IST / DEEC / API MEEC 2011-2012

Industrial Automation

(Automação de Processos Industriais)

Discrete Event Systems

http://users.isr.ist.utl.pt/~jag/courses/api1112/api1112.html

Slides 2010/2011 Prof. Paulo Jorge Oliveira Rev. 2011/2012 Prof. José Gaspar IST / DEEC / API MEEC 2011-2012

Syllabus:

Chap. 5 – CAD/CAM and CNC [1 week]

• • •

Chap. 6 – Discrete Event Systems [2 weeks]

Discrete event systems modeling. Automata.

Petri Nets: state, dynamics, and modeling.

Extended and strict models. Subclasses of Petri nets.

• • •

Chap. 7 – Analysis of Discrete Event Systems [2 weeks]

Some pointers to Discrete Event Systems

History: http://prosys.changwon.ac.kr/docs/petrinet/1.htm

Tutorial: http://vita.bu.edu/cgc/MIDEDS/

http://www.daimi.au.dk/PetriNets/

Analyzers,

http://www.ppgia.pucpr.br/~maziero/petri/arp.html (in Portuguese)

and

http://wiki.daimi.au.dk:8000/cpntools/cpntools.wiki

Simulators: http://

http://www.informatik.hu-berlin.de/top/pnk/download.html

Bibliography:

- * Discrete Event Systems Modeling and Performance Analysis, Christos G. Cassandras, Aksen Associates, 1993.
- * Petri Net Theory and the Modeling of Systems,

James L. Petersen, Prentice-Hall, 1981.

* Petri Nets and GRAFCET: Tools for Modeling Discrete Event Systems

R. David, H. Alla, Prentice-Hall, 1992

Generic characterization of systems resorting to input / output relations

State equations:

$$\begin{cases} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = g(x(t), u(t), t) \end{cases}$$

in continuous time (or in discrete time)

Examples?

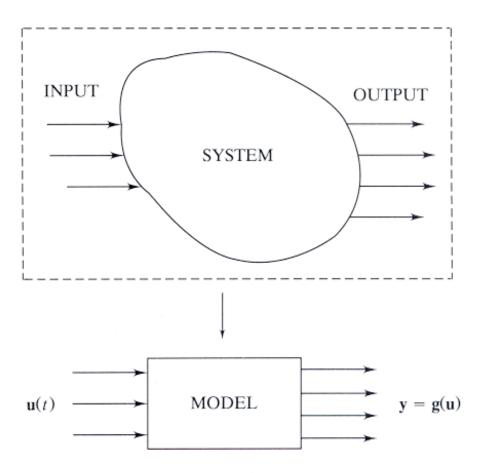


Figure 1.1. Simple modeling process.

Open loop vs closed-loop (the use of feedback)

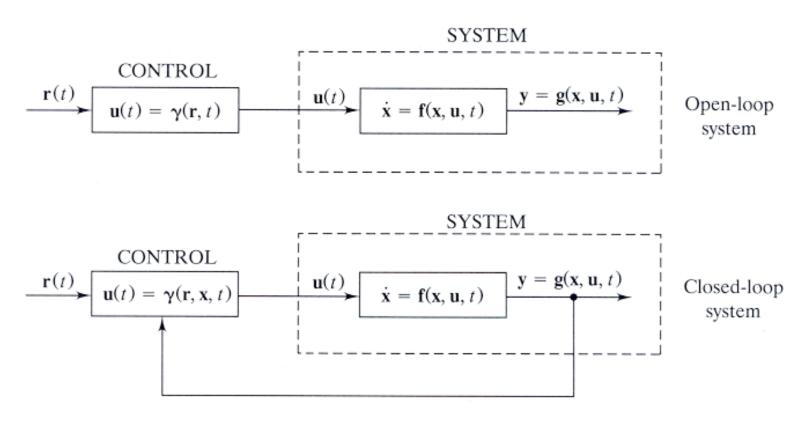
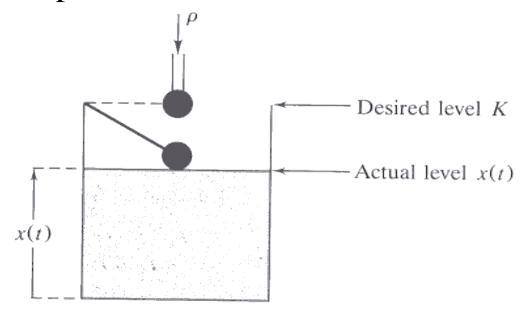


Figure 1.17. Open-loop and closed-loop systems.

Advantages of feedback?

(to revisit during SEDs supervision study)

Example of closed-loop with feedback



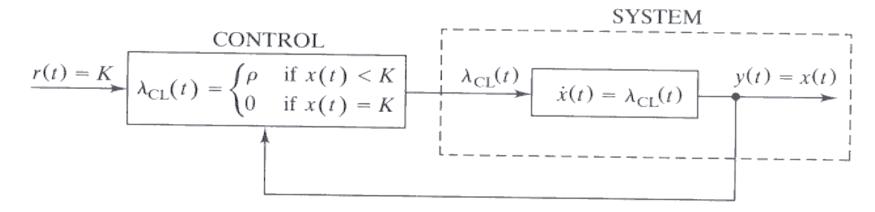


Figure 1.18. Flow system of Example 1.11 and closed-loop control model.

