
	[image: image15.png]

	Industrial Processes Automation

MSc in Electrical and Computer Engineering

Scientific Area of Systems, Decision, and Control

Winter Semester 2019/2020

	
	Group: ____

__-_____

__-_____

__-_____

__-_____

2nd Laboratory Assignment

Handling Faults in Keyboard Reading
This laboratory assignment aims at studying Discrete Event Systems (DESs) in the aspects of modeling, analysis of properties and synthesis. Synthesis will be based on a recent methodology in the framework of supervised control. This assignment further develops the previous assignment in the keyboard reading component by introducing fault handling mechanisms.
Schneider's Unity Pro will be used to validate the proposed methodologies. The tools mostly used in this work run in MATLAB, namely one supervisor design toolbox and one Petri Net editor. Using the login information indicated in the course webpage, see in the course SVN:

- The graphical freeware editor "PIPE2" which allows creating Petri Net models to import with the MATLAB toolbox "TPN5" (use the version available in the SVN)
- MATLAB functions simulating Petri nets, in particular the "5 Philosophers" demo and a template for simulating the keyboard "lab2_sim_kb_v6.zip".

Part B - Properties of the PN
DES modeling:

[image: image1.jpg]

Q1: [PN edit and show] Draw the graph of the Petri net proposed in Part A, and save it as an XML file, using the Petri net editor available (PIPE2). Call the editor from Matlab with the command pn_editor use its file open user interface to work on the right file. Include in the report a PNG image, exported by PIPE2, showing the graph of the Petri net.
[image: image5.png]

Q2: [PN by-hand simulation] Simulate a sequence of events such that there is a sequence of different states and the final state coincides with the initial one. Provide an interpretation of the sequence of events given the original assignment. While the simulation can be done using PIPE2 or using Matlab, here is expected an answer based just on visual inspection.
[image: image6.png]

Q3: [PN properties] Discuss the properties that the proposed Petri net should verify and order the importance of those properties in the table below.

	Order of importance
	Property

	1
	

	2
	

	3
	

	4
	

	5
	

	6
	

	7
	

[image: image7.png]

Q4: Study property #1, resorting to the methods studied in the course.
[image: image8.png]

Q5: Study property #2, resorting to the methods studied in the course.
[image: image9.png]

Q6: Study property #3, resorting to the methods studied in the course.
[image: image10.png]

Q7: Study property #4, resorting to the methods studied in the course.
[image: image11.png]

Q8: Study property #5, resorting to the methods studied in the course.
[image: image12.png]

Q9: Study property #6, resorting to the methods studied in the course.
[image: image13.png]

Q10: Study property #7, resorting to the methods studied in the course.
[image: image14.png]

Q11: [Set the priority of transitions] Many Petri net simulators do not randomize the firing of conflicting transitions. In the Petri net simulator used in the laboratory, conflicting transitions are prioritized by their identification numbers: the transition with the lowest number is the one selected to be fired.
(i) Let D- and D+ denote the preconditions and pos-conditions matrices, and let q denote a firing vector. Describe how to obtain a new Petri net characterized by
[image: image2.wmf])

(

1

2

-

-

=

D

f

D

 and
[image: image3.wmf])

(

2

2

+

+

=

D

f

D

, with a firing vector
[image: image4.wmf])

(

3

2

q

f

q

=

 such that the original effects of transitions are kept but q2 has the desired priorities. What are the functions f1(.), f2(.) and f3(.)?
Suggestion: Consider that the functions f1(.), f2(.) and f3(.) can be implemented as matrices multiplying the input (.) by its left or right. More precisely, define the functions by considering one multiplying matrix Pn,I which operates permutations as defined in the next Matlab function
function P= vector_permute(n, idx)
% usage example: q= (1:5)'; P= vector_permute(5, [1 4 2]); P*q
P= eye(n);
P= P([idx setdiff(1:n, idx)], :);
Additional notes about the matrix Pn,I : n is the length of vector q, i.e. the number of columns of the D matrices; I is a list of indexes of q (transitions) to have priority, represents idx in the Matlab function; since Pn,I consists just of line permutations of an identity matrix, it is always invertible.
(ii) Make a small Matlab demonstration illustrating the changing of the matrices and firing vector, such that one of the transitions is given priority in case of conflict. Suggestion: add to the function PN_sim.m a transition reordering input option and add code implementing f1(.), f2(.) and f3(.), such that the internal function PN_state_step() does not need to be changed. See more details in Appendix A. Write here only the Matlab lines you did change in PN_sim.m to solve this question.
Annex 1 - Transition Priorities Setting
Locate in the course SVN the lab2_sim_1_priority simulation folder. Edit in Matlab the test file tst_set_priority.m. See in the test file the Petri net defined with three places and four transitions (Figure A1). The simulation is run setting transition 3 to have the highest priority. In this example only one transition is prioritized but one can set a sequence of priorities as e.g. [3 4 1 2].
 % incidence matrix
 D= [-1 +1 -1 +1
 +1 -1 0 0
 +0 0 +1 -1];
 Pre = -D.*(D<0);
 Post= D.*(D>0);
 M0 = [1 0 0]';
% initial marking
 ti_tf= [0 3 1e-2];
% time [ini, end, delta]
 % simulation
 [t2, M2, ~]= PN_sim(Pre, Post, M0, ti_tf, struct('tprio',3));

Figure A1: Petri net definition and simulation call. Priority is given to transition 3.
The test file runs the simulation of the Petri net by calling the simulation function PN_sim.m. The simulation function contains some code to be implemented in the context of the laboratory.
Figure A2 shows in red the code to implement in order to assign priorities to specific transitions.
 if ~isfield(options, 'tprio') || isempty(options.tprio)
 % use transition numbers as default priorities
 [PN.MP, qk2]= PN_state_step(PN.MP, Post, Pre, qk);
 else
 % use specific priorities
 error('Yet to implement: define Post2, Pre2 and qk2')
 [PN.MP, qk2]= PN_state_step(PN.MP, Post2, Pre2, qk2);
 end

Figure A2: Detail of PN_sim.m showing a part of the code to implement to assign transition priorities.
Recall, in this guide, the suggestion for implementing in Matlab a matrix that permutes the entries of a vector. That matrix allows to permute the entries of the firing vector.
� Original guide by Prof. Paulo J. Oliveira. Revised by Prof. José Gaspar (2020).

_1508748934.unknown

_1508748969.unknown

_1508748870.unknown

