Industrial Automation (Automação de Processos Industriais)

Discrete Event Systems

http://users.isr.ist.utl.pt/~jag/courses/api1718/api1718.html

Prof. Paulo Jorge Oliveira, original slides Prof. José Gaspar, rev. 2017/2018

. . .

Syllabus: Chap. 5 – CAD/CAM and CNC [1 week]

Chap. 6 – Discrete Event Systems [2 weeks] Discrete event systems modeling. Automata. Petri Nets: state, dynamics, and modeling. Extended and strict models. Subclasses of Petri nets.

Chap. 7 – Analysis of Discrete Event Systems [2 weeks]

Some pointers to Discrete Event Systems

History:http://prosys.changwon.ac.kr/docs/petrinet/1.htm

Tutorial:http://vita.bu.edu/cgc/MIDEDS/http://www.daimi.au.dk/PetriNets/

Analyzers,http://www.ppgia.pucpr.br/~maziero/petri/arp.html (in Portuguese)andhttp://wiki.daimi.au.dk:8000/cpntools/cpntools.wikiSimulators:http://www.informatik.hu-berlin.de/top/pnk/download.html

Bibliography:	* Discrete Event Systems - Modeling and Performance Analysis,
	Christos G. Cassandras, Aksen Associates, 1993.
	* Petri Net Theory and the Modeling of Systems,
	James L. Petersen, Prentice-Hall, 1981.
	* Petri Nets and GRAFCET: Tools for Modeling Discrete Event Systems
	R. David, H. Alla, Prentice-Hall, 1992

Figure 1.1. Simple modeling process.

Generic characterization of systems resorting to input / output relations

State equations:

 $\begin{cases} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = g(x(t), u(t), t) \end{cases}$

in continuous time (or in discrete time)

Examples?

Control: Open loop vs closed-loop (\Leftrightarrow the use of feedback)

Figure 1.17. Open-loop and closed-loop systems.

Advantages of feedback?

(to revisit during DES supervision study)

Figure 1.18. Flow system of Example 1.11 and closed-loop control model.

Discrete Event Systems: Examples

Set of events:

 $\mathbf{E}=\{\mathbf{N}, \mathbf{S}, \mathbf{E}, \mathbf{W}\}$

Figure 1.20. Random walk on a plane for Example 1.12.

Discrete Event Systems: Examples

Queueing systems

Set of events: E= {arrival, departure}

Discrete Event Systems: Examples

Computational Systems

Characteristics of systems with continuous variables

- 1. State space is continuous
- 2. The state transition mechanism is *time-driven*

Characteristics of systems with discrete events (DES)

- 1. State space is discrete
- 2. The state transition mechanism is *event-driven*

Intrinsic characteristic of discrete events systems: Polling is avoided!

Taxonomy of Systems

Figure 1.29. Major system classifications.

Levels of abstraction in the study of Discrete Event Systems

Language of a "chocolate selling machine":

(i) Waiting for a coin.
(ii) Received 1 euro coin. Chocolate A given. Go to (i).
(iii) Received 2 euro coin. Chocolate B given. Go to (i).

4 sensors:

Received 1 euro coin, Received 2 euro coin, Chocolate A given, Chocolate B given.

```
Languages

J

Timed languages

Stochastic timed languages
```

Systems Theory Objectives

- Modeling and Analysis
- Design and synthesis
- Control / Supervision
- Performance assessment and robustness
- Optimization

Applications of Discrete Event Systems

- Queueing systems
- Operating systems and computers
- Telecommunications networks
- Distributed databases
- Automation

Discrete Event Systems

Typical modeling methodologies

Automata

GRAFCET / SFC

Petri nets

Augmenting in

modeling capacity

&

complexity

Automata Theory and Languages

Genesis of computation theory

Definition: A **language** L, defined over the alphabet E is a set of *strings* of finite length with events from E.

Examples: $\mathbf{E} = \{\alpha, \beta, \gamma\}$

 $L_1 = \{\epsilon, \alpha \alpha, \alpha \beta, \gamma \beta \alpha\}$, where ϵ is the null/empty string $L_2 = \{all \ strings \ of \ length \ 3\}$

How to build a machine that "talks" a given language?

or

What language "talks" a system?

Operations / Properties of languages

 $E^* =$ Kleene-closure of E: set of all strings of finite length of E, including the null element ε .

