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Abstract

The adaptive immune system in vertebrates is a complex, dis-
tributed, adaptive system capable of effecting colleatixd-
ticellular responses. Our study introduces many of the de-
sirable properties of this biological system to decerzeali
multiagent systems. We adopt the crossregulation model of
the adaptive immune system involving interactions between
effector and regulatory cells. Effector cells can mountdien

cial immune responses to microbial antigens as well as patho
logic autoimmune responses to self-antigens. Deletedaus
toimmunity is prevented by regulatory cells that suppréss t
effectors to tolerate the self-antigens. We redeploy thesr
regulation model within a multiagent system by letting each
agent run an ODE-based instance of the model. Results of
extensive simulation-based experiments demonstrateathat
distributed multiagent system can mount different respsns
to distinct objects in their environment. These responses a
solely a result of the dynamics between virtual cells in each
agent and interactions between neighboring agents. The col
lective dynamics gives rise to a meaningful “self”-“norisel
classification of the environment by individual agent, eifen
these categories were not prescribed a priori in the agents.

Introduction

Multiagent systems (MAS) comprise a large number of re-
search domains, ranging from software agents to multirobot
systems, and play an important role in several applications

such as supply chain management, transportation logistics

and network routing. The coordination of agents in a MAS

division of labor in social insects such as ants and honey
bees (Parker et al., 2003; Waibel et al., 2009; Hauert et al.,
2009; Tarapore et al., 2010; O'Grady et al., 2010).

The cell collective that constitutes the adaptive immune
system has been extremely successful during the course of
evolution as evidenced by its presence in all jawed verte-
brate species (Janeway et al., 1997). Central to the suctess
these cells is the important role they play in establishimd) a
maximizing the capabilities of the immune system, by al-
lowing an exquisite “self-nonself” discrimination thatrist
present in invertebrates. The cell collective is able toe rec
ognize and mount specific immune responses to microbial
agents that the organism and its ancestors had never faced
before. It does this immersed in the constant presence of
diverse and abundant body antigens, which are molecularly
similar to the microbial antigens. In normal healthy indivi
uals, sporadic microbial invaders are specifically elirteda
by immune responses and, at the same time, pathologic au-
toimmune responses to the abundant body antigens is pre-
vented, i.e. natural tolerance to “self” is maintained. Ex-
perimental evidence indicates that natural tolerancedtsesu
from the dynamics and interactions between specific regula-
tory and effector T-cells (e.g., Sakaguchi (2004)). Indere
ingly, the decentralized nature of the interactions mayarhp
a high degree of robustness for natural tolerance, without
the need of maintaining a specific, genetically hardwired,
“memory” of self-antigens.

is a major challenge because agent behavior depends not
only on interactions with their immediate environment but The decentralized and adaptive nature of the immune sys-
also on the behavior of other agents. A centralized control tem is a source of inspiration for designers of large scale
approach may not always be feasible due to computational MAS. In particular, the ability of the system to dynami-
and/or communication constraints on agents (e.g., Crespi cally maintain natural tolerance has many industrial appli
et al. (2008); Mermoud et al. (2010)). Distributed control, cations. Some typical studies that take inspiration from
on the other hand, is often complicated to realize because this “self”-“nonself” discrimination capability of the im

the behavioral rules for the individual units cannot belgasi mune system include, distributed intrusion detection sys-
derived from a desired macroscopic behavior (e.g., Parker tems (Nino and Beltran, 2002; Kim and Bentley, 1999), and
(2000); Yamins and Nagpal (2008); Hamann (2010)). In the fault tolerance systems (Bradley and Tyrrell, 2000, 2001;
design of large scale distributed systems, several rdse@c ~ Canham and Tyrrell, 2002). However, most of these mod-
have therefore taken inspiration from nature e.g., aggrega els assume which particular antigens or features are pre-
tion of amoeba into slime mold (Payton et al., 2003), quo- scribed as “self”, and consequently the system is trained to
rum sensing and communication in bacteria (Sahin, 2005), tolerate them. While this approach does provide some in-



