
Early Speech Development of a Humanoid Robot using Babbling and Lip
Tracking

Jonas Hörnstein1, Cláudia Soares1, José Santos-Victor1 and Alexandre Bernardino1
1Instituto de Sistemas e Robótica, Instituto Superior Técnico, Lisboa, Portugal

jhornstein@isr.ist.utl.pt

Abstract

In this work we show how a humanoid robot can learn to
produce and recognise both vowels and consonants using a
unified method for speech production and recognition. The
method is inspired by the motor theory and the discovery
of mirror neurons. Both auditory and visual information is
used and mapped to the robot’s articulatory space where the
recognition and speech production is performed. A combi-
nation of babbling and imitation is used to learn the maps.
We find that the visual information can be useful not only
to increase the recognition rate of already learnt phonemes,
but also to drive the learning of new phonemes.

INTRODUCTION
Language acquisition is a complex and highly social pro-
cess. To interact with humans using speech a robot need
to be able both to produce and to recognize a number of
phonemes. Speech production, speech recognition, and
learning of phonemes are usually handled by different pro-
cesses, but here we handle these tasks with a unified ap-
proach. This approach is based on our earlier work (Hörn-
stein and Santos-Victor, 2007), where we map the speech
signal to motor representations in the robot’s vocal tract
and perform both speech planning and speech recognition
in motor space. A similar approach is taken in (Kanda and
Ogata, 2007). The idea to use motor space rather than
directly using the speech signal comes from the Motor
Theory (Liberman and Mattingly, 1985). They found that
being able to produce a certain sound also increased the
possibility to recognize the same sound. In an other work
it has been found that there is an increased activity in the
tongue muscles when listening to words that requires large
tongue movements (Fadiga et al., 2002). Both these works
lead us to believe that the motor area is involved not only
in speech production, but also in speech recognition.
In this work we further extend and develop our uni-

fied approach by including visual input in the form of a
lip tracker and a self clustering algorithm that automati-
cally groups learned motor positions into phonemes. We
also show how a humanoid robot can use the described
approach to learn both vowels and simple consonants dur-
ing its early speech development. The robot used in this
work is the iCub, Figure 1. The iCub is equipped with
sensors in the form of microphones and cameras, and can
produce sound through a simulated vocal tract. It has no

preprogrammed knowledge about language. Instead it has
to learn how to speak by exploring its vocal tract and learn
its initial sensory-motor maps using babbling. It also has
to learn which sounds are useful for communication with
humans, group these sounds into phonemes, and to rec-
ognize the same phonemes when pronounced by different
speakers. The set of sounds considered as useful depend
on the cultural environment in which the robot is placed
and therefore has to be learned through the interaction
with humans. Here we use different types of imitation
games to allow the robot to learn new phonemes and gain
speaker invariance.
The rest of the paper is organized as follows. In sec-

tion 2 we give an overview of the architecture used and
especially focus on the new parts like the lip tracker and
the clustering algorithm. In section 3 we describe the bab-
bling and imitation behavior that the robot uses to develop
its speech. In section 4 we show some experimental results
and conclusions are given in section 5.

Figure 1: iCub robot learning to speak

System architecture
The architecture used in this work is an extension of the
architecture described in (Hörnstein and Santos-Victor,
2007). As in the previous work the architecture consists
of a speech production unit, a sensor unit, a sensor-motor
map and a speech recognition unit, Figure 2. The main
difference compared to the older version is the addition of
a visual sensor in the sensor unit and a vision-motor map
in the sensor-motor map unit. We have also done some
modifications in the position generator that drives the bab-
bling and added a self clustering algorithm in the motor
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Figure 2: Speech architecture

cluster. In this section we give a short overview of each
unit and explain the differences between the current and
the previous version in more detail.