Concatenation of L_a and L_b :

$$L_a L_b \coloneqq \left\{ s \in E^* : s = s_a s_b, s_a \in L_a, s_b \in L_b \right\}$$

Prefix-closure of $L \subseteq E^*$:

$$\overline{L} \coloneqq \left\{ s \in E^* : \exists_{t \in E^*} st \in L \right\}$$

Operations / Properties of languages

Example 2.1 (Operations on languages)

Let $E = \{a, b, g\}$, and consider the two languages $L_1 = \{\varepsilon, a, abb\}$ and $L_4 = \{g\}$. Neither L_1 nor L_4 are prefix-closed, since $ab \notin L_1$ and $\varepsilon \notin L_4$. Then:

$$L_{1}L_{4} = \{g, ag, abbg\}$$

$$\overline{L_{1}} = \{\varepsilon, a, ab, abb\}$$

$$\overline{L_{4}} = \{\varepsilon, g\}$$

$$L_{1}\overline{L_{4}} = \{\varepsilon, a, abb, g, ag, abbg\}$$

$$L_{4}^{*} = \{\varepsilon, g, gg, ggg, \ldots\}$$

$$L_{1}^{*} = \{\varepsilon, a, abb, aa, aabb, abba, abbabb, \ldots\}$$

[Cassandras99]

Automata Theory and Languages

Motivation: An *automaton* is a device capable of representing a language according to some rules.

Definition: A deterministic **automaton** is a 5-*tuple*

 (E, X, f, x_0, F)

where:

X

f

F

E - finite alphabet	(or possible events)
----------------------------	----------------------

- finite set of states
- state transition function $f: X \times E \rightarrow X$
- \mathbf{x}_0 initial state $\mathbf{x}_0 \subset \mathbf{X}$
 - set of final states or marked states $\mathbf{F} \subset \mathbf{E}$ [Cassandras93]

Word of caution: the word "state" is used here to mean "step" (Grafcet) or "place" (Petri Nets)

Example 1 of an automaton:

(E, X, f, x_0, F) E = { α, β, γ } X = {x, y, z} x_0 = x F = {x, z}

Figure 2.1. State transition diagram for Example 2.3.

$f(x, \alpha) = x$	$f(x, \beta) = z$	$f(x, \gamma) = z$
$f(y, \alpha) = x$	$f(y, \beta) = y$	$f(y, \gamma) = y$
$f(z, \alpha) = y$	$f(z, \beta) = z$	$f(z, \gamma) = y$

Example 2 of a stochastic automaton

- (E, X, f, x_0, F) $E = \{\alpha, \beta\}$ $X = \{0, 1\}$ $\mathbf{x}_0 = 0$ $\mathbf{x}_0 = \mathbf{1}$
- $\mathbf{F} = \{0\}$ Figure 2.4. State transition diagram for the nondeterministic automaton of Example 2.7.

 $\begin{array}{ll} f(0,\,\alpha) = \{0,\,1\} & f(0,\,\beta) = \{\} \\ f(1,\,\alpha) = \{\} & f(1,\,\beta) = 0 \end{array}$

Given an automaton

$$G = (E, X, f, x_0, F)$$

the Generated Language is defined as

$L(G) := \{ s \in E^* : f(x_0, s) \text{ is defined} \}$

Note: if f is always defined for all events then $L(G) = =E^*$

and the Marked Language is defined as

 $\boldsymbol{L}_{\boldsymbol{m}}(\mathbf{G}) := \{ \mathbf{s} \in \mathbf{E}^* : \mathbf{f}(\mathbf{x}_0, \mathbf{s}) \in \mathbf{F} \}$

Example 3: marked language of an automaton

 $L(G) := \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, baa, ...\}$

 $L_m(\mathbf{G}) := \{a, aa, ba, aaa, baa, bba, \ldots\}$

Concluding, in this example $L_m(G)$ means all strings with events *a* and *b*, ended by event *a*.

Automata equivalence:

The automata $G_1 \in G_2$ are equivalent if

$$L(G_1) = L(G_2)$$

and
$$L_m(G_1) = L_m(G_2)$$

Example 4: two equivalent automata

Objective: To validate a sequence of events

Figure 2.6. State transition diagrams for digit sequence detector in Example 2.9.

Deadlocks (*inter-blocagem*)

Example 5:

The state 5 is a *deadlock*.

The states *3* and *4* constitute a *livelock*.

How to find the *deadlocks* and the *livelocks*?

Need methodologies for the analysis of Discrete Event Systems Deadlock:

in general the following relations are verified

$$L_m(G) \subseteq \overline{L}_m(G) \subseteq L(G)$$

An automaton G has a deadlock if

$$\overline{L}_m(G) \subset L(G)$$

and is not blocked when

$$\overline{L}_m(G) = L(G)$$

Deadlock:

Example:

 $L_m(G) = \{ab, abgab, abgabgab, ...\}$ $L(G) = \{\varepsilon, a, ab, ag, aa, aab, \\abg, aaba, abga, ...\}$

 $(L_m(G) \subset L(G))$

The state 5 is a *deadlock*.