teresting results of robust feature classification, it doets with a cell recruitment mechanism.
fully incorporate the dynamics and adaptive nature of the
immune system. This led us to propose the use o€tbss-
regulation mode(CRM) for the maintenance of tolerance.
The CRM (Leon et al., 2000, 2003, 2004; Carneiro et al.,
2007) suggests a dynamics of interactions between cells of
the immune system, that allows the system to discriminate
between antigens based solely on their density and persis-
tence in the environment. The system is able to tolerate
body antigens (i.e “self”) that are characteristically gi&r

tent and abundant, and to mount an immune response to for-
eign pathogens, that are characterized as being neither per
sistent nor abundant. The model has been used successfull
in spam detection (e.g., Abi-Haidar and Rocha (2008)) and
document classification (e.g., Abi-Haidar and Rocha (2010
2011)) scenarios, making it a good candidate for MAS for
environment classification.

In this study, we propose a CRM-based approach to repli-  The dynamics of T-cell population is regulated by the fol-
cate the capability of the immune system in maintaining tol- lowing density-dependent feedback mechanisms. (i) Effec-
erance. We use an agent_based simulator to model a sit- tor and regulatory cells that are unable to interact with APC
uation where individuals have to tolerate certain features are slowly lost by cell death. (i) The proliferation of edfe
while mounting an immune response against others. The tor and regulatory Ce||S requires intel’aCtiOI’lS W|th AP% an
different environmental features are represented byrémb depends on interactions these T-cells make with each other.
sensory stimuli in the environment, and their nature (“self ~ Proliferation of thel’s cell population is promoted by the
or “nonself”) are not known by the agents beforehand. We absence of regulatory cells on the APC. In contrégtcan
demonstrate the capacity of the system to tolerate specific ©nly proliferate following co-conjugation with effectoelts
environmental features that may be characterized as persis ©n the same APC. Additionally/z and T cells interact
tent and abundant (“self”), while mounting an immune re- indirectly by competition for access to conjugation sites o
sponse against others (“nonself”). In addition, the system APCs.
response is resilient to sensory noise, and can respond cor-
rectly under varying environmental conditions.

The rest of the paper is organized as follows: In the fol- Behavior of cell population
lowing section, we describe the CRM. We then present the

application of the CRM in a MAS. We go on to report the  cgnsiderable work has focused on analyzing the properties
r_esults of our experlments in different enwronmgntal qend of the CRM, and the underlying dynamics betwéen Tx
tlons_and under varying levels of_ perceptual noise. F|nally and APCs (Leon et al., 2000, 2003). An interesting char-
we discuss our approach to environment classification and 4¢teristic of the CRM is the ability to discriminate between
highlight the conclusions of this study. antigens based on their density. At low concentrations of
. APCs, the system evolves into a stable state composed onl
The Crossregulation Model of effector c}(/alls (immune response). In contrast,pat highery
Two general principles are essential for the viability ofimu  values of APCs, the system demonstrates bistable behavior.
ticellular organisms. Firstly, the persistence of any tiell At these concentrations of antigens, the system can evolve
eage requires that its cells recurrently interact with otiedl either into an equilibrium state consisting predominaofly
types in the organism. Cells that fail to interact with other effector cells (immune response), or into a state composed
cells eventually die. Secondly, the growth of a cell popula- largely of regulatory cells (tolerant response). The syste
tion involves density-dependent feedback mechanisms con- develops into the regulatory cell dominated state, pravide
trolling individual cell proliferation. These feedback ata- that the seeding population has sufficiéit cells. By con-
nisms may involve (i) indirect interactions among cellscfsu trast, if T'r cells are initially underrepresentéty; cells will
as a competition for limited growth factors) and (ii) direct competitively exclude the former from the system. Conse-
interactions, such as contact inhibition. These two pfinci quent to the antigen density dependent response, the effec-
ples of multicellular organization are the foundation of th  tor cells are made tolerant to antigens that are persisteht a
crossregulation model, and have been justified extensively abundant. In addition, the effector cells are free to mount
in Carneiro et al. (2007). Below, we outline the model and immune responses to antigens that are not persistent or not
highlight its interesting properties that are later regtiéd abundant.

