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Abstract

Re-entrant 
ow lines have attracted signi�cant interest from the research community in recent

years because of their direct applicability to semiconductor fabrication, [Kumar, 1993]. A 
ow

line is a manufacturing system where several products are processed through a common and �xed

sequence of operations. Each operation is performed on a di�erent machine. A re-entrant 
ow line

is a manufacturing system where this sequence of operations is repeated several times before the

products are completed. Facilities that manufacture semiconductor wafers have such a structure.

This thesis addresses several aspects related to managing these lines in a uni�ed manner, provides

insights into the several complex interactions that are inherent to these systems, and establishes a

framework to study more complex re-entrant lines.

The class of re-entrant 
ow lines addressed by this thesis processes several di�erent types of

products, each subject to an external demand. The thesis makes contributions on the speci�c

problem of production control. That is, given that there exists an external demand for each

di�erent product and given that each machine in the line has a bounded capacity, it addresses

the questions on how to decide the production quantities so that the demand is tracked and the

operational costs minimized.

The questions addressed in this thesis concern issues like what should be the degree of capacity

sharing for these systems. Namely, should capacity be shared at the same level by all the products

in their di�erent stages of processing or should there be some rigid and static allocation of capacity

to products and/or levels? If there is some degree of dynamic capacity sharing, how should the

available capacity be distributed among the several products?

Inventory control in discrete time is a popular paradigm to model production systems. To the

author's knowledge there is no such study for re-entrant production systems. The present thesis

is a �rst attempt at providing a framework broad enough for such systems. It follows closely the

approach proposed in [Glasserman and Tayur, 1994, Glasserman and Tayur, 1995].

In [Glasserman and Tayur, 1995], the authors consider a capacitated, multi-machine, single

product 
ow line. They propose a multi-echelon base stock policy to control such systems. In order

to determine the optimal base stock levels, they use In�nitesimal Perturbation Analysis, (IPA), [Ho

and Cao, 1991]. The simulation based approach computes the optimal levels in order to minimize

standard holding and penalty costs along the production line. A computational study provides
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important insights.

In [Glasserman and Tayur, 1994], the authors address the issue of stability for the systems

considered in [Glasserman and Tayur, 1995], establishing conditions under which their policies

ensure it. The stability result itself is trivial, since the necessary and su�cient condition for their

policies to ensure stability is such that the expected demand is under the smallest of the capacities

along the line. However, its establishment is also necessary to validate some of the IPA results.

This thesis extends the above mentioned work in the following manner: incorporating the re-

entrant structure and considering multiple products. Additionally, [Glasserman and Tayur, 1994]

is extended by addressing the stability issue in the situations where random yield is present.

The approach used to study these problems is simulation based optimization. Simulation is used

as a tool to obtain estimates of cost and estimates of the cost gradient with respect to the parameters

describing the control policy. Most research dealing with issues in semiconductor manufacturing

prefer simulation over simple analytic models, [Uzsoy et al., 1992]. However, in the majority of the

situations, simulation is used as a performance evaluation tool. Simulation o�ers the 
exibility to

model the complexities adequately, while the gradient computation (via IPA) helps in identifying

good solutions quickly. Besides using simulation as a tool for optimization, the thesis also makes

use of it to compare the performance of di�erent capacity management schemes, providing clear

conclusions about their relative performances.
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Chapter 1

Introduction

Re-entrant 
ow lines have attracted signi�cant interest from the research community in recent

years because of their direct applicability to semiconductor fabrication, [Kumar, 1993]. A 
ow

line is a manufacturing system where several products are processed through a common and �xed

sequence of operations. Each operation is performed on a di�erent machine. In this thesis a re-

entrant 
ow line is a manufacturing system where a sequence of operations is repeated several

times before the products are completed. Facilities that manufacture semiconductor wafers have

such a structure. This thesis addresses several aspects related to managing these lines in a uni�ed

manner, provides insights into the several complex interactions that are inherent to these systems,

and establishes a framework to study more complex re-entrant lines.

The class of re-entrant 
ow lines addressed by this thesis processes several di�erent types of

products, each subject to an external demand. The thesis makes contributions on the speci�c

problem of production control. That is, given that there exists an external demand for each

di�erent product and given that each machine in the line has a bounded capacity, it addresses

the questions on how to decide the production quantities so that the demand is satis�ed and the

operational costs minimized.

These same issues for non re-entrant systems producing more than one type of product are

already di�cult to solve. The di�culty results from the fact that when more than one product

demands the utilization of common resources, these resources will have to be allocated to products

in a satisfactory manner. There are no analytical solutions for these allocation problems. For a

re-entrant system this di�culty is compounded by the fact that each product visits each machine at

di�erent stages of production. This type of material 
ow may induce positive feedback loops within

1
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the line so that the overall net capacity is reduced, thus a�ecting its ability to e�ectively satisfy

demand. A production control policy for re-entrant 
ow lines producing more than one product

type will need to address how the capacity is shared among both the di�erent product types and

identical products at di�erent processing stages.

On the speci�cs of the above, the questions addressed in this thesis concern issues such as what

should be the degree of capacity sharing for these systems. Namely, should capacity be shared

by all the products in their di�erent stages of processing or should there be some rigid and static

allocation of capacity to products and/or groups of operations? If there is some degree of dynamic

capacity sharing, how should the available capacity be distributed among the several products?

It turns out that the best results are achieved when all the capacity of each machine is equally

shared by the several products at their di�erent processing stages. The total sharing of capacity

reduces the frequency of capacity bounds and this allows for a faster recovery from backlog. How-

ever, there are particular dynamic capacity managing schemes for which costs increase when the

sharing degree increases (Section 5.2).

Given the lack of analytical and structured results on optimal policies, which could be used to

guide the search for their optimal settings, this thesis proposes a class of policies inspired by a long

trail of results on inventory control theory. Although sub-optimal, this class of policies is attractive

because it is easy to implement and parameterize.

Our model of a re-entrant production system has M machines in series (which will be called

stages). Each machine feeds a downstream bu�er were parts wait for next operation. Each one of the

P products processed by the system has to cycleK times (each cycle termed as being a level) through

those M machines before being completed. The framework is a discrete time (or periodic review)

capacitated multiple-product production-inventory system operating under a modi�ed echelon base

stock policy1: every level and stage operates on a base stock policy for echelon inventory. More

speci�cally, given a particular product, the decision maker adds all inventory downstream from

that level and stage to determine the echelon inventory. If the echelon inventory falls below the

corresponding base stock value, the decision will be to produce the di�erence, provided there is

enough capacity and (relevant) upstream inventory. Since there are multiple products and multiple

visits to each machine, it is necessary to allocate capacity dynamically to individual needs whenever

1Echelon base stock policies are de�ned in the context of uncapacitated systems. [Clark and Scarf, 1960]. Since
the systems considered here are capacitated, the term modi�ed expresses that the policies used are a variant of the
original to incorporate such feature.
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the products require more than the available capacity.

Inventory control in discrete time is a popular paradigm to model production systems. To the

author's knowledge there is no study using inventory control in discrete time as a model for re-

entrant production systems. The present thesis is a �rst attempt at providing a framework broad

enough for such systems. It follows closely the approach proposed in [Glasserman and Tayur,

1994, Glasserman and Tayur, 1995].

In [Glasserman and Tayur, 1995], the authors consider a capacitated, multi-machine, single

product 
ow line. They propose a multi-echelon base stock policy to control such systems. In order

to determine the optimal base stock levels, they use In�nitesimal Perturbation Analysis, (IPA), [Ho

and Cao, 1991]. The simulation based approach computes the optimal levels in order to minimize

standard holding and penalty costs along the production line. A computational study provides

important insights.

Given that their class of control policies is not derived from a particular optimization procedure,

it is naturally necessary to show that under such class of policies the systems being controlled are

stable. Stability in this context is characterized by the fact that the inventories sitting in between

each machine have bounded expected values. This is equivalent to saying that the cumulative pro-

duction of the single product trails the cumulative demand by no more than a bounded amount. In

[Glasserman and Tayur, 1994], the authors address the issue of stability for the systems considered

in [Glasserman and Tayur, 1995], establishing conditions under which their policies ensure it. The

stability condition itself is trivial, since the necessary and su�cient condition for their policies to

ensure stability is such that the expected demand is less than the smallest of the capacities along

the line. However, its establishment is also necessary to validate some of the IPA results.

This thesis extends the above mentioned work in the following manner: incorporating the re-

entrant structure and considering multiple products. Additionally, [Glasserman and Tayur, 1994]

is extended by addressing the stability issue in the situations where random yield is present.

Due to the complexity of the models and policies, it is very di�cult to compute explicitly the

values of the optimal parameters, even when assuming some sort of simplifying structure on the

stochastic processes involved. Resorting to alternative methods is therefore necessary. This was the

strategy in [Glasserman and Tayur, 1995]: using an IPA based optimization procedure to compute

the optimal base stock values. This is also the strategy of this thesis. One of the most elegant
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qualities of IPA is that it does not rely on any strongly restrictive assumptions for the random

processes that disturb the systems being controlled. However, its utilization requires that the used

control policies be described by a set of parameters. Therefore, without possessing a knowledge

of the parameters that fully describe the true optimal polices one has to rely on sub-optimal

approximations.

The approach used to study these problems is simulation based optimization. Simulation is used

as a tool to obtain estimates of cost and estimates of the cost gradient with respect to the parameters

describing the control policy. Most research dealing with issues in semiconductor manufacturing

prefer simulation over simple analytic models, [Uzsoy et al., 1992]. However, in the majority of the

situations, simulation is used as a performance evaluation tool. Simulation o�ers the 
exibility to

model the complexities adequately, while the gradient computation (via IPA) helps in identifying

good parameter values quickly. Besides using simulation as a tool for optimization, the thesis also

makes use of it to compare the performance of di�erent capacity management schemes, providing

clear conclusions about their relative performances.

1.1 Organization of the Thesis

This document is composed of three parts. Part I includes this chapter and Chapter 2 |

Literature Review, where a review of relevant literature is presented. It is also an objective of

Chapter 2 to discuss the structure of the optimal policies for re-entrant systems subject to a variety

of disturbances.

Part II concentrates on the analysis of a simple class of systems as a �rst step towards analyzing

a broader family of production systems under the framework of discrete time inventory control.

The class considered can be seen as the inventory model counterpart to the Kelly-type networks

discussed in [Dai and Weiss, 1996]. These networks are characterized by having the same service

time distributions across all servers and products. Under the modeling framework of this thesis,

the service time distributions will be converted into deterministic processing times. This ends

up translating into equal capacity needs for each unit of product | termed in the thesis as the

uniform load assumption. The only source of uncertainty considered will be the random demand.

In Chapter 3 | Theoretical Foundation, the basic model and theoretical validation of the IPA

approach will be presented. The de�nition of the basic model entails establishing the dynamic
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equations governing the systems, presenting the derivatives of the state variables with respect to

the parameters de�ning the control policies, establishing the production decision mechanism given

that sharing of resources occurs, and setting the performance measures.

Out of these, the production decision mechanism assumes a particular importance because it

encompasses the adoption of a particular control policy and the de�nition of the capacity sharing

procedures | production rules. It is necessary to de�ne how the sharing of resources is done. The

thesis will introduce some production rules which interpret di�erent ways of doing such sharing.

Sharing can be done through a �xed list of priorities, proportional to individual needs, or in a way

that gives more priority to higher individual needs. The validation of the IPA approach entails the

veri�cation that the state variables possess the adequate smoothness properties so that one can

exchange the order in which to apply the expected value operator and the derivative operator.

Stability will be discussed in Chapter 4 | Stability. This issue assumes a key role in the IPA

approach when validating it to solve in�nite horizon problems. Stability ensures that the stochastic

processes possess the regenerative structure necessary for the validation of the IPA. Also, it is of

particular relevance in re-entrant systems. The manner in which products 
ow in re-entrant systems

may induce positive feedbacks that generate unstability, [Lu and Kumar, 1991, Bramson, 1994].

This chapter provides a sound discussion, showing under which conditions the proposed control

policies ensure stability. The derived necessary and su�cient conditions will be the natural and

trivial extensions of the stability condition mentioned above for a 
ow line producing a single

product.

Part II closes with Chapter 5 | Experimental Study, where a relatively extensive set of

experimental data is presented and some structural properties are discussed. The experiments

conducted were designed with the purpose of evaluating the relative performance of the production

rules proposed in Chapter 3. To accomplish such objective, the experimental studies evaluate

the in
uence of holding costs, backlog costs, demand variance, and capacity distribution among

machines and levels. Also, the in
uence of the degree of capacity sharing is investigated. Clear

conclusions are drawn from these experiments relative both to the degree of capacity sharing that

achieves the best performances, and to which of the production rules incurs lower costs.

One of the most relevant structural properties established is the equivalence between standard

operational costs and Type-1 service level. The optimal base stock levels verify the newsboy prop-

erty relative to the probability of not satisfying demand in the period it occurs. In many situations,
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there is also a subtle relationship between machine capacities and optimal base stock levels. For

balanced systems and for particular degrees of sharing, the di�erence between consecutive base

stock levels matches the capacity of the machine that separates them.

Part III concludes the thesis with an extension of the theory of Part II. In Chapter 6 |

Theoretical Foundation Revisited, the basic theoretical results will be reviewed to include

random yield in the model and to drop the Kelly-type structure. Once again, the stability problem

assumes a central role in the discussion. The �rst sections of Chapter 6 are entirely dedicated to

the stability problem. This discussion will be made by steps as the original model of Part II gets

enriched by new features: �rst, the results of Chapter 4 are extended for systems with non uniform

loads; next, the original model is extended to incorporate random yield; and �nally, both random

yield and non uniform loads are considered simultaneously. At the end of this stability discussion,

the chapter presents the necessary and su�cient stability conditions for re-entrant 
ow lines subject

to a variety of random disturbances and operated under the classes of policies proposed. To establish

these conditions, it will be necessary to use classes of control policies di�erent from the one used

in Part II. These classes constitute generalizations of the class used in Part II. Also, the technique

used constitutes a base to establish stability of re-entrant systems with very generic material 
ows,

not just of the 
ow line type.

Next in this chapter, the basic validation result of the IPA technique is presented and the

chapter concludes with a brief summary of some experimental results for systems with non uniform

loads and perfect yield.

The last chapter, Chapter 7 | Conclusions and Future Research, presents a summary of

the thesis and discusses some topics for future research.

As some of the proofs will be skipped during the theoretical discussion, Appendices A and B

will contain proofs which are either relatively trivial extensions of material already published or

correspond exactly to results published by others. Their inclusion here is done with the objective

of providing a self contained document. In Appendix C presents a summary of the optimization

procedure addopted. Finally, Appendix D presents some graphics which complement the ones

presented in Chapter 5 and the summary presented at the end of Chapter 6.

Before listing our contributions, it is probably important to discuss some of the limitations of

the approach or issues not contemplated in the present work. Some of the limitations rely on the
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modeling assumptions. For instance, although the production of parts is discrete, the thesis models

the inventory variables as continuous with the purpose of extracting derivatives for the IPA. At the

end of the optimization procedure the achieved values will have to be converted to integer values.

The round up to nearest integers is not serious in terms of cost, since the cost functions are usually

relatively 
at around the optimal. However, when it comes to systems that are unstable for a

particular choice of parameters and stable for others, even though the optimization procedure may

converge to a stable setting, there is no guarantee that the round up values will ensure stability.

In�nitesimal Perturbation Analysis cannot be used to �nd optimal policies. It can only be used

to �nd optimal parameters for a pre-speci�ed class of policies. Therefore, the end results are only

as good as the quality of the approximation with respect to the actual optimal policies.

The issue of machine reliability is not directly addressed in this thesis. The stability results

and IPA validation carry through for systems with random capacity. However, there is no explicit

consideration of this feature in the experiments nor in the theory. Chapter 7 presents a brief

discussion on how to handle di�erent types of machine unreliability, illustrating how the present

approach deals with some of them.

Random yield is considered for the purpose of validating the IPA approach and is explicitly

dealt with for stability purposes. However, the thesis does not cover this feature in the experimental

studies. Also, as the literature review of Chapter 2 shows, the control policies proposed in this thesis

may be less adequate for systems with random yield. Possible directions to deal with random yield

in this setting are discussed at the end of the thesis.

1.2 Summary of Contributions

This section presents a brief overview of what is considered by the author as the main contri-

butions of the thesis, the objective of which being to study the problem of production control for

capacitated re-entrant 
ow lines producing multiple products.

The problem of determining the stability conditions for re-entrant systems is completely solved

for the classes of policies proposed throughout the thesis. Stability of re-entrant systems is a

complex topic, and has drawn the attention of many authors. The stability proofs presented here

and the insights gained from them constitute the major contributions of this thesis. The stability

results presented cover re-entrant 
ow lines with capacitated machines, subject to random yield,
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and producing multiple products with di�erent demand processes and di�erent loads on each visit

to any machine. The main conclusion and contribution of the stability discussion is the fact that

the control policies proposed are ensured to stabilize any system for which the expected load for

any machine is under its capacity. Therefore, the usual necessary stability condition is shown to

be also su�cient for the policies presented.

The experimental data presented illustrates the strength of IPA as an optimization tool and

provides important managerial conclusions on how to handle re-entrant systems. Instances of such

conclusions are listed below.

� Performance measures:

{ operational cost based measures and service level measures are equivalent for the class

of policies used in Part II;

{ the experiments show that intermediate holding costs a�ect the distribution of safety

inventory along the line, but do not a�ect the Type-1 service level measure nor impact

the relative performance of the production rules proposed;

{ the only cost parameters that have in
uence on the relative performance of the produc-

tions rules and on the Type-1 service level measure are the holding and backlog costs

for end products.

� Capacity sharing:

{ the best costs are achieved when the capacity of each machine in the line is equally

shared by all the products at their di�erent levels of processing.

� Connection between theory and experiments:

{ the experimental results of Chapter 5 stress some of the limitations of the used policies

and suggest directions for improvement;

{ the stability discussion of Chapter 6 resorts to policies that agree in structure with the

directions pointed by the experiments;

{ there is both experimental and theoretical evidence pointing in the direction of richer

classes of policies, establishing a bridge between this thesis and future research in this

area.
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Some other conclusions require a little more detailed explanation of the production rules and

of the whole model. Therefore they are not listed here. A comprehensive summary is presented at

the end of Chapter 5 (Section 5.4).

Another relevant contribution of this thesis is the de�nition of a framework amenable to dealing

with a vast number of features, such as random demand, random yield, and machine variability. On

the other hand, the basic model set forth possesses the 
exibility to incorporate other characterizing

features of production control policies, such as bounds in local inventories and bounds in the

amounts produced at any given period.

Details of the model that are of relevance concern the proposed schemes for capacity manage-

ment, both from the static and dynamic perspectives. These schemes address the question of how

to use the capacities for the di�erent levels and products.

The validation of the In�nitesimal Perturbation Analysis methodology for these systems is also

a major contribution of the thesis. IPA is a technique with a great potential to explore optimal

policies and parameters for large scale systems, when the policies are constrained to classes de�ned

a priori.
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Chapter 2

Literature Review

The literature on production control covers a very broad spectrum in general, including speci�c

contributions to managing production systems in semiconductor manufacturing. A complete and

thorough review of all the work in the area is a task of enormous proportions and would probably

be tedious for the reader. Therefore, a judicious selection of the most relevant contributions to

production control, which are in some sense related or inspirational to the work described here,

is presented. Although there is an e�ort at limiting the scope of the review, it turns out to be

quite extensive. This has to do with another concern of this review. Besides discussing some

commonalities that di�erent approaches have with each other and with what is proposed here,

it is intended that this chapter may serve as an instrument for identifying the features that a

control policy should possess. This latter objective is of particular relevance in Sections 2.3 and

2.4, justifying their length.

A classi�cation into main clusters is proposed, although some approaches may spread over more

than one of the clusters. Some of the clusters will represent research done with no speci�c emphasis

on semiconductor manufacturing and others will be de�ned in the speci�c context of semiconductor

manufacturing. To properly frame the complexities and speci�cs of semiconductor manufacturing, a

brief and summarized description of the features that make it so unique is �rst presented. The main

clusters of research addressed in this review will cover: Inventory Control, Random Yield, Flow

Rate Control, Queueing Networks, Stability, Simulation, and In�nitesimal Perturbation Analysis.

In the cluster on Inventory Control, a survey of classical and recent operations research methods

and results will be provided. The majority of the relevant results in this area pertain to cases where

the optimal policies have been shown to be of the critical number type. Such structure of optimal

11
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policies is a strong incentive to keep using variants supported by similar principles for more complex

systems, for which no analytical solution has been obtained.

Besides its re-entrant structure, one other feature that singles out semiconductor manufacturing

systems is the important role the e�ects of Random Yield play in the performance of those systems.

Random yield is not unique to semiconductor manufacturing, since it is present in many other

production systems. However, in no other production systems does it condition the functionality

as much as in these. There are several approaches targeted to deal with random yield speci�cally.

Yield improvement is one of them, as well as characterizing the relationships between yield and

other performance measures like cycle time.

Some of the approaches in inventory control treat the problem as that of regulating production

rates, rather than production quantities. On this subset of inventory control, there has been a

substantial body of contributions which are of great relevance for managing manufacturing systems

in general, although the speci�cs of semiconductor manufacturing have been driving much of the

e�ort in this area. This feature justi�es a special coverage on Flow Rate Control approaches, isolated

from the general inventory control problem approaches.

Another popular modeling paradigm is that of Queueing Networks. Their virtue lies in their

ability to model very complex production systems, with many interacting components. The stochas-

tic nature of generic production systems is well captured through the arrival processes distributions,

routing and connection modeling, and service time distributions. Consequently, the simulation of

production systems through networks of queues can provide very accurate estimates of the perfor-

mance of real life systems. By means of both closed queues or open queues, there have been many

research contributions to the understanding of the structure of manufacturing systems. Although,

in general, networks of queues have been used to estimate performance, some e�ort has been made

in using queues as a way for determining control policies with some success, namely in the context

of re-entrant systems.

