Industrial Automation (Automação de Processos Industriais)

Discrete Event Systems

http://users.isr.ist.utl.pt/~jag/courses/api1213/api1213.html

Slides 2010/2011 Prof. Paulo Jorge Oliveira Rev. 2011-2013 Prof. José Gaspar . . .

. . .

Syllabus: Chap. 5 – CAD/CAM and CNC [1 week]

Chap. 6 – Discrete Event Systems [2 weeks]
Discrete event systems modeling. Automata.
Petri Nets: state, dynamics, and modeling.
Extended and strict models. Subclasses of Petri nets.

Chap. 7 – Analysis of Discrete Event Systems [2 weeks]

Some pointers to Discrete Event Systems

History: <u>http://prosys.changwon.ac.kr/docs/petrinet/1.htm</u>

Tutorial:http://vita.bu.edu/cgc/MIDEDS/http://www.daimi.au.dk/PetriNets/

Analyzers,	<u>http://www.ppgia.pucpr.br/~maziero/petri/arp.html</u> (in Portuguese)
and	http://wiki.daimi.au.dk:8000/cpntools/cpntools.wiki
Simulators:	http://www.informatik.hu-berlin.de/top/pnk/download.html

Bibliography:	* Discrete Event Systems - Modeling and Performance Analysis.
8	Christos G. Cassandras, Aksen Associates, 1993.
	* Petri Net Theory and the Modeling of Systems,
	James L. Petersen, Prentice-Hall, 1981.
	* Petri Nets and GRAFCET: Tools for Modeling Discrete Event Systems
	R. David, H. Alla, Prentice-Hall, 1992

Generic characterization of systems resorting to input / output relations

State equations:

 $\begin{cases} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = g(x(t), u(t), t) \end{cases}$

in continuous time (or in discrete time)

Examples?

Figure 1.1. Simple modeling process.

Open loop vs closed-loop (\Leftrightarrow the use of feedback)

Figure 1.17. Open-loop and closed-loop systems.

Advantages of feedback?

(to revisit during SEDs supervision study)

Figure 1.18. Flow system of Example 1.11 and closed-loop control model.

Discrete Event Systems: Examples

Set of events:

 $\mathbf{E} = \{\mathbf{N}, \mathbf{S}, \mathbf{E}, \mathbf{W}\}$

Figure 1.20. Random walk on a plane for Example 1.12.

Figure 1.21. Event-driven random walk on a plane.

Discrete Event Systems: Examples

Queueing systems

Set of events: E= {arrival, departure}

Discrete Event Systems: Examples

Computational Systems

Characteristics of systems with continuous variables

- 1.State space is continuous
- 2. The state transition mechanism is *time-driven*

Characteristics of systems with discrete events

1.State space is discrete

2. The state transition mechanism is *event-driven*

Polling is avoided!

Taxonomy of Systems

Levels of abstraction in the study of Discrete Event Systems

Systems' Theory Objectives

- Modeling and Analysis
- Design and synthesis
- Control / Supervision
- Performance assessment and robustness
- Optimization

Applications of Discrete Event Systems

- Queueing systems
- Operating systems and computers
- Telecommunications networks
- Distributed databases
- Automation

Discrete Event Systems

Typical modeling methodologies

Automata Theory and Languages

Genesis of computation theory

Definition: A **language** L, defined over the alphabet **E** is a set of *strings* of finite length with events from **E**.

Examples: $\mathbf{E} = \{ \alpha, \beta, \gamma \}$

 $L_1 = \{ \varepsilon, \alpha \alpha, \alpha \beta, \gamma \beta \alpha \}$ $L_2 = \{ all strings of length 3 \}$

How to build a machine that "talks" a given language?

or

What language "talks" a system?

Operations / Properties of languages

 $E^* =$ Kleene-closure of E: set of all strings of finite length of E, including the null element \mathcal{E} .