The CRM describes the population dynamics of cells of
the adaptive immune system, based on three mutually inter-
acting cell types: (i) Antigen presenting cells (APCs) that
display the antigen on their surface. Individual APCs have
a fixed number of sitess] on which effector and regulatory
cells can form conjugates; (ii) effector cells; that can po-
tentially mount an immune response which, depending on
receptor specificity, can be directed to foreign pathogens o
to self-antigens; and (iii) regulatory cellg; that suppress
proliferation of Tz cells with similar specificities. Further-
more, the APCs are classified into different sub-population
Yof equivalent APCs, with each APC in a sub-population pre-

senting the same antigen on its surface. Similarly effector
' and regulatory cells are also classified into different sub-
populations or clones according to their specificity.



Table 1: Parameters of the crossregulation model.

Param. | Description Value (a.u.)
Aj Density of APCs of populatiop -
s Maximum number of T-cells that can bing 3
to an APC
Eo Seed density of effector cells 10
Ro Seed density of regulatory cells 100
FE; Density of effector cells of cloné —
R; Density of regulatory cells of clone —
R; Density of T-cells of clone E; + R;
Cij Density of conjugates betwedn and A ; —
Ye Conjugation rate of T-cells to APCs 1071
Yd Deconjugation rate of T-cells from APCs| 107!
oE Influx rate of new effector cells 1073
oR Influx rate of new regulatory cells 0.6 x 1072
TE Proliferation rate of effector cells 1073
TR Proliferation rate of regulatory cells 0.5 x 1073
& Death rate of effector and regulatory cell§ 10~°

Mathematical formulation of the model

The dynamics of the interactions between effector and regu-
latory cells, with APCs is described by a set of ordinary dif-
ferential equations in the following variables: (i) The num
ber of effectorE; and regulatoryR; T-cells of clonal type,
wherei € {1,2... N} andN is the number of T-cell clones.
(i) The number of APCsl;, wherej € {1,2... M} andM
is the number of different antigen types. (iii) The number of
conjugate€’;; formed between effector and regulatory cells
from clone: and APC from populatior.

For the effector®; and regulatony?; cells of clonei, we
have:

dE, .
a1z :O'E-i-ﬂ'EEi —0F; (1)
dR;

17 =op+ mrR —dR; (2)

where the involved quantities are defined in Table 1.

The equations forF; (eq 1) andR; (eq 2) have three
terms. The first term represents the influx of new cells,
which is assumed to be constant. The second term ac-
counts for the proliferation of activated effector and regu
latory cells. Finally, the death of T-cells is representgd b
the third term of the equations. In the simulations, we gen-
erate all T-cell clones with similar initial conditions ., &,
EZ(O) = Fy andRZ(O) = Ry.

The density of activate@r andTr cells of each clone are
computed in a stepwise manner. Let us consider the interac-
tions between thé-th T-cell clone and thg-th APC popu-
lation. The dynamics of the conjugat€’; is described by
the following equation:

40 M N
dtZ = 7ebi; <Ti -3 Cij) <Aj5 -3 Oij) —7aCij
j=1 i=1

whereT; = E; + R;, andy,. and~, involve the conjugation
and deconjugation rates between APCs and T-cells, respec-
tively (parameters in Table 1). In the above equation, new
conjugates are formed by the free T-cells of clonéth the
available sites on APCs of populatigrat ratey.. The con-
jugation rate is also controlled by the affinit§;{) between

the T-cells and APCs. The existing conjugates dissociate at
rateyy. The conjugation and deconjugation of T-cells from
the APCs is a fast process with respect to the overall T-cell
clone dynamics. Consequently, we solve at each time step,
the steady state values of the conjugates by the Euler-Heun
adaptive step method (Butcher, 2003).

