
following steps.

Trigger Time for a Transition
The transition trigger time (switching time) can theoretically be as short as possible,
but can never be zero. The transition trigger time lasts at least the duration of a
program cycle.

412 35006144 07/2011

SFC Sequence Language

Transition Section

Introduction

For every transition, a transition section can be created. This is a section containing
the logic of the transition condition and it is automatically linked with the transition.

Name of Transition Section

The name of the transition section is always identical to the assigned transition, see
Transition Name, page 411.

Programming Languages

FBD, LD, IL and ST are possible as programming languages for transition sections.
Suggested Networks for Transition Section:

Language | Suggested Network Description
FBD e The suggested network contains an AND block with 2 inputs for
o P which .the output is linked with a variable having the name of the
— o transition section.

The suggested block can either be linked or it can be deleted if
desired.

LD T The suggested network contains a coil which is linked with a

% variable having the name of the transition section.

The suggested coil can either be linked or it can be deleted if
desired.

IL - The suggested network is empty.
The content may only be created of Boolean logic. The assignment
of the logic result on the output (the transition variable) is done
automatically, i.e. the memory assignment ST is not allowed.
Example:
1D A
AND B

ST - The suggested network is empty.
The content may only be created of Boolean logic in the form of a
(nested) expression. The assignment of the logic result on the
output (the transition variable) is done automatically, i.e. the
instruction assignment : = is not allowed. The expression is not
terminated by a semicolon (;).
Example:
A AND B
or
A AND (WORD_TO BOOL (B))

35006144 07/2011 413

SFC Sequence Language

Properties of Transition Sections

Transition sections have the following properties:

e Transition sections only have one single output (transition variable), whose data

type is BOOL. The name of these variables are identical to the names of the

transition sections.

The transition variable can only be used once in written form.

The transition variable can be read in any position within the project.

Only functions can be used, function blocks or procedures cannot.

Only one coil may be used in LD.

There is only one network, i.e. all functions used are linked with each other either

directly or indirectly.

Transition sections can only be used once.

e Transition sections belong to the SFC section in which they were defined. If the
respective SFC section is deleted then all transition sections of this SFC section
are also deleted automatically.

e Transition sections can be called exclusively from transitions.

414 35006144 07/2011

SFC Sequence Language

13.5 Jump

Jump

General
Jumps are used to indicate directional links that are not represented in their full
length.

Representation of a jump:

[/

Properties of Jumps

Jumps have the following properties:

e More than one jump may have the same target step.

e In accordance with IEC 61131-3, jumps into a parallel sequence (see page 419)
or out of a parallel sequence are not possible.
If it should also be used again then it must be enabled explicitly.

e With jumps, there is a difference between a Sequence Jump (see page 424) and
a Sequence Loop (see page 425).

e The jump target is indicated by the jump target symbol (>).

Jump Name

Jumps do not actually have their own names. Instead, the name of the target step
(jump target) is shown inside of the jump symbol.

35006144 07/2011 415

SFC Sequence Language

13.6 Link

Link

Introduction
Links connect steps and transitions, transitions and steps etc.

Properties of Links

Links have the following properties:
e Links between objects of the same type (step with step, transition with transition,
etc.) are not possible
e Links are possible between:
e unlinked object outputs and
e unlinked or linked step inputs
(i.e. multiple step inputs can be linked)

e Overlapping links and other SFC objects (step, transition, jump, etc.) is not
possible

e Overlapping links and links is possible

e Crossing links with links is possible and is indicated by a "broken" link:

e Links consist of vertical and horizontal segments

e Standard signal flow in a sequence string is from top to bottom. To create a loop
however, links can be made from below to a step above. This applies to links from
transitions, parallel branches or alternative joints to a step. In these cases, the
direction of the link is indicated with an arrow symbol:

e With links, there is a difference between a String Jump (see page 424) and a
String Loop (see page 425)

416 35006144 07/2011

SFC Sequence Langu

age

13.7 Branches and Merges

Overview

This section describes the branch and merge objects of the SFC sequence

language.

What’s in this Section?

This section contains the following topics:

Topic Page
Alternative Branches and Alternative Joints 418
Parallel Branch and Parallel Joint 419

35006144 07/2011

417

SFC Sequence Language

Alternative Branches and Alternative Joints

Introduction

The alternative branch offers the possibility to program branches conditionally in the
control flow of the SFC structure.