Discrete Event Systems: Examples

Set of events:

$$E=\{N, S, E, W\}$$

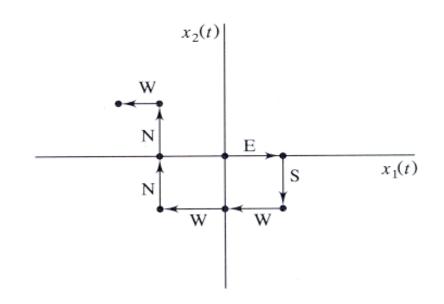


Figure 1.20. Random walk on a plane for Example 1.12.

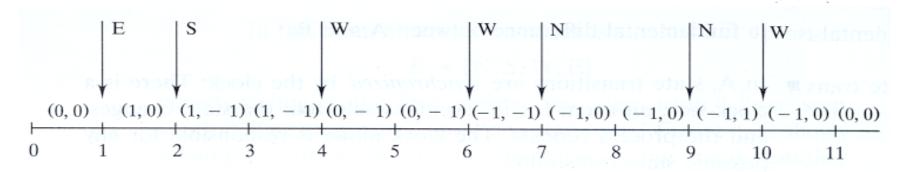
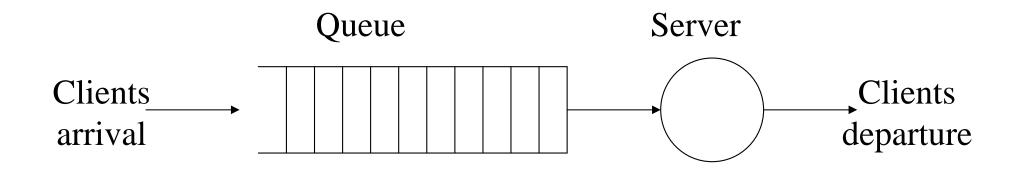


Figure 1.21. Event-driven random walk on a plane.

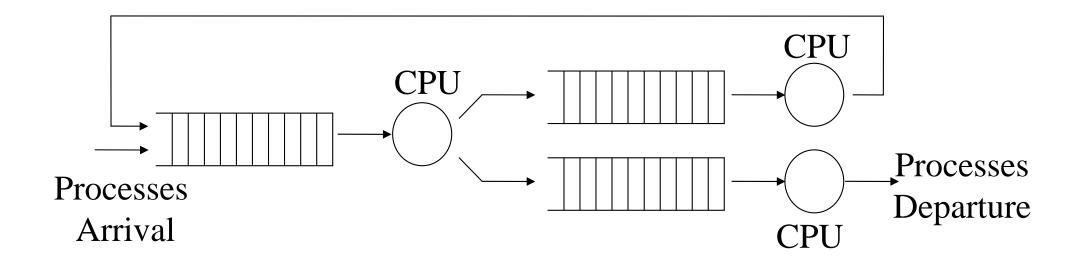
Discrete Event Systems: Examples

Queueing systems



Discrete Event Systems: Examples

Computational Systems



Characteristics of systems with continuous variables

- 1.State space is continuous
- 2. The state transition mechanism is *time-driven*

Characteristics of systems with discrete events

- 1.State space is discrete
- 2. The state transition mechanism is event-driven

Polling is avoided!

Taxonomy of Systems

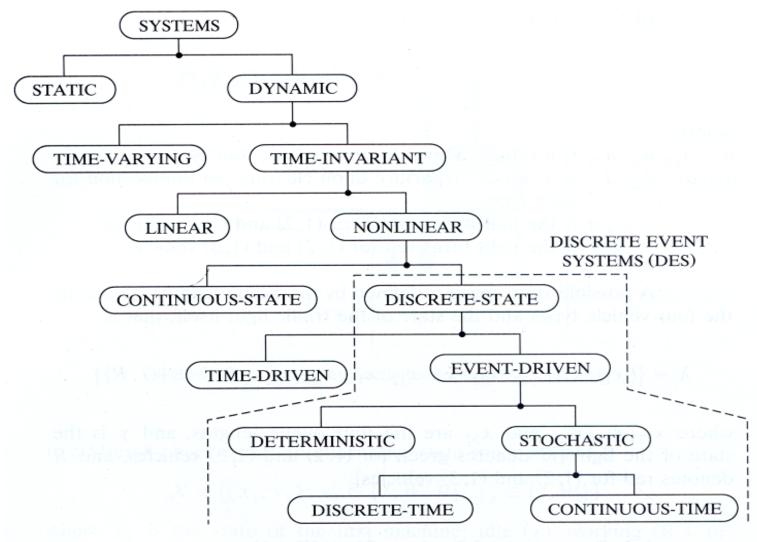


Figure 1.29. Major system classifications.

Levels of abstraction in the study of Discrete Event Systems

Languages

Timed languages

Stochastic timed languages

Systems' Theory Objectives

- Modeling and Analysis
- *Design* and synthesis
- Control / Supervision
- Performance assessment and robustness
- Optimization

Applications of Discrete Event Systems

- Queueing systems
- Operating systems and computers
- Telecommunications networks
- Distributed databases
- Automation

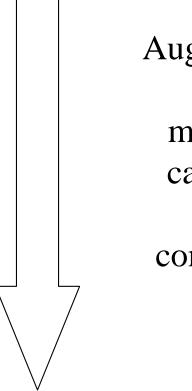
Discrete Event Systems

Typical modeling methodologies

Automata

GRAFCET

Petri nets



Augmenting
in
modeling
capacity
and
complexity

Automata Theory and Languages

Genesis of computation theory

Definition: A **language** L, defined over the alphabet **E** is a set of *strings* of finite length with events from **E**.