The density of activated effectdt; and regulatoryR;
cells can now be calculated (for details see Appendix A).
Conjugated effector cells are activated in the absencegef re
ulatory cells on the same APC. In contrast, conjugated regu-
latory cells can only be activated if at least one effectdir ce
is simultaneously conjugated to the same APC.

The population dynamics behavior exhibited by the CRM
is governed by two key composite parameters represent-
ing the effective growth rates dfy and Tz cell popula-
tions (Leon et al., 2000). These two parameters are directly
proportional to the basic parameters controlling popatati
growth i.e., conjugation constant., affinity between T-
cell and APCs{;;), influx rate of new effector and regula-
tory cells ¢ ando ), proliferation rates of these two types
of T-cells (g andwr), and the density of APCs4(;). The
effective growth rates of the T-cells is also inversely pmep
tional to the death rat&) of the corresponding population.
The compositél's and Tz growth parameters define four
parameter regimes according to the resulting cell popriati
behavior. Three parameter regimes result in a single stable
state that may correspond to either: (i) extinction of all T-
cells ' = 0, Tr = 0), (ii) immune state{g > Tg), or
(iii) tolerant state Tr < Tr). The fourth parameter regime
corresponds to a bistable system where both immune and
tolerant states are stable. A detailed analysis of these pa-
rameter regimes is provided in Leon et al. (2000). For our
present study, the parameter values have been set so that at
low APC densities, the system evolves into a single state
composed only of effector cells. By contrast, at relatively
high density of APCs, the system is bistable and can evolve
either into an immune or tolerant equilibrium state.

CRM in a Multiagent System

In this section, we demonstrate how the CRM can be im-
plemented on a distributed embodied multiagent system in
order to give the system the capacity to classify different
features in the environment based on their concentrations.
Features that are persistent and abundant are to be tdlerate
while features that are present at a low density are not. We
show that the multiagent system is able to adapt online and
that it is resilient to perceptual noise.

We use a stochastic, spatial, discrete-time simulator. The



simulated environment is toroidal and has a sizel @fx
10 units. The MAS is composed &0 point-sized agents
that perform a random walk: each agent move at a constant
speed 00.01 units/time-step, and has a probability(61
of changing to a new random direction each simulation step.
The agents detect features of static objects within their se
sory range (1 unit) and run an internal and individual in-
stance of a CRM in order to determine if the objects should
be tolerated or not (see details below).

Individual features of the static objects in the environtnen
are encoded in Boolean form (present, absent 0), and
then concatenated to form a binary string, f@ture vectar

At the start of each time-step, an agent computes the density

of each feature vectorF{V;) within its sensory range. In
the agent’s internal CRM instance, APCs are then generated
corresponding to each of the feature vectors perceivech Eac
APC presents an individual feature vector to the T-celle Th
number of each type of the APCs generatddC; = F'V},

forj € {1,..., M}, whereM is the number of different
feature vectors perceived by the agent.

The T-cell clonesTi, Tz, ..., Tx), each have a different
receptor encoded as a binary string, which determines their
affinity to the APC population. The affinity between T cell
clonali and APC populatior is denoted by, ;:

C
where H is the Hamming distance between the receptor of
T; and the feature vector presenteday, andc is the cross-
reactivity between T-cells and APCs. A high value ©of
would result in all T-cell clones having a high affinity to all
APC populations. By contrast, at lowy each T-cell clone
would have a high affinity to only one distinct APC popula-
tion.