Speech production unit
The speech production unit is responsible for moving the
lips and producing sound. As in the previous version we
do not use a physical model of the human vocal tract, but
simulates the vocal tract in a computer model. The model
used is vtcalcs developed by Maeda (Maeda, 1990). This
model has six parameters that can be used to control the
movements of the vocal tract. One parameter is used for
the controlling the position of the yaw, one for the protru-
sion of the lips, one for lip opening, and three parameters
for controlling the position of the tongue. A synthesizer
converts the vocal tract positions into sound. While the
synthesizer works well for vowel-like sounds, it is unable
to produce fricatives sounds and can hence only produce a
limited set of consonants.
In the new architecture the vocal tract position is also

used to control the shape of the robot’s lips. Our robot
has a very simple lip model consisting of a number of leds
that can either show a closed or an open mouth. A simple
threshold is used to decide whether the mouth should be
shown as open or closed. Examples of the mouth positions
are shown in Figure 1.
The most important difference in the speech produc-

tion unit is the new position generator. While the previ-
ous version only created random positions for the vocal
tract the new unit offers more advanced babbling behav-
ior. One of the problems with the random position gener-
ator was that it created lots of non-humanlike sounds that
aren’t useful for human-robot interaction and slows down
the learning process. In (Soares and Bernadino, 2007), it
has been shown that a convex combination of three cor-
ner vowels [i], [a] and [u] is able to produce the complete
vowel space. The corner vowels represent extreme place-

ments of the tongue and can therefore be considered as
known stable points when starting the exploration of the
articulatory space.
Thus, in this work we include these corner vowels as

starting points in the motor cluster, even though we have
previously shown that it is possible to learn those using
random babbling. The position generator creates a new
sound by picking two positions in the motor cluster and
creating a trajectory between those. As shown in (Soares
and Bernadino, 2007) we always create tangible speech
as long as we stay within the convex envelope of the cor-
ner vowels. However, as this would also restrict us to the
vowel space we add some noise to the positions before cre-
ating the trajectory. This way we allow the robot to also
explore the articulatory space beyond the vowel space.

Sensor units
We use two sensors, an auditory sensor unit and a vi-
sual sensor unit that extract features from the acoustic and
visual spaces respectively. The auditory sensor remains
unchanged. A microphone is used to record the sound.
The sound is windowed into 30 ms frames and Mel fre-
quency cepstral coefficients (MFCC) (Davis and Mermel-
stein, 1980) are calculated for each frame. The visual sen-
sor unit is, on the other hand, a complete new unit that has
not been presented in the previous work. In the following
we explain this sensor unit in more detail.
The purpose of the visual sensor is to provide visual

clues on the position of the vocal tract. While there are
methods to find the exact contour of the lips, like the usage
of snakes or active contour methods (Kass et al., 1987),
these methods are typically too complex to use in speech
recognition. With no a priori assumption of the shape
of the lips the estimation becomes slow and more error
prone. Further more, the complexity of the final descrip-
tion makes further data processing costly. For practical
applications where we need to track the movements of the
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lips in real-time, and are interested in some simple feature
like the area of the mouth opening rather than the exact
contour, we need a compact representation of the lips. In
this work we have chosen to represent the lips by an el-
lipse, which is fitted to the pixels that belong to the lips.
The pixels that belong to the lips are found by using color
segmentation. The color segmentation can be done in sev-
eral different ways. It is usual to extract the color from the
first frame using the initial position of the lips. In (Tian
et al., 1999) the whole color distribution of the lip region
is calculated and modelled as a Gaussian mixture and the
EM method is used to estimate both the mixture weights
and the underlying Gaussian parameters. Here we use a
much simpler method and simply model a lip by its red-
ness, where we define the redness as:

Redness= R2/(R2+G2+B2)

where R, G, and B are the red, green, and blue value of
an RGB-image. If the redness of a pixel is above some
threshold we define the pixel as a lip. The threshold can
be calculated from the initial frame, but we have chosen a
fixed threshold of 0.9. As shown in Figure 3, the threshold
seems to work well even for different persons. Of course
there are other pixels apart from the lip pixels that are clas-
sified as red so we need to know the approximate position
of the lips and only use those pixels to fit the ellipse. Here
we use a face detection algotithm, based on (Viola and
Jones, 2001) and (Lienhart and Maydt, 2002). The face
detection algorithm not only gives us an initial estimate
for the position of the lips, but also gives us the size of
the face which is later used to normalize the area of the
mouth opening. However, the face detection algorithm is
rather slow so the position and size of the head is therefore
only calculated once in the beginning of every experiment
and the subject with which the robot interacts is assumed
to maintain approximately the same distance to the robot
during each experiment.
To fit the ellipse to the lip pixels we use a least square

method described in (Fitzgibbon et al., 1999). The result is
shown in figure 4. We then use the ellipse to calculate the
area of the mouth opening. The ratio between the area of
the mouth opening, given by the lip tracker, and the area
of the face given by the face tracker, is used as a visual
feature and is sent to the vision-motor map.
As said before, the face detection is too slow to be

useful for tracking the movements of the lips between
two frames in the video stream. We therefore use the
method suggested by Lien et. al (Lien et al., 1999). They
use Lucas-Kanade tracking algorithm (Lucas and Kanade,
1981) to track the movements of the lips between adja-
cent frames. One problem with the tracking algorithms
is that it is sensitive to the initial feature point selection
as most points on the lips have ambiguities around the lip
edges. Here we solve this by looking for Harris features
(Harris and Stephens, 1988) around the lips and use these
as initial points that will be tracked. The result gives us
a sufficiently good estimate to maintain an initial estimate
of the lip position over the video sequences used in our

experiments.

Figure 3: Color segmentation

Figure 4: Lip tracking

Sensor-motor maps
The sensor-motor maps are responsible for retrieving the
vocal tract position from the given auditory and visual
features. We use two separate neural networks to map
sound-motor map and the vision-motor map respectively.
The sound-motor map is the more complicated of the two,
mapping the 12 cepstral coefficients back to the 6 parame-
ters of the vocal tract model. The problem is extra difficult
since several positions of the vocal tract results in the same
sound, giving several possible solutions for a given set of
features. While the position generator described above re-
duces the risk of producing the same sound from two dif-
ferent positions, we still get some ambiguities that have to
be solved through the interaction with a caregiver. For the
sound-motor map we use an artificial neural network with
20 hidden neurons.
The vision-motor map is a very simple unit, doing a

linear mapping from the mouth opening to the lip height
parameter of the synthesizer.
Since the output from both the sound-motor map and

the vision-motor map consist of vocal tract positions, the
integration of those sensor outputs becomes very simple.
Here we simply use a weighted average of the lip height
calculated from the two maps. The weight is currently
set by hand, but should preferable be set automatically ac-
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cording to the quality and intensity of the visual and audi-
tory stimula.

Speech recognition unit
The speech recognition unit contains a motor cluster and
a classifier. In our previous version of the architecture the
classifier was a simple dictionary that stored motor po-
sitions that were considered useful for the communica-
tion with the caregiver. In this new version we have im-
plemented an hierarchical clustering algorithm based on
(Hastie, 2001), which starts with creating one cluster for
each stored position and then iteratively joins the two clus-
ters with the minimum euclidean distance until we only
have one single cluster containing all stored positions.
For each level of the clustering process, we have differ-

ent relationships between data groupings. So, the question
is: what is the "natural" grouping for this dataset? To es-
timate the number of clusters in a data set we used Gap
statistic (Tibshirani et al., 2001). This function compares
the within-cluster dispersion of our data with that obtained
by clustering a reference uniform distribution. This is to
compare the gain of raising the cluster number in a struc-
tured data with that arising from adding another cluster to
a non-informative and not structured set of points.
We choose the first maximum in the Gap statistic as the

optimal number of clusters. Each position within the same
cluster is considered to be part of the same phoneme or
pseudo-phoneme.
The recognition task is handled by the classifier that

compares positions given from the sound motor map with
the mean positions of each pseudo-phoneme in the mo-
tor cluster and can be configured to use either Euclidean
distance or the Mahalanobis distance to find the nearest
neighbor.