Whenever control problems are posed, there is a need to ensure that the policies used are able

to keep the system's parameters within certain bounds. This is an issue of Stability. In general,

stability is a relatively trivial issue in production systems. However, manufacturing systems with

a re-entrant structure pose the question of stability on a di�erent level of complexity, for there

are situations where policies which are relatively innocuous for non re-entrant systems may lead to

instability when applied to re-entrant systems. Therefore, any attempt at controlling systems with
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a re-entrant structure will have to seriously address the question of stability and stabilization of

those systems. There has been important research to address this problem and the present thesis

makes an important contribution to that growing body of research.

In the area of performance estimation, and comparison of alternative control policies, Simulation

has possibly been one of the most widely used techniques. In many situations, when the dimension

of the problems under consideration grows to magnitudes where analytical solutions are no longer

available or when numerically derived solutions are time consuming, simulation is in fact the only

practical tool available to study production systems. Also, many optimization procedures use

simulation as the underlying model to collect information on performance measures and even on

gradients of performance measures with respect to the control parameters. An example is the

present thesis, that makes use of a simulation based procedure in order to determine the optimal

parameters that characterize the control policies adopted.

A special case of simulation based techniques is that of the In�nitesimal Perturbation Analysis

used in this thesis. In�nitesimal perturbation analysis, when applicable, is a very powerful tool

to guide optimization procedures. It allows the estimation of gradient information from a single

simulation run, with very mild assumptions on the nature of the random processes disturbing the

systems to control. Since its early days, when its application was restricted to a very small set

of problems, in�nitesimal perturbation analysis has matured to the point of becoming one of the

most important tools of the present when it comes to optimizing control parameters for large scale

systems subject to a variety of random disturbances. E�ort has been placed on formally setting

the conditions under which it is a valid procedure and on determining instances that satisfy the

theoretical frameworks available. This thesis looks at in�nitesimal perturbation analysis from this

latter point of view. A relatively good sample of both types of work for very diverse applications

is provided in the literature review below.

2.1 Semiconductor Manufacturing

The process by which semiconductor devices are manufactured is composed of four basic steps:

wafer fabrication, wafer probe, assembly or packaging, and �nal testing. Of these four, the most

complex and capital intensive step is the wafer fabrication. This is the step where the complex

and intricate circuitry necessary for the integrated circuit is built. A very large scale integrated
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circuit is constructed out of wafers of silicon or gallium arsenide by means of creating several

layers with di�erent physical properties and diverse connections between each other. Once this

process is completed, the �nished wafers are sent to the wafer probe step. Each wafer may contain

hundreds of individual circuits, which are individually tested in order to determine if they meet

their speci�cations. The individual chips to be are referred to as dice. Chips that fail the tests are

marked for future disposal when the wafers are cut into their individual circuits. After this, the

good circuits are placed in plastic or ceramic packages for protection from damage caused by the

outside environment. In the �nal testing, the circuits are subjected to a variety of automated testing

operations to determine their quality. The testing operations range from performance evaluation

at di�erent temperatures to \burn in", where the devices are subjected to thermal stress in order

to precipitate latent defects that would otherwise manifest themselves in operation.

The wafer fabrication step, which is done in specially dedicated facilities, usually referred to as

wafer fabs, may involve several hundreds of operations, depending on the complexity of the devices

produced. Many of these operations have to be performed in a clean-room environment to avoid

contamination of the wafers by impurities present in the air. The basic set of operations performed

on a wafer includes: cleaning, deposition, lithography, etching, ion implantation, photoresist strip,

and inspection and measurement.

The cleaning operation is performed with the objective of removing particles from the surface of

a wafer before a layer is produced. The deposition step has the objective of growing or depositing a

layer of material on the cleaned surface of the wafer. The most complex operation is the lithography,

when a photoresistant liquid is deposited over the wafer and the circuit is de�ned using photography.

This is the operation that requires the highest precision. The photoresist is �rst deposited and

baked. It is then exposed to ultraviolet light through a mask which contains the pattern of the

circuit for the layer being built. Finally the exposed wafer is developed and baked. The material

which gets exposed to the light is then etched away in the etching operation. Then comes the

ion implantation, when selected impurities are introduced in a controlled fashion to change the

electrical properties of the exposed portion of the layer. After this, it is necessary to remove

the photoresist remaining on the wafer during the photoresist strip operation. The sequence of

operations is concluded with an inspection and measurement operation to check if there are defects.

This overall sequence of operations has to be repeated for each layer of the integrated circuit. A

detailed and very complete description of semiconductor manufacturing technologies can be found
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in [Sze, 1983], [Gise and Blanchard, 1986], or in [Runyan and Bean, 1990]. More concise descriptions

can be found in [Chen et al., 1988] and [Uzsoy et al., 1992].

Many things can go wrong during each cycle, so that the wafers at the end of a series of cycles

may have defective individual circuits. Impurities present in the room may fall over the wafer and

change the properties of the circuit, the masks may be out of place, and many other problems can

occur. Also, the fact that the resources are very expensive makes it impossible to have multiple

machines to process the several layers of the wafers. Therefore, the wafers have to be sent back

to the same machines time and time again to be processed on each cycle. This feature makes the

wafer fabs unique among all production systems, since products 
ow a number of times through a

series of machines, causing them to possess what is called a re-entrant structure.

Recently, a review of research on production planning and scheduling for the semiconductor

manufacturing industry was published in a set of two papers, [Uzsoy et al., 1992, Uzsoy et al.,

1994]. Given its outstanding quality and the fact that it was published so recently, much of this

section will be based on some of the classi�cations proposed there. Readers are referred to those

two papers for more extensive coverage on some of the topics discussed here and some of the areas

analyzed in the remainder of this chapter.

According to [Uzsoy et al., 1992], the relevant research is classi�ed into large clusters de�ning

three problem areas, which are basically a consequence of the scope of time they address. These

three problem areas, which are not exclusive of semiconductor manufacturing, are:

1. Performance evaluation. Models whose objective is descriptive rather than prescriptive in

nature, used for understanding the behavior of a given system;

2. Production planning. Long-term, more aggregate production planning with a time horizon of

months or weeks;

3. Shop-
oor control, which addresses the questions of how much material to start into the

facility and how to control the 
ow of this material.

In the performance evaluation area, the objective is to establish models that can be used to

evaluate the performance of a given system. They are typically used to answer long term questions

like plant layout, or machine con�guration, and system capacity. The main tool to address this

type of questions has been simulation. Due to the fact that most of the questions are formally
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intractable by other means, and since simulation models have become richer in their ability to

model manufacturing systems, simulation is easier and less expensive. See [Uzsoy et al., 1992] for a

very extensive list of signi�cant contributions on this area using simulation. Another tool that has

made its way into the semiconductor manufacturing is modeling by means of queueing networks.

They have the potential to represent many of the speci�c features of an uncertain production system

and may allow the elegance of closed form analytical results for the level of detail required by this

problem area.

The production planning area tries to take into account long-term goals while determining

parameters that will be used as guidelines by the shop-
oor control area. The level of detail is

somewhat greater than that of the performance evaluation but there is still some sort of aggregation

of the available data. As opposed to the performance evaluation, there is already an attempt at

determining optimal parameters rather than just evaluating how the system performs.

The shop-
oor control area deals basically with two types of decisions: release and scheduling.

The release policies determine when, what, and how much material is allowed to enter a system.

The scheduling policies determine what is the next operation to be performed by an idle resource.

Of these two, the biggest amount of work has been placed on scheduling. The diverse methods

range from the deterministic scheduling algorithms for job shops to knowledge-based approaches.

In between there are contributions on local dispatching rules for job shops, speci�c applications

to batch processing machines, approaches concerned with the re-entrant structure of the wafer

fabs, etc. See [Uzsoy et al., 1994] for a clustered and comprehensive classi�cation of the several

approaches which deal with shop-
oor control.

There are some features speci�c to semiconductor manufacturing that make it particularly

complex as a manufacturing process, namely in the context of wafer fabs. The �rst unique feature

is the fact that products have complex 
ows. That is, di�erent end products require diverse

production recipes, each involving a great number of processing steps, some of which are performed

on the same machines. So, the products have to cycle through a line of machines more than once in

order to be completed. This re-entrant structure of wafer fabs introduces additional complexities

to the problem of controlling production, since it demands a judicious choice on how the capacity

of a single machine is managed, and raises serious stability questions. Each machine is requested

for service not only by di�erent products, but also by products of the same type on di�erent stages

of their processing. It is necessary to establish how to share capacity among all those products
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both from the static and dynamic perspective. The re-entrant structure of the 
ows may introduce

positive feedback loops into the system with a poor choice of priorities, so that the cumulative

production of a product or a set of products does not manage to satisfy demand even in situations

where the load imposed by the demand process is under the capacity of the fab. So, when it comes

to a wafer fab, we have a system producing great volumes of individual products, di�erent end

products, and complex product 
ows.

Yield is de�nitely the biggest Achilles' heel of wafer fabs. Process output is uncertain due to

contamination of wafers by environment particles that may deposit on their surface, plus problems

due to equipment and material. Although yields may be well established for mature products, the

rapidly changing characteristic of the markets and technology is always requiring the introduction

of new products with new engineering problems to solve. Naturally, random yield is not present

only in semiconductor manufacturing, but only in semiconductor manufacturing does it have such

a central relevance. This is due to the fact that random yield in semiconductor manufacturing is

not due to a technological shortcoming of the processes, but is inherent to those processes. Average

yields of mature processes may be as high as 90%, but recently developed products may have

yields under 10%. The ability to satisfy demand is naturally complicated by the presence of this

unavoidable source of uncertainty. Some of the defective products have to be scraped, but in some

cases they can be reworked adding to the 
ow complexity.

Another distinguishing feature of wafer fabs is the fact that the development of new products

has to be tested on a real life manufacturing system. Computer simulations are not enough.

New products or processes are constantly being developed given the highly dynamic market of

semiconductor products. In many facilities the equipment is frequently used simultaneously for

production lots and engineering lots. An engineering lot corresponds to a testing lot used during

the development of a new product or process. A production lot corresponds to a lot associated

with a mature process that is currently being marketed. The presence of these di�erent lots in a

manufacturing system creates con
icting goals in terms of production control. It is necessary to

give priority to engineering lots to shorten the development phase, but the external demand for

current products has to be satis�ed in a timely manner. Some companies have di�erent facilities

for R&D, but many use the same facilities for R&D and regular production.

Adding to the uncertainty caused by random yield is the fact that machines are not reliable.

The equipment is extremely sophisticated and it requires extensive preventive maintenance and
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calibration. Nevertheless it is subject to unpredictable failures that disrupt the normal functioning

of the facility. The resources used in wafer fabs have a wide range of distinguishing features. Some

machines have long and/or sequence dependent set-up times when switching between di�erent oper-

ations. Some machines are batch processing machines while some others are not. Some consecutive

operations require that the amount of time in between is bounded above by some amount, or else

the second operation cannot be performed and the �rst is wasted. The volume of data collected

and maintained in a semiconductor facility is tremendous. Data has to be stored on a per opera-

tion basis. [Uzsoy et al., 1992] quote [Sullivan and Fordyce, 1990] on this issue as saying that the

transaction volume of an IBM wafer fab is of 240,000 per day.

Cycle times in wafer fabs can be of the order of months for each starting lot. Some individual

steps take hours to be executed. Besides the usual problems that long cycle times create in terms

of tracking demand in a precise manner, there is the issue of the correlation between cycle time and

yield. A negative correlation between cycle time and yield has been established by several authors.

That is, the longer the cycle time the higher the chances of getting defective end products. It is

easy to understand why this is so. Given that one of the sources of random yield is the deposition

of environmental particles over the wafers, the longer the time a wafer spends in a facility the

higher the chance it will get contaminated. Another di�culty resulting from long cycle times is the

risk of obsolescence, which is particularly relevant in a volatile market such as that faced by the

semiconductor industry.

2.2 Inventory Control

In inventory control problems one is faced with decisions regarding when and how much to order

or produce so that an exogenous demand process is satis�ed. Issues to take in consideration for

modeling are how many stages of production exist, how many di�erent products to process, how is

the demand process characterized in terms of its stochastic nature, how is the production process

characterized in terms of operation times, availability, reliability, and how many and at what time

are the decisions to take place.

At the bottom of the scale of simplicity is the early model of [Harris, 1913], known these days

as the classic Economic Order Quantity (EOQ) model, which was made popular by [Wilson, 1934].

More complex models have been formally developed since, mainly after the advent of Dynamic
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Programming due to [Bellman, 1957]. In many of the early models the key concept of base stock

policies has created a niche in such a way that almost all of the literature on inventory control

addresses the issue of showing its optimality or, when this is impossible, to propose heuristic

policies that rely on similar principles.

Another classic is the famous newsboy problem for a single period, single product, and single

production stage, where demand is random and there is unit holding cost charged for holding stock

at the end of the period and a unit shortage penalty cost for any demand unsatis�ed. Also, there

exists a unit ordering cost for the amount acquired at the beginning of the period. The optimal

policy was shown to be of the base stock type by [Arrow et al., 1951], that is, there is an amount

to order up to, given the initial inventory is under such amount. Although very simple, this result

and the previous constitute the basic building blocks of inventory control theory.

For single machine and single product systems, base stock policies have been shown to be

optimal in a variety of settings. Single period problems, multiple period �nite horizon problems,

and multiple period in�nite horizon problems all possess the same structure for the optimal control

policy in situations where there is no bound for the machine capacity, [Karlin, 1960, Morton, 1978];

for deterministic capacity bounds, [Federgruen and Zipkin, 1986a, Federgruen and Zipkin, 1986b];

or even for stochastic capacity bounds, [Ciarallo et al., 1994].

For multiple machines in series and a single product, [Clark and Scarf, 1960] show that base

stock policies are optimal in terms of multi-echelon inventory. That is, they de�ne multi-echelon

inventory of a given machine as the sum of inventory from that machine all the way down the

production system to the end product inventory. For each of these echelon inventories there is a

critical number to order up to for �nite horizon problems. Their machines have no capacity bounds.

This result was extended to the in�nite horizon case by [Federgruen and Zipkin, 1984].

There are other models for which a base stock policy has been shown to be optimal, however

for cases of multiple machines in series, with capacitated machines, producing single or multiple

products, little is known about the optimal policies. The same can be said regarding re-entrant

systems. See [Graves et al., 1992] for a very extensive coverage of inventory control problems and

theory. A more compact survey of stochastic inventory control can be found in [Porteus, 1990].

In situations where the structure of the optimal policy is not well known, it is often the case

that an approximate, or sub-optimal, policy is proposed as a heuristic. Due to their simplicity
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and given they are optimal for many simpler systems, it is often the case that some variant of a

base stock policy is proposed and used. An example of this approach is that of [Glasserman and

Tayur, 1995]. The authors propose to control a system producing a single product, with multiple

machines in series, where each machine has a �xed capacity, by means of a modi�ed multi-echelon

base stock policy. The optimal base stock values are computed with the help of an optimization

procedure which relies on gradient and cost estimates obtained through in�nitesimal perturbation

analysis. Also for multi-echelon systems, [Graves, 1996] develops a procedure to determine the

echelon base stock levels of an uncapacitated system where each location may serve more than one

site, but where each site receives inventory from only one other site. For Poisson demands, the

approach allows the closed form calculation of �rst and second moments of several state variables.

It is possible to determine the optimal base stock levels for a two stage echelon system. Things get

more di�cult for more than two stages though.

2.2.1 Random Yield

There exist basically three areas of interest when it comes to studying systems possessing ran-

dom yield: modeling yield, improving yield, and controlling systems with a given yield structure.

Modeling yield is concerned with identifying how to best approximate the random yield process

as a stochastic process. Improving yield deals with quality control issues and aims at improving

production processes to increase yield or monitoring the output to quickly detect major disrup-

tions that call for readjustment of the production process. The third area deals with determining

production decisions given that random yield is present and unavoidable to some extent. The �rst

two areas are outside the scope of this thesis.

However, relative to the modeling of random yield there is an important issue, which concerns

the relationship between cycle time and random yield in the context of semiconductor manufactur-

ing. [Wein, 1992b] discusses the strong correlation that exists between the length of the cycle time

and the net capacity of a semiconductor fab. Longer cycle times tend to reduce yield and, there-

fore, reduce the overall capacity. The importance of this observation is that strategies that concern

keeping cycle times low should be given particular attention. Since cycle times are correlated with

the amount of work in process, care should be taken in terms of the amount of material that is

allowed to enter such a facility. For an analysis of random yield models and their evaluation, see

[Cunningham, 1990].
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The presence of random yield in production systems has a very destructive impact over many

of the nice structural properties of inventory control policies. Moving from a model with unlimited

capacity and deterministic demand to a model with stochastic demand, or from this one to another

model where capacity is �xed, or even to a model with random capacity, the base stock structure

of the optimal policies is retained. However, as soon as random yield is added to the model the

base stock structure is typically lost.

A distinction should be made here between order point policies and order up to policies. Many

of the base stock policies mentioned above are simultaneously order point and order up to policies.

Order point policies are those where there is a point (or set of points) in terms of initial inventory,

above which it is optimal not to order. Order up to policies are those where, when it is optimal to

order, the optimal ordered amount is such that the ending inventory is a particular inventory point

(or set of points). A base stock policy satis�es these two properties, and in many situations both

points coincide.

When random yield is present, many systems are such that they retain the order point feature

but lose the order up to feature. It could be expected that the order up to feature would be retained

for the expected production, that is, the amount produced multiplied by the expected random yield.

However, this is not the case.

[Gerchak et al., 1988] discuss the structure of optimal inventory control problems for a single

machine system with random yield. One of the most interesting conclusions is the fact that the

order point remains unchanged relatively to the perfect yield counterpart, that is, it does not

depend on the yield distribution. They analyze the single period and the two period problems

in some detail to show that the amount to order depends not only on the expected random yield

but also on the second moment of the random yield. Actually, the optimal order grows as the

expected yield decreases but it decreases as the variance increases. If there is a high yield variance,

big production amounts have a signi�cant probability of wasting a big amount of material whereas

smaller orders incur smaller absolute waste. Regarding the multiple period problem, they observe

that the solution is non myopic since the su�cient condition for dynamic decisions to have myopic

solutions is not satis�ed | given the action, the current state has no impact on next state. It is

clear that, after deciding the amount to order, the end inventory is a function of the starting state

when random yield is present.

On a subsequent paper, [Henig and Gerchak, 1990] discuss the structure of periodic review
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policies in the presence of random yield. The paper starts with a very good literature review on

random yield problems covering continuous and periodic review models, to which the interested

reader is referred. They also analyze a single machine case and make a complete analysis of single

period, �nite-horizon and in�nite horizon models with general production, holding and shortage

cost structures. For the single product case, they con�rm that the order point structure exists

and that it is equal to the value for perfect yield models. They provide an approximation for the

optimal ordering quantity, obtained through the Taylor series. For multiple period problems, it

can be shown that there exist a critical number per period, Sn, such that nothing is ordered if and

only if the starting inventory for the period is above that number.

Given the complexity of the inventory control problem when random yield is present, many

authors have proposed heuristic approximations to the order quantity. Examples of such a strategy

can be found in [Akella et al., 1992] for the multiple product, capacitated, two machine system and

in [Bollapragada and Morton, 1994] for a single item periodic review inventory problem. The �rst

paper proposes a linear decision rule derived from approximating costs by means of a quadratic

function. The second paper proposes a stepwise linear heuristic that approximates the optimal

production decision. One common �rst approximation heuristic is to produce the di�erence between

the present inventory and a target level in
ated by the expected random yield. The problem with

this is the fact that when the di�erence is too big the order is naturally big and the amount lost

due to the random yield is signi�cant, so that to improve costs it is of advantage to impose some

sort of upper bound on the amount ordered. More sophisticated heuristics also take variance into

account.

An outstanding and very recent overview of research in the context of optimal inventory control

in the presence of random yield can be found in [Yano and Lee, 1995]. Readers are referred to it

for more details on the structure of the optimal policies and on heuristics.

2.3 Flow Rate Control

Some authors approach the problem of production control as one of regulating the rates of

production, rather than the production quantities. The most important line of research on this

area was initiated with the Ph.D. thesis [Kimemia, 1982], out of which a summarized version was

published in 1983, [Kimemia and Gershwin, 1983]. The problem addressed was that of controlling
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a production system with multiple machines and multiple part types each subject to deterministic

demand rates, where the machines were prone to failures. A multilevel hierarchical control algorithm

was proposed, involving a stochastic optimal control problem at the top level.

The hierarchy was proposed taking into account the several time scales at which several classes

of events take place. The shortest time period is that of the setup when switching among the

family of operations for which a machine is con�gured. It is assumed that these times are short

when compared with the remaining times and are ignored from the analysis. The next time period

is that of the typical operation, assumed to be several orders of magnitude above the setup times.

If the operation times are random, they are replaced by their means in the formulation. Next in

the time scale come events like machine failures and machine repair times, assumed to be expo-

nentially distributed and de�ned in terms of Mean Time Between Failures | MTBF and Mean

Time To Repair | MTTR. The longest time period is the planning horizon for the problem under

consideration. It is assumed that demand is known and constant for periods of time larger than

the typical MTBF or MTTR.

The hierarchical controller was de�ned as having three levels, each level dealing with events of

a particular time scale. Therefore, at the lowest level is a Sequence Controller, which schedules

times at which to dispatch parts already in the system, and a Routing Controller, which calculates

route splits for parts having more than one alternative processing path. At the next level of the

hierarchy lies the Flow Controller, which determines the short-term production rates for each part

type that are feasible for the current machine status. At the highest level, the o�-line calculation

of the control policies to be used in the 
ow and routing levels is executed, thus generating the

Decision Tables.

An optimal control problem is formulated at the top level. One component of the system state

is de�ned as the production surplus, i.e., the di�erence between the cumulative output of end

products and the cumulative demand. Since the demand is de�ned as a deterministic rate, d, the

system dynamics is described by a continuous time di�erential equation of the type

_x(t) = u(t)� d; (2.1)

where x(t) 2 RN denotes the production surplus, N is the number of di�erent product types,

and u(t) 2 RN is the production rate which controls the system. The system is composed of M
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workstations, each subject to random failures and repair times. The other state component, �(t),

describes the available capacity in terms of the state of the workstations. This particular state

component is modeled by means of a continuous time �nite state Markov chain. At any given

moment there is a set of feasible production rates de�ned as 
[�(t)]. The cost function to be

minimized is of the form

J(x; �; t0) = E

�Z tf

t0
g[x(t)]dtjx(t0) = x; �(t0) = �

�
: (2.2)

The objective is to determine the optimal production rates so that (2.2) is minimized and

such that the production rates are feasible for the system's capacity at all times in the interval

[t0; tf ], i.e., u(t) 2 
[�(t)]. The expected value is taken over all possible trajectories of the Markov

chain. To solve the problem, a Dynamic Programming algorithm is formulated and the Hamilton-

Jacobi-Bellman (HJB) equation is derived. For general references on continuous time dynamic

programming and on the derivation of the HJB equation see [Bellman, 1957, Bryson and Ho, 1969].