Examples:
$$\mathbf{E}=\{\alpha, \beta, \gamma\}$$

$$L_1=\{\epsilon, \alpha\alpha, \alpha\beta, \gamma\beta\alpha\}$$

$$L_2=\{\text{all } strings \text{ of length } 3\}$$

How to build a machine that "talks" a given language?

or

What language "talks" a system?

Operations / Properties of languages

Kleene-closure \mathbf{E}^* : set of all strings of finite length of E, including the null element $\boldsymbol{\mathcal{E}}$.

Concatenation:

$$L_a L_b := \{ s \in E^* : s = s_a s_b, s_a \in L_a, s_b \in L_b \}$$

Prefix-closure:

$$\overline{L} := \left\{ s \in E^* : \exists_{t \in E^*} \ st \in L \right\}$$

Operations / Properties of languages

Example 2.1 (Operations on languages)

Let $E = \{a, b, g\}$, and consider the two languages $L_1 = \{\varepsilon, a, abb\}$ and $L_4 = \{g\}$. Neither L_1 nor L_4 are prefix-closed, since $ab \notin L_1$ and $\varepsilon \notin L_4$. Then:

```
L_{1}L_{4} = \{g, ag, abbg\}
\overline{L_{1}} = \{\varepsilon, a, ab, abb\}
\overline{L_{4}} = \{\varepsilon, g\}
L_{1}\overline{L_{4}} = \{\varepsilon, a, abb, g, ag, abbg\}
L_{4}^{*} = \{\varepsilon, g, gg, ggg, \ldots\}
L_{1}^{*} = \{\varepsilon, a, abb, aa, aabb, abba, abbabb, \ldots\}
```

[Cassandras99]

Automata Theory and Languages

Motivation: An automaton is a device capable of representing a language according to some rules.

Definition: A deterministic **automaton** is a 5-tuple

$$(E, X, f, x_0, F)$$

where:

E - finite alphabet (or possible events)

X - finite set of states

f - state transition function $\mathbf{f}: \mathbf{X} \times \mathbf{E} \rightarrow \mathbf{X}$

 $\mathbf{x_0}$ - initial state $\mathbf{x_0} \subset \mathbf{X}$

F - set of final states or marked states $\mathbf{F} \subset \mathbf{E}$

Example of an automaton

$$(E, X, f, x_0, F)$$

$$\mathbf{E} = \{ \alpha, \beta, \gamma \}$$

$$\mathbf{X} = \{x, y, z\}$$

$$\mathbf{x_0} = \mathbf{x}$$

$$\mathbf{F} = \{\mathbf{x}, \mathbf{z}\}$$

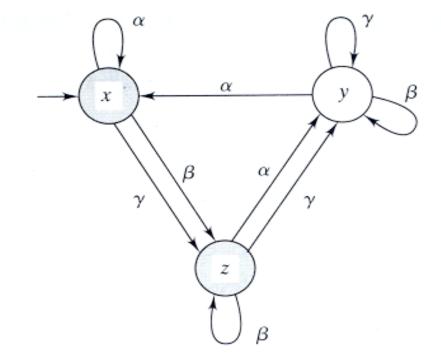


Figure 2.1. State transition diagram for Example 2.3.

$$f(x, \alpha) = x f(x, \beta) = z f(x, \gamma) = z$$

$$f(y, \alpha) = x f(y, \beta) = y f(y, \gamma) = y$$

$$f(z, \alpha) = y f(z, \beta) = z f(z, \gamma) = y$$

$$f(x, \gamma) = z$$

$$f(y, \gamma) = y$$

$$f(z, \gamma) = y$$

Example of a stochastic automata

$$(E, X, f, x_0, F)$$

$$\mathbf{E} = \{ \alpha, \beta \}$$

$$X = \{0, 1\}$$

$$\mathbf{x_0} = 0$$

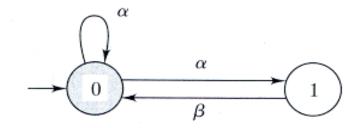


Figure 2.4. State transition diagram for the nondeterministic automaton of Example 2.7.

$$f(0, \alpha) = \{0, 1\}$$
 $f(0, \beta) = \{\}$
 $f(1, \alpha) = \{\}$ $f(1, \beta) = 0$

Given an automaton

$$G=(E, X, f, x_0, F)$$

the Generated Language is defined as

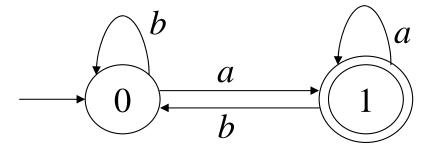
$$L(G) := \{s \in E^* : f(x_0,s) \text{ is defined}\}$$

Note: if f is always defined then $L(G)==E^*$

and the Marked Language is defined as

$$L_m(G) := \{ s \in E^* : f(x_0, s) \in F \}$$

Example: marked language of an automaton



$$L(G) := \{ \mathcal{E}, a, b, aa, ab, ba, bb, aaa, aab, baa, ... \}$$

$$L_m(G) := \{ a, aa, ba, aaa, baa, bba, ... \}$$

Concluding, in this example $L_m(G)$ means all strings with events a and b, ended by event a.