Babbling and imitation
In this this section we describe the mechanisms used by
the robot to learn to vocalize vowels and simple con-
sonants. The methods are inspired by the way chil-
dren develop their speech through a combination of self-
exploration in the form of babbling and through interac-
tion with a caregiver. We separate between two types of
interactions, the robot imitating a caregiver, and the care-
giver imitating the robot. Both these behaviors can be
found in the interaction between a child and its parents.
Here we first describe what happens during babbling,

then we explain which maps that are updated as the care-
giver imitates the robot, and finally what happens when
the robot imitates the caregiver. However, we would like
to point out that these activities should be seen as paral-
lel rather than sequencial and that all behaviors are active
during the whole development.

Babbling
The babbling behavior is realised by the position genera-
tor. As explained in the previous section the position gen-
erator randomly takes two positions from the cluster, add

some noise to the positions, and then create linear trajec-
tory between the two points. In the beginning the noise
level is set relatively high in order to explore as much as
possible of the articulatory space. With time, and as more
positions are stored in the cluster, the noise level in the
babbling is gradually reduced and the babbling is focused
on the trajectories between the learnt positions.
Each position in the generated trajectory consists of the

6 parameters in Maeda’s model. These are then passed
on to the speech production unit that calculates the result-
ing sound. The sound is then fed into the auditory sen-
sor unit that calculates the MFCC and passes these to the
sound-motor-map. The sound-motor-map finally tries to
map the MFCC back to the original articulator position
vector and compares the result with the output from the
position generator. The error between the mapped and
the correct positions is the used to update the map using a
back-propagation algorithm.
There is no update of the vision-motor map during bab-

bling since the robot does not get any visual feedback of
its lip position.

Caregiver imitating robot
Having the caregiver imitating the robot is arguable the
most important factor in learning both the sound-motor
map and the vision-motor map. While the robot can easily
learn the map between its own sound and motor positions
through babbling, there is a large difference between the
speech produced by the robot and normal human speech.
The same can be said about a child whose vocal tract is
significantly different to that of an adult. Add to that the
fact that the sound produced by ourselves is transmitted
not only through the air, but also through bone structures
in the head which make our own voice sound significantly
different compared to the sound produced by others even
if we would have exactly the same vocal tract. To compen-
sate for those things we have to interact with other people
in our environment and tune the maps according to their
voices.
This interaction starts with the robot creating a trajec-

tory in the same way as for the babbling and sending the
sound to the speaker. The caregiver then tries to repeat the
same utterance with its own voice. It is important that the
caregiver repeats the perceived utterance rather than the
exact sound produced by the robot. Here we do not handle
the problem of deciding whether the person with whom
the robot interacts is actually imitating what the robot said
or not, but simply assumes that the received response is
the same utterance. We also make sure that the utterance
has the same length and that it is correctly aligned in time
with the utterance of the robot. This is done manually at
the moment by selecting some keypoints along the trajec-
tory and finding the same key points in the response of the
caregiver. We also extract images from the video stream
that match each of the key points.
The maps are then trained using the vocal tract positions

of the robot together with the auditory and visual response
from the caregiver. The sound from the caregiver is fed
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into the auditory sensor and the corresponding MFCC are
calculated and sent to the sound-motor map. The mapped
position is compared to the vocal tract position used by
the robot and the map is updated to compensate for the
error. In the same way the image of the caregiver is fed
into the visual sensor which calculates the mouth open-
ing and sends the result to the vision-motor map. Again
the mapped position, this time of the lip height only, is
compared to the original position and the map is updated
according to the error.
This is repeated for various utterances and preferably

with several different caregivers in order to increase the
robots posibility to correctly map utterances from other
persons to its own vocal tract in order to reproduce the
same sound or to recognize what the other person actually
said.