The HJB equation generates a Linear Programming problem on the production rates. The

coe�cients of the linear program are the derivatives of the optimal cost function with respect to

the x components. If these coe�cients are calculated, then the problem of determining the optimal

production rates is very simple. The underlying Markov chain divides the state space into regions

where the optimal production rates are constant. These rates will correspond to the extreme points

of 
(�) on each region.

Next the authors note that, for each feasible region and for the stationary problem, there is a

�xed bu�er level xH� above which the optimal production rates are zero. A feasible region is de�ned

as a region of the state space for which u(t) = d is a feasible value for the control. This point (xH� )

is denominated as the hedging point and is such that, if the Markov chain remains in a given state

long enough, the bu�er value will converge to its corresponding hedging point and will remain there

as long as there are no changes on �(t).

The interpretation of the hedging point value is that of a base stock. For each feasible region,

xH� is the value to hedge against machine failures, to compensate for the periods where the demand

rate is not feasible. Note that, since the formulation only takes into account the production surplus

for end products, nothing can be said about the values of the internal bu�ers. Although the authors

are dealing with a multiple machine system, their conclusion is the same as it would be for a case
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with single machine. This feature, the existence of a base stock in terms of end products, is also

present for systems where the cost of inventory on internal bu�ers is accounted for, as will be

discussed ahead.

The di�culty of this approach lies in the determination of the coe�cients for the linear program.

Their calculation requires the solution of a coupled set of di�erential equations, which can be done

for very small problems, but is not recommended for realistic size problems, as the authors mention

in [Kimemia and Gershwin, 1983]. So, they propose to estimate the value function and use the

estimated function to generate the coe�cients of the linear program. An upper and a lower bound

on the exact value function is derived. The methodology proposed consists of determining and

storing o�-line the lower and upper bounds on the value function for each value of the production

surplus and machine status. On-line, whenever a machine state change occurs, the control u(t) is

determined by a linear program using the stored values of the estimates.

The general control policy is such that, for feasible states the optimal control is to produce at

the maximum possible rate for all products below their hedging points, to produce nothing when

above the hedging points, and to produce at the demand rate when the production surplus equals

the hedging point. For infeasible states it is not possible to recover to the hedging points, so the

optimal control is to produce at the maximum possible rate while giving preference to products

which are more important in terms of their individual costs. This by no means signi�es that a �xed

priority list is de�ned.

An explanation in terms of the general principles of push and pull for production systems is

immediately available for this policy. The system is operated in a push mode when under the

production target and on a pull mode when matching it.

Once the production rates are determined for each state, it is up to the lower level to decide

the release of new parts into the system, in a manner compatible with such rates. Since the cost

coe�cients are functions of the surplus, the linear program is solved periodically, at each time step,

to generate the adequate production rates.

Immediately following the work just described, there was a signi�cant body of research developed

to improve over the basic principles of [Kimemia, 1982]. As the main shortcoming of the approach

has to do with the calculation of the value function estimates, some heuristic approximations were

proposed in order to simplify the o�-line computation. Others have treated richer models that take
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the internal bu�ers into account.

Dealing with the exact same problem of [Kimemia and Gershwin, 1983], [Gershwin et al., 1985]

propose a heuristic procedure to estimate the value of the optimal cost function. The authors take

a quadratic approximation of the optimal cost function, or the cost-to-go function, and propose its

structure to be

J(x; �) =
1

2
xTA(�)x+ b(�)Tx+ c(�); (2.3)

where A(�) is a positive de�nite diagonal matrix, b(�) is a vector, and c(�) is a scalar. With this

cost-to-go function, the determination of the hedging points is simple, since it is enough to take

derivatives of (2.3) with respect to x and set them to zero. So, the main issue is the determination

of the values for the matrix, A(�), and the vector, b(�). To obtain such values, the authors analyze

a sample path on the surplus trajectory using the MTBF and the MTTR values and derive the

optimal hedging point for each product type, on regions for which demand is feasible. The derivation

of the hedging points is made by means of cost considerations, like holding cost for positive surplus

and backlog cost for negative surplus. This procedure determines the matrix and the vector of

(2.3).

In [Kimemia and Gershwin, 1983], the linear program to determine the optimal production rates

was solved every time step, which was assumed to be of one minute, because the cost coe�cients of

the linear program are functions of x. As observed in [Kimemia, 1982] this induces chattering when

crossing certain boundaries between regions, since the change in optimal rates may be bigger than

the actual loading of parts into the system, thus even leading the system to fail to meet demand

when demands are close to capacity. In [Gershwin et al., 1985] it is observed that, although the

cost coe�cients change with x, there are well de�ned regions for which the optimal basic solution

of the linear program does not change. Therefore, it is possible to compute the future behavior

of the surplus variables, projected trajectory, once the boundaries that produce a change in the

optimal basic solution are determined. The low level release is done through comparison between

the projected trajectory and the realized trajectory.

By doing this the authors avoid the generation of a solution for the linear program every time

period, and avoid the chattering behavior. These same ideas are discussed in [Akella et al., 1984],

where a simulation study for a real life 
exible manufacturing system is presented, comparing
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the hierarchical policy with other heuristic based policies. In [Akella et al., 1984], an intuitive

description of the meaning of the linear program cost coe�cients is made, which illustrates how to

obtain them. The linear program cost coe�cients are de�ned to be of the form

cj(xj) = Aj(�)(xj �Hj(�)); (2.4)

where Hj(�) is the hedging point for product type j = 1; 2; : : :N when the machine state is �,

computed as described in [Gershwin et al., 1985], and Aj(�) is a positive quantity that re
ects the

relative value and vulnerability of each part type. A measure of the vulnerability is the number of

machines a part type visits during production. Also, the smaller the MTBF of the visited machines,

the more vulnerable a part type is. To simplify the analysis the authors in [Akella et al., 1984]

propose to make Aj(�) equal to the number of machines a part type j visits.

Although the arguments for the simpli�cations are intuitively acceptable and they have been

shown to produce very competitive performances, it should be stressed that the control parameters

determined overlook many aspects of a system's performance. For instance, the procedure to

compute the hedging points relies solely on the average values of the disturbances and uses a

nominal failure/repair cycle. No e�ects of process variance are taken into account. It should

be expected that hedging points are sensitive to the variance of the disturbances a�ecting the

production system. It would also be desirable to have more sound procedures to determine the

linear program cost coe�cients, given that these calculations are done o�-line.

In [Akella and Kumar, 1986], a version of the problem addressed in [Kimemia and Gershwin,

1983] is considered. There, a single machine, single product type system is studied. The authors

manage to analytically determine the closed form expression for the cost-to-go and for the hedging

point. The optimal policy for this system is naturally one of the critical number type, so that

the system should produce at maximum rate when the production surplus is under the critical

number, should produce at the demand rate when the production surplus matches exactly the

critical number, and should produce nothing if the critical number is exceeded by the production

surplus. There are no such elegant results for systems with a little more complexity, like more than

one machine or more than one product type, on the same continuous time setting with deterministic

demand. For single product single machine, where machines may have more than two states, it

has been shown that the optimal policy is also of the hedging point type with multiple hedging
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points, [Sharifnia, 1988]. The author derives equations for the steady state probability distribution

of the surplus level. With these equations it is possible to compute the cost-to-go as a function of

arbitrarily chosen hedging points and then use that as a tool for determining the optimal hedging

points.

In summary, the problem of controlling a 
exible manufacturing systemwith unreliable machines

was formulated as a stochastic control problem in [Kimemia, 1982]. A multiple machine, multiple

part type system was considered, but internal bu�ers were not treated explicitly. Both demand

and processing times were assumed to be deterministic and �xed. Heuristic algorithms based on

approximations of the value function were subsequently proposed in [Akella et al., 1984, Gershwin

et al., 1985]. Exact solutions for a one machine, one part type system were derived in [Akella

and Kumar, 1986] and [Bielecki and Kumar, 1988]. This latter work establishes and discusses

conditions for which the optimal hedging point has zero value, even though there is uncertainty in

the production system through the failures of the single machine.

After the work of [Kimemia, 1982], including the research just described, it can be said that

two main branches have emerged. On one hand, some authors adopted the approach of trying to

determine approximations for the optimal policies that are simple and exhibit competitive perfor-

mances. On the other hand, some others continued on the path of approximating the cost function

and extended the results to more complex and richer systems.

2.3.1 Approximating the control policies

In the area of determining approximations for the control policies, the work described in [van

Ryzin, 1987, van Ryzin et al., 1993] has been the inspiration for many further developments. There,

the internal bu�ers were �rst considered after [Kimemia, 1982]. As a �rst approach to include

internal bu�ers into the formulation, a system with two machines in tandem producing a single

part type was studied. Since, even for such simple model, the analytical solution is impossible

for practical reasons, the authors proposed to numerically solve the discrete time version of the

original problem. They discretize the di�erential equation of the system and use the Value Iteration

Algorithm of Dynamic Programming as described in [Bertsekas, 1987].

The production surplus is de�ned as a vector in R2, where the �rst component is the production

surplus of the �rst machine and the second component is the production surplus of the second

machine. Naturally x1(t) � x2(t), since the inventory sitting in the bu�er between machine one
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and machine two is always non negative. This system's dynamic equation in continuous time is of

the same type of (2.1) for both surplus variables. The discrete time counterpart is of the form

x1[t+ 1] = x1[t] + u1[t]� d

x2[t+ 1] = x2[t] + u2[t]� d (2.5)

where u2[t], besides being feasible for the machine status at time t, cannot exceed x1[t]. They

consider in�nite horizon discounted costs. The inventory between machine one and machine two

(x1[t]� x2[t]) incurs a holding cost and the inventory of �nished goods (x2[t]) incurs holding cost

when positive and backlog cost when negative. Each of the two machines may be in one of two

states: up or down. This particular dynamic behavior is modeled through a Markov chain as before.

The numerical results show that the state space, in terms of the surplus variables, is divided

into regions. Fig. 2.1 displays the typical switching curves obtained for the situation where both

machines are operational.
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Figure 2.1: Typical optimal control regions.

Curve S3 marks the frontier of feasible states. The variable x1[t] is above x2[t] for points above

S3. The two other switching curves divide the state space in four regions: 0, 1, 2, and 3. In region

0 it is optimal not to produce; in region 1 only machine one should produce at its maximum rate;
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machine two produces at maximum rate alone in region 2; and both machines produce at maximum

rate in region 3. The intersection of curves S1 and S2 determines the optimal hedging point for

this system. That is, it is the point to which the state space converges if the machines remain up

enough time. If machine one is down and machine two is up, the surplus space is divided into two

regions only by a curve like S2. If machine two is down and machine one is up, the space is also

divided into two regions by a curve like S1. Naturally, there will be no switching curve when both

machines are down. Also, for the cases where only one machine is down the curve present does not

match the corresponding curve when both machines are up. There is a slight sliding downwards of

S1 closer to S3, for instance. If the state lies on S1 or S2, which are called attractive boundaries,

the optimal control is such that the system should remain on the curves and move along them

towards the hedging point. This is when the optimal control rate matches the demand rate.

Although their general shape does not change with the system parameters, the curves will

change as a function of the speci�c holding and backlog costs used, as well as they are in
uenced

by the MTBF and MTTR, and depend on the discount rate used for each �xed demand rate under

the system's capacity. Changing the state representation from surplus values to inventory values,

Fig. 2.1 assumes the, perhaps more familiar, form shown in Fig. 2.2.
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Figure 2.2: Typical optimal control regions.

These switching curves, as displayed in Fig. 2.2 do not di�er much from the ones obtained in
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[Veatch and Wein, 1994] and in [Bispo, 1992]. In [Veatch and Wein, 1994], a two station in tandem

system was considered also. Their model assumed reliable machines and an exogenous Poisson

demand process. The service times were assumed to be random and exponentially distributed.

They computed the optimal machine rates using Dynamic Programming, and characterized some

general properties of the switching curves. Namely, the slope of S1 is always below -1 and converges

to�1; S2 is not constant for all values of the inventory at machine one, although it rapidly stabilizes

at a constant value; S2 has a non negative slope; and both curves intersect for non negative values

of the state variables. The discrepancies between these �ndings on S2 and those displayed may

have to do with the fact that in [van Ryzin et al., 1993] the discount factor used was very close

to zero. Using a discount factor closer to one will allow the conclusion that S2 is not constant

for all values of the inventory at machine one. In [Bispo, 1992], the same two station system of

[Veatch and Wein, 1994] was used. The main di�erences were the inclusion of machine failures into

the model and the last machine had batch capabilities. The same switching curves were found by

means of Dynamic Programming, and it was shown they obeyed the same generic properties as

those of [Veatch and Wein, 1994].

Although obtained for systems subjected to di�erent types of random disturbances, the optimal

policies possess the same structural properties. Namely, the existence of a hedging point, or optimal

base stock value for both variables, to which the state space converges after some time and where

it attempts to remain. Given that the switching curves, besides their structural properties, are

not amenable to be used for practical reasons, [van Ryzin et al., 1993] proposes the utilization of

approximate switching curves. The basis of the approximation is to observe that curve S1 tends to

be parallel to S3 (Fig. 2.1) as the production surplus of machine two approaches �1 and that it

tends to be 
at as it approaches curve S3 for positive values of the surplus at machine two.

Fig. 2.3 displays the structure of the approximation proposed, for both alternative representa-

tions of the state variables. Curve S2 is constant, de�ning a base stock for the surplus of machine

two, and curve S1 is composed of two linear segments. On the �rst segment (closer to the hedging

point) there is a base stock for the production surplus of machine one and on the second segment

there is a base stock for the inventory between machine one and machine two. The intuitive reason

for such approximation, that also explains the structure of the optimal switching curves, is that

when the surplus of machine one is negative with high absolute value, there is no point in producing

more than enough to keep machine two working. Any excess inventory will have to sit waiting for
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Figure 2.3: Sub-optimal approximation for the switching curves.

its turn to get processed and incurring needless holding cost while waiting. Once the state is close

enough to the hedging point, the need for inventory between the two machines decreases and the

system works towards the hedging point by exchanging inventory from one machine to the other.

Although the optimal switching curves change for di�erent combinations of machine status, they

use the same approximation curves for all cases.

According to [van Ryzin et al., 1993], the control policy is such that machine two follows a pure

surplus-level control and machine one follows a surplus-level control in the region where x2 is close

to zero and a bu�er-level control where x2 is very negative. The overall control policy is termed

two-boundary control policy, because it assumes that the optimal control regions are divided by two

piecewise linear boundaries.

In order to determine the optimal parameters that characterize the two-boundary control policy

the following set of approximations is proposed:

1. Replacing hedging points that are machine-state-dependent by those that are independent of

the machine states;

2. Using time averaged values of functions in place of the functions themselves;

3. Incorporating the e�ects of an empty bu�er as a modi�ed failure rate.
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The above simpli�cations are then used in combination with probabilistic arguments to derive

the parameters that fully de�ne the control policy.

Following this work, a system with three machines in tandem was analyzed and the two-

boundary control policy extended to a system with one part type and N machines in tandem,

[Lou and van Ryzin, 1989]. The essentials of the extended policy are:

1. For each machine de�ne an inventory hedging point hi, and a surplus hedging point hsi ;

2. At any given instant of time compute the actual machine inventory xi, as the sum of the

number of parts in its bu�er and the number of parts being processed;

3. Compute the actual machine surplus si, as the di�erence between cumulative production and

cumulative demand, or the sum of the inventories of all the downstream machines;

4. If xi � hi, si � hsi , and the machine is operational, load machine i at full rate. Otherwise do

not load.

Note that such policy takes care of two types of decisions: release decisions | loading of new

parts into the system, and scheduling decisions | loading of existing parts into the machines.

This policy is used to control a re-entrant system with multiple machines and a single part

type in [Lou and Kager, 1989]. Although there is a re-entrant structure, the authors consider the

system as a series of machines in tandem and determine the policy parameters for such structure.

It is not clear from their analysis and discussion how the capacity of the re-entrant machines

is allocated to each visit for the purpose of calculating the parameters. In terms of the dynamic

management of capacity, they award capacity to parts closer to being completed, thus implementing

a priority based capacity management. A simulation study is presented comparing the extended

two-boundary control policy with an open loop control policy that loads a �xed number of parts

into the system periodically. Their results show a clear advantage of the two-boundary policy over

the open loop policy. However, their study is biased by the fact that they start collecting statistics

from time zero, and start with an empty system. The open loop policy loads parts into the system

at a rate that matches demand. Therefore, it will always lag demand since it starts with zero

inventories at all bu�ers. Once the system becomes fully loaded, the open loop policy stabilizes its

behavior, but remains with negative surplus for end products. The two-boundary policy manages

to recover to positive surplus because it is an intrinsically closed loop policy. Naturally, a closed
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loop policy is always expected to perform at least as weel as an open loop policy. But, when the

loading rate has not been optimized for the open loop policy and when the system is started from

zero, the performance di�erences between the two policies will be higher than they truly are.

Immediately following [Lou and Kager, 1989], a semiconductor manufacturing system with re-

entrancy, random yield, and multiple parts was addressed in [Lou et al., 1990]. A more extensive

description of it was later published in [Yan et al., 1996]. The authors used the two-boundary control

policy, with the parameters determined for a so called \virtual 
ow line". That is, the re-entrant

system is converted into a 
ow line with no sharing of capacity for the purpose of determining the

optimal parameters of the control policy.

On the model of [Yan et al., 1996], the authors do not consider the fact that each product type

on di�erent visits imposes di�erent loads on the machines. Also they deal with random yield by

scaling down the machine capacities by the average yield and simulate the system as having perfect

yield for those capacities. This way, all products that are loaded into the system will eventually get

out. Although this scaling may represent the average of the output process with some accuracy, it

does not seem appropriate to model random yield this way since there is no accounting for lost parts

and the e�ects they have on the process variance, and consequently on the actual performances.

Given that [Yan et al., 1996] deal with multiple part types, it is necessary to address the problem

of allocating capacity to the various products that compete for the same resources. To do that the

authors assign a set of weights to each part type and a set of additional weights to each entry of

each part type on the re-entrant structure. This second set of weights is non decreasing as a part

type approaches the last processing steps. The combination of the two sets of weights determines

the procedure to order the di�erent part types and di�erent entries. The overall procedure is a mix

of priority based allocation and a shortfall based allocation. Priority for the release of new parts

into the system is given to the highest weighted global surplus deviation. The �rst set of weights

alone is used to produce the ordering. Priority for the local dispatch into the machines is given to

the highest weighted local surplus deviation. The two sets of weights are used for this ordering.

The procedure to determine the speci�c weights is not discussed. The policies are shown, through

simulation, to be relatively robust to changes in the nominal values of the system's parameters,

such as the mean up times of the machines.

Many authors have proposed di�erent methodologies to determine the optimal parameters of

the two-boundary control policy. [van Ryzin et al., 1993] refers a probabilistic approach, which
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makes use of the steady state probability distribution of the surplus, and a heuristic approach, that

produces values close to the actual optimal parameter values computed in [van Ryzin et al., 1993]

(see references therein).

Of particular interest to the present thesis are the IPA based approaches. [Yan et al., 1992]

validate a continuous time perturbation analysis based optimization procedure to determine the

optimal hedging points for systems with one and two machines, no re-entrancy, and a single part

type. A more extensive report has been presented in [Yan et al., 1994], where a simulation study

is also presented. The authors use perturbation analysis to compute the two-boundary control

parameters and to compute the thresholds for a Kanban policy. A very similar idea is the work

reported in [Caramanis and Liberopoulos, 1992]. The authors present and validate an IPA algorithm

to determine the optimal hedging points for the model of [Kimemia and Gershwin, 1983], that is,

only �nal bu�ers are taken into account to compute cost. They approximate the cost by a quadratic

function of the hedging points. The paper reports on an application for two machines and two

products. The authors discuss a framework to deal with more products by means of aggregation

to two-product problems.

Along the lines of the hierarchical controller of [Kimemia and Gershwin, 1983] there has been

some work on the design of controllers that can skip the linear program calculation, [Cust�odio

et al., 1994]. There, the hedging points are determined through a procedure similar to that of

[Gershwin et al., 1985]. The di�erences lie in the middle and lower level controllers. The middle

level controller determines the loading rates through a fuzzy controller that attempts to track the

cumulative demand, while keeping a low work-in-process. The lower level controls the 
ow of

parts among the resources, using a modi�ed version of Yager's fuzzy decision method. For general

references on fuzzy sets, fuzzy logic, fuzzy controllers, and Yager's method see [Zadeh, 1965, Yager,

1978, Berenji, 1992].

2.3.2 Approximating the value function

The alternative approach to directly �nding approximations to the optimal control policies, is

to approximate them through an estimate of the optimal cost function. That has been done in

several instances. The work reported in [Akella et al., 1984, Gershwin et al., 1985] and described

above is one such case. In [Bai and Gershwin, 1995] a tandem system with N machines, N � 1

bu�ers, and a single part type is analyzed. The multiple part type version of this tandom system
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is discussed in [Bai and Gershwin, 1994], and a re-entrant system is studied in [Bai and Gershwin,

1996].

A policy similar to the two-boundary control policy is developed for each machine and each

part type. Three parameters for each machine and each part type characterize the policy: the

local surplus, the bu�er level, and the bu�er size. Following the procedure of [Akella et al., 1984]

and [Gershwin et al., 1985], they approximate the value function of the dynamic programming

problem with a quadratic. This, and the upper bound on the bu�er level, lead to regions whose

boundaries are straight lines. By further assuming that production rate decisions depend only

on the local machine state, local surplus, and the bu�er level, the boundaries will be parallel to

the coordinate axes in surplus space, and there will be only three unknown parameters for the

two-machine problem: the hedging points for each surplus, and the maximum bu�er level.