Automata equivalence:

The automata G_1 e G_2 are equivalent if

$$L(G_1) = L(G_2)$$
and
$$I(G_1) - I(G_2)$$

Example of an automata:

Objective: To validate a sequence of events

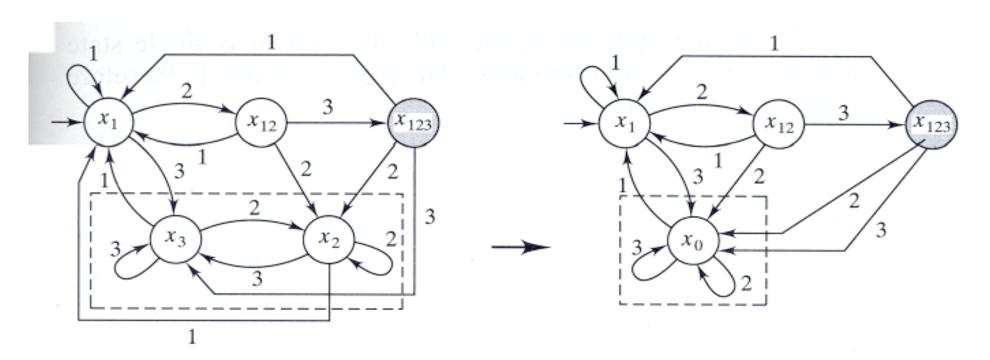
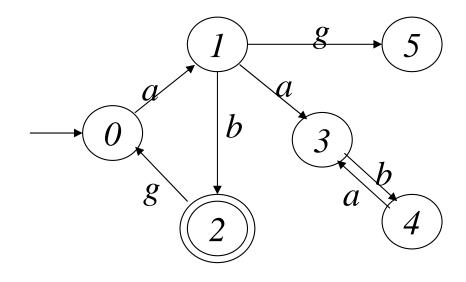


Figure 2.6. State transition diagrams for digit sequence detector in Example 2.9.

Deadlocks (inter-blocagem)

Example:



The state 5 is a deadlock.

The states 3 and 4 constitutes a *livelock*.

How to find the *deadlocks* and the *livelocks*?

Need methodologies for the analysis of Discrete Event Systems

Deadlock:

in general the following relations are verified

$$L_m(G)\subseteq \overline{L}_m(G)\subseteq L(G)$$

An automaton G has a deadlock if

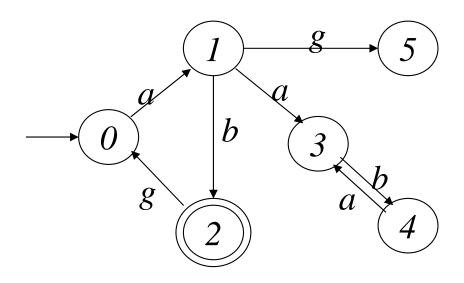
$$\overline{L}_m(G) \subset L(G)$$

and is not blocked when

$$\overline{L}_m(G) = L(G)$$

Deadlock:

Example:



$$L_m(G) = \{ab, abgab, abgabgab, ...\}$$
 $L(G) = \{ \mathcal{E}, a, ab, ag, aa, aab, \\ abg, aaba, abga, ... \}$
 $(L_m(G) \subset L(G))$

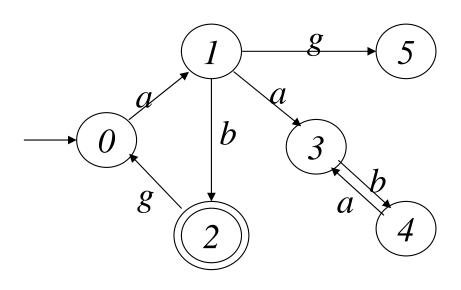
The state 5 is a deadlock.

The states 3 and 4 constitutes a *livelock*.

$$\overline{L}_m(G) \neq L(G)$$

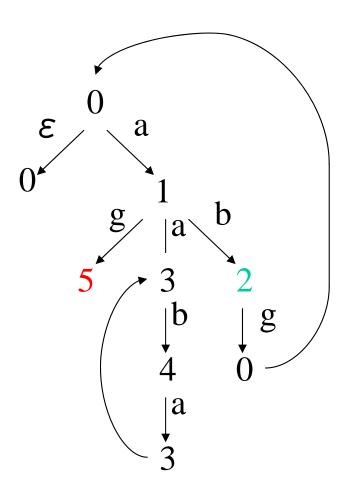
Alternative way to detect deadlocks:

Example:



The state 5 is a deadlock.

The states 3 and 4 constitutes a *livelock*.



Timed Discrete Event Systems

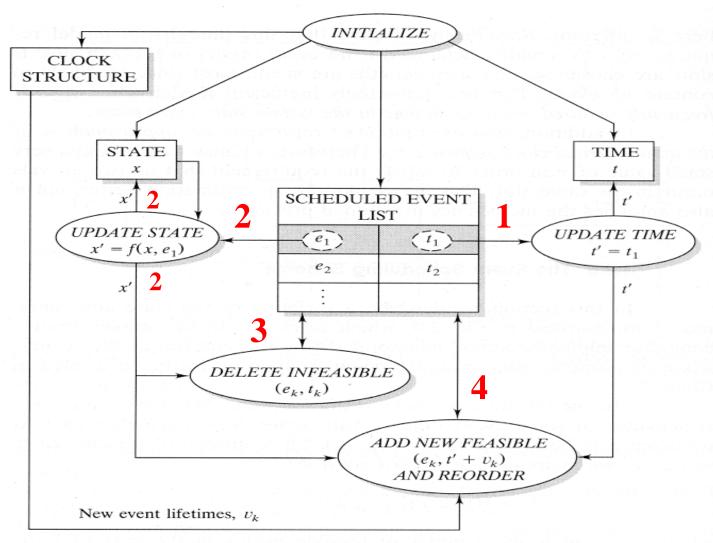


Figure 3.10. The event scheduling scheme.