Concatenation of L_a **and** L_b :

$$L_a L_b \coloneqq \left\{ s \in E^* : s = s_a s_b, s_a \in L_a, s_b \in L_b \right\}$$

Prefix-closure of $L \subseteq E^*$ **:**

$$\overline{L} := \left\{ s \in E^* : \exists_{t \in E^*} \ st \in L \right\}$$

Operations / Properties of languages

Example 2.1 (Operations on languages)

Let $E = \{a, b, g\}$, and consider the two languages $L_1 = \{\varepsilon, a, abb\}$ and $L_4 = \{g\}$. Neither L_1 nor L_4 are prefix-closed, since $ab \notin L_1$ and $\varepsilon \notin L_4$. Then:

$$L_{1}L_{4} = \{g, ag, abbg\}$$

$$\overline{L_{1}} = \{\varepsilon, a, ab, abb\}$$

$$\overline{L_{4}} = \{\varepsilon, g\}$$

$$L_{1}\overline{L_{4}} = \{\varepsilon, a, abb, g, ag, abbg\}$$

$$L_{4}^{*} = \{\varepsilon, g, gg, ggg, \ldots\}$$

$$L_{1}^{*} = \{\varepsilon, a, abb, aa, aabb, abba, abbabb, \ldots\}$$

[Cassandras99]

Automata Theory and Languages

Motivation: An *automaton* is a device capable of representing a language according to some rules.

Definition: A deterministic **automaton** is a 5-*tuple*

(E, X, f, x_0, F)

where:

[Cassandras93]

Example of an automaton

(E, X, f, x_0 ,F) $\mathbf{E} = \{ \alpha, \beta, \gamma \}$ $\mathbf{X} = \{ x, y, z \}$ $\mathbf{x}_0 = x$ $\mathbf{F} = \{ x, z \}$

Figure 2.1. State transition diagram for Example 2.3.

$f(x, \alpha) = x$	$f(x, \beta) = z$	$f(x, \boldsymbol{\gamma}) = z$
$f(y, \alpha) = x$	$f(y, \beta) = y$	$f(y, \gamma) = y$
$f(z, \alpha) = y$	$f(z, \beta) = z$	$f(z, \boldsymbol{\gamma}) = y$

Example of a stochastic automata

- (E, X, f, x_0, F)
- $\mathbf{E} = \{ \alpha, \beta \}$

 $\mathbf{F} = \{0\}$ Figure 2.4. State transition diagram for the nondeterministic automaton of Example 2.7.

 $\begin{array}{ll} f(0, \ \alpha \) = \{0, \ 1\} & f(0, \ \beta \) = \{ \} \\ f(1, \ \alpha \) = \{ \} & f(1, \ \beta \) = 0 \end{array}$

Given an automaton

$$G=(E, X, f, x_0, F)$$

the Generated Language is defined as

$$L(G) := \{ s \in E^* : f(x_0, s) \text{ is defined} \}$$

Note: if f *is always defined then* $L(G) = =E^*$

and the Marked Language is defined as

$$L_m(G) := \{ s \in E^* : f(x_0, s) \in F \}$$

Example: marked language of an automaton

$L(G) := \{ \mathcal{E}, a, b, aa, ab, ba, bb, aaa, aab, baa, ... \}$ $L_m(G) := \{a, aa, ba, aaa, baa, bba, ... \}$

Concluding, in this example $L_m(G)$ means all strings with events *a* and *b*, ended by event *a*.

Automata equivalence:

The automata $G_1 \in G_2$ are equivalent if

Example of an automata:

Objective: To validate a sequence of events

Figure 2.6. State transition diagrams for digit sequence detector in Example 2.9.

Deadlocks (inter-blocagem)

Example:

The state 5 is a *deadlock*.

The states *3* and *4* constitutes a *livelock*.

How to find the *deadlocks* and the *livelocks*?

Need methodologies for the analysis of Discrete Event Systems Deadlock:

in general the following relations are verified

$$L_m(G) \subseteq \overline{L}_m(G) \subseteq L(G)$$

An automaton G has a deadlock if

$$\overline{L}_m(G) \subset L(G)$$

and is not blocked when

$$\overline{L}_m(G) = L(G)$$

Deadlock:

Example:

$$L_{m}(G) = \{ab, abgab, abgabgab, ...\}$$
$$L(G) = \{\varepsilon, a, ab, ag, aa, aab, \\abg, aaba, abga, ...\}$$

 $(L_m(G) \subset L(G))$

The state 5 is a *deadlock*.

The states *3* and *4* constitutes a *livelock*.