The determination of the hedging points is selected in [Gershwin et al., 1985] to approximately

minimize the integral of a penalty over a typical repair-failure cycle, in which di�erent positive costs

are assessed for positive and negative values of the surplus. Whereas in [Gershwin et al., 1985] the

surplus was only conditioned by the repair states of the machines, for limited bu�ers it will be also

a�ected by whether the machine is blocked, starved, or neither. Therefore, they have to estimate

the fraction of time that the bu�ers are full or empty. The approximately optimal hedging points

and bu�er size are functions of these fractions through an optimization procedure.

The extension of these results to a system with N machines and a single part type is done

by decomposing the original problem into a series of two-machine problems, [Bai and Gershwin,

1995]. Again, they must calculate the control parameters: one bu�er size per bu�er and one

hedging point per machine. The calculations are similar to those of the two-machine case, with

the following exception: the fraction of time the machine i+1 is starved is expressed as a function

of the probability that machine i is down due to its own failures and the fraction of time that

machine i is starved (among other things). Blockage probabilities propagate similarly, but in the

opposite direction. This leads to a set of nonlinear equations which are used as constraints in an

optimization problem. The decision variables are one bu�er size per bu�er and one hedging point

per machine.

When considering systems with multiple part types, the extension of results is done by evaluating

the blockage and starvation probabilities in approximately equivalent systems, [Bai and Gershwin,

1994]. These areN -machine systems with only one part type, whose parameters are related to those
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of the original system. The blockage and starvation probabilities are used to calculate the optimal

bu�er sizes and hedging points. Finally, when dealing with re-entrant systems, this procedure is

extended to systems with multiple machines, multiple part types, and arbitrary, di�erent, but �xed

routing for each part type, [Bai and Gershwin, 1996]. Again, an approximately equivalent system

is developed for the purpose of estimating blockage and starvation probabilities, which will then

enable the computation of the optimal bu�er sizes and hedging points.

2.3.3 Summary

The area of 
ow rate control has produced one of the most comprehensive and complete method-

ologies to deal with production planning and control for manufacturing systems. It involves long

term decisions, such as determining safety levels for the production, based on long term data like

demand rate and machine statistical behavior. It involves middle term decisions, such as the release

of new parts into the system, based on current system status described in terms of actual produc-

tion and availability of machines. And �nally, it involves short term decisions, such as scheduling

parts into the available machines, based on current production evolution.

The approach relies on the sound theory of optimal control and bene�ts from its elegant results,

generating control policies that are functions of the system state, operating in closed loop. The

main advantage of closed loop policies is their robustness to small changes and disturbances that

may occur in the nominal parameters of the system under control.

There are however some questions which remain to be dealt with in a more satisfactory way.

The only source of randomness formally considered is machine breakdowns. Demand variance is not

taken into account, as well as the e�ects of random yield and processing time uncertainty, in order

to determine the long term safety levels. The calculation of the safety levels is typically a very

complex procedure, or the heuristic procedures to simplify their computation rely on somewhat

simplistic approximations to smaller dimension systems. The possibility for, and di�erent means

of, sharing capacity is not taken into account to determine the safety levels. Also, there is no

e�ort made to determine how capacity should be shared, nor on studying the e�ects that di�erent

dynamic capacity schemes have on the performance of the manufacturing systems. When it comes

to sharing capacity, typically the question is answered by means of proposing priority schemes of

greater or lesser complexity, which are neither derived from, nor a consequence of, the theoretical

model.
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The attempts to solve the higher level problem without resorting to the explicit integration of

the HJB equation but through simulation based approaches have always been done for very small

systems. The other methodologies rely on very detailed and elaborate statistical arguments based

on the particular statistical distributions assumed.

2.4 Queueing Networks

Queueing networks have long been one of the most used tools to model systems possessing

discrete event dynamics. Systems with discrete event dynamics are characterized by the fact that

their state does not change continuously as time evolves, but rather it jumps from one point to

another at a particular instant of time, when it is said that some event occurred. The instants of

time at which the state changes, or at which events occur, are random. Events that trigger the

state change are as various as the type of systems one can consider, but usually they are associated

with the fact that some sort of activity ends. For instance, and in the context of manufacturing,

events can be a machine �nishing an operation on a particular part, a machine breaking down, a

machine becoming available after being repaired, or a new part arriving into the system.

Given that the occurrence of events is associated with some activity coming to the end, it is

natural to say that there will be some sort of entity responsible for the execution of the activity.

Also, an activity involves the cooperation of some entities within the system. Entities involved in

one activity will become free to initiate other activities with some other entities, after the current

activity terminates. Some of the entities are mobile, some are �xed, and some other may be virtual.

Queueing networks capture this type of dynamics by the de�nition of two types of entities:

servers and customers. Customers are assumed to be mobile entities in the sense that they are

external to the system. They arrive into the system to get some service done in one or more

servers, wait for their turn, and then depart upon completion of their service requirements. A

rich variety of discrete event dynamic systems is modeled by means of the parts arrival processes,

service time distributions, and routing of parts along the system. Servers are assumed to be �xed

entities in the sense that they belong to the system and provide the customers with some sort of

service, according to the customers' requirements. The discrete event dynamic systems are modeled

by means of the number of servers in the system, how they interact with other servers, and how

they operate over the customers waiting to be served. Besides these features, other features of the
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queueing networks help in the modeling of very generic systems such as the queue discipline, the

existence or absence of limited bu�ers for queues, and how the input of new customers into the

system is done.

Consequently, the simulation of production systems through networks of queues can provide

very accurate estimates of the performance of real life systems. By means of both closed or open

queues, many contributions have been made to the understanding of the structure of manufacturing

systems. Although, in general, networks of queues have been used to estimate performance, some

e�ort has been made in the direction of using queueing models as a way to determine control

policies with some success, namely in the context of re-entrant systems.

Typically, queueing theory has been centered on determining long term measures like average

waiting time for the customers, average server utilization, departure rate, etc. In the context of

manufacturing systems, this type of tool has been used mainly for performance evaluation, for

instance, to evaluate speci�c con�gurations or to compare the performance of alternative service

disciplines. In many instances simulation goes hand in hand with this modeling tool, in order to

provide this type of answer for very complex systems.

The main contributions to manufacturing control, in general, and to semiconductor manufac-

turing control, in particular, can be classi�ed in two groups depending on how the population of the

underlying networks is assumed to evolve. There are authors who address manufacturing control

by modeling the systems as open queueing networks, where there is no control over the amount of

customers that get into the system. Others impose some sort of loading control and model their

systems through closed queueing networks, where the number of customers in the system is either

�xed and constant or bounded above by some value.

If the model used is that of open queueing systems, the questions typically posed can be in

terms of determining the number of servers to be used so that some performance can be achieved,

determining the rate of service of the servers, evaluating the performance of a system, comparing

the performance of alternative routing schemes and/or queueing disciplines. When using closed

queueing networks the questions addressed also deal with the evaluation of input regulating policies.

In this thesis' perspective, it is assumed that questions related to the design of the production system

have been answered. Therefore, the interest resides in the evaluation of performance for alternative

queueing disciplines and input regulating policies.
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For general references on queueing networks theory, see [Kelly, 1979, Assmussen, 1987, Walrand,

1988]. An excellent text on discrete event dynamic systems is [Cassandras, 1993].

2.4.1 Closed Queuing Networks

One good example of the use of queueing networks theory to model the performance of semi-

conductor manufacturing is the work of [Chen et al., 1988]. More speci�cally, they concentrated

on analyzing the quality of queueing networks theory as a tool to evaluate the performance of the

wafer fabrication stage. There, the authors say that

\The most obvious means to generate such performance predictors is the Monte Carlo simu-

lation, but experience in other areas suggests that mathematically tractable queueing network

models, although less 
exible than simulation models and based on apparently restrictive as-

sumptions, are far easier to use, generate more qualitative insight with respect to essential system

relationships, and are accurate enough to provide quantitative guidance to system designers."

By making use of the classical theory of product form queueing networks, [Kelly, 1979, Baskett

et al., 1975], they use past history data of a particular wafer fabrication system to estimate some

of the parameters of the queueing network. They adopt a mixed network model, which is closed

with respect to nonmonitor lots and open with respect to monitor lots. The past operating data

is used to estimate parameters such as the population size of the nonmonitor lots, the fraction of

nonmonitor lots for each type, the average input rate for monitor lots, the e�ective service rate at

each station, etc.

With these estimated parameters they are able to predict performance measures by means of

queueing network theory. The measures predicted are the overall average throughput for nonmon-

itor lots and the average cycle time for the lots. Cross checking predicted measures against past

performance the authors show the adequacy of the queueing network model. The errors between

predicted and actual performances have a maximal deviation of 14%. These results are quite re-

markable given the crude approximations made on the model, like assuming that the service times

are described by exponential distributions and arrivals are Poisson, for instance. There are many

features of the manufacturing process not addressed in their model and the authors discuss these

limitations. Among the missing features are equipment failures, scheduled o�-periods, and the

restrictive distributional assumptions.
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Of particular relevance for this thesis is the research on closed queueing that goes beyond the

simple evaluation of performance or validation of queueing networks as a modeling tool, to address

the issue of controlling the input of new customers into the system. It is a known fact that the

higher the variance of the several processes that characterize a production system the poorer the

performance. One of the main sources of randomness is the arrival of new customers into the system.

Open queueing networks assume that there is no control over the arrival process, or assume that

such control is done somewhere else. Thus, the performance of an open queueing system subject

to a random arrival process is highly conditioned by it. In real life production systems, there is

usually the possibility for regulating the input of new parts into the system, which may have the

e�ect of reducing the overall variance of the production system and therefore reducing costs.

Regulating the input of new parts into a production system, while keeping the amount of

material in the system within relatively moderate bounds reduces cycle time, given that the queues

in front of each server are small and the waiting time for service is reduced as established by Little's

law, [Little, 1961]. The importance of low cycle times in the context of wafer fabrication has already

been stressed, due to the correlation between high cycle times and low yields.

The work of [Resende, 1987] deals explicitly with the issue of regulating the input of new

material into a production system. The objective is to release as little as possible so as to keep

a low inventory while maintaining high throughput. The approach relies on the de�nition of a

bottleneck machine as the machine with the highest load in the production line. The policy, called

starvation avoidance is a closed loop release control policy. A compact version of the approach is

presented in [Glassey and Resende, 1988].

The goal is to minimize cycle time subject to achieving some throughput level on wafer fabs.

Their approach concentrates on releasing just enough material into the system so that the existing

bottleneck machine will not be idle. The model includes machine failures as the source of random-

ness and the demand rate is assumed constant. Simulation in a single product type setting is the

mode of study.

They compute the expected time to exhaust the existing stock and the expected time to replenish

stock. Whenever this latter is larger than the former, a stock out is expected to occur. Therefore,

to avoid stock outs they reorder whenever the existing inventory is below some threshold. The

determination of this threshold is somewhat heuristic, but it relies on the basic principle of de�ning

a safety level to cover for the uncertainties. The best level is found through trial and error by
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simulation.

In order to determine when to release new parts into the system they compute the virtual

inventory, W , de�ned as the work content of all parts/jobs either at the bottleneck machine or

expected to arrive to the bottleneck within a given lead time. The lead time to replenish, L, is

de�ned as the total processing time before the �rst visit to the bottleneck machine. A decision to

release a new part is made when W < �L, where � > 0 is a safety factor. To attain an e�cient

tradeo� frontier between idle time at the bottleneck and the inventory level is the objective. Each

chosen � corresponds to a particular point of this tradeo� curve.

The starvation avoidance approach is tested against some other release rules. The starvation

avoidance methodology de�nes the release policy but does not provide any answers relative to the

local scheduling for each machine. The study made compares several release policies operating

with several local scheduling rules. The importance of release rules as compared to local scheduling

is demonstrated by the experimental results. The choice of release policy has a bigger impact

on the performance than the choice of scheduling rule. Regarding the scheduling rules, the two

best performers are: give higher priority to the parts which are closer to their conclusion and a

more complex rule that weights this priority and priority given to parts that are heading to the

bottleneck machine. The operational objective is to get end products out of the system as fast as

possible, making the best use of the bottleneck machine, i.e., maximizing throughput. Note that

this concept of starvation avoidance is in some measure closely related to the concept of a base

stock.

In [Lozinski and Glassey, 1988], a graphical package designed to help monitor the implementa-

tion of starvation avoidance is presented together with some simulation results.

Still in the context of release rules is the work on Brownian motion control. Whereas the prior

approach uses queueing networks to model a manufacturing system, and simulates such a network to

get estimates on relative performances, the Brownian motion models attempt to determine optimal

release and scheduling policies. A good reference on the development of the Brownian motion

model can be found in [Harrison, 1988].

The problem of determining the optimal policies for a two-station network processing multiple

classes of customers is discussed in [Wein, 1990b]. The general methodology is as follows:
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1. approximate a queueing network scheduling problem by a dynamic control problem for a

Brownian network;

2. reformulate the Brownian network control problem in terms of workloads;

3. solve the workload formulation;

4. interpret the solution of the workload formulation in terms of the queueing system to obtain

an e�ective scheduling policy for the original queueing network scheduling problem.

The workload formulation is formally solved in [Wein, 1990a] and the remaining steps are dis-

cussed in [Wein, 1990b]. The scheduling policy derived from this procedure consists of a sequencing

rule and an input rule. The sequencing rule addresses the choices of customers in the queue when

a server becomes idle, and the input rule addresses the choices of instants to load new customers

into the system. The sequencing rule is termed dynamic reduced cost policy and the input rule is

termed workload regulating policy.

Prior to this work, the literature on input control for queueing networks considered decisions

of whether to accept or reject Poisson arrivals, as presented in the extensive survey of [Stidham,

Jr., 1985]. According to [Wein, 1990b], the emphasis should not be placed on whether to accept or

reject a customer but rather on when to allow a customer to enter the system. The line of research

started by [Kimemia, 1982] is a good example of this latter concern, although they do not make

use of queueing networks as the modeling paradigm.

The sequencing rule computes dynamic reduced costs from a linear program for each class of

customers and at all times gives priority at each station to the class with the largest reduced

cost. The input rule releases a new customer into the system whenever either server appears to be

threatened with idleness and there is not too much work already in the system.

The dynamic reduced cost policy is reminiscent of the workload balancing sequencing policy

derived in [Harrison and Wein, 1990]. Also in a two-station multiple customer classes setting, the

authors follow a methodology similar to that of [Wein, 1990b] to address the problem of determining

the optimal sequencing rule, given that the population of the queueing network is �xed at some

constant level. In [Wein, 1990b] the population size can vary over time, although it remains bounded

due to the structure of the input rule. The workload balancing policy is shown to be asymptotically

optimal in heavy tra�c for the problem of maximizing server utilization, and thus it maximizes
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throughput. Basically, it awards priority to customers so that the high priority choices favor the

balance of the work content for each station's queue. By means of a small experimental study, this

sequencing rule is shown to achieve lower cycle times for the same throughput than First Come

First Out | FIFO, Shortest Processing Time | SPT, and Shortest Remaining Processing Time

| SRPT. That is, it achieves the same throughput as that of those sequencing rules with a smaller

population size.

With the above as the theoretical foundation for input and sequencing rules, [Wein, 1988] reports

an excellent statistical study in the speci�c context of semiconductor manufacturing. There, several

input and sequencing rules are compared for the control of wafer fabs. The system under study

produces a single product that requires 172 total operations at 24 di�erent single or multi-server

stations. A queueing model is assumed and the main objective is to determine which combination

of input and sequencing rules incur lower average cycle time, where cycle time is measured as the

time a lot takes from the moment it is released into the system until its completion. Also, the

paper assumes the existence of stable bottleneck machines.

A major conclusion of the paper is that proper choice of input rules have more impact on

the system's performance than the local sequencing rules, agreeing with the �ndings of [Glassey

and Resende, 1988]. Moreover, the relative performance of the local sequencing rules seems to be

dependent on the input rule utilized and also dependent on the number of bottleneck machines.

The input policy that performs best in the study is the workload regulating policy derived in [Wein,

1990b]. The other input rules considered are random Poisson inputs, deterministic input, and closed

loop input. The deterministic input releases customers into the system at a �xed constant rate

matching the demand rate. The closed loop input releases a new customer whenever some customer

leaves the system, thus maintaining a �xed population.

To take care of more than one bottleneck machine, the author constructs variants of the workload

regulating policy that monitor the amount of work in the system for the bottlenecks. If there is

a single bottleneck, a new lot is released into the fab when the expected amount of work for the

bottleneck machine drops below some �xed threshold. If there are two bottleneck machines, there

are two thresholds that determine the release of new lots, one per machine. In the case of four

bottleneck machines, there is an overall threshold for the expected amount of work for all of the

bottlenecks. These are the cases considered.
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[Ou and Wein, 1995] consider random yield, by-production, and several stages of service to

extend the earlier work of [Wein, 1992a] for a single queue system. By using Brownian motion

control under heavy tra�c conditions, the authors derive a priority order for the several types of

products and di�erent visits to the single server. Due to the heavy tra�c assumption the approach

focuses on dispatch decisions for the bottleneck machine. The system is assumed to produce K

types of products which are ordered by quality. The K product types are produced according to K

di�erent production processes. Process k, with k = 1; : : :K, is used primarily to produce product

type k. However, process k can also produce lower quality products due to the presence of random

yield. The server is kept idle as long as the optimal aggregate base stock level has been reached

and no product is backlogged. If there is at least one product backlogged then there is an ordering

of products based on their backlog cost and machine consumption. That is, priority is given to

products with high backlog costs and low machine consumption.

According to [Ou and Wein, 1995], inventory should be held only in the place that achieves

the smallest holding cost per unit of expected machine time already invested | minimum index

location. If there is no product backlogged, but the optimal aggregate base stock level has not been

reached, the scheduler should build up inventory in the minimum index location. If such location is

one of WIP inventory, priority should be given to the feeding levels, giving higher priority to levels

closer to the minimum index location. If there is no feeding WIP inventory, a new part should be

released into the system. If the location is of �nished goods inventory, all the WIP inventory is to

be cleared and converted into �nished goods inventory, following the same priority scheme.

Since the approach is non anticipating, it only allows the triggering of production to be made

when products are backordered, the system is not as responsive as it should. To circumvent that,

the authors propose to trigger production when a product is in danger of being backordered, to add

an anticipating feature to the policy.

Although motivated by di�erent interests, the similarities between the starvation avoidance

approach and the Brownian motion based approach are highly visible in the structure of their

proposed release policies. The concept of safety stock is present, either coming naturally from the

formulation or a priori imposed to ensure some degree of quality for the resulting policies. On a

critical evaluation of the workload regulating policy and the starvation avoidance policy, [Glassey

and Resende, 1988] make two interesting observations which are worthy of reference and further

discussion.
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Observation 1. \Imagine a breakdown of the last workstation. Then no work leaves, so

under Fixed-WIP no new work starts, and, if the breakdown lasts long enough, the bottleneck

starves. But both Starvation Avoidance and Workload Regulating ignore all lots that have

passed the bottleneck for the last time and continue to feed work into the bottleneck. Similarly,

if the bottleneck station breaks down, Fixed-WIP will continue to pile up the inventory of new

work in front of the bottleneck (until everything after the bottleneck has left the shop), but

both Starvation Avoidance and Workload Regulating will stop releases."

Observation 2. \In reentrant 
ows, Workload Regulating counts all the work remaining at

the bottleneck on each lot, not just the next bottleneck operation. Let L = 0:9h1 and consider

two cases of an almost empty shop. In case 1, two jobs are in queue at the bottleneck, each

with 0.5h of work at the next bottleneck operation. Starvation Avoidance would not start a

new lot (assuming � = 1). Now suppose only one job is in queue with two bottleneck operations

to be performed, each taking 0.5h, and 1h of processing on some other machine between them.

Workload Regulating would not distinguish between these cases, but Starvation Avoidance

would start a new lot in the second case."

Regarding observation 1, if a machine breaks down long enough so that a bottleneck is starved,

the inference should be that the machine broken down becomes a bottleneck. That is, there has

been a dynamic shift on which machine is the bottleneck. What makes sense to do is to ensure that

every machine stops after some time. A release policy should not want to keep downloading new

material into the shop for the sake of the assumed �xed bottleneck, since there is a new bottleneck.

There should be a point after which all machines should stop processing, if there is a breakdown

lasting long enough on the line. Neither policy seems to ensure that, unless the breakdown occurs

for the �xed bottleneck or for some upstream machine.

On observation 2, the authors have indeed a good point given that workload regulating ignores

work between visits. However, their example is strange in some sense. Workload regulating is

derived under heavy tra�c assumptions. In heavy tra�c there is almost always some job whose

next operation is on the bottleneck machine. Their example is for an almost empty shop. An

almost empty shop is not operating under heavy tra�c, and in such a situation one should expect

the bottleneck machine to be naturally and desirably idle. Given that the input of new material

1This means hours in the original paper.
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is controlled in a closed loop fashion to maximize utilization of the machines, only in a very odd

situation would the system become so empty. Besides this, in their second case the authors say that

there could be a job with two operations for the bottleneck machine that require a smaller amount

of processing time each than the single non-bottleneck operation. One could, therefore, question if

this is a normal situation when de�ning bottleneck machines. The de�nition of a bottleneck machine

assumes that in fact the processing times on the non-bottleneck machines are much smaller than

those at the bottleneck.

In any case, these two observations are revealing of both approaches' limitations for more general

settings. Although there may exist one or a handful of long term bottleneck machines, there may

be a dynamic short term shift of the bottlenecks in the presence of machine failures, as the 
ow

rate control approach was so clear in considering. The presence of random yield and demand are

also sources of short term shifting of the bottlenecks. A sound release policy has to be sensitive to

these short term bottleneck shifts.

The modeling of manufacturing systems through closed queueing networks, while placing the

emphasis on maximizing throughput (or minimizing cycle time), ignores the existence of an ex-

ogenous demand process. In [Dessouky and Leachman, 1994], an attempt is made at determining

release policies for wafer fabs taking into account a demand process. There, it is argued that

\notwithstanding the fact that minimizing the work in process inventory is a worthy objective, it

is imperative to develop a schedule that can meet demand in a timely manner."

The authors formulate an integer programming model to determine optimal release dates and

rates. The source of uncertainty is failure of the machines. A simulation study is presented

comparing the policy generated by the integer program versus workload regulating and uniform

release. The integer programming approach is shown to exhibit better performances in terms of

operational costs at the expense of additional work in process inventory, when compared to the

workload regulating approach. This should not come as a big surprise, since neither workload

regulating nor uniform release attempt to track demand explicitly.

