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Chap. 6 – Discrete Event Systems [2 weeks] 
… 
 
Chap. 7 – Analysis of Discrete Event Systems [2 weeks] 
 
Properties of DESs. 
 
Methodologies to analyze DESs: 
 * The Reachability tree. 
 * The Method of Matrix Equations. 
 
… 
Chap. 8 – DESs and Industrial Automation [1 week] 
 

Syllabus: 
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Some pointers to Discrete Event Systems 

History:  http://prosys.changwon.ac.kr/docs/petrinet/1.htm 
 
 
Tutorial:  http://vita.bu.edu/cgc/MIDEDS/ 
  http://www.daimi.au.dk/PetriNets/ 
 
 
Analyzers, http://www.ppgia.pucpr.br/~maziero/petri/arp.html (in Portuguese) 
and   http://wiki.daimi.au.dk:8000/cpntools/cpntools.wiki 
Simulators: http://www.informatik.hu-berlin.de/top/pnk/download.html 
 
 
 
Bibliography: * Cassandras, Christos G., "Discrete Event Systems - Modeling and  
  PerformanceAnalysis", Aksen Associates, 1993. 
  * Peterson, James L., "Petri Net Theory and the Modeling of Systems", 
  Prentice-Hall,1981 
  * Petri Nets and GRAFCET: Tools for Modelling Discrete Event Systems 

 R. DAVID, H. ALLA, New York : PRENTICE HALL Editions, 1992 
 

Chap. 7 – Analysis of Discrete Event Systems 

http://prosys.changwon.ac.kr/docs/petrinet/1.htm
http://vita.bu.edu/cgc/MIDEDS/
http://www.daimi.au.dk/PetriNets/
http://www.ppgia.pucpr.br/~maziero/petri/arp.html
http://wiki.daimi.au.dk:8000/cpntools/cpntools.wiki
http://www.informatik.hu-berlin.de/top/pnk/download.html
http://www.informatik.hu-berlin.de/top/pnk/download.html
http://www.informatik.hu-berlin.de/top/pnk/download.html
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1. Reachability 
 
Given a Petri net C=(P, T, I, O, μ0) with initial marking μ0 , the set of all markings 
that can be obtained starting from μ is the Reachable Set, R(C, μ). 

Properties of Discrete Event Systems 

Note: in general R(C, μ) is infinite! 
 How to describe and compute R(C, μ)? 

Chap. 7 – Analysis of Discrete Event Systems 

Reachability problem: Given a Petri net C with initial marking μ0 , does the  
marking μ’ belong to the set of all markings that can be obtained, i.e. μ’ ∈ R(C, μ)? 

Property usage: State μ belongs / does not belong to R(C, μ0). 
  Net C has a finite / infinite Reachable Set. 
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2. Coverability 
 
Given a Petri net C=(P, T, I, O, μ0) with initial marking μ0 , 
the state μ’ ∈ R(C, μ)   is covered   if   μ’(i) ≤ μ (i), for all places pi ∈ P. 

Is it possible to use this property to help on the search for the reachable set? Yes! 
Details after some few slides. 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 

Property usage: 
 State μ is / is not covered by state μ’. 
 State μ can / cannot be covered by other reachable states. 
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3. Safeness 
 
A place pi ∈ P of the Petri net C=(P, T, I, O, μ0) is safe if 
 for all μ’ ∈ R(C, μ0 ):  μi’ ≤ 1. 
 
A Petri net is safe if all its places are safe. 

Petri net not safe Petri net safe 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 

Property usage:     Place pi / Net C     is / is not     safe. 
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4. Boundedness  
 
Given a Petri net C=(P, T, I, O, μ0), a place pi ∈ P is k-bounded if μi’ ≤  k 
 for all μ’=(μ1’, ... , μi’, ..., μN’) ∈ R(C, μ0 ).  
 
A Petri net is k-bounded if all places are k-bounded. 

Petri net not bounded  Petri net 3-bounded 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 

Property usage:     Place pi / Net C     is / is not      k-bounded. 
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5. Conservation 
 
A Petri net C=(P, T, I, O, μ0) is strictly conservative if for all μ’ ∈ R(C, μ) 
 

     Σ   μ’(pi)  =  Σ   μ (pi)    pi ∈ P                        pi ∈ P 

Petri net strictly conservative 

2 

2 2 

2 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 

Petri net not strictly conservative 

1 

1 1 

1 

Property usage:  Net C is / is not (strictly) conservative. 