Robot imitating caregiver

One problem having the caregiver imitate the robot is that
the robot is not very likely to say something meaningful by
just doing babbling. In order to get the robot to actually
learn some useful phonemes it is better to have the human
to make the utterance and let the robot try to imitate. How
well the robot will be able to repeat the same utterance
depends on how well it has learnt the sensor-motor maps.
If the robot has mostly used babbling and had little or

no previous interaction with its caregiver it is not likely to
correctly map the sound of the caregiver when the care-
giver uses his or her normal voice. In order to direct the
robot to the correct utterance the caregiver may therefore
need to adapt his or her own voice. This behavior can also
be found in the interaction between a child and its parents
and has been studied in (de Boer, 2005). When the robot
answers with the intended utterance we give the robot pos-
itive feedback which causes the robot to store the current
articulator positions in its cluster. This reinforcement was
given through the keyboard in the current implementation,
but more sophisticated methods could be used.
This step is only used insert new positions in the cluster

and no training is going on in this step.

Experimental results
We performed three experiments using the architecture
with babbling and imitation as described above. In the
first experiment we test if the clustering algorithm is able
to correctly group the positions it learns for 9 portuguese
vowels. In the second experiment we use the learnt vowels
and see how well the robot can recognize the same vow-
els when pronounced by different human speakers. Es-
pecially we look at the effect the visual features have on
vowel recognition. In the third experiment we teach the
robot some simple consonants and again look at the effect
of using vision for recognition by studying the well know
McGurk effect (McGurk and MacDonald, 1976) which
can be expected when combining visual and auditory fea-
tures.

Figure 5: Dendrogram depicting the hierarchical cluster-
ing performed by the robot.
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Figure 6: Gap statistic versus number of clusters. The
growth of the curve stops at nine clusters.
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Learning vowels
To create a sufficient number of valid training vowels for
the robot, we created a dataset with 900 vowels, and then
submitted them to the evaluation of 16 native speakers,
so that they rejected or approved each vowel as a valid
portuguese vowel and — for those that were approved —
agreed or not in their phonological classification. From
these 900 vowels, 281 were considered appropriated.
The original dataset was generated from nine prototype

vowels in the 6D articulatory space, added with 10% of
white noise.
Applying agglomerative hierarchical clustering to the

present vowel dataset originated some good results, as we
can see in figure 5. The nine vowel groupings depicted in
different colors are clearly visible.
The dendrogram shown can be seen as a summary of the

data structure that was detected by our simple dissimilar-
ity measure: euclidean distance between 6D vectors and
average dissimilarity between groups.
In ten performed trials, the Gap statistic consistently

pointed to nine as the most natural number of clusters.
One example of this result is presented in figure 6.

Vowel recognition
To be able to compare the results obtained in this work
with the results obtained in (Hörnstein and Santos-Victor,
2007), we actually do not use the vowels positions learned
by the cluster above, but instead use the positions learnt
in the referred work. There the robot first learned its
own sound-motor map by doing a completely random bab-
bling. A caregiver then taught the robot nine Portuguese
vowels by having the robot imitate the vowels and storing
those that were successfully pronounced. As seen in Fig-
ure 7 the articulator positions used by the robot are similar
to those used by a human speaker.
Next, the 14 speakers (seven males and seven females)

were recorded while reading words that included the same
nine Portuguese vowels. Each speaker read the words sev-
eral times, and the vowels were hand labeled with a num-
ber 1 to 9. The amplitude of the sound was normalized
and each vowel was then divided into 30 ms windows with
50% overlap. Each window was then treated as individual
data which resulted in a training set of 2428 samples, and
a test set of 1694 samples.
In addition to the original data we also extracted im-