The states *3* and *4* constitute a *livelock*.

 $\overline{L}_m(G) \neq L(G)$

Alternative way to detect deadlocks:

Example:

The state 5 is a *deadlock*.

The states *3* and *4* constitute a *livelock*.

Timed Discrete Event Systems

Figure 3.10. The event scheduling scheme.

Examples of Automata Classes and Applications

Automaton Class	Recognizable language	Applications
Finite state machine (FSM), e.g. Moore machines or Mealy machines	Regular languages	Text processing, compilers, and hardware design
Pushdown automaton (PDA)	Context-free languages	Programming languages, artificial intelligence, (originally) study of the human languages
Turing machine (nondeterministic, deterministic, multitape,)	Recursively enumerable languages	Theory, complexity

Petri nets

Developed by Carl Adam Petri in his PhD thesis in 1962.

Definition: A marked Petri net is a *5-tuple*

(P, T, A, w, x_0)

where:

- set of places		
- set of transitions	S	
- set of arcs	$\mathbf{A} \subset (\mathbf{P} \mathbf{x} \mathbf{T}) \cup (\mathbf{T} \mathbf{x} \mathbf{P})$	
- weight function	$\mathbf{w}: \mathbf{A} \longrightarrow \mathbf{N}$	
- initial marking	$\mathbf{x}_0: \mathbf{P} \longrightarrow \mathbf{N}$	[Cassandras93]
	 set of transitions set of arcs weight function 	- set of transitions - set of arcs $A \subset (P \times T) \cup (T \times P)$ - weight function $w: A \rightarrow N$

Example of a Petri net

- (P, T, A, w, x_0)
- $P \!\!=\!\! \{p_1, p_2, p_3, p_4, p_5\}$

 $T = \{t_1, t_2, t_3, t_4\}$

$$A = \{(p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_3), (t_2, p_4), (t_3, p_5), (p_4, t_4), (p_5, t_4), (t_4, p_1)\}$$

$$\begin{split} & w(p_1, t_1) = 1, w(t_1, p_2) = 1, w(t_1, p_3) = 1, w(p_2, t_2) = 1 \\ & w(p_3, t_3) = 2, w(t_2, p_4) = 1, w(t_3, p_5) = 1, w(p_4, t_4) = 3 \\ & w(p_5, t_4) = 1, w(t_4, p_1) = 1 \end{split}$$

$$\mathbf{x}_0 = \{1, 0, 0, 2, 0\}$$

Petri net graph

Petri nets

Rules to follow (mandatory):

• Arcs (directed connections) connect places to transitions and connect transitions to places

A transition can have no places directly as inputs (source), *i.e. must exist arcs between transitions and places*A transition can have no places directly as outputs (sink), *i.e. must exist arcs between transitions and places*

• The same happens with the input and output transitions for places

Alternative definition of a Petri net

A marked Petri net is a 5-tuple

(**P**, **T**, **I**, **O**, μ_0)

where:

P T	set of placesset of transitions	
Ι	- transition input function	$I: T \to \mathbf{P}^{\infty}$
0	- transition output function	$\mathbf{O}:\mathbf{T}\to\mathbf{P}^\infty$
μ_0	- initial marking	$\mu_0:\mathbf{P}\longrightarrow\mathbf{N}$

[Peterson81]

Note: \mathbf{P}^{∞} = bag of places (is more general than a set of places)

Example of a Petri net and its graphical representation

Alternative definition

 $\begin{array}{ll} (P,\,T,\,I,\,O,\,\mu_0) \\ P{=}\{p_1,\,p_2,\,p_3,\,p_4,\,p_5\} \\ T{=}\{t_1,\,t_2,\,t_3,\,t_4\} \\ I(t_1){=}\{p_1\} & O(t_1){=}\{p_2,\,p_3\} \\ I(t_2){=}\{p_2\} & O(t_2){=}\{p_4\} \\ I(t_3){=}\{p_3,\,p_3\} & O(t_3){=}\{p_5\} \\ I(t_4){=}\{p_4,\,p_4,\,p_4,\,p_5\} & O(t_4){=}\{p_1\} \end{array}$

 $\mu_0 = \{1, 0, 0, 2, 0\}$

Petri nets: State, Markings, Weights of Arcs

The state of a Petri net is characterized by the marking of all places.

The set of all possible markings of a Petri net corresponds to its state space.