With alternative branches, as many transitions follow a step under the horizontal line
as there are different processes.

All alternative branches are run together into a single branch again with alternative
joints or Jumps (see page 415) where they are processed further.

Example of an Alternative Sequence
Example of an Alternative Sequence

S 5_10
I — I
a b c
S_5_11 S_5_ 12 S 513
I — —
d e f
S_5_14 S_5_16 S 515
—— —
g h
>
S_5_16

Properties of an Alternative Sequence
The properties of an alternative sequence mainly depend on whether the sequence
control is operating in single token or multi-token mode.

See
e Properties of an Alternative Sequence in Single Token (see page 423)
e Properties of an Alternative Sequence in Multi Token (see page 435)

418 35006144 07/2011

SFC Sequence Language

Parallel Branch and Parallel Joint

Introduction
With parallel branches, switching a single transition leads to a parallel activation of
more than one (maximum 32) step (branches). Execution is from left to right. After
this common activation, the individual branches are processed independently from
one another.
All parallel branches are grouped using a parallel joint according to IEC 61131-1.
The transition following a parallel joint is evaluated when all the immediately
preceding steps of the parallel joint have been set.
Combining a parallel branch with an alternative joint is only possible in Multi-Token
(see page 438) operation.

Example of a Parallel Sequence
Example of a Parallel Sequence

S_5_10
I
a
T T
S_5_11 S_5_12 S.5_13
I I I
b c d
S_5_14 S_5_15 S_5_16
I
I
e
S_5_17

Properties of a Parallel Sequence
see
e Properties of a Parallel Sequence in Single Token (see page 423)
e Properties of a Parallel Sequence in Multi-Token (see page 435)

35006144 07/2011 419

SFC Sequence Language

13.8 Text Objects

Text Object

Introduction

Text can be positioned in the form of text objects using SFC sequence language.
The size of these text objects depends on the length of the text. This text object is
at least the size of a cell and can be vertically and horizontally enlarged to other cells
according to the size of the text. Text objects can overlap with other SFC objects.

420 35006144 07/2011

SFC Sequence Language

13.9 Single-Token

Overview
This section describes the "Single-Token" operating mode for sequence controls.

What’s in this Section?
This section contains the following topics:

Topic Page
Execution Sequence Single-Token 422
Alternative String 423
Sequence Jumps and Sequence Loops 424
Parallel Strings 427
Asymmetric Parallel String Selection 429

35006144 07/2011 421

SFC Sequence Language

Execution Sequence Single-Token

Description

The following rules apply for single token:

e The original situation is defined by the initial step. The sequence string contains
1 initial step only.

e Only one step is ever active in the sequence string. The only exceptions are
parallel branches in which one step is active per branch.

e The active signal status processes take place along the directional links,
triggered by switching one or more transitions. The direction of the string process
follows the directional links and runs from the under side of the predecessor step
to the top side of the successive step.

e Atransition is enabled if the steps immediately preceding it are active. Transitions
whose immediately preceding steps are not active are not normally analyzed.

e A transition is triggered when the transition is enabled and the associated
transition conditions are satisfied.

e Triggering a transition leads to the disabling (resetting) of all immediately
preceding steps that are linked to the transition, followed by the activation of all
immediately following steps.

e If more than one transition condition in a row of sequential steps has been
satisfied then one step is processed per cycle.

e Steps cannot be activated or deactivated by other non-SFC sections.

The use of macro steps is possible.

e Only one branch is ever active in alternative branches. The branch to be run is
determined by the result of the transition conditions of the transitions that follow
the alternative branch. If a transition condition is satisfied, the remaining
transitions are no longer processed The branch with the satisfied transition is
activated. This gives rise to a left to right priority for branches. All alternative
branches are combined at the end by an alternative joint or jumps.

e With parallel branches, switching a single transition leads to the activation of
more than one step (branch). After this common activation, the individual
branches are processed independent of one another. All parallel branches are
combined at the end by a parallel joint. Jumps into a parallel branch or out of a
parallel branch are not possible.

422 35006144 07/2011

SFC Sequence Language

Alternative String

Alternati