At the start of the simulation, the number of effector and
regulator cells on each agent is initializedig and R re-
spectively. Following this, Algorithm 1 (parameters in Ta-
ble 2) is performed by the agents in each simulation time-
step, allowing the agents to execute the behavior designed
in the CRM. The agents begin by sensing their local envi-
ronment and computing the density of feature vectors. Per-
ceptual noise is modeled by randomly flipping the binary
representation of one of the feature with probabitityThe
CRM is then numerically integrated for tintg allowing the
system to respond to the different APCs. After computing
the number of effector and regulatory cells at tisiethe
cells diffuse among agents. In this communication phase,
each agent selects a neighboring agent within its commu-
nication range. The selection is random following a linear
distribution on the total number of T-cells associated with
each agent in communication range. Following the selec-
tion, each agent sends and receites its effector and reg-
ulatory cells. Finally, the agent decides the nature of each
feature vectorr'V; sensed, as follows:

®3)

Table 2: Parameters of the stochastic simulator

Param. | Description Value (a.u.)

N Number of T-cell clones 4

M Number of different feature vectors 4

c Cross-reactivity between T-cells and AP(s 0.4

T Probability to add noise on a feature 0.1-0.5
Time CRM instance is executed, in a single 10°
simulation-step

d Proportion of T-cells diffused to neighbor; 0.5
ing agents

E=Y1,05E  R=%[1 0;R

where the feature vector is accepted as tolerait it F,
else the object associated with the feature vector is rechove
from the environment by the agent.

Algorithm 1 An agent’s control loop (simulation of an
CRM instance)
1: {Perceive static objecfs
2: Compute density of feature vecto8(;) in sensory range of
agent

3: For each of the sensed feature vectors, add noise to ohe of t
features with probability:

4: Assign feature vectors to APCs i.gj, A; = F'V;

5: {Run instance of CRM

6: time < 0

7: while time < S do

8 Vie {1,2...N} andVj € {1,2...M}, compute the
number of conjugated cellS;; in steady state, integrating
using the Euler-Heun adaptive step method
Using the number of conjugated cells, compute the updated
number of effector and regulatory cells with the Euler-Heun
adaptive step method. The adaptive step size is storkd in

10:  time < time+ h

11: end while

12: {Diffuse cells across neighboring agents

13: Randomly select one of the agents in the communicatitgera
following a linear distribution and weighted by the totaihmu
ber of cells on the respective neighboring agents
Exchange cells with agent

{Decide if feature vectors are to be tolerated or}not

For each feature vector, compute the sum of effector eguatr
latory cells, weighted by their affinity.

Tolerate the FV if total regulatory cells exceeds effestelse
mount an immune response i.e., remove the static object asso
ciated with the feature vector from the environment.

14:
15:
16:

17:

Experiments

We set up a series of experiments in order to evaluate the
classification capabilities of a multiagent system operati
according to the model described above. In a first set of
experiments, we distributed two different types of statie o
jects in the environment: one with a high densitg (unit®)

and one with a low densityl (unit®). Both types of static ob-
jects were placed at random positions drawn from a uniform
distribution. In each replication of the experiment, tha-fe
ture vectors of the two types of static objects were picked at



random in such a way that one would be the complement of
the other. Within the CRM conceptual framework the abun-
dant objects are interpreted as body/self-antigens, winde
low density objects are foreign or “nonself”. We endowed
agents with the capacity to remove objects and therefore tol
erance to “self” was interpreted as the persistence of the ob
jects. We show that the MAS is, under some specific non-
trivial conditions, able to tolerate abundant objects thidlt
persist and to remove less abundant objects.
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Figure 1: Mean proportion of static objects acra8gepli-
cates. Individual agents haiD% probability perceptual
noise.