         Page 9 

IST / DEEC / API 

6. Liveness 
 
A transition tj is live of  
 
Level 0 - if it can never be fired (transition is Dead). 
 
Level 1 - if it is potentially firable, that is if there exists  μ’ ∈ R(C, μ) such that  
 tj  is enabled in μ’. 
 
Level 2 - if for every integer n, there exists a firing sequence such that tj   

 occurs n times. 
 
Level 3 - if there exists an infinite firing sequence such that tj occurs infinite times. 
 
Level 4 - if for each μ’ ∈ R(C, μ) there exist a sequence s such that the transition  
 tj is enabled (transition is Live). 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 
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• t0 is of level 0. 
 

• t1 is of level 1. 
 

• t2 is of level 2. 
 

• t3 is of level 3. 
 

• this net does not have 
  level 4 transitions. 
 

t 0 

t  2 t 3 

t 1 

. 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 

Example of liveness of transitions  
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Reachability problem 
 
Given a Petri net C=(P, T, I, O, μ0) with initial marking μ0  and 
a marking μ’, is μ’ ∈ R(C, μ0 ) reachable? 
 
Analysis methods: 
 
• Brute force... 
 

• Reachability tree 
 

• Matrix equations 

Chap. 7 – Analysis of Discrete Event Systems 

Properties of Discrete Event Systems 
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Reachability Tree - construction [Peterson81, §4.2.1] 
 
A reachability tree is a tree of reachable markings. 
Tree nodes are states. The root node is the initial state (marking). 
 
It is constituted by three types of nodes: 
 - Terminal no state changes after a terminal state 
 - Interior state can change after 
 - Duplicated state already found in the tree 
 

The infinity marking symbol (ω) is introduced whenever a  
marking covers other.  This symbol allows obtaining finite trees. 

The reachability tree is useful to study properties previously introduced. 
Some examples later. 

Chap. 7 – Analysis of Discrete Event Systems 

Analysis Methods 
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Analysis Methods 

Reachability Tree - construction [Peterson81, §4.2.1] 
 
Algebra of the infinity symbol (ω): 
 
For every positive integer a the following relations are verified: 

1. ω  + a = ω 
2. ω  - a = ω 
3. a < ω 
4. ω  ≤ ω 

Theorem -  If there exist terminal nodes in the reachability tree then the 
corresponding Petri net has deadlocks. 

Chap. 7 – Analysis of Discrete Event Systems 

Reachability Tree and Deadlocks 
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(1, 0, 0) 

(1,  , 0) (0, 1, 1) 

t 1 t 2 

t3
t2

t1

p1

p2

p3

Example of reachability tree: 
 

. 

After t1 one obtains (1, 0, 0) which is covered by (1, 1, 0). Hence one 
introduces the infinity symbol, ω and writes the state as (1, ω, 0). 

ω 

Chap. 7 – Analysis of Discrete Event Systems 

Analysis Methods 
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(1, 0, 0) 

(1,  ω , 0) 

(1,  ω , 0) 

(0, 1, 1) 

(0, 0, 1) (0,  ω , 1) 

(0,  ω , 1) 

t 1 

t 1 

t 2 

t 3 t 2 

t 3 

t3
t2

t1

p1

p2

p3. 

dup. term. 

dup. 

We can conclude 
immediately that 
there are  
 
DEADLOCKS! 

Chap. 7 – Analysis of Discrete Event Systems 

Example of reachability tree: 
 

Analysis Methods 
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Analysis Methods 

Reachability Tree vs Coverability Tree 
[Cassandras08, §4.4.2] 

Chap. 7 – Analysis of Discrete Event Systems 

Considering a Petri net the reachability 
tree is "a tree whose root node is (...), then 
examine all transitions that can fire from 
this state, define new nodes in the tree, 
and repeat until all possible reachable 
states are identified." 
 
"The reachability tree (...) may be infinite. 
A finite representation (...) is possible, but 
at the expense of losing some information. 
The finite version of an infinite 
reachability tree will be called a 
coverability tree." 