Petri nets

Developed by Carl Adam Petri in his PhD thesis in 1962.

Definition: A marked Petri net is a *5-tuple*

$$(\mathbf{P}, \mathbf{T}, \mathbf{A}, \mathbf{w}, \mathbf{x}_0)$$

where:

P - set of places

T - set of transitions

A - set of arcs $A \subseteq (P \times T) \cup (T \times P)$

 \mathbf{w} - weight function $\mathbf{w} : \mathbf{A} \to \mathbf{N}$

 \mathbf{x}_0 - initial marking $\mathbf{x}_0:\mathbf{P}\to\mathbf{N}$

Example of a Petri net

$$(P, T, A, w, x_0)$$

$$P=\{p_1, p_2, p_3, p_4, p_5\}$$

$$T=\{t_1, t_2, t_3, t_4\}$$

$$A=\{(p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_3), (t_2, p_4), (t_3, p_5), (p_4, t_4), (p_5, t_4), (t_4, p_1)\}$$

$$w(p_1, t_1)=1, w(t_1, p_2)=1, w(t_1, p_3)=1, w(p_2, t_2)=1$$

$$w(p_3, t_3)=2, w(t_2, p_4)=1, w(t_3, p_5)=1, w(p_4, t_4)=3$$

$$w(p_5, t_4)=1, w(t_4, p_1)=1$$

$$x_0=\{1, 0, 0, 2, 0\}$$

Example of a Petri net

$$(P, T, A, w, x_0)$$

$$P=\{p_1, p_2, p_3, p_4, p_5\}$$

$$T = \{t_1, t_2, t_3, t_4\}$$

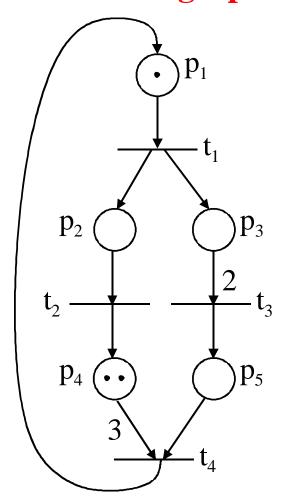
A={
$$(p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_3), (t_2, p_4), (t_3, p_5), (p_4, t_4), (p_5, t_4), (t_4, p_1)}$$

$$w(p_1, t_1)=1, w(t_1, p_2)=1, w(t_1, p_3)=1, w(p_2, t_2)=1$$

 $w(p_3, t_3)=2, w(t_2, p_4)=1, w(t_3, p_5)=1, w(p_4, t_4)=3$
 $w(p_5, t_4)=1, w(t_4, p_1)=1$

$$\mathbf{x}_0 = \{1, 0, 0, 2, 0\}$$

Petri net graph



Petri nets

Rules to follow (mandatory):

- Arcs (directed connections)

 connect places to transitions and
 connect transitions to places
- A transition can have no places directly as inputs (source), i.e. must exist arcs between transitions and places
- A transition can have no places directly as outputs (sink), i.e. must exist arcs between transitions and places
- The same happens with the input and output transitions for places

Alternative definition of a Petri net

A marked Petri net is a 5-tuple

 $(\mathbf{P}, \mathbf{T}, \mathbf{I}, \mathbf{O}, \mu_0)$

where:

P - set of places

T - set of transitions

I - transition input function I: $T \to P^{\infty}$

O - transition output function $O: T \to P^{\infty}$

 μ_0 - initial marking $\mu_0: P \to N$

Note: \mathbf{P}^{∞} = bag of places

Example of a Petri net and its graphical representation

Alternative definition

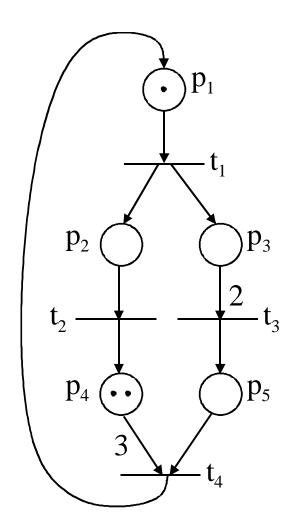
$$(P, T, I, O, \mu_0)$$

$$P=\{p_1, p_2, p_3, p_4, p_5\}$$

$$T = \{t_1, t_2, t_3, t_4\}$$

$$\begin{split} &I(t_1) = \{p_1\} & O(t_1) = \{p_2, p_3\} \\ &I(t_2) = \{p_2\} & O(t_2) = \{p_4\} \\ &I(t_3) = \{p_3, p_3\} & O(t_3) = \{p_5\} \\ &I(t_4) = \{p_4, p_4, p_4, p_5\} & O(t_4) = \{p_1\} \end{split}$$

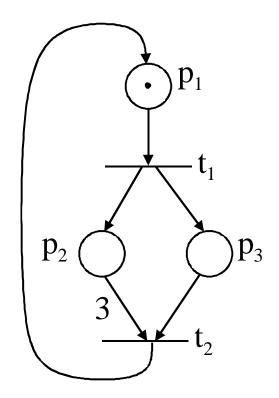
$$\mu_0 = \{1, 0, 0, 2, 0\}$$



Petri nets

The state of a Petri net is characterized by the marking of all places.