In Fig. 1, we have plotted the mean proportions of static
objects (with respect to the initial quantities) acro@sepli-
cates, each fo2000 simulation steps and with0 agents in
the environment. The object density variance across simula
tion time was similar irrespective of the level of perceptua
noise addeds = 0.1 — 0.5), and was therefore illustrated
for a single casea( = 0.3, Fig. 1). After2000 simulation
time-steps, there was very little variation in the objeds a
sociated with “self”. The density of self-objects remaiin
at10 for 0.1 — 0.4 probability of perceptual noise, while at
higher level of perceptual noise (= 0.5), tolerance was
maintained in all but two replicates (less tha@% of self-
objects destroyed in each replicate). By contrast, theesyst
exhibited an absence of tolerance to objects associatéd wit
“nonself” (Fig. 1 and 2). An immune response to these ob-
jects was mounted irrespective of the level of noise. How-
ever, the response was more effective at lower levels oénois

(Fig. 2).

We set up a second series of experiments in order to eval-

uate the capabilities of a multiagent system to maintain tol

erance under varying environmental conditions. These ex-
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Figure 2: Proportion decrement of “nonself” static objects
with different amounts of perceptual noise.

High density, self objects

Low density, nonself objects

Figure 3: The heterogeneous environment used to investi-
gate environment classification under varying environmlent
conditions.

centric circle of radii 4 and 5 units (Fig 3). Two different
types of static objects were distributed in the environnrent
two different locations: one with a low density.98 /unit®)
was distributed within the inner circle, and one with a high
density ¢0.7/unit’) was distributed between the inner and
outer circles.

In Fig. 4 and 5, we have plotted the mean proportions
of static objects (with respect to the initial quantitiesjhw
intra-agent communication suppressed and enabled respec-
tively. Experiments were replicatdd times, each fo2000
simulation steps and with0 agent in the environment.

The communication of T-cells between agents had a
strong effect on the maintenance of tolerance. In the ab-
sence of communication, the system was unable to maintain
tolerance (Fig. 4). AR000 simulation time-steps, the abun-

periments were designed to assess the requirement for com-dant “self” objects were removed from the environment in
munication between agents. In this set of experiments, we all 10 replicates. By contrast, in the presence of commu-

divided the environment into three regions, with two con-

nication between agents, almag$i0% of abundant “self”



v oself
nonsel

o 4
o ©

Proportion static objects
o
»

0.2

e, L
1000 1500
Simulation time

2000

Figure 4. Mean proportion of static objects across
replicates, with heterogeneous distribution of staticeoty
(“self” and “nonself”), and inter-agent communication sup
pressed.
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Figure 5: Mean proportion of static objects across
replicates, with heterogeneous distribution of staticeoty
(“self” and “nonself”), and inter-agent communication en-
abled.

objects persisted in the environment at the end of the simula

tion (Fig. 5). In addition, the agents were also able to mount

an effective immune response, such that all the “nonself”

objects had been removed from the environment at the end
of the simulation (Fig. 5).

Discussion

Our study revealed a robust maintenance of tolerance to
“self”, understood as abundant antigens or features, irre-
spective of the level of perceptual noise on individual agen
Interestingly, even at &0% chance to distort a sensed fea-

ture, the abundant “self” was largely tolerated. This re-
siliency to noise exhibited by the system was a consequence
of the cross-reactivity between T-cells and APCs. At our
level of cross-reactivity, regulatory cells with a high affi

ity to feature vectors of the “self”, were able to react with
and consequently suppress effectors associated with a mis-
read “self” feature vector (low Hamming distance apart)
and consequently prevent their destruction. Separate-expe
iments investigating the influence of this parameter, indi-
cated a complete absence of tolerance at low values of cross-
reactivity. By contrast, at very high levels of cross reacti

ity, regulatory cells suppressed effectors associatell alit

the sensed features thus preventing any discrimination by
the system. Interestingly, the ability of our system totole
ate noise distinguishes it from a simple response threshold
based model for environment classification, wherein differ
ent feature vectors are assigned distinct tolerance tblgsh

and the system response is governed strictly by the density
of each feature vector type being above or below its corre-
sponding threshold.