Reachability tree ,      Coverability tree 

(In this course we use Peterson’s terminology, i.e. “reachability tree” in both cases) 
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(P, T, A, w, x0) 
 
P={p1, p2, p3, p4, p5} 
 
T={t1, t2, t3, t4} 
 
A={(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p3, t3), 
(t2, p4), (t3, p5), (p4, t4), (p5, t4), (t4, p1)} 
 
w(p1, t1)=1, w(t1, p2)=1, w(t1, p3)=1, w(p2, t2)=1 
w(p3, t3)=2, w(t2, p4)=1, w(t3, p5)=1, w(p4, t4)=3 
w(p5, t4)=1, w(t4, p1)=1 
 
x0 = {1, 0, 0, 2, 0} 

Example1: simple Petri net, properties? 

p1

p2 p3

t1

t3t2

p4 p5

t4

2

3

Chap. 7 – Analysis of Discrete Event Systems 
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Example2: simple automation system modeled using PNs, 
properties? 

An automatic soda selling  
machine accepts  
 50c and $1 coins and 
sells 2 types of products: 
 SODA A, that costs $1.50 and 
 SODA B, that costs $2.00. 
 
Assume that the money return 
operation is omitted. 
 

t1 

t2 
t3 

t4 

t5 

t6 

t7 

t8 

t9 

p1 

p2 

p3 

p4 

p5 

p1: machine with $0.00; 
t1: coin of 50 c introduced; 
t8: SODA B sold. 

Chap. 6 – Discrete Event Systems 
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Example3: 
(counter-example) t1p1 p2

p3
t2

t1p1 p2

p3
t2

(1, 0, 0) 
t 1 

(0, 1, 0) 
t 2 

(1, 0, ω) 

(0, 1, ω) 

(1, 0, ω) 

t 1 

t 2 

(1, 0, 0) 
t 1 

(0, 1, 0) 
t 2 

(1, 0, ω) 

(0, 1, ω) 

(1, 0, ω) 

t 1 

t 2 

Different reachable  sets 
but the  
same reachability tree 

Decidability Problem: 
Can one reach (1,0,1)? Yes in one net, 
No in the other one. Simple to answer in 
this net, but undecidable in general due 
to the symbol ω. 

The reachability tree does not ensure 
decidability of state reachability. 

Chap. 7 – Analysis of Discrete Event Systems 

dup. dup. 
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Method of  the Matrix Equations (of State Evolution) 
 
The dynamics of the Petri net state can be written in  
compact form as: 
 
 
 
where: 
 μ (k+1) - marking to be reached  
 μ (k) - initial marking 
 q(k) - firing vector (transitions)  
 D - incidence matrix. Accounts the balance of  
  tokens, giving the transitions fired. 

( ) ( ) ( )kDqkk ++  1

Chap. 7 – Analysis of Discrete Event Systems 

Analysis Methods 

This methodology can also be used 
to study the other  properties 
previously introduced. 
Requires some thought... ;)  
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How to build the Incidence Matrix, D ? 

For a Petri net with n places and m transitions 
nN0

mNq 0
mnmnmn NDNDDDDD -+-+ - 00 ,,,

The enabling firing rule is  
 
Can also be written in compact form as the inequality  
interpreted element-by-element. 

qD-

,0+ Dq

Chap. 7 – Analysis of Discrete Event Systems 

Analysis Methods 

Note: unless otherwise stated in this course all vector and matrix inequalities are read element-by-
element. 
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Properties that can be studied immediately with the  
Method of Matrix Equations: 

• Reachability 
 

 
 
 
 
• Conservation – the firing vector is a by-product of the MME. 
 
• Temporal invariance – cycles of operation can be found. 

Theorem - No Reachability Sufficient Condition – if the problem of 
finding the transition firing vector that drives the state of a Petri net from μ 
to state μ’ has no solution, resorting to the method of matrix equations, 
then the problem of reachability of μ’ does not have solution. 

Chap. 7 – Analysis of Discrete Event Systems 

Analysis Methods 
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Example using the method of matrix equations 

t3
t2

t1

p1

p2

p3. 















-

-



010
111

010
D











-+

-

2

321

2

0
3

11

t

ttt

t

s

sss

s





-



3
0

31

2

tt

t

ss

s

Verify! 

( ) ( ) ( )kDqkk ++  1

( ) ,
0
3
1

1
















+k( )


















0
0
1

k



















3

2

1

)(

t

t

t

kq
s

s

s

Chap. 7 – Analysis of Discrete Event Systems 

Analysis Methods 1. Reachability 

 q such that Dq(k)= μ(k+1)-μ(k)  is a necessary but not sufficient condition. 