The set of all possible markings of a Petri net corresponds to its state space.



How does the state of a Petri net evolve?

Execution Rules for Petri Nets (Dynamics of Petri nets)

A transition $t_i \in T$ is *enabled* if:

$$\forall p_i \in P: \quad \mu(p_i) \geq \#(p_i, I(t_j))$$

A transition $t_j \in T$ may *fire* whenever enabled, resulting in a new marking given by:

$$\mu'(p_i) = \mu(p_i) - \#(p_i, I(t_j)) + \#(p_i, O(t_j))$$

 $\#(p_i, I(t_j)) = multiplicity of the arc from p_i to t_j$ $\#(p_i, O(t_j)) = multiplicity of the arc from t_i to p_i$

Petri nets

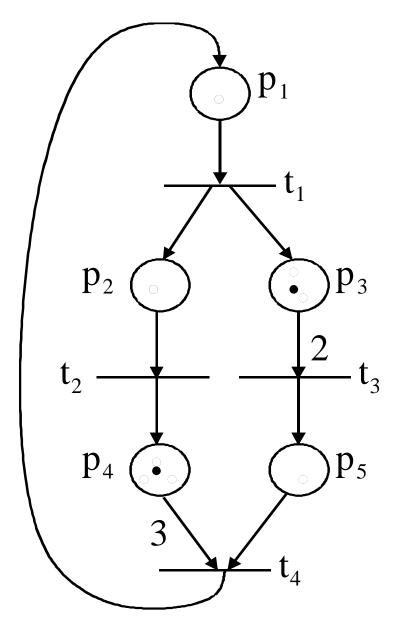
Example of evolution of a Petri net

Initial marking:

$$\mu_0 = \{1, 0, 1, 2, 0\}$$

This discrete event system can not change state.

It is in a deadlock!



Petri nets: Conditions and Events

Example: Machine waits until an order appears and then machines the ordered part and sends it out for delivery.

Conditions:

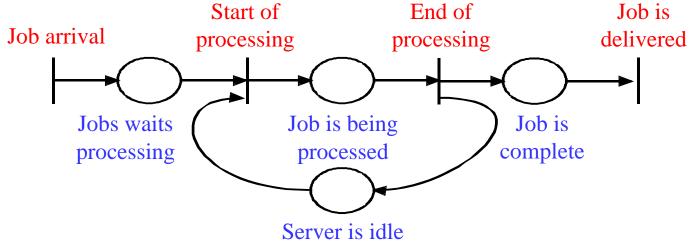
- a) The server is idle.
- b) A job arrives and waits to be processed
- c) The server is processing the job
- d) The job is complete

	4
L 7	α
$ \sim$	\leftarrow 111 $<$
_ v	ents

- 1) Job arrival
- 2) Server starts processing
- 3) Server finishes processing
- 4) The job is delivered

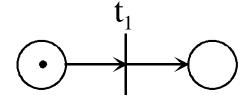
Event	Pre-conditions	Pos-conditions
1	-	b
2	a, b	С
3	С	d, a
4	d	-