Nomenclature for the markings and cardinality (weight) of the arcs:

 $n = \#(p_i, I(t_j))$ $m = \#(p_i, O(t_j))$

How does the state of a Petri net evolve?

Execution Rules for Petri Nets (Dynamics of Petri nets)

A transition
$$t_j \in T$$
 is *enabled* if:
 $\forall p_i \in P: \quad \mu(p_i) \geq \#(p_i, I(t_j))$

A transition $t_j \in T$ may *fire* whenever enabled, resulting in a new marking given by:

$$\mu'(p_i) = \mu(p_i) - \#(p_i, I(t_j)) + \#(p_i, O(t_j))$$

 $#(p_i, I(t_j)) = multiplicity of the arc from p_i to t_j$ $#(p_i, O(t_j)) = multiplicity of the arc from t_j to p_i$ [Peterson81 §2.3]

Later this dynamic equation will be generalized using vector notation $\mu_{k+1} = \mu_k + (D^+ - D^-)q_k$

Petri nets

Example of evolution of a Petri net

Initial marking:

 $\mu_0 = \{1, 0, 1, 2, 0\}$

This discrete event system can not change state.

It is in a *deadlock!*

Petri nets: Conditions and Events (Places and Transitions)

Example: Machine waits until an order appears and then machines the ordered part and sends it out for delivery.

Conditions:

- The server is idle. a)
- A job arrives and waits to be processed **b**)
- The server is processing the job c)
- The job is complete d)

Events

- Job arrival 1)
- 2) 3) Server starts processing
- Server finishes processing
- The job is delivered 4)

Event	Pre- conditions	Pos- conditions
1	-	b
2	a, b	с
3	с	d, a
4	d	-

Discrete Event Systems Example of a simple automation system modeled using PNs

An automatic soda selling machine accepts 50c and \$1 coins and sells 2 types of products: SODA A, that costs \$1.50 and SODA B, that costs \$2.00.

Assume that the money return operation is omitted.

p₁: machine with \$0.00; t₁,t₃,t₅,t₇: coin of 50 c introduced; t₂,t₄,t₆: coin of \$1 introduced; t₉: SODA A sold, t₈: SODA B sold. Page 41

Petri nets: Modeling mechanisms

Conflict

Petri nets: Modeling mechanisms

Mutual Exclusion

Producer / Consumer

Place m represents the permission to enter the critical section

B= *buffer holding produced parts*

Petri nets: Modeling mechanisms

s Readers / t Writers

Switches [Baer 1973]

Possible to be implemented with restricted Petri nets.

Zero tests...

Infinity tests...

P-Timed nets

T-Timed nets

Stochastic nets

Stochastic switches

 $q_0 + q_1 + q_2 = 1$

Transitions with stochastic timings described by a stochastic variable with known pdf

Discrete Event Systems Sub-classes of Petri nets

State Machine:

Petri nets where each transition has exactly one input arc and one output arc.

Marked Graphs:

Petri nets where each place has lesser than or equal to one input arc and one output arc.

Discrete Event Systems Example of DES:

Manufacturing system composed by **2 machines** (M_1 and M_2) and a robotic **manipulator** (R). This takes the finished parts from machine M_1 and transports them to M_2 .

No buffers available on the machines. If R arrives near M_1 and the machine is busy, the part is rejected.

If R arrives near M_2 and the machine is busy, the manipulator must wait.

Machining time: $M_1=0.5s$; $M_2=1.5s$; $R_{M1 \rightarrow M2}=0.2s$; $R_{M2 \rightarrow M1}=0.1s$;

Discrete Event Systems Example of DES:

Define places

M_1	is characterized by places x ₁
M_2	is characterized by places x ₂
R	is characterized by places x ₃

$$x_1 = \{Idle, Busy, Waiting\}$$

 $x_2 = \{Idle, Busy\}$
 $x_3 = \{Idle, Carrying, Returning\}$

Example of arrival of parts:

$$a(t) = \begin{cases} 1 & in \{0.1, 0.7, 1.1, 1.6, 2.5\} \\ 0 & in & other time stamps \end{cases}$$

Discrete Event Systems Example of DES:

Definition of events:

- a_1 loads part in M_1 d_1 ends part processing in M_1
- r₁ loads manipulator
- r₂ unloads manipulator and loads M₂
- d_2 ends part processing in M_2
- r₃ manipulator at base

$$x_1 = \{Idle, Busy, Waiting\}$$

 $x_2 = \{Idle, Busy\}$
 $x_3 = \{Idle, Carrying, Returning\}$

Page 54