Reachability problem: Given a Petri net C with initial marking μ0 , does the  
marking μ’ belong to the set of all markings that can be obtained, i.e. μ’ ∈ R(C, μ)? 

Given the net: Problem: 
is μ(k+1) reachable? 
e.g. 

Solution, find q(k): 
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Example of a Petri net 

p 1 

p 2 p 3 

t 1 

t 3 t 2 

p 4 p 5 

t 4 























-

-

-

-

-



1100
1010

0101
0011
1001

D

2. Conservation 

0DxT













--

+-

+-

++-

0
0
0

0

541

53

42

321

xxx
xx
xx

xxx

This example has a solution in the form of an undetermined 
system of equations, where we can choose: 

  

x1  x2 + x3

x2  x4

x3  x5












].11112[Tx

Dqxxx TTT +  '
To maintain the (weighted) number of tokens one writes: 

Chap. 7 – Analysis of Discrete Event Systems 

and therefore: 
 x>0 is a necessary and 

sufficient condition 
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3. Temporal invariance 

0Dq














-

-

-

-

+-

0
0
0
0
0

43

42

31

21

41

qq
qq
qq
qq
qq

To determine the transition firing vectors that make the 
Petri net return to the same state(s): 

,

1100
1010

0101
0011
1001























-

-

-

-

-

D





















4

3

2

1

q
q
q
q

q

Chap. 7 – Analysis of Discrete Event Systems 

Example of a Petri net 

This example has a solution in the form of an 
undetermined system of equations from which we can 
choose e.g.:     
  q = [1  1  1  1]T . 

p 1 

p 2 p 3 

t 1 

t 3 t 2 

p 4 p 5 

t 4 

 q is a necessary (not 
sufficient) condition 
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p1: Jobs waits 
processing 

p3: Job is being 
processed 

p2: Server is idle 

p4: Job is  
complete 

t1: Job 
arrival 

t2: Start of 
processing 

t3: End of 
processing 

t4: Job is 
delivered 

Chap. 7 – Analysis of Discrete Event Systems 

Example for the analysis of properties: 

Event   Pre-conditions Pos-conditions 

t1 -  p1 

t2 p1, p2  p3 

t3 p3  p4, p2 

t4 p4  - 

Q: Exists conservation ? 
 
A: Find w such that wT.D=0 

   if   w>0 then net is conservative 
   else it is not conservative 



















-

-

-

-



11
11

11
11

D

wT = [w1 w2 w3 w4] = ? 

Q2: What changes if initial 
marking in p2 is zero? 
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Discrete Event Systems 
Example of a simple automation system modeled using PNs 

An automatic soda selling  
machine accepts  
 50c and $1 coins and 
sells 2 types of products: 
 SODA A, that costs $1.50 and 
 SODA B, that costs $2.00. 
 
Assume that the money return 
operation is omitted. 
 

t1 

t2 
t3 

t4 

t5 

t6 

t7 

t8 

t9 

p1 

p2 

p3 

p4 

p5 

p1: machine with $0.00; 
t1: coin of 50 c introduced; 
t8: SODA B sold. 

Chap. 7 – Analysis of Discrete Event Systems 

Q: Are there transition firing 
vectors that make the Petri net 
return to the same state? 
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Discrete Event Systems 
Example of a simple automation system modeled using PNs 

>> q= null(D, 'r') 

q = 

   1  -1   1   0   1 

  -1   1  -1   1   0 

   1   0   0   0   0 

   0  -1   1   0   1 

   0   1   0   0   0 

   0   0  -1   1   0 

   0   0   1   0   0 

   0   0   0   1   0 

   0   0   0   0   1 

t1 

t2 
t3 

t4 

t5 

t6 

t7 

t8 

t9 

p1 

p2 

p3 

p4 

p5 

D= [ -1  -1   0   0   0   0   0   1   1 

      1   0  -1  -1   0   0   0   0   0 

      0   1   1   0  -1  -1   0   0   0 

      0   0   0   1   1   0  -1   0  -1 

      0   0   0   0   0   1   1  -1   0 ] 

>> q(:,1)= q(:,1)+q(:,4); 

>> q(:,2)= q(:,2)+q(:,5); 

>> q(:,3)= q(:,3)+q(:,4); 

q = 

   1   0   1   0   1 

   0   1   0   1   0 

   1   0   0   0   0 

   0   0   1   0   1 

   0   1   0   0   0 

   1   0   0   1   0 

   0   0   1   0   0 

   1   0   1   1   0 

   0   1   0   0   1 Time invariance ? Find q such that. D.q=0 
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The reachability tree and matrix equation techniques allow properties of 
safeness, boundedness, conservation, and coverability to be determined for 
Petri nets. In particular, a necessary condition for reachability is established. 

