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P1. (State-space model building from fundamental equations of physics, 

chemistry, etc) Obtain the equations of a linear state-space model for the circuit 

of fig.1. Use as state variables the voltages of the two capacitors with respect to 

the reference (ground) node, use as input variable the current source and use as 

output variable the voltage at the terminals of the resistor on the right. 
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Fig. 1 – problem P1. 

Obtain another (any one) state-space model that corresponds to the same 

transfer function. 

 

P2. (State-space model building from fundamental equations of physics, 

chemistry, etc) Consider the mechanical system of fig.2, where u represents a 

force extra to the weight of the mass (m) and such that at z=0 the spring has an 

elongation that compensates the weight. 
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Fig. 2 – Problema P2. 

a) Use Newton's law to obtain the equations of a linear state-space model 

describing the system. Consider the force u is the input and the position z 

is the output. 

b) Apply the Laplace transform, considering null initial conditions, to 

determine the transfer function. Assume K/m=1. Consider the case β=0 
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and the case β≠0. For each of the cases determine the position of the 

poles and mark them in the complex plane. Discuss the position of the 

poles given your intuition about the working of the system. 

c) Consider now that 0u  (autonomous system). Mark one arrow for each 

of the points of the state plane shown in fig.3 given the signals of the 

derivatives of the state variables. The arrow indicates the direction that the 

state will follow starting at each point. Compare with your intuition about 

the working of the system. 
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Fig. 3 – Problema P3. 

 

P3. (Converting models) Obtain the transfer function of the system described by 

the state-space equations: 
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P4. (Converting models) Obtain a state description with minimum order of a 

system with transfer function: 

)2)(1(

2
)(




ss
sG  

Modify the realization just done to obtain one state-space model for the transfer 

function: 
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P5. (Solution of the state-space equation of an autonomous system) Consider 

once more the mass-spring-dumper system of problem P2. Determine the 

eigenvalues of the dynamics matrix of the state space model. Then solve the 

state space equations using a modal decomposition. Compare the solution with 

your intuition about the way the system works. 

 

P6. (Calculation of the transition matrix) Consider the homogeneous state space 

models whose dynamic matrices are given by: 
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Determine the respective transition matrices, 
Ate , using the following methods: 

a) Similarity transformation (diagonalization); 

b) Laplace transform; 

 

P7. (Controllability and observability) Consider the system described by the 

state-space model: 
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Indicate for which values of the parameters  ,   e   this state-space 

realization is: 

a) Controllable 

b) Observable 

Give one interpretation of the results based in the transfer function. 
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P8. (Pole Placement / Full State Feedback - FSF / "Realimentação Linear de 

Variáveis de Estado - RLVE") Consider the system with transfer function 

)1(
)(





ss

as
sG            a  constant for each case 

a) Obtain a state space representation for the second order system )(sG . Name 

the state variables 1x  and 2x . 

b) Considering the state variables 1x  and 2x , indicate the values for the 

parameter a  which allow arbitrarily placing the poles of the closed loop 

system, by using linear feedback of all state variables (FSF / RLVE). Do not 

compute explicitly the characteristic polynomial of the closed loop system.  

c) Let 2a . Find the FSF (RLVE) gains such that the closed loop poles are 

placed in j 4 . Assume in this question that you have access to the direct 

measurement of 1x  and 2x . 

d) Assume now that you do not have direct measurement of 1x  and 2x . Indicate 

values of a  such that the system satisfies the condition of being possible to 

design an asymptotic state observer such that the estimated state error 

converges to zero as fast as desired. 

e) Let 2a . Write the equations of an observer and design its gains such that 

the error in the estimated state converges to zero, with eigenvalues j10  in 

the error dynamics. 

 

 

P9. (Full State Feedback) In this problem we want to design a controller for a 

permanent-magnet motor with transfer function 
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where the input is the voltage applied to the rotor and the output is the angular 

position of the motor shaft. 

a) Write the state space equation using as state the angular position and 

spinning speed of the motor shaft. 
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b) Compute the gains of a full state feedback control law (FSF / RLVE) such 

that they place the poles of the closed-loop system as the poles of a 

second order system with n=3, =0.5. 

c) Compute the gains of a state estimator such that the characteristic 

equation of the state estimation error dynamics has n=15, =0.5. 

d) What is the transfer function of the controller  obtained  after  solving b) 

and c)? 