In simulated environments with a heterogeneous distri-
bution of objects, the agents continued to classify environ
mental features correctly, despite the variations in their
cal environmental conditions. Our results revealed the re-
quirement of communication of T-cells between neighboring
agents in order to maintain the tolerance to abundant “self”
objects. In the absence of communication, agents were un-
able to tolerate “self” objects when entering regions catnsi
ing of them. By contrast, in the presence of communica-
tion, regulatory cells communicated from agents already in
the “self” associated region allowed the entering agents to
respond faster to environmental changes and consequently,
greatly improved their tolerance. The diffusion of T-célés
tween agents allows the agents to share information of their
local environments and to perform better as a collective.

In our simulations, APCs are generated corresponding to
each of the feature vectors. Each APC presents an indepen-
dent feature vector present at that instance. Consequently
APCs related to a newly generated feature vector may not
react to the existing T-cells in the agents’ history. This is
because the reaction would be dependent on the feature vec-
tor chosen for this new event and its affinity to the existing
T-cells. We illustrate this point with the following exanepl
Consider an agentin an environment witly; presented by
A; at a density resulting in a tolerant response. The agent
has in its history, T clonal-typ&; with ©,; = 1. Conse-
quent to the density ofl;, R; > E;. Now let us consider
the agent moving into an environment resulting in another
APC typeAy. However, the existing cells in the agents’ his-
tory may or may not react to this new APC, and the decision
is stochastic and dependent on the choice of the new feature
vector F'V;. In this system, for the existing T-cells to re-
act with the new feature vectdt;, > 0 and this is a direct
consequence of the (preexisting) affinity mapping between



feature vectors and T-cell clonal types. Another possipte a  range of tasks.

proach wherein the history of the system could be explicitly ) ) ) )
taken into account would be the generation of APCs to rep- SuPplemental Data:Movies of MAS simulations are avail-
resent various combinations of feature vectors. Based on @ble online at http://home.iscte-iul.pt/~alcen/alifé20

the above example, APCs would present feature vectors of
type{F'V;, FVi, FV;FVi}. In this condition, existing cells

in the agents’ history would be able to respond to new fea-
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Appendix A: Equations for activated T-cells

The section details the equations to calculate density thfeded
effector £} and regulatoryR; cells, for all T-cell clones. Given
the conjugate densit{';; (¢) at steady state, the density of conju-
gated effector and regulatory cells is calculated propodt to the
relative frequency off 'z andTr cells in the clone. For the con-
jugated effectotEc;; and regulatoryRc;; cells of clonei at APC
populationj, we have:

Ci; (1) Ei ()
T; (t)

Cii (1) Ri(t)

ECZ‘J‘ (t) = Ti (t)

and Rcij (t) =

Finally, for the number of activated effectd] and regulatory
R} cells, we have:

M
E: = Z Pe (Aj7 E‘CZ‘7 Rci)Ecij

j=1

(4)

M
R:‘ = ZPT(AJ', FEc;, RCi)RCij

j=1

Q)

where functionP. is the probability that an effector cell is conju-
gated with no neighboring regulatory cell at the same APCis
the probability that a regulatory cells is conjugated with/APC
that has at least one effector cell conjugated simultarhgofiddi-
tionally, Ec; and Rc; are the total number of conjugated effector
and regulatory cells of clone

M
Z Eci]‘ and Re;

j=1

Eci

M
E Rcij
j=1

The probability functions?. and P. can be reduced to the fol-
lowing expressions, based on a multinomial approximatitrags
et al., 2000) that is valid given that the total number of site
(summed over all the APCs) is much larger than the number of
sites per APC. FoB binding sites § = 3) on each APC, we have:

(Rei — 34,)°
P.(A;,Eci,R¢;) = ——* ®)
’ 947
Pr(Aj,ECi7RCZ~) = M (7)

2
942

Utilizing the probability functionsP. and P, the density of ef-
fector and regulator cells can be calculated (eq 4 and 5).



