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Overview

We investigate the developmental transition from hand affordances (action possibilities
by using the hands) to tool affordances (action possibilities by using tools). We
propose a probabilistic model to learn hand affordances by exploring the environment,
and we show how this model can generalize to estimate the affordances of previously
unseen tools. We publicly release a dataset of hand affordances.

Motivation

• Our hands are our first tools, i.e., the first means to interact with world objects.
From 16 months of age, we start developing functional tool use.

• What skills that an agent has acquired with its bare hands can be employed for tool
use and reasoning?

Proposed Approach

• Computational probabilistic model [2] to learn hand and object affordances.
• Robot interacts with environment by trying manipulative actions on objects on a

table. Affordances learned as relationships between:
• Manipulator features – shape features from Internal Model of Hands;
• Object features – shape features from visual segmentation;
• Actions – tap from left, tap from right, push farther, draw closer;
• Effects – geometric displacement of objects.
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Internal Model of Hands

• Body schema: representation of the body that is constantly updated, useful for
inferring limbs position in space and guiding motor actions.

• Graphically and geometrically precise appearance model of robotic hand, based on
CAD model [3].
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Hand Affordance Dataset

• We measure the horizontal and vertical displacement effects of objects when trying
different {action,hand posture} combinations on them.

• 4 actions, 2 objects, 3 hand postures, multiple views → 42 000 affordances.
• Hand posture affordance dataset publicly available at

https://github.com/vislab-tecnico-lisboa/affordance-datasets

Tool Selection Experiment

• The robot must select a tool between (a) stick, (b) rake, (c) hook to bring an object
closer (draw action). The object cannot be reached with the bare hands.

• These tools were never seen before (zero-shot learning). Their affordances are
evaluated merely based on the knowledge in the Hand Affordance Dataset.

• Percentage of experiments where each tool is selected in our Hand-to-Tool
case (HT: train with hands, test with tools) vs Tool-to-Tool case (TT) [1]:
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