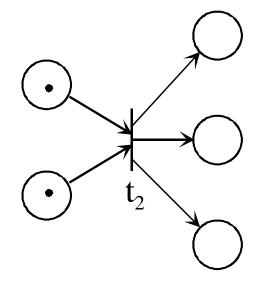
Page 39



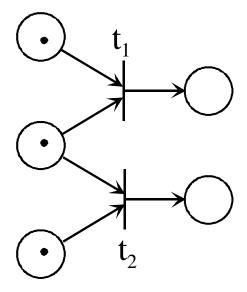
Petri nets: Modeling mechanisms

Concurrence



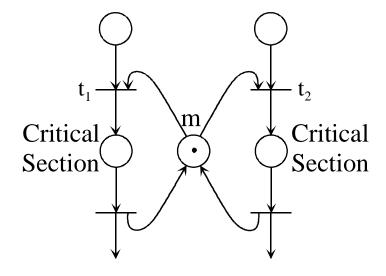


Conflict



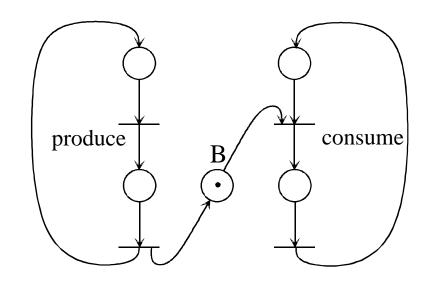
Petri nets: Modeling mechanisms

Mutual Exclusion



Place m represents the permission to enter the critical section

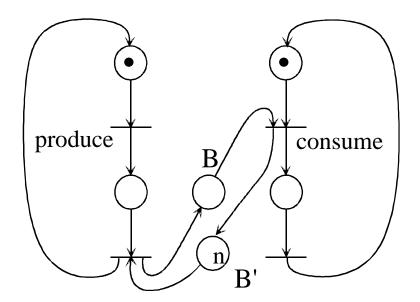
Producer / Consumer



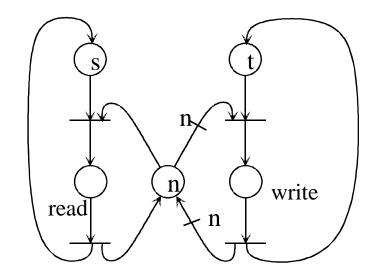
B= *one element buffer*

Petri nets: Modeling mechanisms

Producer / Consumer with finite capacity



Readers / Writers



Example of a simple automation system modeled using PNs

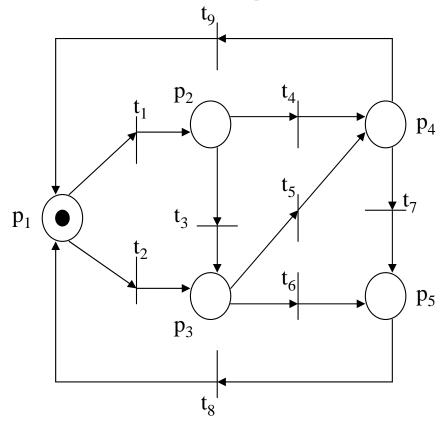
An automatic soda selling machine accepts

50c and \$1 coins and

sells 2 types of products:

SODA A, that costs \$1.50 and SODA B, that costs \$2.00.

Assume that the money return operation is omitted.

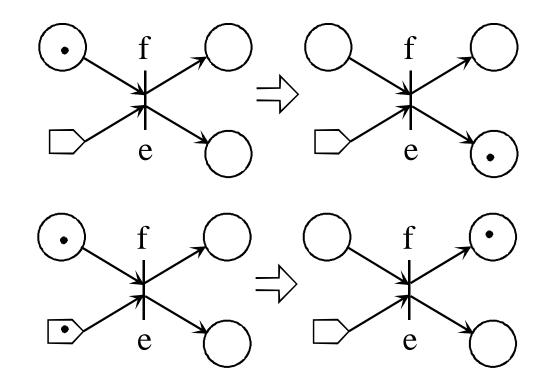


 p_1 : machine with \$0.00;

t₁: coin of 50 c introduced;

t₈: SODA B sold.

Switches [Baer 1973]

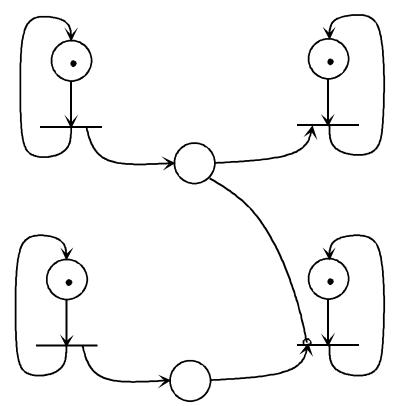


Possible to be implemented with restricted Petri nets.

Inhibitor Arcs

Equivalent to

nets with priorities

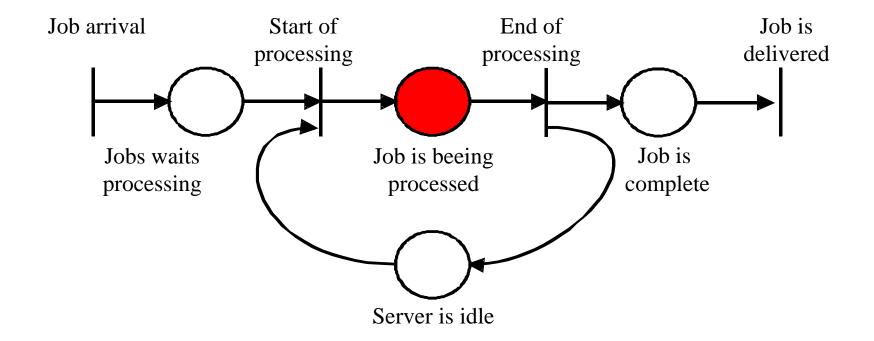


Can be implemented with restricted Petri nets?

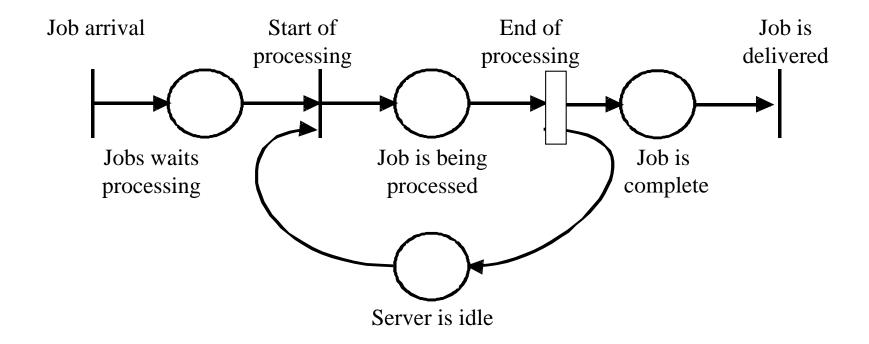
Zero tests...

Infinity tests...