However, these techniques are not sufficient to solve several other problems, 
especially liveness, reachability (sufficient condition), and equivalence. 

[Petersen 81, ch5] 

Complexity and Decidibility 

In the following: we will discuss the complexity and decidability of the problems 
not solved. 
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Complexity and Decidibility 

• Till the end of this chapter, problem is intended as a question with yes/no answer, 
 e.g. “ does μ’R(C,μ)  C, μ, μ’ ? ” 
 

• A problem is undecidable if it is proven that no algorithm to solve it exists. 
 

An example of a undecidable problem is the stop of a Turing machine (TM): 

“Will the TM stop for the code n after using the number m?”. 
 

• For decidable problems, the complexity of the solutions has to be taken into account, 
that is, the computational cost in terms of memory and time.  
 

         Basic example: a multiplication of numbers has solution (algorithm taught in the school), 

         but the complexity was different in the arabic and latin civilizations 

        (how to do a multiplication using roman numbers?) 

Chap. 7 – Analysis of Discrete Event Systems 
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Complexity and Decidibility 

Chap. 7 – Analysis of Discrete Event Systems 

Problems with yes or no answers 

Decidable 
Problems 

Undecidable 
Problems 

Acceptable time 
and memory 
complexity 

Problems still to classify 
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Reducibility 

One benefits of reducibility when to solve a given problem it is possible to reduce it 

to another problem with known solution. 

Theorem: Assume that the problem A is reducible to problem B, 

then an instance of A can be transformed in an instance of B and: 

• If B is decidable then A is decidable. 

• If A is undecidable then B is undecidable. 

Chap. 7 – Analysis of Discrete Event Systems 
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Subset Problem: Given two marked Petri nets 

                           and                               , with markings µ1 e µ2, respectively, 

  is                                        ? 

Equality Problem: Given two marked Petri nets 

C1=(P1, T1, I1, O1) and C2=(P2, T2, I2, O2), with markings µ1 e µ2, respectively, 

is R(C1, µ1) = R(C2, µ2) ? 

  R(C1,1)  R(C2 ,2)

)1,1,1,1(1 OITPC  )2,2,2,2(2 OITPC 

The equality problem is reducible to the subset problem  
(equality is obtained by proving that each set is a subset of the other) 

Chap. 7 – Analysis of Discrete Event Systems 

Reducibility 
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Decidibility 
If a problem is ≈ undecidable does it mean that it is not solvable? 
 No, while not proved to be undecidable there is hope it can be solved! 
 
Classical example, Fermat Last Theorem: 
    Does xn + yn = zn have a solution for n>2 and nontrivial integers x, y e z? 
 
Now, it is known that the problem is impossible, i.e. its answer is No. The problem 
remained ≈ undecidable for more than 2 centuries (solution proven in 1998). 
 
    The Turing Machine (TM) Halting problem is undecidable. 
 
If it were decidable, for instance the Fermat last theorem would have been proven long 
time ago, i.e. there would be an algorithm (TM with code n) that computing all 
combinations of x,y,z and n>2 (number m) to find a solution verifying xn + yn = zn . 

Chap. 7 – Analysis of Discrete Event Systems 
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Reachability Problems 
Given a Petri net C=(P,T,I,O) with initial marking  

Reachability Problem:  
Considering a marking μ’, does μ’  R(C, μ) ? 

Sub-marking Reachability Problem:  
Given the marking μ’ and a subset           ,  exists  
such that                                  ? 

  
'' R(C,)PP '

''''  )( Ppp ii  

Zero Reachability Problem: 
Given the marking  μ’=(0 0 … 0), does                        ? ),('  CR

Zero Place Reachability Problem: 
Given the place           , does                          with                    ? Ppi  ),('  CR 0)(' ip

Chap. 7 – Analysis of Discrete Event Systems 
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Reachability Problem  

Zero Reachability Problem  

Sub-marking Reachability Problem  

Zero Place Reachability Problem  

Theorem 5.1 Theorem 5.2 

Reachability Problems Legend: 
A→B means A is reducible to B 

Chap. 7 – Analysis of Discrete Event Systems 
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• Reachability Problem; 
• Zero Reachability Problem; 
• Sub-marking Reachability Problem; 
• Zero Place Reachability Problem. 