ages from the video sequences that corresponded to each
person pronouncing the vowels. Only one image for each
person and vowel was extracted creating a training and test
set of 63 images each. The images were then processed by
the visual sensor in order to calculate the mouth opening
in each image.
After the learning of the maps using random babbling

the recognition rate for the human vowels in the test set
were as low as 17.5%. We then used the data from the
seven persons in the training set to imitate the robot’s vow-
els to allow the robot to further train both the auditory-
motor and the visual-motor maps. After the interaction
with the persons in the training set, the recognition rate for

the persons in the test set became 63.3%. If the robot was
just presented with auditory input and was not allowed to
see the person the recognition rate became 57.7%.

Learning consonants
We have also done some initial experiments with teaching
the robot consonants using the methods described above.
Each consonant is here modelled with a single target point
in the articulatory space. It should be noted that the point
by itself cannot reproduce the consonant. To reproduce
the consonant we create a trajectory between two vowels
that passes through the target point.
For this experiment the robot started with the three cor-

ner vowels [i], [a] and [u], and did an initial babbling by
creating 1000 trajectories with 10 points along each tra-
jectory.
In the second step we let the caregiver imitate the robot.

We only created the straight trajectories [i] to [a], [a] to
[u] and [u] to [a] as the alignment between the robot and
the human utterances had to be made by hand, but these
were sufficient to give the robot initial sensor-motor maps
for the auditory and visual features of the caregiver.
The last step was to let the robot imitate the caregiver.

We wanted to teach the robot three new phonemes /b/, /d/,
and /g/ by having it imitating the utterances ba-ba, da-
da, and ga-ga. This was done by feeding the last hear-
able sound before reaching the goal position of the con-
sonant to the auditory sensor along with an image of the
lip position at the goal position. The sound and the image
were extracted automatically when the sound got below a
threshold.
Teaching the robot a /b/ was pretty straight forward as

it the robot could easily extract the main position from the
visual feature. The latter two demanded a little more pa-
tience from the caregiver. The task got extra difficult since
the synthesizer used does not create any clear consonants
so we actually needed to inspect the resulting vocal tract
position of the robot in order to decide if we were happy
or not with the result. As we got happy with an utterance
we stored the position in the motor cluster. The learnt po-
sitions can be seen in Figure 8.
Once the robot had learnt the positions we again

switched roles and let the caregiver imitate the robot. After
doing that the robot could easily recognise and reproduce
the correct consonant. However we only did this experi-
ment with a single caregiver so we do not expect the robot
to generalize and correctly classify the same consonants
when uttered by another speaker.
Finally we did a simple experiment were we tried to re-

produce the McGurk effect by feeding the auditory sensor
with ba-ba while feeding the visual sensor with ga-ga. De-
pending on the weight we put on the visual sensor relative
to the auditory sensor the robot classify the utterance as
either a ba-ba or da-da.

Conclusions
We have demonstrated how a humanoid robot can develop
speech by using a combination of babbling and imitation.
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Figure 7: Articulator positions used by the robot for the Portuguese vowels. In the center we show the positions of the
vowels in the International Phonetic Alphabet (IPA). The vertical axis in the IPA corresponds to the vertical position of
the tongue and the horisontal axis to the front-back position when the vowel is pronounced by a human speaker. For the
simulated articulator positions used by the robot the upper line corresponds to the soft palate and the lower line to the
tongue. There is a good correlation between how the robot and a human articulate the vowels.

Figure 8: Learnt positions for the consonants /b/, /d/ and /g/.
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While babbling make it possible for the robot to learn the
map between its own sound and motor positions, interac-
tion with a caregiver is more important for learning to map
and understand human speech.
By letting the robot and the caregiver take turn in imitat-

ing each other it is possible both to teach the robot repro-
duce utterances made by the caregiver and learning which
utterances that are useful for communication.
We have also shown that visual features can be helpful

both to increase the recognizion rate of already learned
phonemes and for learning new phonemes.
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