P-Timed nets

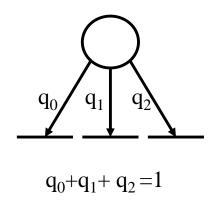


T-Timed nets

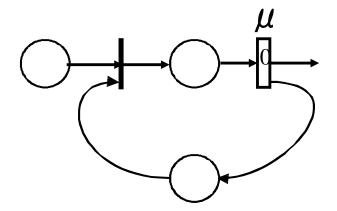


Stochastic nets

Stochastic switches



Transitions with stochastic timings described by a stochastic variable with known pdf



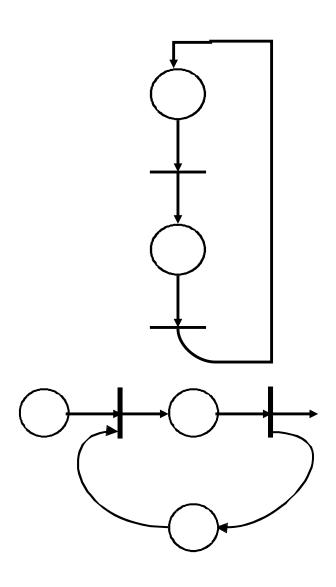
Discrete Event Systems Sub-classes of Petri nets

State Machine:

Petri nets where each transition has exactly one input arc and one output arc.

Marked Graphs

Petri nets where each place has exactly one input arc and one output arc.

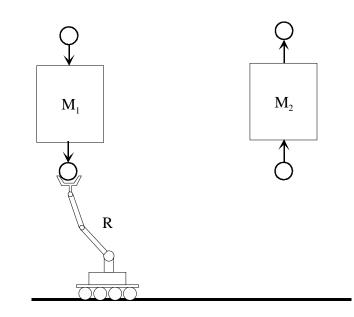


Example of DES:

Manufacturing system composed by 2 machines (M_1 and M_2) and a robotic manipulator (R). This takes the finished parts from machine M_1 and transports them to M_2 .

No buffers available on the machines. If R arrives near M_1 and the machine is busy, the part is rejected.

If R arrives near M_2 and the machine is busy, the manipulator must wait.



Machining time: $M_1=0.5s$; $M_2=1.5s$; $R_{M1 \rightarrow M2}=0.2s$; $R_{M2 \rightarrow M1}=0.1s$;

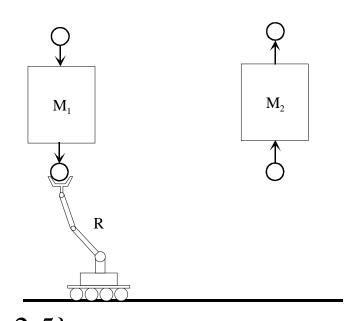
Example of DES:

Variables of

$$M_1$$
 X_1 M_2 X_2 R X_3

Example of arrival of parts:

$$a(t) = \begin{cases} 1 & in \quad \{0.1, \quad 0.7, \quad 1.1, \quad 1.6, \quad 2.5\} \\ 0 & in & other \ time \ stamps \end{cases}$$



Example of DES:

Definition of events:

a₁ - loads part in M₁

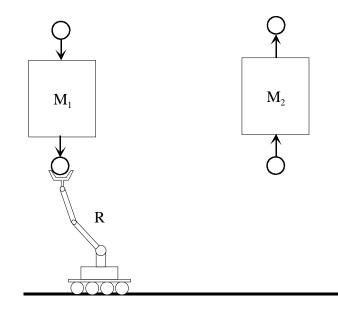
d₁ - ends part processing in M₁

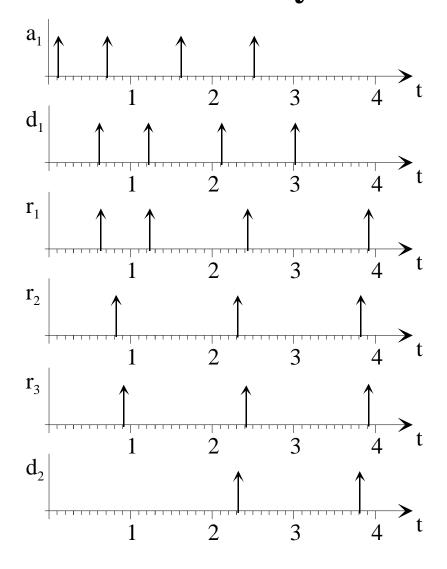
r₁ - loads manipulator

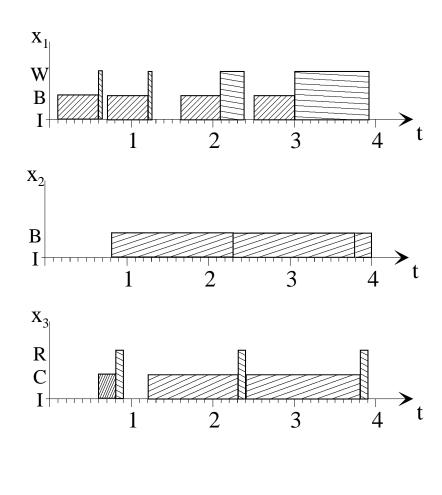
 r_2 - unloads manipulator and loads M_2

d₂ - ends part processing in M₂

r₃ - manipulator at base







Discrete Event Systems Example of DES:

Events:

 a_1 - loads part in M_1

 d_1 - ends part processing in M_1

r₁- loads manipulator

 r_2 - unloads manipulator and loads M_2

d₂- ends part processing in M₂

r₃- manipulator at base