Theorem 5.3: The following reachability problems are 
equivalent: 

Chap. 7 – Analysis of Discrete Event Systems 

Reachability Problems 
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Liveness and Reachability 
(Given a Petri net C=(P,T,I,O) with initial marking ) 

Liveness Problem 
 Are all transitions tj of T live?  
 
 Transition Liveness Problem 
 For the transition tj of T, is tj live? 

The liveness problem is reducible to the transition liveness 
problem. To solve the first it remains only to solve the second for 
the m Petri net transitions (#T = m). 

Chap. 7 – Analysis of Discrete Event Systems 



         Page 40 

IST / DEEC / API 

Theorem 5.5: The problem of reachability is reducible to the 
liveness problem. 

Theorem 5.6: The problem of liveness is reducible to the 
reachability problem. 

• Reachability problem 
• Liveness problem 

Theorem 5.7: The following problems are equivalent: 

Chap. 7 – Analysis of Discrete Event Systems 

Liveness and Reachability 
(Given a Petri net C=(P,T,I,O) with initial marking ) 
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Decidibility results 

Theorem 5.10: The sub-marking reachability problem is reducible 
to the reachable subsets of a Petri net. 

• Subset problem for reachable sets of a Petri net 

Theorem 5.11: The following problem is undecidable: 

They are all reducible to the famous Hilbert’s 10th problem: 
 

The solution of the Diophantine equation of  n variables, with integer coefficients  
P(x1, x2, …, xn)=0 is undecidable. 

 (proof by Matijasevic  that it is undecidable in the late 1970s). 

Chap. 7 – Analysis of Discrete Event Systems 
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"... most decision problems involving finite-state automata can be solved 
algorithmically in finite time, i.e., they are decidable. Unfortunately, many problems 
that are decidable for finite state automata are no longer decidable for Petri nets, 
reflecting a natural trade off between decidability and model-richness. (...) Overall, 
it is probably most helpful to think of Petri nets and automata as complementary 

modeling approaches, rather than competing ones.“ 
 
[Cassandras 2008] 

Decidibility 
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PLC implementing 

a PN 

Simulating a Petri net with HW inputs and outputs 

PN actuation 

(PLC %q0.4.x) 
state to actuation 

PN inputs 

(PLC %i0.2.x) 
signals to 
transitions 

HW to be 

controlled 

PN output 

(PLC %q0.4.x) 
state to output 

Summary of simulators: (a) simulation of the Petri net, 
                     (b) simulation of the hardware to be controlled 

Summary of functions: (1) state/places to actuation, 
                   (2) signals to transitions, 
                   (3) state/places to output 
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Simulating a Petri net with HW inputs and outputs 

Example: Philosophers Dinner 

Not eating 

Eating 

Philosopher1,   Philosopher2,   Philosopher3,   Philosopher4,   Philosopher5 

fork knife fork knife fork 
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Simulating a Petri net with HW inputs and outputs 

Example: Philosophers Dinner – input / events 
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Simulating a Petri net with HW inputs and outputs 

Example: Philosophers Dinner – simulation 

Request to eat Request served 

Request to eat 
not served 

Note: See complete demo in the 
webpage of the course. 
 
Note2: Modern operating 
systems must work better than 
failing early like in this PN 
simulation. E.g. programs 
require both CPU and memory; 
O.S. typically create managers 
that hold the resources and 
queue the requests. 
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Simulation of a 
generic Petri net 
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Simulating a Petri net with HW inputs and outputs 

Example: keyboard reading 

output = columns power,  input = lines read 

1. state to actuation: 
    power kb columns 

2. signals to transitions: 
     wait signal on kb lines 

( ... ) 

3. state to output: 
     key X is pressed 

See example in Matlab: 

Summary of simulators 
a)  PN_sim.m 
b)  PN_device_kb_IO.m 
 
Summary of functions 
1)  PN_s2act.m 
2)  PN_tfire.m 
3)  PN_s2yout.m 
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Keyboard simulator: 
generate line values 
given column values 
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Prototypes of the interfacing functions 