The proposed optimization model is to be resolved periodically or whenever a major change in

factory status occurs, such as a major machine failure. The production schedule is thus updated

to account for the factory status and demand. They quote [Bechte, 1988] as saying that



48 CHAPTER 2. LITERATURE REVIEW

\... changing the priorities at the queues in front of machines does not change their capacity

and therefore can neither accelerate nor delay the manufacturing 
ow as a whole."

while placing emphasis on the importance of release over local scheduling. The experimental studies

in [Glassey and Resende, 1988] and [Wein, 1988] seem to agree with this general statement. How-

ever, as noted in the 
ow rate control approach, local scheduling has an impact over the speci�c

contents of local queues. While the quote above may be acceptable in the single server context, it

is not adequate for multiple server systems, since some machines may be starved or blocked, and

thus a�ected in their capacity, if local choices on other machines are not sensitive to their impact

on the total system. This is of special importance in the context of re-entrant production systems,

as Section 2.5 will show.

The model assumptions in [Dessouky and Leachman, 1994] are that products are processed in

lots, each with a speci�c sequence of operations, the processing times are deterministic, set-up times

are negligible or sequence independent, and that all operations requiring the same resource have

the same processing time. They present a set of constraints that characterize their formulation of

the release problem and argue that any objective function can be used depending on the particular

problem to be solved. For the experimental results, the authors use the standard operational costs

objective, where holding and backlog costs are incurred depending on the value of inventory.

2.4.2 Open Queuing Networks

Some authors approach the issue of controlling manufacturing systems by means of open queue-

ing networks. By assuming they have no control over the release of new materials into the system

they proceed to determine how to assign capacity to the diverse products requesting processing.

That is, which scheduling rules to use. It is assumed that demand manifests itself through the

arrival of customers to a system of queues modeling the production system.

In [Perkins and Kumar, 1989], the manufacturing systems process several types of products,

each with a di�erent routing through the available machines and subject to a constant demand

rate. Demand is realized through the arrival of new parts into the system. The part types are

characterized by their processing times' requirements and sequence of machines to visit. The load

imposed by the di�erent part types on a given machine, m is de�ned as
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X
(p;i)

� (i)pmdp; (2.6)

where dp is the demand rate of type p and �
(i)
pm is the processing time of the i-th visit of type p to

machine m. Each part may incur variable transportation delays when moving from one machine

to the other and set-up times are required when a machine changes from running a part type to

another. Some of the types may need assembly and disassembly operations and there may be

alternative routes for a part type upon exiting from a machine, induced by poor quality of the

parts or other reasons. Given the rich model for the 
ow of parts along the system, there may be

re-entrancy for some of the part types.

The paper presents scheduling policies which guarantee that, whenever the workload imposed

by demand is below capacity, the manufacturing system is stable in the sense that the cumulative

production for every part-type trails the cumulative demand by no more than a constant. Moreover,

upper bounds on the amount of parts waiting for each machine are obtained.

The transportation times are assumed bounded by some constant for every pair of machines.

Given that the set-up times are relevant in their model, one of the concerns is to make the production

runs as long as possible for each part type, since there is an actual loss of capacity during set-ups.

The policies proposed can be regarded as distributed feedback based policies to control the frequency

of set-ups. Their policies are based solely on the values of the queues feeding each machine. Given

that, the authors �rst discuss some classes of policies for single server systems. The �rst class of

policies is the Clear-a-Fraction class | CAF |, where upon becoming idle the server sets-up for

the part type which occupies at least some fraction of the bu�er and then works on parts of that

type until the bu�er has no more of them. An instance of this class may be the Clear-the-Largest-

Bu�er-Level policy | CLB |, where the part type selected is the one with more parts in the

queue. Another class of policies considered is the Clear-the-Largest-Work class | CLW |, where

the server switches to the part type which has the highest amount of work in terms of the load it

imposes on the server. Both these classes are shown to ensure bounded bu�ers and shown to track

the cumulative demand by no more than a �nite constant. Lower bounds on the performance of

stable policies are derived also.

Next, the authors analyze systems with more than one server and no re-entrant structure,

denominated acyclic systems. They show that the distributed CAF policies stabilize acyclic manu-
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facturing systems when the load imposed by the demand processes is under the systems' capacity,

i.e. when

X
p: part p visits machinem

�pmdp < 1 for every m; (2.7)

is satis�ed. Since the system is acyclic, there is at most one visit per type to each machine. A

distributed CAF policy is de�ned as a scheduling policy where each server uses a CAF policy for

its own queue.

When it comes to nonacyclic systems, the authors are not able to prove stability for distributed

CAF policies. A CAF policy, when there is re-entrancy, distinguishes between parts of the same

type waiting for di�erent visits at a given machine. Therefore, from the perspective of control,

di�erent visits are treated as di�erent part types in order to establish which part type to select

from the ones queued up for service. The necessary stability condition of becomes

X
f(p;i): i�th visit of part p to machinemg

� (i)pmdp < 1 for every m; (2.8)

for nonacyclic systems. Although they cannot show that distributed CAF policies stabilize those

systems when (2.8) is satis�ed, they are able to show that there is a sequence of times tn !1 such

that x
(i)
pm(tn) = 0 for every (p;m; i), where x

(i)
pm(t) is the queue length of part type p on its i-th visit

to machine m at time t. Also, they show that every part entering the system eventually leaves it.

To ensure stability for nonacyclic systems they proceed by de�ning an alternative class of poli-

cies, which is an extension of the distributed CAF policies: distributed CAF policies with Backo�.

The basic idea of this extended class is to allocate time slots to each part type, in order to ensure

that the queues of part types not being processed will not grow excessively. Essentially, the policy

produces a part type only when it would have produced the same part type if it had been in isola-

tion, and its inputs had been strictly linear functions of time. By strictly linear inputs the authors

mean situations where

tdp + 
 � upm(t) � tdp � 
 for all p and t � 0; (2.9)

where 
 > 0 is some constant and upm(t) is the cumulative arrival of parts of type p to machine m.

So, they allow for a machine to be allocated to a part type even if there are no products waiting,
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thus departing from the work conserving policies earlier proposed. This has the e�ect of de�ning

some bounds on the length of the production runs, preventing eventual starvation of other machines

that may have empty queues simply because the types they process are held in a particular machine

which is serving some other type. For this policy, the authors are able to prove stability and further

establish that it stabilizes systems with assembly, disassembly, and proportional rerouting, as long

as (2.8) holds.

It is interesting to observe that for nonacyclic systems, wasting capacity may be one way to

ensure stability. This is counterintuitive, since keeping the servers idle is usually perceived as

an unrecoverable loss of capacity and, therefore, a liability in terms of tracking an external and

uncontrollable demand process.

Following this paper is [Kumar and Seidman, 1990], which uses the same modeling paradigm

to provide an analysis of the dynamics of nonacyclic manufacturing systems. Some previously

unresolved stability issues are reviewed and examples of systems and scheduling rules that lead

to unstability are discussed. They further establish a su�cient condition under which distributed

CAF policies are able to stabilize any nonacyclic production system. This stability condition has

the disadvantage of being more stringent than condition (2.8). Because of that, they move along

the direction of proposing classes of policies that are ensured to stabilize nonacyclic systems when

condition (2.8) alone holds. They propose a supervisory mechanism that controls the length of

each production run and keeps a close track of part types whose queue size grows beyond some

threshold, de�ning a special hot list of the larger queues. These larger queues are given priority

over the others, but each run on parts in the special queue is also bounded in time. If the special

queue is empty, then the policy used is a distributed CAF. They show this generic mechanism to

ensure stabilization for any nonacyclic system.

In [Lu and Kumar, 1991], an extensive study of local scheduling policies for wafer fabs is

provided. The system is modeled as a pure re-entrant network of queues with deterministic routing,

no control over release dates, no control over the due dates assigned to the parts, and there is a single

part type. Set-ups are not considered in the model so that there is no need to make production

runs as long as possible to decrease the set-up frequency. The objective is to reduce mean cycle

time and its variance. The source of uncertainty is only due to the arrival process randomness.

To control the scheduling of parts along the system, they propose a series of local scheduling

rules that choose parts based solely on the local queues' contents. The rules are First Bu�er First
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Serve | FBFS |, Last Bu�er First Serve | LBFS |, Earliest Due Date | EDD |, and Least

Slack | LS. It is assumed that parts waiting for a given machine are placed in di�erent bu�ers

depending on their stage of processing. So, each part has a bu�er per visit. The FBFS rule assigns

decreasing priority by increasing number of visits already made; LBFS assigns decreasing priority

by decreasing number of visits already made; EDD assigns decreasing priority by increasing order

of the due dates; and LS assigns decreasing priority by increasing order of the time remaining to the

due date, discounted by the total amount of processing time required for the parts to be completed

and exit the system.

All of the above four priority rules are shown to be stable as long as the necessary stability

condition holds. An example of a bu�er priority rule which is unstable is discussed. This particular

example is the same as the one discussed in [Kumar and Seidman, 1990]. Curiously, given that

[Kumar and Seidman, 1990] showed that non work conserving policies may well be the key to

ensure stability, they ([Lu and Kumar, 1991]) do not consider non work conserving policies for the

production scheduling of the particular example discussed.

After establishing the theoretical stability results, the authors provide and extensive simulation

study to evaluate the relative performance of these rules. The study shows that giving priority to

parts closer to completion (LBFS) attains the best score in terms of mean cycle time. However,

the best performances in terms of variance for the cycle time are accomplished when priority is

given to products with a smaller slack (LS). They conclude by proposing a convex combination of

the two best rules, if the concern is to control both performance measures: mean cycle time and

variance of cycle time.

An excellent and comprehensive survey of the line of research just described can be found in

[Kumar, 1993], where some other related work omited here is described and some open problems

listed. The overall approach is placed into perspective with other research in the area.

In a more recent work, [Kumar and Kumar, 1994], the authors are able to compute lower and

upper bounds for the performance of the optimal scheduling rule, assumed to be non-idling (work

conserving) and stationary. For each system they formulate a pair of linear programming problems

that constitute an upper and a lower bound on the mean number of parts in the system. They

use the stationary balance equations to specify equality constraints and their inequality constraints

are a consequence of using non-idling control policies. They observe that, if the objective is to
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minimize a weighted sum of the parts in the system with di�erent weights for each bu�er2, or at

least one of the weights di�ers from the others, every optimal policy may require some idling.

After establishing the generic linear programming problems, they apply the method to compute

the bounds for a series of systems. The �rst example is an open re-entrant line with two machines

for which they compute the bounds explicitly. Then they show that the bounds obtained are tighter

than those of [Ou and Wein, 1992]3. Next, they use their methodology to compute bounds for the

�rst example assuming the control policy to be the LBFS and FBFS. The conclusions are that the

LBFS policy is nearly optimal in light tra�c and it is always better than the FBFS policy for the

system considered.

They depart from the open queueing framework to the closed queueing framework in order to

address the performance of release policies in networks of queues. For this, they formulate another

set of linear programming problems to establish upper and lower bounds on the throughput of a

closed queueing network. They �x the population size to some values and compute bounds for the

optimal throughput of the optimal policy (assumed to be a nonidling policy), the LBFS, the FBFS,

the balanced policy of [Harrison and Wein, 1990], and an unbalanced policy. The bounds for the

balanced policy exclude the unbalanced policy since the lower bound of the former is higher than

the upper bound of the latter. Excluding the unbalanced policy, all the bounds for the other three

policies are non conclusive about their relative behavior.

Also in the context of local scheduling rules for queueing networks, an outstanding statistical

study was recently published in [Lu et al., 1994]. The authors propose a new class of scheduling

rules, termed generically as Fluctuation Smoothing policies | (FS). These policies are a subclass

of the Least Slack policies mentioned above. One of the �rst surprises of the study is the fact that

their results shed new light on the relative importance of local scheduling rules versus release rules.

Prior authors claimed that release is more important than local scheduling, [Glassey and Resende,

1988, Wein, 1988], in the sense that the proper choice of the release policy has more impact on the

performance than the choice of local scheduling policy. The �ndings of [Lu et al., 1994] are that

the proper choice of local scheduling rules may have similar impact as that of the release policy. As

an example, using the workload regulating policy described in Section 2.4.1, their local scheduling

policies achieve a reduction of 22.4% in the mean queueing time and a reduction of 52.0% in the

2As with non decreasing holding costs, for instance.
3Applying their method to the systems discussed in [Ou and Wein, 1992].
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standard deviation of cycle time, when compared with the baseline FIFO policy.

The class of policies proposed was designed with the objective of reducing mean and variance

of cycle time. Their three 
uctuation smoothing policies are:

� Fluctuation Smoothing for Variance of Lateness | FSVL, where each lot arriving to the plant

carries a due date and there is, for each bu�er, an estimate of the remaining cycle time for the

lot to be completed. Higher priority is awarded to the job in the queue that has the smallest

di�erence between the due date and the estimated cycle time to completion.

� Fluctuation Smoothing for Variance of Cycle Time | FSVCT, which is exactly the same as

the previous with the assigned due date made equal to the arrival time.

� Fluctuation Smoothing for Mean Cycle Time | FSMCT, where there is a �ctitious due date

assigned to each lot that incorporates the notion that there should be some sort of periodicity

in the output process of each server. That is, since delays experienced by lots at a server

are caused by the burstiness of their arrivals, the scheduling rule attempts to uniformize the

interarrival times to each bu�er. The due date assigned to the n-th lot entering the system

is given by n=�, where � is the arrival rate. Once the due date is de�ned the policy is like

the previous two.

The experimental study was conducted in the context of re-entrant production systems operating

a single product. The methodology to determine the estimates of the cycle time to completion are

done in a similar way to that of [Vepsalainen and Morton, 1988]. They simulate the system with an

initial set of estimates, determine the statistics of the actual cycle times, and repeat the procedure

until the estimates used closely match the actual cycle times. They test several alternative release

policies and several alternative scheduling rules. The release policies are random Poisson arrivals,

constant interarrival times, �xed number of customers in the system, and the three variants of the

workload regulating policy as presented in [Wein, 1988]. The scheduling rules considered were all

of the ones used in [Wein, 1988] plus EDD, SRPT++4, and the last two FS policies.

In all the tests for the alternative release policies considered, the FS policies ranked �rst in

terms of mean queue time and standard deviation of cycle time. Among these two policies, the

4This is a variant of Shortest Remaining Processing Time that gives priority according to the size of the immediate
queue. To all the lots in the queue that are headed to a queue with small size, choose according to SRPT. This is an
attempt to avoid starvation of downstream machines.
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FSMCT achieves the lowest mean queue time almost all of the times, and the FSVCT achieves

the lowest standard deviation almost all of the times. The �nal recommendation for the best pair

release/scheduling rule is to use workload regulating releases together with FSMCT for scheduling.

In their closing remarks, [Lu et al., 1994] mention that it would be desirable to have cycle time

estimates dependent of the system state, since they use �xed estimates in their study. Also, they

only consider a single process 
ow. Things get a little more complex for other settings.

Many of the scheduling rules discussed so far had their origin in the context of deterministic

scheduling for job-shops. There is an enormous body of literature on job-shop scheduling, the

speci�cs of which are not of central importance for this thesis, and consequently not relevant for

this review. However, the reader interested in the speci�cs of job-shop scheduling and in the

derivation and motivation of some of the release rules discussed above is referred to [Conway et al.,

1967, Baker, 1974, French, 1982] for classical introductory level text books on scheduling theory.

A more updated text book in scheduling theory and heuristics is [Morton and Pentico, 1993].

There are also some fundamental surveys on production scheduling like [Panwalker and Iskander,

1977, Graves, 1981, Lawler et al., 1982].

2.5 Stability

Often in the background of some of the above mentioned studies the issue of stability plays an

important role. Although the issue of stability is relatively trivial for production systems which are

not re-entrant or do not have 
ows in opposite directions5, such is not the case when it comes to

re-entrant systems or non re-entrant systems where some part types may 
ow in opposite directions.

Although the load of the system may be below capacity, a poor choice of release and scheduling

policies for non acyclic systems may lead to instability, even when such choice is made from a subset

of work conserving policies.

When approaching the problem of production control by means of formulating an optimal

control problem, usually stability questions are trivially answered in the sense that if there is one

policy that makes the system stable, the optimal policy will also be stable and it will be found

through the optimization procedure. However, when the approach is to choose a particular policy

that is not derived in such a way, then stability has to be addressed explicitly in order to determine

5As long as demand is below capacity, systems are stable.
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if the given policy ensures stability or not.

Therefore, in the context of 
ow rate control, there is no explicit consideration of stability.

Even though the approach is applied to re-entrant systems or to generic job shops, the necessary

stability condition is also su�cient. In fact, stability was never addressed explicitly by the authors

who have done work on 
ow rate control, since the necessary stability condition was always taken

as su�cient. The exception to this is [Caramanis and Liberopoulos, 1992]. There, the authors

explicitly stated and proved that for failure prone systems, with deterministic demand rates, and

deterministic processing times, as long as the demand vector is an interior point of the expected

capacity set, then there exists a 
ow control policy that results in a stable system. Stability is

taken in the sense that the expected end product inventory is �nite for all products. Their proof

does not rely on any speci�c assumption on the 
ow patterns inside the production system.

However, when modeling production systems by means of open queueing networks and proposing

speci�c scheduling rules, it often has been the case that stability becomes a hard question to answer.

Also, to establish the heavy tra�c limit theorems of [Harrison, 1988, Harrison and Wein, 1990], it

is necessary to establish the stability of the queueing networks considered. Examples of networks

for which the Brownian approximation does not hold have been presented, as [Dai and Wang, 1993]

is one example.

Usually, the issue of stability in networks of queues is established by explicitly determining an

invariant distribution. The classes of queueing networks for which such invariant distribution is

known are very limited. Typically, networks of queues operated under local scheduling policies are

among those for which little is known about their invariant distribution or even if one exists. They

fall outside the classes for which there are product form solutions. Product form solutions exist for

the generalized Jackson networks: single class networks with exponential interarrival and service

times, where queues are served in a �rst come �rst serve order, [Jackson, 1975]. For some scheduling

disciplines in multiclass networks, with special distributional assumptions on interarrival and service

times, the stationary distributions were explicitly determined in [Baskett et al., 1975, Kelly, 1979].

One example of open queueing networks where addressing the stability problem is highly relevant

is the work of [Perkins and Kumar, 1989], already discussed in Section 2.4.2. Their distributed CAF

policies for local scheduling were ensured to be stable for acyclic systems as long as the necessary

stability condition holds. However, the authors were unable to show similar properties for nonacyclic

systems and had to propose a modi�cation of the original policies to stabilize any such system. One
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of the central statements of the present thesis is that the structure of the modi�cation proposed

holds the key to the problem of stability.

Their original distributed CAF policies are non-idling, or work conserving as some authors

prefer to call them. The central feature of a non-idling policy is that no server should be kept

idle as long as there is at least a customer in its queue. There is an intuitively clear reason for

preferring non-idling policies: keeping a server idle, while there is work in front of it, is a clear

waste of capacity and should be avoided when the objective is to maximize throughput, or tracking

a demand process which imposes a load very close to the system's maximum capacity. Recall that

the problem addressed in [Perkins and Kumar, 1989] was one of reducing the number of set-ups as

much as possible, since a set-up time is a waste of capacity.

Nevertheless, when the authors found themselves unable to prove the stability of their policies

for non-acyclic systems, they proposed a modi�cation that basically increased the number of set-

ups, thus incurring more waste of capacity, which is the exact opposite of what should be expected

in intuitive terms. Besides that, they also allowed each server to remain idle when not in a set-up

(distributed CAF policies with backo�), even if there would be other jobs in the queue.

Note that, from the perspective of queueing networks, it is simpler to consider non-idling policies.

An idling policy is very complex to model since it carries the inclusion of an additional option to

consider whenever a server becomes idle upon completion of a service. Besides that, this additional

option also entails the decision of how much time should the server remain idle. The answer to

this question, being so di�cult to determine, has kept idling policies outside the classes of policies

usually considered for queueing networks. In the context of 
ow rate control, it is easier to include

idling policies. Recall that the two-boundary policy of [van Ryzin et al., 1993] is an idling policy.

For a system with two machines in tandem, when the surplus is negative with high values, the �rst

machine does not produce at its maximum possible rate because the policy imposes a bound on the

amount of inventory between machine 1 and machine 2 (see Fig. 2.3). Some generalizations of the

two-boundary policy to more than two machines in tandem, with or without re-entrancy, include

this feature by bounding the maximum amount of inventory in each of the bu�ers, even when the

overall surplus is lagging demand by a big amount. Therefore, in some situations a particular

machine remains idle while there is inventory in its feeding bu�er and the cumulative production

lags the cumulative demand. A lag in cumulative demand for 
ow rate control models is in some

sense equivalent to non empty queues for queueing network models. It could be argued that, in the
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context of queueing networks, similar ideas could be used by including a blocking feature in the

model. However valid and feasible, this approach has not been as visible in the literature as one

would expect. The work of [Ou and Wein, 1995] can be seen as a contribution along the lines of

considering idling policies, since they allow for idleness of the servers.

Note also that the choice of policies is dependent of the production objectives. If the objective

is to minimize cycle time, or maximize machine utilization, it seems natural to consider non-idling

policies. However, if the objective is to track demand, it makes some sense to add a little slack to

the cycle time or the machine utilization. After all, the machine utilization cannot be above the

load imposed by demand. Therefore, allowing for some idleness should not necessarily mean that

there is a waste of capacity, but rather that there is an e�ort to distribute the load more evenly.

Another point in favor of idling policies is the fact that they enforce a reduction of variance. Having

a server that reacts automatically to its feeding queue implies that the server utilization is almost6

as stochastic as the arrival process. This randomness carries through to the following servers in

terms of their queues and consequently of their utilizations. Allowing for some idleness of the

servers has the e�ect of �ltering out some of that randomness.

In [Perkins and Kumar, 1989], the inability to prove stability for the original policies could still

be thought of as a problem that could be solved in due time, since the authors did not show that in

fact instability could occur. This question ended up being answered through an example not much

later.