 $\overline{L}_m(G) \neq L(G)$

Alternative way to detect deadlocks:

Example:

The state 5 is a *deadlock*.

The states *3* and *4* constitutes a *livelock*.

Timed Discrete Event Systems

Figure 3.10. The event scheduling scheme.

Petri nets

Developed by Carl Adam Petri in his PhD thesis in 1962.

Definition: A marked Petri net is a *5-tuple*

 (P, T, A, w, x_0)

where:

P	- set of places	
Т	- set of transitions	
A	- set of arcs A C	$= (\mathbf{P} \mathbf{x} \mathbf{T}) \cup (\mathbf{T} \mathbf{x} \mathbf{P})$
W	- weight function	$\mathbf{w}: \mathbf{A} \rightarrow \mathbf{N}$
x ₀	- initial marking	$x_0: P \rightarrow N$

Example of a Petri net

 (P, T, A, w, x_0)

 $P = \{p_1, p_2, p_3, p_4, p_5\}$

 $T = \{t_1, t_2, t_3, t_4\}$

 $\begin{aligned} &A = \{ (p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_3), \\ &(t_2, p_4), (t_3, p_5), (p_4, t_4), (p_5, t_4), (t_4, p_1) \} \end{aligned}$

 $w(p_1, t_1)=1, w(t_1, p_2)=1, w(t_1, p_3)=1, w(p_2, t_2)=1$ $w(p_3, t_3)=2, w(t_2, p_4)=1, w(t_3, p_5)=1, w(p_4, t_4)=3$ $w(p_5, t_4)=1, w(t_4, p_1)=1$

 $\mathbf{x}_0 = \{1, 0, 0, 2, 0\}$

Example of a Petri net

- (P, T, A, w, x_0)
- $P = \{p_1, p_2, p_3, p_4, p_5\}$

 $T = \{t_1, t_2, t_3, t_4\}$

 $\begin{aligned} &A = \{ (p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_3), \\ &(t_2, p_4), (t_3, p_5), (p_4, t_4), (p_5, t_4), (t_4, p_1) \} \end{aligned}$

 $w(p_1, t_1)=1, w(t_1, p_2)=1, w(t_1, p_3)=1, w(p_2, t_2)=1$ $w(p_3, t_3)=2, w(t_2, p_4)=1, w(t_3, p_5)=1, w(p_4, t_4)=3$ $w(p_5, t_4)=1, w(t_4, p_1)=1$

 $\mathbf{x}_0 = \{1, 0, 0, 2, 0\}$

Petri nets

Rules to follow (mandatory):

- Arcs (directed connections) connect places to transitions and connect transitions to places
- A transition can have no places directly as inputs (source), *i.e. must exist arcs between transitions and places*
- A transition can have no places directly as outputs (sink), *i.e. must exist arcs between transitions and places*
- The same happens with the input and output transitions for places

Alternative definition of a Petri net

A marked Petri net is a 5-tuple

(**P**, **T**, **I**, **O**, μ_0)

where:

P- set of placesT- set of transitionsI- transition input functionI: $T \rightarrow P^{\infty}$ O- transition output function $O: T \rightarrow P^{\infty}$ μ_0 - initial marking $\mu_0: P \rightarrow N$

Note: \mathbf{P}^{∞} = bag of places

Example of a Petri net and its graphical representation

Alternative definition

 (P, T, I, O, μ_{0}) $P=\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\}$ $T=\{t_{1}, t_{2}, t_{3}, t_{4}\}$ $I(t_{1})=\{p_{1}\} \qquad O(t_{1})=\{p_{2}, p_{3}\}$ $I(t_{2})=\{p_{2}\} \qquad O(t_{2})=\{p_{4}\}$ $I(t_{3})=\{p_{3}, p_{3}\} \qquad O(t_{3})=\{p_{5}\}$ $I(t_{4})=\{p_{4}, p_{4}, p_{4}, p_{5}\} \qquad O(t_{4})=\{p_{1}\}$

 $\boldsymbol{\mu}_0 = \{1, 0, 0, 2, 0\}$

Petri nets

The state of a Petri net is characterized by the marking of all places.

The set of all possible markings of a Petri net corresponds to its state space.

How does the state of a Petri net evolve?