 

P10. (Full State Feedback / RLVE; including an integral effect for precise tacking 

of references) Consider the system described by the state space model 
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a) Let NrKxu  . Find a vector K  such that the closed loop system has 

the eigenvalues placed at -2±2j. 

b) Compute N  such that if r=r constant then y=y=r, i.e. the static position 

error is null. Show that this property (null static position error) is not robust 

to changes in matrix A . 

c) Add an integrator to the system 

rye
dt

d
  

and choose the gains K and ki, such that if u=-[K, ki][x, ]’ then the 

eigenvalues of the closed loop are placed at –2, -1±31/2j. Show that in this 

case the system has null static position error, and that this property is robust 

to changes in matrix A , provided that the closed loop system remains stable. 
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P11. (Nonlinear systems: relationship between nonlinear dynamics and dynamics 

linearized at equilibrium points) 

There were recently discovered two new species of herbivorous, nicely named 

Necs and Plaks, living in the Melanesia island. A number of biological studies 

have shown that the two species compete for the same food and the mean 

numbers of the populations can be modeled by a system of nonlinear differential 

equations: 
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where N  is the number of Necs and P  is the number of Plaks. These numbers 

are normalized. More in detail, one has to multiply the numbers by 1000 to obtain 

the real numbers of the populations. Given the model just introduced, determine 

if the two populations can coexist in the long term. 

 

Suggestion: Start by showing that 2
1,2

1  PN  is an equilibrium point of the 

nonlinear system and study what happens to the populations if this equilibrium is 

slightly disturbed. 

 

 

P12. Consider the autonomous system (i.e. a system without inputs), of second 

order, described by the system of nonlinear equations: 
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a) Show that the origin is an equilibrium point of the system. Obtain the 

equations of the system linearized around the origin. Classify the origin in 
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terms of the eigenvalues of the linearized system. Say what you can conclude 

about the behavior of the nonlinear system around the origin. 

b) Using the Lyapunov's 2nd method, and considering the Lyapunov candidate 

function  2
2

2
121 2

1
),( xxxxV  , what can you tell about the origin of the 

nonlinear system? 

 

 

P13. Consider the 2nd order nonlinear system, without inputs, described by the 

state space equations: 
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a) Considering Lyapunov's 2nd method and using the Lyapunov candidate 

function 
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show that the origin ( 0,0 21  xx ) is an equilibrium point, which is stable, at 

least in the sense of Lyapunov. Say if you can guarantee that the point is 

asymptotically stable. 

b) Using the Invariant Set Theorem show that the origin is effectively 

asymptotically stable. 

 

 

P14. Consider the system of fig.4 where the tank input flow, "caudal" in 

Portuguese, )(tu  is controlled in order to regulate the level )(th  to a reference 

level r  constant and known. Assume that all horizontal sections of the tank have 

the same constant value A , which is known. Assume 1A . The area of the 

output opening at the tank base is described by a , and has an unknown value. 

The dynamic of the level of the tank is described by 
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hu
dt

dh
A   

where   is a parameter to estimate. 

u(t)

h(t)

A a  

Fig. 4 – Problem P14. 

 

a) Assuming a perfect knowledge of  , determine a static feedback of the 

system output such that the system (tank + feedback) behaves like an 

integrator. 

b) Still assuming perfect knowledge of  , apply a linear control law to the 

resulting integrator such that the following error rthte  )()(  of the controlled 

system converges to zero with a time constant of 2 seconds. 

c) Using the Lyapunov's 2nd Method, obtain a control law adjusting the 

parameter   which guarantees the complete system is stable. 

Say, in a justified manner, whether or not can be guaranteed the following error 

rthte  )()(  tends to zero as t  tends to infinity. 

 

 

P15. The company Confeitaria Rainha Regional, well known since 1890, makes 

the delicious and well know flour Farinha Integral 33, essential for the many 

nutritious breakfasts of the greatest engineering schools, is studying the optimal 

investment policy in one of its production lines. After thoroughly studies by the 

company managers, has been concluded that the production, P , has a 

relationship with the investment I  (time varying) given by the model: 

IP
dt

dP
5.01.0         1)0( P  
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where the time unit is 1 year. 

The production line is expected to operate 15 years, and after that will be sold by 

a price proportional to the production at that time. The total value of the 

production line is therefore: 

  
15

0
)()()15( dttItPPJ  

The investment is positive and cannot exceed the maximal value maxI , i.e.: 

max)(0 ItI   

Using the Maximum Principle, determine the optimal investment policy )(tI , that 

maximizes J  for 150  t . 

 

Helping formulae: 
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Some more help: 

The solution of the differential equation: 

btaxtx  )()(  

where a  and b  are constants, is given by 
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b
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where c  is a constant that depends on the initial conditions. 
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P16. Consider the system represented in figure 1 in which one wants to stop a 
ball rolling in a track, "calha", by applying a voltage to a DC motor. 
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Fig. 1 – Problem P2. Equilibrium of a ball on a track. 

 

Using simplifying hypothesis, the system can be approximated by a model based 

in a transfer function with two poles at the origin: 
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Using Chang-Letov's theorem, determine the position of the poles of the closed 

loop system that optimizes: 
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