In [Kumar and Seidman, 1990], also in the context of open queueing systems, the authors dis-

cuss several issues relative to the stability and stabilization of production systems, and introduce

an example of a re-entrant system for which there exists a non-idling control policy that yields

unbounded trajectories for the bu�er sizes, although the workload imposed by demand is below

the available capacity. That same example is revisited in [Lu and Kumar, 1991] as a special case

of poor priority assignment for the bu�ers feeding the two-machine re-entrant system. However,

more recently, some authors managed to generate examples of queueing networks that can become

unstable even for reasonable scheduling policies. One striking example has been the case of the

First Come First Serve rule, which was shown to lead to instability, even when the necessary sta-

bility condition is satis�ed: [Bramson, 1994] on a two machine re-entrant system, with exponential

interarrival and service times; and [Seidman, 1994] on a more general network (not re-entrant) with

6The fact that service times are non zero introduces some �ltering on the machine utilization process.
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multiple customer arrivals.

The control policy that yields the unbounded trajectories for the example of [Lu and Kumar,

1991] is a non-idling policy, as is the case for FCFS. Rather than considering idling policies for the

local scheduling decisions, much of the e�ort has been put either on determining non-idling policies

that are stable for the necessary stability conditions, or on determining additional conditions that

have to be satis�ed by the production systems so that all or a given non-idling policy ensure

stability.

In [Kumar and Meyn, 1995], a methodology is proposed to evaluate networks of queues and

scheduling policies in terms of their stability properties. They use linear and nonlinear programming

to determine an appropriate quadratic functional to be used as a Lyapunov function. Provided the

underlying system is Markovian, the method establishes the existence of a steady-state probability

distribution by showing that there is a negative drift in the sizes of the queues. The authors

concentrate on non-idling scheduling policies and are able to deal with a single product following

a �xed path or multiple products following random paths and with multiple entry points. For any

given system, the answers obtained are either that all non-idling policies stabilize the system or

they determine regions on the parameter space for which all non-idling policies induce stability.

The parameter space used is that of the load imposed by the demand processes on each of the

servers. So, when they apply their methodology to a given system it may be the case that the

answer is: as long as the load imposed by demand is below capacity for all servers, every non-idling

scheduling policy is stable. When such a result is not possible the methodology is only conclusive

for the range of parameters for which it establishes stability. That is, the test determines regions

for which all non-idling policies ensure stability. Outside those regions we do not know if non-idling

policies lead to instability and we do not know if there is at least one non-idling policy that yields

the system unstable.

The stability of re-entrant production systems is discussed by means of analyzing the stability

of equivalent 
uid models in [Dai and Weiss, 1996]. They establish generic properties on the


uid model in order to ensure that systems are stable when demand is below capacity, and show

speci�c systems and bu�er priorities that satisfy those properties. They also make use of Lyapunov

functions, but theirs are piecewise linear in the queues' contents. The overall strategy is to show that

these possess negative drift as well. They discuss the \Lu-Kumar" example and present conditions,

additional to the trivial load below capacity conditions, under which the system is stable for that
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choice of priorities and for all non-idling policies. Also, they introduce some new examples of

Kelly-type networks, [Kelly, 1979], which are unstable for a given choice of bu�er priorities.

Kelly networks are characterized by the fact that di�erent visits to any given server obey the

same service distribution. If the distributions are exponential and the scheduling rule is FCFS,

[Kelly, 1979] proved that such networks are stable as long as load is under capacity. A Kelly-type

network follows the same assumption that the mean service times are the same in di�erent visits to

any given server, but the local scheduling decisions are not made with the FCFS policy, nor are the

service distributions exponential. The authors manage to prove stability for all non-idling policies

on any Kelly-type network with a unidirectional ring structure processing multiple customers and

with possibly many entry points.

Along similar lines of [Dai and Weiss, 1996] is the more recent work reported in [Bertsimas et al.,

1996]. The authors also make use of 
uid queueing networks to discuss stability conditions. They

present a stability test based on linear programming for non-idling policies. The linear program

is shown to be a necessary and su�cient condition for the stability of all non-idling policies for

multiclass 
uid queueing networks with two stations. Also, they present new su�cient conditions

for the stability of multiclass queueing networks involving any number of stations.

The validation of the In�nitesimal Perturbation Analysis approach in [Glasserman and Tayur,

1995] for in�nite horizon costs relies on the proof of stability for the single-product, multiple-

machine, and non re-entrant system presented in [Glasserman and Tayur, 1994]. The authors show

that it su�ces to have the expected demand below the capacity of the machine with the lowest

output in order to ensure their control policies to be stable.

Although they are dealing with a non re-entrant system, for which the stability issue is trivial,

the discussion on stability is useful and necessary to identify renewal points of the stochastic

processes considered, which has implications on the validation of the approach to estimate values

and gradients of in�nite horizon performance measures.

From the perspective of the present thesis, the concern regarding stability is twofold. On the

one hand, the thesis addresses the problem of production control of re-entrant systems for which,

as discussed above, answers are not necessarily trivial, and there is the need to ensure that the

control policies proposed ensure stability. On the other hand, there is a need similar to that of

[Glasserman and Tayur, 1994] regarding the validation of the In�nitesimal Perturbation Analysis
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approach.

In Chapter 6, it will be shown that it is necessary to depart from non-idling policies in order to

make the trivial necessary stability conditions su�cient for all re-entrant systems considered. Given

the modeling paradigm used in this thesis, it will be easy to de�ne a class of policies that include

simultaneously idling and non-idling policies as connected subclasses. That is, it will be possible

for the optimization procedure to move from a non-idling policy to an idling policy and back, if

such is the need of the particular production system under study. Therefore, the methodology

proposed can be used as a tool to identify which production systems can be stabilized by means of

a non-idling policy and which are the production systems that need an idling policy to be stabilized.

The emphasis will be put on determining a class of policies that can stabilize all re-entrant

systems, rather than on determining what are the systems that can be stabilized by a particular

class of policies. This emphasis seems to be more in line with the traditional approach of Control

Theory.

Moreover, it will be shown in Chapter 5 that idling policies may bring the bene�t of incurring

lower operational costs, even when their use is not required by stability considerations. That is,

it may be the case that, although any non-idling policy stabilizes a particular system, the optimal

policy is an idling policy. Naturally, for such cases it is of particular importance to be able to de�ne

a compact class of policies where both subclasses are connected.

2.6 Simulation

Simulation is a very powerful tool for the analysis and evaluation of complex systems. In many

circumstances it is used when analytical models are not available nor easy to obtain. Traditionally,

simulation is used to compare con�gurations, di�erent policies, validate models, and many other

qualitative features with the purpose of answering what if questions. In almost all the sections

above there was at one time or another a reference to this type of methodology, typically when

some sort of performance evaluation was one of the issues to determine.

When intending to study the relative performance of a particular scheduling policy over another,

usually simulation is the tool to use, providing relevant statistical information. Some examples of

previously mentioned such cases are [Wein, 1988, Glassey and Resende, 1988, Lu and Kumar, 1991],

just to name a few.
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Another previously mentioned simulation study, which is particularly representative of the use

simulation can have, is that of [Chen et al., 1988]. In their work, the authors used simulation as a

validation tool for queueing networks to serve as an accurate model for a particular manufacturing

system.

Others have used simulation just to identify macroscopic behavior of manufacturing systems,

so that some sort of structural characteristics can be extracted. Such is the case of the signature

analysis concept discussed in [Atherton and Dayho�, 1986]. Their simulation based method charac-

terized a particular wafer fab dynamics in terms of curves for inventory, cycle time, and throughput

as functions of wafer start rates. Their claim was that any given manufacturing system possesses

some sort of �nger print | signature | which is unique. The simulations carried out help to ag-

gregate diverse information into a small set of plots characterizing such a signature. The knowledge

of a signature may help in determining better control policies for the system under study.

Along the lines of identifying a particular system`s behavior when some parameters change is the

work of [Ehteshami et al., 1992]. They used simulation to understand the impact of hot lots on the

cycle time of other lots in a semiconductor fab. Their simulation runs provide approximations for

the statistical distributions of cycle time for various work-in-process loads and di�erent percentages

of hot lots in the system.

The issue of simulating manufacturing systems naturally raises the questions of the simulation

capabilities in terms of being able to represent accurately the important features of a given system.

Some e�ort has been put in the area of designing simulation tools that emulate as closely as possible

the true dynamics of manufacturing systems in general and of semiconductor manufacturing systems

in particular. See [Prasad, 1991] for a report on such a development.

There are many other situations where simulation is the only available tool to answer the types

of questions generically identi�ed as what if questions. In the review of [Uzsoy et al., 1992] there are

many other references to the type of questions answered by simulation and to particular instances

of research contributions aimed at answering those questions through simulation.

There are other questions, that can generically be de�ned as the how to questions, that have

been successfully answered via simulation in recent years. For instance, these questions refer to

the comparison between two di�erent realizations of a given policy, di�ering only through a small

set of parameters characterizing it. The issue is how to use simulation as an optimization tool.
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Signi�cative advances in this area were made in the last twenty years.

A good introductory level tutorial to the area of simulation optimization can be found in [Azadi-

var, 1992]. Using the author's own words about simulation optimization:

\A simulation optimization problem is an optimization problem where the objective

function, constraints, or both are responses that can only be evaluated by computer

simulation. As such, these functions are only implicit functions of decision parameters

of the system. In addition, these functions are often stochastic in nature as well."

The author also presents a cluster classi�cation in terms of approaches to solve the above

described type of problems. Out of these, the ones of interest for this thesis are the gradient based

search methods. Generically, these methods use simulation to generate estimates of the objective

function derivatives with respect to some parameters that characterize diverse features or control

policies of the systems. The gradient based methods can further be classi�ed into: �nite di�erence

estimation, frequency domain analysis, likelihood ratio estimators, and in�nitesimal perturbation

analysis.

Excluding the �nite di�erence estimation as being a crude technique and the frequency domain

analysis for its complexity, one is left with two main choices when both techniques are applicable7 .

In [Strikland, 1993], both techniques (likelihood ratio and in�nitesimal perturbation analysis)

are compared in terms of the quality of results they produce. The main conclusion is that, in general,

the likelihood ratio technique produces higher variance estimates than in�nitesimal perturbation

analysis. Moreover, the likelihood ratio estimates tend to have a variance that grows with the

simulation run size, whereas such is not the case with in�nitesimal perturbation analysis. Depending

on the values to estimate by simulation there are techniques that can be used with the purpose of

reducing variance. Some of those techniques are discussed thoroughly in [L'Ecuyer, 1994]. Other

relevant issue in simulation based optimization has to do with convergence. [G�urkan et al., 1994]

discusses some of the state of the art regarding this problem.

The great advantage of in�nitesimal perturbation analysis over other techniques is the fact that

it generates gradient information from a single simulation run. That is, variables are set at some

7Neither likelihood ratio nor in�nitesimal perturbation analysis is a panacea. Also, the set of problems for which
each one is valid does not contain nor is contained in the set of the other. Comparison between these two can only
be done for those cases where both can be used.
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nominal value and simulation is performed; once the simulation run terminates, both the objective

function and its gradient, relative to some set of parameters, will be available without disturbing

the nominal path.

In the next section, some speci�cs of the in�nitesimal perturbation analysis will be reviewed

and placed into context for this thesis.

2.6.1 In�nitesimal Perturbation Analysis

The perturbation analysis approach had its origins in [Ho et al., 1979], dealing with bu�er

storage optimization in a production line. Since those early days IPA has undergone an astonishing

growth both in terms of its applications and its theoretical maturity.

The essential feature of perturbation analysis is the realization that a single simulation run

contains more information than just �rst and second order statistics. The technical issue is the

fact that expected value and di�erentiation may be permutable operators, so that the derivative of

an expected value can be computed as the average of individual derivatives along the simulation

run. In the beginning, many contributions were along the lines of establishing the validity of such

permutation on a case by case basis.

There are two main categories of perturbation analysis: �nite perturbation analysis and in-

�nitesimal perturbation analysis. Up until the late 80's the �nite perturbation analysis had some

experimental results but there was still a lack of theoretical understanding of the algorithms. On

the contrary, the theory of in�nitesimal perturbation analysis had a faster development and by the

mid 80's there was already a considerable body of theory supporting it.

For good summaries about the developments on perturbation analysis see [Suri and Zazanis,

1988], which provides not only a substantial review of signi�cant literature up to that point, but also

contains an introductory level summary of the essential aspects of perturbation analysis. Another

good tutorial on perturbation analysis can be found in [Ho, 1992]. Actually, there are many out-

standing papers by Yu-Chi Ho on the basis of the approach, its developments, and with substantial

literature reviews.

In the early 90's some essential theoretic foundations started to �t into place so that rather

than establishing the validity for individual problems it was possible to establish general properties

on the systems and problems to which the approach is valid. See [Glasserman, 1991, Glasserman,
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1992, Chong and Ramadge, 1994] for such contributions. The two relevant books that establish

the body of theory for perturbation analysis are [Glasserman, 1990, Ho and Cao, 1991].

Although there are still open questions regarding the use of the approach in many settings and

further research on ways to extend the basic principles to those cases goes on (see [Shi, 1996] dealing

with discontinuities of the sample performance function), there is a signi�cant body of literature

on applications of perturbation analysis to particular optimization problems. In many cases, one

�rst issue is to establish that the problem at hand does �t the general properties that allow the use

of PA. Then it is possible to concentrate on the speci�c issues of the optimization itself and on the

results achieved.

In the speci�c context of interest for this thesis, some applications of PA were already mentioned

in previous sections. Such was the case of [Song et al., 1992, Caramanis and Liberopoulos, 1992]

in the context of 
ow rate control approaches, although their validation results were limited to

small systems. [Song et al., 1992] address a single product and two machines system for which

they validate the IPA and present some experimental results. [Caramanis and Liberopoulos, 1992]

validate the IPA to general size systems but their derivative calculation has to be established for

each particular system due to their parameterization of the policies. They present results for two

machines, either with two part types and three part types. They propose to decompose a P part

type problem into P two part type problems where each two part type problem approximates a

part type's interaction with the remaining ones by aggregating them into a single proxy part type.

More recently, and also in the area of 
ow rate control, an IPA based approach was validated

in [Br�emaud and Malham�e, 1997] for a single machine with multiple machine states and a single

part type. Their approach relies on the existence of a regenerative structure on the process. To

establish this regenerative structure the authors present a stability analysis, where they identify

the necessary and su�cient condition for stability. Their model and control policy are inspired by

the work of [Sharifnia, 1988]. The objective of the authors is to compute the several hedging points

that characterize the optimal control policy for this problem.

In the context of inventory control, [Glasserman and Tayur, 1995] verify the validity of IPA

and use it to compute the optimal parameters of a multi-echelon base stock policy for a single

product 
ow line composed of a number of capacitated machines. Their modeling framework is

su�ciently general so that any dimension can be tackled straightforwardly. This thesis follows

their methodology in terms of the modeling framework. The control policies proposed here are of
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the same type and the objective is to deal with systems that produce more than a part type and

have a re-entrant structure. Later in the thesis, based on the experimental results of Chapter 5

and motivated by the stability discussion of Chapter 6, an extension of the control policies will be

proposed.

Regarding previous work proposing IPA based methodologies to compute parameters of control

policies for re-entrant systems, this thesis stands out for not restricting the formal scope to small

dimension problems, for explicitly dealing with capacity sharing mechanisms, and for providing a

syntactically rich framework.
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Uniform Loads and Perfect Yield

67





Chapter 3

Theoretical foundation

The model of re-entrant production systems considered in this thesis has M machines in series

(stages). Each one of the P products processed by the system has to cycle K times (levels) through

those M machines before being completed. The framework used is a discrete time (or periodic

review) capacitated multiple-product production-inventory system operating under an echelon base

stock policy: every level and stage operates on a base stock policy for echelon inventory. That is,

given a particular product, the decision maker adds all inventory downstream from that level and

stage to determine the echelon inventory. If the echelon inventory falls below the corresponding

base stock value the decision will be to produce the di�erence, provided there is enough capacity

and (relevant) upstream inventory.

The present analysis concentrates on a simple class of systems as a �rst step towards analyzing

a broader family of production systems under the framework of discrete time inventory control. In

this chapter the scope is limited to studying what can be seen as the inventory model counterpart to

the Kelly type networks mentioned in Chapter 2. That is, each product requires the same amount

of capacity per unit (or processing time per unit) processed no matter what is its processing stage

and level. This will be referred ahead as the uniform load assumption. The class of systems

now addressed is also characterized as having perfect yield and having reliable machines with

deterministic processing times.

In any period, demand for the products occurs. Production decisions that are made are con-

strained by available inventory and capacity. Several di�erent production and capacity allocation

rules will be analyzed and a procedure to jointly optimize these decisions along with inventory levels

to minimize operating costs will be developed. Both the �nite horizon and the stationary in�nite

69
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horizon versions of this model will be considered.

Discrete time is a valid assumption for this problem, because decisions are made every shift or

every half-shift, inducing a periodic review framework on the production decisions. A base stock

class of policies is assumed because it is a large class of easily implementable policies, and because

for certain simple models it is optimal among all possibilities.

The rest of the present chapter is organized as follows. The basic recursion equations for the

state variables followed by the recursion equations of the derivatives will be introduced �rst in

Sections 3.1 and 3.2. Section 3.3 will then address the production decisions and their derivatives.

The validation of the IPA in a �nite horizon setting will be provided in Section 3.4. The in�nite

horizon estimates are validated in Section 3.5. The chapter concludes in Section 3.6 with a brief

summary and with the presentation of derivatives with respect to the capacity slots.

3.1 Basic Model

Consider controlling a re-entrant, multi-stage, multi-product, capacitated production system

facing random demand. The simplest model of a re-entrant production system is one where there

are M machines in series (stages). Each one of the P di�erent products processed by the system

has to cycle K times (levels) through thoseM machines before being completed. The discrete time

model considered is a generalization of [Glasserman and Tayur, 1994, Glasserman and Tayur, 1995]

in two ways: multiple products and re-entrancy.

In any period, each machine can process di�erent parts belonging to di�erent levels; the total

production is only limited by its capacity. After being processed by a machine, parts are placed in

intermediate bu�ers where they wait their turn to be processed by the next machine or until they

are depleted by external demand if the previous operation was the last of the parts' requirements.

The capacity of the bu�ers is assumed to be in�nite.

The following is the list of notation for this chapter:

� P products (indexed by p);

� M stages (indexed by m) in each level;

� K levels (indexed by k);
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� (km)+: denotes the level and stage immediately before level k and stage m;

� (km)�: denotes the level and stage immediately after level k and stage m.

� dpn: demand for product p in period n (at the last stage and last level only).

� zkmp: echelon base stock level (in echelon terms, i.e., zkmp � z(km)�p);

� �kmp: alternative set of variables accounting for the inventory between stages;

� Ikmp
n : inventory in time period n for product p at stage (machine) m in level k;

� Ekmp
n : echelon inventory in time period n (it is the sum downstream of all relevant I��pn );

� Y kmp
n : shortfall in time period n for product p at stagem in level k, Y kmp

n = zkmp�Ekmp
n +dn;

� P kmp
n : production amount in period n for product p at stage m in level k;

� Cm: capacity of stage (machine) m;

� Ckm: capacity of stage (machine) m allocated to level k (PS), Cm =
PK

k=1 C
km;

� Ckmp: capacity of stage (machine)m allocated to product p at level k (NS), Cm =
P

k;p C
kmp;

The �rst machine to be encountered in the series is machine M and the last is machine 1. Also,

the �rst cycle that the parts must undergo is level K and the last cycle is level 1. Therefore, I11pn

denotes the inventory of product p at the last bu�er at the beginning of period n, from which

demand is satis�ed directly or backlogged (most upstream closest to raw material).

There are, at least, two possible ways the cost can be computed as sugested by [Tayur, 1992]:

� Costs incurred after demand

At the beginning of each period the production quantities are set for each level, stage and

product. At the end of the period the inventory quantities are updated according to the

achieved production and the demand. Demand is assumed to occur after production has

been decided. If there is enough inventory demand is satis�ed immediately; otherwise it is

backlogged and satis�ed with production from future periods.



72 CHAPTER 3. THEORETICAL FOUNDATION

� Costs incurred after production

At the beginning of each period demand for each product occurs at the �nal stage and level

of the system, that is for m = 1 and k = 1. If there is inventory enough for a given product,

its corresponding demand is immediately satis�ed, otherwise demand is backlogged. Next

the production quantities for each level, stage and product are determined. At the end of the

period, the inventory levels are updated according to the achieved production.

The second setting will be used for simplicity of exposition. However, everything follows in the

�rst setting in a straightforward manner and the experimental data of Chapter 5 are obtained for

this setting, following the traditional costs accounting procedure of inventory control theory. The

study is restricted to the following class of inventory control, capacity allocation and production

rules. Demands are assumed to be continuous, independent across products, and i.i.d. for each

product in time (stationary).

1. Inventory Control. Every level and stage operates on a base stock policy for echelon

inventory. That is, given a particular product, the decision maker adds all inventory down-

stream from that level and stage to determine the echelon inventory. If the echelon inventory

falls below the corresponding base stock value the decision will be to produce the di�erence,

provided there is enough capacity and (relevant) upstream inventory.

2. Capacity Allocation. Each machine m, with m = 1; : : : ;M , has a �xed total capacity

Cm. This total capacity can be divided into K � P single slots and a slot can be assigned

to each product and level (Ckmp). Alternatively, the total capacity can be divided into only

K slots, each assigned to each level (Ckm), and so shared by P products within each level k.

Finally, the total capacity of a single machine can be shared by all products and levels. Thus,

this capacity allocation is static. Let the �rst choice be called as the No Sharing mode (NS),

the second as the Partial Sharing mode (PS), and the last as the Total Sharing mode (TS).

3. Production Rules. Whenever there is some degree of capacity sharing it is necessary to

establish a capacity management scheme. That is, it is necessary to know how the available

capacity is to be distributed among the several products whenever production requirements

are bound by capacity. To take care of this dynamic decision making, three production rules

are proposed: Linear Scaling, Priority, and Equalize Shortfall. The Linear Scaling Rule
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(LSR), scales down all production needs to �t capacity. The Priority Rule (PR), assigns

capacity according to a �xed priority list. (Within PR, note that there are several choices |

Section 5.4.1.) The Equalize Shortfall Rule (ESR), assigns capacity to the products whose

echelon inventories are more distant from their target base stock levels.