Execution Rules for Petri Nets (Dynamics of Petri nets)

A transition
$$t_j \in T$$
 is *enabled* if:
 $\forall p_i \in P: \quad \mu(p_i) \geq \#(p_i, I(t_j))$
A transition $t_j \in T$ may *fire* whenever enabled, resulting in a new marking given by:
 $\mu'(p_i) = \mu(p_i) - \#(p_i, I(t_j)) + \#(p_i, O(t_j))$

 $#(p_i, I(t_j)) = multiplicity of the arc from p_i to t_j$ $#(p_i, O(t_j)) = multiplicity of the arc from t_j to p_i$ [Peterson81 §2.3]

Page 37

IST / DEEC / API

 $\mu'(p_i) = \mu(p_i) - \#(p_i, I(t_j)) + \#(p_i, O(t_j))$

[*Peterson81* **§**2.3] Page 38

Petri nets

Example of evolution of a Petri net

Initial marking:

 $\boldsymbol{\mu}_0 = \{1, 0, 1, 2, 0\}$

This discrete event system can not change state.

It is in a *deadlock!*

Petri nets: Conditions and Events

Example: Machine waits until an order appears and then machines the ordered part and sends it out for delivery.

Conditions:

- a) The server is idle.
- b) A job arrives and waits to be processed
- c) The server is processing the job
- d) The job is complete

Events

- 1) Job arrival
- 2) Server starts processing
- 3) Server finishes processing
- 4) The job is delivered

Event	Pre-conditions	Pos-conditions
1	-	b
2	a, b	С
3	с	d, a
4	d	-

Petri nets: Modeling mechanisms

Petri nets: Modeling mechanisms

Mutual Exclusion

Producer / Consumer

Place m represents the permission to enter the critical section

Petri nets: Modeling mechanisms

Producer / Consumer with finite capacity

s Readers / t Writers

Discrete Event Systems

Example of a simple automation system modeled using PNs

An automatic soda selling machine accepts 50c and \$1 coins and sells 2 types of products: SODA A, that costs \$1.50 and SODA B, that costs \$2.00.

Assume that the money return operation is omitted.

Switches [Baer 1973]

Possible to be implemented with restricted Petri nets.

Zero tests...

Infinity tests...

P-Timed nets

T-Timed nets

Stochastic nets

Stochastic switches

 $q_0 + q_1 + q_2 = 1$

Transitions with stochastic timings described by a stochastic variable with known pdf

Discrete Event Systems Sub-classes of Petri nets

State Machine:

Petri nets where each transition has exactly one input arc and one output arc.

Marked Graphs:

Petri nets where each place has exactly one input arc and one output arc.

Discrete Event Systems Example of DES:

Manufacturing system composed by 2 machines (M_1 and M_2) and a robotic manipulator (R). This takes the finished parts from machine M_1 and transports them to M_2 .

No buffers available on the machines. If R arrives near M_1 and the machine is busy, the part is rejected.

If R arrives near M_2 and the machine is busy, the manipulator must wait.

Machining time: $M_1=0.5s$; $M_2=1.5s$; $R_{M1 \rightarrow M2}=0.2s$; $R_{M2 \rightarrow M1}=0.1s$;

Discrete Event Systems

Example of DES:

Variables of

$$\begin{array}{ccc} M_1 & x_1 \\ M_2 & x_2 \\ R & x_3 \end{array}$$

Example of arrival of parts:

$$a(t) = \begin{cases} 1 & in \{0.1, 0.7, 1.1, 1.6, 2.5 \\ 0 & in & other time stamps \end{cases}$$

x₁={Idle, Busy, Waiting} x₂={Idle, Busy} x₃={Idle, Carrying, Returning}

 r_3

Discrete Event Systems Example of DES:

Definition of events:

- a_1 loads part in M_1 d_1 ends part processing in M_1
- r₁ loads manipulator
- r_2 unloads manipulator and loads M_2
- d_2 ends part processing in M_2
 - manipulator at base

Discrete Event Systems

Discrete Event Systems

Example of DES:

Events:

- a_1 loads part in M_1
- d_1 ends part processing in M_1
- r₁- loads manipulator
- r_2 unloads manipulator and loads M_2

 M_1

R

 M_2

- d_2 ends part processing in M_2
- r₃- manipulator at base