Note that the NS mode corresponds to a situation where the original system would be converted

into P di�erent production systems each with a single product and non re-entrant 
ow lines.

The model detailed below is still relatively simplistic but it possesses the potential to be ex-

tended quite easily. The only source of uncertainty presently considered lies in the demand process.

Semiconductor manufacturing in general, and wafer fabrication in particular, are known for possess-

ing many other sources of uncertainty. The main sources of uncertainty lie in the production process

itself: machines fail, processing times are not deterministic, and yields are random. In Part III,

some of these additional sources of uncertainty will be explicitly included and the inclusion of some

others will be discussed in some detail in Chapter 7.

It is di�cult to manage complex systems without understanding simpli�ed versions of them.

Managing re-entrant systems with deterministic capacity, deterministic processing times, and per-

fect yield in a multi-product setting with random demands is not well understood yet. For this

reason, I have chosen to present a model stripped of the production randomness. Furthermore,

almost all the results and the essential details are similar in a more complex model with production

uncertainties (handled via random capacity and random yield), as will be discussed in Chapters 6

and 7. What may change for these more complex systems is the proper class of control policies to

consider in order to attain the best performance.

3.1.1 Basic Recursions

The basic recursion equations governing a re-entrant 
ow shop will now be presented. Before

that, a small notational detail needs to be clari�ed. For the re-entrant system previously de�ned,

let

(km)� =

8><
>:

(k;m� 1) m 6= 1
(k� 1;M) k 6= 1 and m = 1
unde�ned k = m = 1
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(km)+ =

8><
>:

(k;m+ 1) m 6=M
(k + 1; 1) k 6= K and m =M

unde�ned k = K and m =M

So, (km)� designates the stage and level a particular product at stage m and level k moves to

after one single operation, whereas (km)+ is the stage and level that feeds stage m, level k.

Inventory Dynamic Equation

The inventory equations are given by

Ikmp
n+1 =

8><
>:
I11pn � dpn + P 11p

n m = 1 and k = 1

Ikmp
n � P

(km)�p
n + P kmp

n otherwise

(3.1)

The �rst line refers to the depletion of inventory by the external demand at the last stage and

level of production. The second line of (3.1) describes the standard evolution of an intermediate level

and stage: inventory of a given level and stage is depleted by the amount engaged in production

by the downstream stage and level, and is increased by the amount actually produced at the

corresponding level and stage.

Echelon Inventory Equation

The echelon inventory is governed by the following equations

Ekmp
n =

8><
>:
I11pn m = 1 and k = 1

Ikmp
n + E

(km)�p
n otherwise:

(3.2)

It should be easy to verify that the above corresponds to the sum of inventory downstream for

each product starting at a given level k and at a given stage m. The �rst line refers to the last

level and stage where the echelon inventory is nothing more than the local inventory. The second

line de�nes the echelon inventory recursively for all the other stages and levels.
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Shortfall Dynamic Equation

The shortfall is de�ned as the di�erence between the echelon base stock and the echelon inven-

tory.

Y kmp
n = zkmp � Ekmp

n ; (3.3)

where zkmp denotes the echelon base stock level for product p at stage m, level k. So the shortfall

measures the distance relative to the target echelon inventory and is by construction always non-

negative.

Therefore, it is possible to write a dynamic equation for the shortfalls similar to the one for

inventories as

Y kmp
n+1 = Y kmp

n + dpn � P
kmp
n : (3.4)

That is, demand moves the echelon inventory away from the target. The net production at-

tempts to restore the echelon inventory to its target (so attempts to make shortfall equal to zero).

Production Net Needs

The production decision is in
uenced by the production rule that becomes active whenever

available capacity is exceeded and by the way capacity is pre-assigned. In any case, it is possible

to de�ne the production net needs for a given product, level and stage as:

fkmp
n =

8><
>:

(zKMp + dpn � EKMp
n )+ m =M and k = K

min
n
(zkmp + dpn � Ekmp

n )+; I
(km)+p
n

o
otherwise;

(3.5)

where (x)+ = maxf0; xg.

The term fkmp
n denotes the production decision if there would not be any capacity constraints.

Basically it states that the production decision should be given by the di�erence between the echelon

inventory after demand is realized and the base stock level, or less if there is a limitation on the

inventory available at the previous bu�er. Since raw material is assumed to be always available,

for k = K and m =M there is no explicit limitation on inventory.
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The above equation may be alternatively expressed in terms of the shortfalls as

fkmp
n = min

n
Y kmp
n + dpn; (z

(km)+p � zkmp)� (Y kmp
n � Y (km)+p

n )
o
; (3.6)

by making use of Eqs. (3.2) and (3.3) to express I
(km)+p
n solely as a function of the shortfalls. Note

that to keep consistency it is assumed that z(KM)+p = +1 and Y
(KM)+p
n = 0 for all n.

Initial Conditions

In order to implement the simulation of such model, the initial conditions have to be de�ned.

The state variables will be set at their base stock levels. That is, I11p0 = z11p and Ikmp
0 = zkmp �

z(km)�p for k and m not simultaneously equal to 1. The echelon inventories will be set according to

(3.2), that is Ekmp
0 = zkmp because the state variables are set to their base stock levels. All other

initial variables are set to zero.

Alternative Variables

It is possible to de�ne the control policy by an alternative set of control variables that are

directly related to the multi-echelon base stock variables. They are de�ned as

�kmp =

8><
>:
z11p k = 1 and m = 1

zkmp � z(km)�p otherwise

(3.7)

There are situations where it will be of advantage to consider this alternative set of control

variables. The base stock variables have to be ordered, that is zkmp � z(km)�p to keep consistency.

To enforce such ordering during simulation may be di�cult. On the other hand, to enforce such

ordering on this alternative set of variables if su�ces to impose a non negativity constraint on all

�kmp. This is much easier to take care of during optimization. Also, the base stock variables impose

an implicit coupling among the stages and levels such that the cost function may have contradictory

gradient information for echelon base stock variables associated with consecutive levels and stages.

That is, the gradient information may force a base stock variable to be bellow its successor. On

those situations it is not at all clear where to move. On the contrary, the � variables are not

coupled.
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Remark. In this chapter I will always make use of the base stock variables for ease of

explanation and because their use makes the equations shorter. The validation of the

theoretical results do not depend on the set of control variables used. It is the actual

numerical simulation that may bene�t from one set of variables more than from the

other. This will be clari�ed in Chapter 5.

3.1.2 The Performance Measures

The performance measures considered can be broadly classi�ed in two classes: operational

cost based and service level based. The operational cost based measures refer to the traditional

assignment of cost to inventories and backlogs. The service level based measures relate to the

fraction of times where a stockout does not occur or to the stockout size itself. Of this latter class,

this thesis addresses only the occurrence of stockouts.

Operational Cost Based Measures

Let

hkmp = holding cost rate for level k; stage m; and product p;

bp = backloging cost rate for level 1; stage 1 and product p (3.8)

and let the single stage cost be de�ned as

Cn =
PX
p=1

Cp
n (3.9)

where Cp
n is given by

Cp
n = (I11pn )�bp + (I11pn )+h11p +

MX
m=2

I1mp
n h1mp +

KX
k=2

MX
m=1

Ikmp
n hkmp: (3.10)

Therefore, the �nite horizon average cost is

cN =
1

N

NX
n=1

E[Cn]; (3.11)
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the in�nite horizon discounted cost is

c�;1 = E

"
1X
n=1

�nCn

#
; (3.12)

where � 2 [0; 1] is the discount factor. The in�nite horizon average cost is

c1 = lim
N!1

E

"
1

N

NX
n=1

Cn

#
: (3.13)

Service Level Based Measures

For service level measures, we consider only Type-1 service level. That is, we measure the

system's performance in terms of serving demand in the same period that it occurs. Let

V p
N =

1

N

NX
n=1

1fI11pn � dpn or d
p
n = 0g; (3.14)

be the fraction of periods in which demands for product p are �lled immediately. Using this measure

one can de�ne the following �nite horizon measure

�VN =
1

P

PX
p=1

V p
N : (3.15)

Based on (3.15), the average Type-1 service level is de�ned as �vN = E[VN ]. The in�nite horizon

average service level is:

�v1 = lim
N!1

�vN : (3.16)

3.2 The Derivatives of the Basic Model

The purpose of the IPA derivatives will be primarily to �nd the optimal echelon base stock

levels. However, it is also possible to �nd the optimal allocation of each stage's capacity to each of

the K levels when the system is operated on a partial sharing mode. Therefore, derivatives of the

state variables (and other variables for that matter) will have to be taken with respect to all zkmp
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and all Ckm if the purpose is also to �nd the optimal capacity allocation. Also, it is necessary to

take derivatives with respect to the alternative set of variables introduced in Section 3.1.

The base stock levels have to remain ordered during simulation, even under arbitrarily small

perturbations, therefore assume that for each p

0 < zkmp < z(km)+p for all k;m; (3.17)

or alternatively �kmp > 01. For partial sharing, the capacity allocation among levels is constrained

by the available capacity at any stage, that is

k=KX
k=1

Ckm = Cm for all m = 1; 2; : : : ;M: (3.18)

Capacity will be assumed unconstrained in the derivatives calculation and, at the end of each

simulation run, the computed gradient will be projected on the hyper-plane de�ned by (3.18), which

de�nes the capacity constraint.

Consider �rst the derivatives with respect to all zkmp. Let z� = zk
�m�p� denote the variable with

respect to which the derivatives are taken for some k� = 1; : : : ; K;m� = 1; : : : ;M ; p� = 1; : : : ; P

(the derivatives with respect to the � variables are similar). The derivative recursions with respect

to capacity are presented in Section 3.6.1. The sub-index (z) denotes that the derivatives are

taken with respect to some base stock variable. The sub-indices (c) and (�) will denote that the

di�erentiation variable belongs to the capacity allocation set and the delta variables, respectively.

3.2.1 Derivatives for the State Variables

� Inventory derivatives

I 0(z)
kmp

n+1
=

8>><
>>:
I 0(z)

11p

n
+ P 0(z)

11p

n
m = 1 and k = 1

I 0(z)
kmp

n
� P 0(z)

(km)�p

n
+ P 0(z)

kmp

n
otherwise

(3.19)

1These inequalities need to be strict to ensure di�erentiability
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� Echelon inventory derivatives

E0
(z)

kmp

n
=

8>><
>>:
I 0(z)

11p

n
m = 1 and k = 1

I 0(z)
kmp

n
+ E0

(z)
(km)�p

n

(3.20)

� Shortfall derivatives

Y 0
(z)

kmp

n+1
= Y 0

(z)
kmp

n
� P 0(z)

kmp

n
(3.21)

� Production net needs derivatives

f 0(z)
kmp

n
=

8>>>>>>>>>>><
>>>>>>>>>>>:

8><
>:
1fz� = zKMpg � E0

(z)
KMp

n
bound by demand

0 if fKMp
n = 0

(
m =M
k = K

8>><
>>:
1fz� = zkmpg � E0

(z)
kmp

n
bound by demand

I 0(z)
(km)+p

n
bound by supply

0 if fkmp
n = 0

otherwise

(3.22)

� Initial conditions derivatives

I 0(z)
11p

0
= 1fz� = z11pg

I 0(z)
kmp

0
= 1fz� = zkmpg � 1fz� = zk(m�1)pg m 6= 1

I 0(z)
k1p

0
= 1fz� = zk1pg � 1fz� = z(k�1)Mpg otherwise

for the echelon inventory the derivatives are trivial, that is, E0
(z)

kmp

0
= 1fz� = zkmpg. The

initial shortfall derivatives are zero.

3.2.2 Derivatives of the Performance Measures

In this section I will limit the discussion to the presentation of the single stage performance

derivatives. Later, when validating the method, the complete analysis will be done. The derivative

of the single stage cost is:
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C0
n =

PX
p=1

C0p
n: (3.23)

The expression for C0p
n is given by

C0p
n = �1fI11pn < 0g(I 0)11pn bp +

(3.24)

+1fI11pn > 0g(I 0)11pn h11p +
MX

m=2

I 0
1mp
n h1mp +

KX
k=2

MX
m=1

I 0
kmp
n hkmp:

The �nite-horizon average Type-1 service level measure, given by equation (3.15) de�ning �VN ,

is not di�erentiable because it is not even continuous, as pointed in [Glasserman and Tayur, 1995].

The strategy to obtain a di�erentiable representation is to replace the indicator function in (3.15)

with a conditional expectation. Let

�p
n(x) =

Z x

0
�pn(t)dt; (3.25)

where �pn(:) is the probability density function of the demand of product p on period n. It is possible

to show that (see Appendix A),

�vN = E[ �VN ] = P�1
PX
p=1

 
N�1

NX
n=1

Pr(dpn = 0) +E[N�1
NX
n=1

�p
n(I

11p
n )]

!
:

Since Pr(dpn = 0) does not depend on z� or C�, working only with

~�V N = P�1
PX
p=1

N�1
NX
n=1

�p
n(I

11p
n ); (3.26)

will su�ce. As a function of z� or C�, ~�V N is di�erentiable, except possibly on the zero-probability

event that some I11pn equals zero, [Glasserman and Tayur, 1995]. For all other non zero probability

events, it holds that
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~�V
0

N = P�1
PX
p=1

N�1
NX
n=1

1fI11pn > 0g�pn(I
11p
n )(I11pn )0: (3.27)

Before moving on to the speci�cs of the production rules, a brief discussion on the static and

dynamic capacity management is in order, starting with the static part. Each machine m, for

m = 1; : : : ;M , on the re-entrant line has some capacity Cm. If that total capacity is divided in

K�P single slots, Ckmp, and assigned to each product and level, the system is run in a no sharing

mode (NS). By dividing the total capacity in K slots, Ckm, assigned to each level to be shared by

all products at that level, the system is being run in a partial sharing mode (PS). Finally, if the

total capacity is equally shared by all products at any level, the system operates in a total sharing

mode (TS).

Whenever there is some capacity sharing (so for PS and TS modes), it is necessary to establish

a dynamic capacity management scheme. That is, it is necessary to decide, in each period, how

the available capacity is going to be distributed among the several competing products, if there

is a shortage of capacity regarding the total production need. This is what each one of the three

production rules proposed in Section 3.4 does. They are the Linear Scaling Rule (LSR), which

proportionally scales down all needs to �t capacity; the Priority Rule (PR), which assigns capacity

to products in decreasing order of their priority, which is established up-front; and the Equalize

Shortfall Rule, which assigns capacity to products in decreasing order of their present distance to

target levels.

3.3 Production Decisions and their Derivatives

In what follows we will present the production rules together with the corresponding derivative

expressions. The production rules are designed to take care of the dynamic capacity allocation.

That is, they are activated whenever the sum of the production net needs for a given machine

and/or level is above the available capacity.

3.3.1 Linear Scaling Rule with Partial Sharing

For the Linear Scaling Rule (LSR), and assuming there is partial sharing (PS) of capacity, the

production decision is de�ned as:
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P kmp
n = fkmp

n gkmn ; (3.28)

where fkmp
n is given by (3.5), its derivative is given by (3.22), and

gkmn = min

(
CkmP
p f

kmp
n

; 1

)
: (3.29)

The term gkmn considers the existence of a capacity constraint. Whenever the unconstrained

production requirements fall below capacity the system behaves as if it were uncapacitated. If

capacity is less than the requirements, then all requirements are linearly scaled down to �t the

system's capacity. Note that, as mentioned earlier, the diverse products are assumed to impose

the same load on the level and stage per unit processed. This is what we have been referring

as the discrete time inventory control counterpart of a Kelly type network, or the uniform load

assumption.

The derivative expression for gkmn is given by

g0(z)
km

n
=

8><
>:

�Ckm
P

p
f 0
(z)

kmp

n

(
P

p
f
kmp
n )2

bound by capacity

0 no bound in capacity
(3.30)

Therefore, the derivative expression for P kmp
n is

P 0(z)
kmp

n
= f 0(z)

kmp

n
gkmn + fkmp

n g0(z)
km

n
: (3.31)

3.3.2 Linear Scaling Rule with Total Sharing

For the Linear Scaling Rule (LSR), and assuming there is total sharing (TS) of capacity, the

production decision is de�ned as

P kmp
n = fkmp

n gmn ; (3.32)

where gmn assumes the obvious extension
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gmn = min

(
CmPK

k=1

PP
p=1 f

kmp
n

; 1

)
: (3.33)

Naturally, the derivative for P kmp
n is given as

P 0(z)
kmp

n
= f 0(z)

kmp

n
gmn + fkmp

n g0(z)
m

n
; (3.34)

with

g0(z)
m

n
=

8>><
>>:

�Cm
PK

k=1

PP

p=1
f 0(z)

kmp

n�PK

k=1

PP

p=1
fkmpn

�2 bound by capacity

0 no bound in capacity

(3.35)

3.3.3 Priority Rule with Partial Sharing

Assume that we assign capacity according to a priority for the products. Assume that p(i), for

i = 1; : : : ; P , is the product that comes in the ith position on the priority list, that is, product p(1)

is the product with the highest priority and product p(P ) has the lowest priority. The production

decision will be

P kmp(1)
n = minffkmp(1)

n ; Ckmg

P kmp(2)
n = minffkmp(2)

n ; Ckm � P kmp(1)
n g

... (3.36)

P kmp(i)
n = minffkmp(i)

n ; Ckm �
i�1X
j=1

P kmp(j)
n g

where i � minfi�; Pg.

If product p(i�) �lls capacity, we have that for all p = p(1); : : : ; p(i� � 1), all net needs are

satis�ed, whereas for all p = p(i� + 1); : : : ; p(P ) nothing is produced. For the particular case of

p = p(i�), only the available capacity de�ned by Ckm �
Pi��1

j=1 P
kmp(j)
n will be used to approach its

base stock.

According to (3.36) the production derivatives for the PR are
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P 0(z)
kmp(1)

n
=

(
f 0(z)

kmp(1)

n
bound by the production net needs

0 bound by capacity

(3.37)

P 0(z)
kmp(i)

n
=

8<
:
f 0(z)

kmp(i)

n
bound by the production net needs

�
Pi�1

j=1 P
0
(z)

kmp(j)

n
bound by capacity

Note that for those products whose production was zero due to capacity constraints, the deriva-

tives are zero as well.

3.3.4 Priority Rule with Total Sharing

Assume that we assign capacity according to a priority for the products and levels. Assume that

k(i) and p(i), for i = 1; : : : ; K � P are the level and product with the ith position on the priority

list, that is, the value of P
k(1)mp(1)
n is the �rst to be decided and the value of P

k(K�P )mp(K�P )
n is

the last. The production decisions and their derivatives are naturally similar to the ones on the

previous section and their presentation is omitted for the sake of brevity.

3.3.5 Equalize Shortfall Rule with Partial Sharing

Another way to dynamically allocate capacity is by trying to equalize the shortfall for every

product. The shortfall is de�ned as the di�erence between the target echelon base stock and the

current echelon inventory. If at a given instant of time the net production needs are below capacity

the production decision is given as before by:

fkmp
n = minfY kmp

n + dpn; I
(km)+p
n g: (3.38)

In contrast to the previous two production rules, the production decision is obtained iteratively

when the net production needs exceed the available capacity. The intuition behind the algorithm

below is that one should start by allocating capacity to the product with the highest shortfall, that

is, the product that is most away from its target level, until it reaches the level of the product with

the second highest shortfall. After, capacity will be assigned in equal parts to both products until

their shortfalls match that of the third highest shortfall, and so forth. Notice that, at any point,

it may be the case that the shortfalls are not made equal at the end of the production decision

because of insu�cient inventory for some products or just because capacity is exhausted.
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Under the framework of partial sharing and uniform loads the following algorithm is applied

for each k = 1; : : : ; K and m = 1; : : : ;M ,

Equalize Shortfall Procedure

Step 0. For all p = 1; : : : ; P set Ykmp = Y kmp
n + dpn, Y

0kmp = Y 0kmp
n , P kmp

n = P 0kmp
n = 0,

Ikmp = Ikmp
n , and I0kmp = I 0kmp

n .

Also, set Ckm = Ckm, C0km = C0km, and j = P .

Step 1. Order the products by decreasing order of their shortfall after demand is realized. Let

p(1); : : : ; p(j) denote that ordering, that is Ykmp(1) is the maximum value and Ykmp(j)

is the minimum.

Set l = 1 and Ykm(j+1) = Y 0km(j+1) = 0.

Step 2. Let � = Ykmp(l) �Ykmp(l+1). If � 6= 0, set �0 = Y 0kmp(l) � Y 0kmp(l+1) and go to Step 4.

Otherwise, continue.

Step 3. If l < j, set l = l+ 1 and go to Step 2. Otherwise, STOP.

Step 4. The �rst l products are tied. Therefore the production decision and its derivative are

updated as follows:

P kmp(i)
n = P kmp(i)

n + Pkmp(i) for i = 1; : : : ; l: (3.39)

P 0
kmp(i)
n = P 0

kmp(i)
n + P 0kmp(i)

for i = 1; : : : ; l: (3.40)

where

Pkmp = minf�; I(km)+p; Ckm=lg (3.41)

and

P 0kmp
=

8><
>:

�0 if bound by the jump size

I 0(km)+p
n if bound by inventory

C0km=l if bound by capacity

(3.42)

Step 5. Update the shortfalls, inventories, and available capacity.
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Ykmp(i) = Ykmp(i) � Pkmp(i)

I(km)+p(i) = I(km)+p(i) � Pkmp(i) for i = 1; : : : ; l; (3.43)

Ckm = Ckm �
lX

i=1

Pkmp(i)

Similarly the derivatives are

Y 0
kmp(i)

= Y 0
kmp(i)

�P 0kmp(i)

I 0
(km)+p(i)
n = I0

(km)+p(i)
n �P 0kmp(i)

for i = 1; : : : ; l: (3.44)

C0
km

= C0
km

�
lX

i=1

P 0kmp(i)

Step 6. If Ckm = 0, STOP. The total production for level k and stage m is bound by capacity.

Otherwise, continue.

Step 7. For each i = 1; : : : ; l, if I(km)+p(i) = 0 remove product p(i) from the list and set j = j�1.

If j = 0, STOP. The total production for level k and stagem does not use up all capacity.

Otherwise, go to Step 1.

Notice that the algorithm produces (3.5) if there is no bound on capacity. Also note that the

algorithm generates the production decision and its derivative at the same time. At the end of the

Equalize Shortfall Procedure, P kmp
n will contain the production decision and P 0kmp

n will contain its

derivative.

3.3.6 Equalize Shortfall Rule with Total Sharing

For the setting of total sharing and uniform loads we will skip the repetitious and lengthy

presentation of the Equalize Shortfall Procedure. With minor changes of the algorithm above it is

possible to obtain the procedure that has to be repeated for every m = 1; : : : ;M .

3.4 Finite Horizon Validation

The basic procedure to establish the validity of the IPA approach is introduced here for the

state variables. Almost all the necessary formal results for IPA follow a similar scheme. To prove
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validity one has to �rst show that all variables are di�erentiable, then indicate what are their values,

and �nally prove that the expected value and the derivative are permutable operators.

To obtain the derivatives of the state variables, simply di�erentiate the equations governing the

system, as shown before. The problem is that some of those equations contain non-di�erentiable

terms. The non-di�erentiable terms are due to the existence of min and max operators. Di�eren-

tiability is ensured only if either ties occur with zero probability or if the derivatives of the tying

terms in the operators are equal when ties occur with nonzero probability.

The concept of Lipschitz function and a technical lemma will be used in the validation proofs.

De�nition 3.4.1 A function � mapping S 2 R into R is Lipschitz if there exists a constant k�,

called the modulus, for which

j�(x)� �(y)j � k�jx� yj: (3.45)

De�nition 3.4.2 A random function is Lipschitz with probability one if there exists a random

variable K that serves as a path-wise modulus.

It is convenient to state here Lemma 3.2 of [Glasserman and Tayur, 1995]:

Lemma 3.4.3 Let fX(s); s 2 Sg be a random function with S an open subset of R. Suppose that

E[X(s)] <1 for all s 2 S. Suppose, further, thatX is di�erentiable at s0 2 S with probability one,

and that X is almost surely Lipschitz with modulus KX satisfying E[KX ] < 1. Then E[X(s0)]
0

exists and equals E[X 0(s0)].

3.4.1 Preliminary Results on the Equalize Shortfall Algorithm

In order to validate the IPA methodology, there are two results speci�c to the ESR that are

needed so that Eq. (3.42) is correct.

Proposition 3.4.4 The ordering generated in Step 1 of the Equalize Shortfall Procedure at the

�rst iteration remains unchanged with probability one in a neighborhood of the base stock levels.

Proof: Assume �rst that for a given vector z there are no ties in the shortfall quantities after

demand is realized at the beginning of period n. Under this assumption, there exists a � =
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minifY
kmp(i) � Ykmp(i+1)g > 0. Therefore, there exists an � > 0 such that a change smaller than �

in any of the components of z will produce a change in shortfall variables which is smaller than �.

Thus, the ordering remains unchanged.

Now consider the case where at least two shortfall quantities are tied at period n. A tie in Y

can only occur if they were equal at the end of period n� 1 and demand in period n was zero for

at least those two products. However, if at least two shortfall quantities were made equal in period

n � 1 for a given vector z, this means that with probability one they will also be made equal in

period n� 1 in a neighborhood of z.

The reason is that, with probability one either capacity was exhausted but there was some

inventory not used up for at least those two products on period n � 1 with vector z, or capacity

was not exhausted and the shortfalls were made zero on period n� 1.

Thus, the result follows.

2

With this result and having the proof in mind it is now easy to establish the following stronger

result, which is not as intuitively obvious but crucial to validate Eq. (3.42).

Proposition 3.4.5 At each iteration of the Equalize Shortfall Procedure, the number of tied

products l, at the beginning of Step 4 remains unchanged with probability one in a neighborhood

of z.

Proof: The proof goes by induction on the number of iterations of the above procedure. Denote by

l(r) the number of products tied at the beginning of Step 4 during iteration r. Proposition 3.4.4

establishes the result for the �rst iteration. Now assume that at some iteration r � 1, l(r � 1) is

invariant relative to su�ciently small changes in the base stock variables. We want to see what

happens to l(r).

From the l(r � 1) products, let us assume that some �(r � 1) � l(r � 1) remain tied upon

application of Step 4. With probability one there are only two ways under which this can happen.

The �rst is for the �(r�1) to have inventory enough for the amount � to be assigned to each of them

together with available capacity to do so. In this situation for a su�ciently small neighborhood of

z, the inventory and the capacity available will still allow the same �(r�1) products to remain tied.
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The second way may occur if there is a bound in capacity for all �(r�1) products. However, a bound

in capacity will remain for a su�ciently small neighborhood of z, w.p.o. Also, �(r� 1) < l(r� 1)

i� some products have their share reduced due to insu�cient inventory, which again will remain as

so w.p.o. in a neighborhood of z.

Thus, �(r�1) is invariant in a neighborhood of z. The value of l(r) depends on �(r�1) and on

what happens on Step 4. If the production decision for the �(r� 1) products is bound by �, then

there is more capacity available to execute a new iteration. Also, a new iteration will take place if

there are still products with nonzero shortfalls. In this case l(r) will be the sum of �(r � 1) with

the products that were tied for second place before iteration r� 1. This is because the shortfall of

the �(r � 1) products were brought down to the same levels as those. By similar arguments, the

number of products tied for second place does not change for su�ciently small changes of any base

stock variable.

There is also the possibility that the tie of the �(r � 1) products occurred due to a bound

in capacity. If �(r � 1) = l(r � 1), there will be no more iterations, since the available capacity

at the beginning of iteration r � 1 will be exhausted during this iteration. It can happen that

�(r�1) < l(r�1), since some of the products may have been bounded by inventory. In this second

situation, there will be capacity available to perform at least one more iteration, and it turns out

that l(r) = �(r� 1).

Therefore, the result of the proposition follows.

2

Propositions 3.4.4 and 3.4.5 are valid for the TS mode without change. The proofs are exactly

the same. What these two propositions establish is that the derivative of l in Eq. (3.42) with respect

to the base stock variables is zero, and thus the equation is correct.

3.4.2 Validation of the State Variables

Theorem 3.4.6 establishes the main validation result for the state variables and their derivatives

with respect to the base stock for a system operated under any rule and any capacity sharing mode.

Theorem 3.4.6 If fdpn; n = 1; 2; : : : ; p = 1; 2; : : : ; Pg are independent and each dpn has a density

on (0;1), then the following hold:
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1. For k = 1; : : : ; K;m= 1; : : : ;M; p = 1; : : : ; P; and n = 1; 2; : : :, each Ikmp
n and Ekmp

n , as given

by (3.1) and (3.2) respectively is, w.p.o., di�erentiable at (z111; : : : ; zKMP ) with respect to

each zqrs, q = 1; : : : ; K; r = 1; : : : ;M; and s = 1; : : : ; P: Moreover, these derivatives satisfy

(3.19) and (3.20), respectively. Also for

a. Linear Scaling Rule on Partial Sharing

P kmp
n as given by (3.28) is also di�erentiable w.p.o. and its derivative satis�es (3.31);

b. Linear Scaling Rule on Total Sharing

P kmp
n as given by (3.32) is also di�erentiable w.p.o. and its derivative satis�es (3.34);

c. Priority Rule on Partial Sharing

P kmp
n as given by (3.36) is also di�erentiable w.p.o. and its derivative satis�es (3.37);

d. Priority Rule on Total Sharing

P kmp
n as given by the natural extension of (3.36) for Total Sharing is also di�erentiable

w.p.o. and its derivative satis�es the natural extension of (3.37) for this mode;

e. Equalize Shortfall Rule on Partial Sharing

P kmp
n as given by (3.39) is also di�erentiable w.p.o. and its derivative satis�es (3.40);

f. Equalize Shortfall Rule on Total Sharing

P kmp
n as given by the natural extension of (3.39) for Total Sharing is also di�erentiable

w.p.o. and its derivative satis�es the natural extension of (3.40) for this mode.

2. For all production rules and capacity sharing modes

If in addition E[dpn] < 1 for all n, then E[Ikmp
n ]0(z), E[E

kmp
n ]0(z), and E[P kmp

n ]0(z) exist and

equal E[(I 0(z))
kmp
n ], E[(E0

(z))
kmp
n ], and E[(P 0(z))

kmp
n ].

Proof: I will only present the proof for the LSR in the PS mode. The reasoning presented carries

through for the other rules and capacity sharing schemes in a straightforward manner.

For part (1.a) it is the case that the di�erentiability of the state variables relies on the structure

of the recursive equations de�ning them. Due to the structure of (3.28) one has only to check

if (3.5) and (3.29) are di�erentiable. The remaining equations being linear combinations of state

variables do not pose any problem relative to their di�erentiability. So, let us concentrate on (3.5)

and (3.29).
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� Equation (3.5)

The following reasoning applies to the second line of (3.5). (The speci�cs of the �rst line are

trivial.) A tie between the two terms of (3.5) may induce non-di�erentiability. Also, the term

(zkmp + dpn � Ekmp
n )+ may induce non-di�erentiability when zkmp + dpn � Ekmp

n = 0. Since

demands are continuous, ties between the two terms of (3.5) have zero probability, except for

the case where both terms are zero.

zkmp + dpn � Ekmp
n = 0 only if dpn = 02 (the echelon inventory never exceeds zkmp), in which

case the inventory reached its base stock level in the previous period. Thus, since demands are

continuous, if the inventory reaches its base stock level at some value z�, then w.p.o. it does

so through a neighborhood of z�. Therefore, the �rst term of (3.5) remains zero throughout

a neighborhood and introduces no non-di�erentiability. A similar reasoning is valid for the

second term of (3.5)3, i.e., if the second term is zero, then it remains zero throughout a

neighborhood of z� w.p.o..

� Equation (3.29)

Again, a tie between the two terms of (3.29) may induce non-di�erentiability. However,

since fkmp
n is a continuous random variable,

PP
p=1 f

kmp
n is also a continuous random variable.

Therefore, the event CkmP
p
fkmpn

= 1 has zero probability in general (see remark below). Due to

the fact that Prffkmp
n = 0g > 0, P is �nite, and fkmp

n is always positive, a non-di�erentiability

could be induced when
PP

p=1 f
kmp
n = 0. However, under that case (3.29) is trivially equal to

1 for which the derivative exists and equals zero.

Therefore, w.p.o., di�erentiability is preserved at each period.

Remark: There may be exceptions to this situation.

� If for some stage and level Ckm = C(km)+ , then Prf
P

p f
kmp
n = Ckmg 6= 0, no

matter what the values of the control variables are. In fact, since PrfIkmp
n = 0g 6=

0, there is the possibility that at some period all the inventory sitting in front of

machine m at level k is zero. Simultaneously it may happen that the feeding stage,

(km)+, is bound by capacity implying that on the next period we will have a tie

2Demands are only assumed continuous in (0;1). It is possible that Prfdpn = 0g > 0, otherwise the event would
have zero probability and therefore would not induce non-di�erentiability.

3The second term on (3.5) has a point mass at zero.
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between Ckm and the total production net needs. Note, however, that such bound

in capacity will occur with probability one in a neighborhood of z�. Therefore, the

derivative will be zero for both terms of (3.29).

� Let us take for example the case where for some stage and level the value of

z(km)+p � zkmp = Ckm. For this situation non-di�erentiability is induced because,

if for example we take derivatives with respect to z(km)+p, the �rst term of (3.29)

will have a nonzero derivative, the second term has zero derivative, and there is a

nonzero probability that the tie will occur. One could argue that there is a slim

chance that z(km)+p�zkmp = Ckm. In fact that is the case in general. However, in

many circumstances it turns out that the optimal values of the base stock variables

are exactly given by the above equality (see Chapter 5). Therefore, it is not unlikely

that the simulation will have to be run close to such con�gurations and in those

cases this theorem does not apply4.

In order to still be able to apply IPA to those con�gurations we have to slightly

change the formulation in order to obtain a fully di�erentiable model. In fact, if

we replace all occurrences of z(km)+p by zkmp+Ckm we obtain a fully di�erentiable

model with one less variable. For such a modi�ed model the present theorem will

then be applicable. There are many other choices for the values of the base stock

variables that induce similar types of non-di�erentiabilities at optimality. In any

such cases, it is always possible to reduce the original problem to another with

less variables that is di�erentiable with probability one. These situations will be

examined in the numerical study (Chapter 5).

Regarding part 2 of Theorem 3.4.6, according to Lemma 3.4.3 we only have to show that

the system variables are, with probability one, Lipschitz functions of the base stock levels having

integrable moduli. The proof goes by induction on n. Since the state variables at time zero are

linear on the base stock levels, they are Lipschitz. Since the operations min, max, addition and

multiplication preserve that property, it follows that each Ikmp
n , Ekmp

n , and P kmp
n is a composition

of Lipschitz functions, and therefore is Lipschitz.

Remark: Division does not preserve the Lipschitz property in general due to the

possibility of the term in the denominator being zero for �nite values of the variable.

4The same problem occurs for zero values of the � variables.
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This would imply the resulting function to be unbounded for �nite values of the variable

which is not consistent with the Lipschitz property. Therefore the term gkmn deserves

special attention due to the existence of a division. However, since whenever the termP
p f

kmp
n drops below Ckm, gkmn will be equal to 1 and since the transition from the �rst

argument in the minf:g to the second is done smoothly, gkmn preserves the Lipschitz

property.

Since E[dpn] <1 for all n, then every Ikmp
n has �nite expectation. Consequently, each Ekmp

n has

�nite expectation. Also, each P kmp
n is integrable because they are bounded. In the context of single

product, non re-entrant systems it has been shown, [Glasserman and Tayur, 1995], that jI 0(z)
kmp

n
j,

jE0
(z)

kmp

n
j, and jP 0(z)

kmp

n
j are bounded by unity. Such is not the case in a multiple product re-entrant

setting, as is this case, or even in a single product setting, as long as there is re-entrance. If some

base stock level changes by a small amount � then each state variable or production quantity may

change by more than �.

To show that the derivatives are bounded I will use the � variables to make exposition clearer. If

we establish boundedness on the derivatives with respect to these, it is straightforward to establish

the same for the base stock variables.

Irrespective of the production rule used, changing �k�m�p� by a small amount � implies that

the echelon inventory for level K and stage M changes by � only for product p�. Notice that the

production decisions for level K and stage M, whatever the product, are only bound by capacity or

by demand. Neither of these depends on the control variables. Thus, the sum of the inventories'

derivatives along the production line (the top echelon derivatives) is zero for all products, except

for p� where it is equal to 1.0 for all products. Note that such is also the case for the derivatives of

all echelons from (KM) down to (k�m�)+. Things change only from (k�m�) onwards. However, no

matter what, the conclusion for (KM) tells us that the sum of the individual inventory derivatives

for each product with respect to �k�m�p� is bounded.

One could argue that, although their sum is bounded, each individual derivative could be

unbounded. Therefore the above does not su�ce. Take two sample paths and let us compare how

they evolve. Let the �rst one be called the nominal path and the second the disturbed path. For

the nominal path make �kmp = �kmp
N , for the disturbed path make �k�m�p� = �k�m�p�

N + �, and

for all other values of k, m, and p make �kmp = �kmp
N . The disturbed path is obtained from the
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nominal path by changing only one of the control variables by �.

As long as the production of level/stage (k�m�)� is not bound by inventory for product p� it

will be the case that the two paths only di�er at the inventory amount Ik
�m�p�

n which is in the

disturbed path � above the value of the nominal path. Therefore, all the state derivatives with

respect to �k�m�p� are zero, except for the inventory just mentioned, which has a derivative of 1.0.

Things change the �rst time Ik
�m�p�

n bounds production. There are two possibilities here |

either there is also a bound in capacity for level/stage (k�m�)� or there is no such bound.

1. There is also a bound in capacity. The total amount produced on both paths is the same,

which implies that jjI
(k�m�)�

n+1 jj (de�ned as the sum over all p) does not change from the

nominal to the disturbed path. Also, jjIk
�m�

n+1 jj (sum over all p) remains in the disturbed path

above that of the nominal path by exactly �. What changes are the individual values of the

inventories on these consecutive levels/stages. In any case, the derivatives of the individual

inventories are all under 1.0 in modulus. The extra � has the e�ect of reducing the production

amounts of the products other than p�, implying that, in the disturbed path, the inventories

Ik
�mp

n+1 will all be at least equal to those of the nominal path. Moreover, the inventories

I
(k�m�)�p
n+1 in the disturbed path will at most be equal to those of the nominal path, except

for product p� which will be above in the disturbed path. How the � is distributed depends

on the particular production rule used.

2. There is no bound in capacity. The extra � existing at level/stage (k�m�) for product p�

will be entirely moved to level (k�m�)� for that product, implying that the sum jjIk
�m�

n+1 jj is

the same for both paths and the sum jjI
(k�m�)�

n+1 jj will be higher by � on the disturbed path,

relative to the nominal path.

So, a simultaneous bound in inventory and capacity retains the � amount where it originally

lies, whereas just a bound in inventory moves it downwards one step. This is in terms of the sum

of the inventories for all products at each pair (km).

In terms of the individual components of inventory, each one changes by no more than � and

their sum of changes is either zero or exactly �, depending on the pair (km) being monitored. In

any case, the disturbed path only di�ers from the nominal at most in two consecutive levels/stages

after such bound occurs.
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Now it remains to see how these changes evolve for the next periods. One thing should be

made clear before moving on. A bound in capacity, with or without inventory bounds, retains

the overall sum change where it was before the period, but it may carry the individual changes

downwards. A bound in the changed inventories without capacity bound moves the individual

changes down a step and may carry the overall change too. If there is no bound in capacity nor

a bound in inventories (renewal) the changes move backwards. They will keep moving backwards

while there are no bounds in capacity and inventory until a complete renewal is attained, where the

only di�erence between the disturbed path and the nominal path is due to the changed �k�m�p� .

Since bounds in capacity retain the overall change, and bounds in inventory move it downwards,

only when two consecutive levels/stages have the right combination of bounds, that is the upper

most has a bound in inventory with no bound in capacity and the lower one has a bound in capacity,

will we have a situation where the changes may add up to values that overall are above �.

It is when this happens that derivatives above 1.0 may show up. However, it should be clear

that the changes add up (do not multiply), what implies that there will always be an adding of

fractions of �. Since these occurrences are �nite on a �nite horizon setting it follows now that the

overall derivatives will at most be q� in modulus for some �nite, positive, and undetermined q 2 R.

So, jI 0(z)
kmp

n
j, jE 0

(z)
kmp

n
j, and jP 0(z)

kmp

n
j are bounded as functions of the base stock variables

because of the �nite horizon setting.

Thus, Lemma 3.4.3 is applicable and the result follows.

2

3.4.3 Validation of the Performance Measures

Turning to the validation of the derivatives of the performance measures, for the operational

cost based measure, the following result holds.

Theorem 3.4.7 If, for n = 1; 2; : : : ; N , E[dpn] <1 for all p = 1; 2; : : : ; P , the dpn are independent,

and each dpn has a density on (0;1), then C0
n exists with probability one and

E

"
1

N

NX
n=1

C0
n

#
= c0N : (3.46)
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Proof: The proof follows the reasoning described at the beginning of Section 3.2. First, the variables

I11pn take the value zero with probability zero. For other inventory variables, if one of them takes

the value zero then, with probability one, it remains zero throughout a neighborhood of z�, because

demands are continuous. So, with probability one, C0
n is as stated in Equations (3.23) and (3.24).

Since Cn is Lipschitz with modulus KI(
PP

p=1 b
p +

PK
k=1

PM
m=1

PP
p=1 h

kmp), where

KI = max
k;m;p;n

fjI 0(z)
kmp

n
jg; (3.47)

the result of (3.46) follows by Lemma 3.4.3 because KI is �nite recall the proof of Theorem 3.4.6).

2

Validation of the Type-1 service level measure follows from [Glasserman and Tayur, 1995]. The

result is stated without proof.

Theorem 3.4.8 If, in addition to the conditions of Theorem 3.4.7, �pn is bounded for all n and p,

then E[ ~�V
0

N ] = �v0N .

3.5 In�nite Horizon Validation

Consider �rst the in�nite horizon �-discounted cost c�;1, as de�ned in (3.12), with 0 < � < 1.

The echelon inventory associated with each given product at any particular stage and level cannot

exceed the corresponding echelon base stock level. Also, the backlog for any product cannot exceed

the corresponding cumulative demand. Therefore, it follows that

E[Cp
n] �

 
bp +

KX
k=1

MX
m=1

hkmp

! 
KX
k=1

MX
m=1

zkmp +K �M
nX
i=1

E[Dp
i ]

!
: (3.48)

Consequently, with

sup
n�1

E[Dp
n] <1 for all p = 1; : : : ; P; (3.49)

it is insured that c�;1 is �nite.
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Computing a derivative estimate for c�;1 from its in�nite series representation is impractical.

Instead, one can use the method of [Fox and Glynn, 1989] that replaces the in�nite horizon with a

random �nite horizon. The following preliminary (known) result is necessary:

Lemma 3.5.1 Suppose c�;1 < 1. Let L be a geometric random variable with P (L = n) =

�n(1 � �), independent of the demands and of the random yield. De�ne ~C�;L =
PL

n=1 Cn. Then

E[ ~C�;L] = c�;1.

Proof: See Appendix A.

Theorem 3.5.2 In addition to conditions of Theorem 3.4.6 if demands satisfy (3.49), then c0�;1 =

E[ ~C0
�;L], where L is a geometric random variable with P (L = n) = �n(1� �) and

~C0
�;L =

LX
n=1

C0
n; (3.50)

with C 0
n as given by (3.23).

Proof: Lemma 3.5.1 provides an estimator of the in�nite horizon discounted cost from a �nite

number of transitions. The same idea leads to an unbiased estimator of c0�;1 from L transitions.

With probability one, ~C�;L is di�erentiable at any z� and

~C0
�;L =

LX
n=1

C0
n; (3.51)

with C 0
n as given in (3.23). Moreover, ~C0

�;L is Lipschitz and

LKI(
PX
p=1

bp +
KX
k=1

MX
m=1

PX
p=1

hkmp) (3.52)

is an integrable modulus. Combining these observations with Lemma 3.4.3 the result follows.

2

The analysis of in�nite horizon average costs relies on the notion of a Harris recurrent Markov

chain; see [Assmussen, 1987] and [Nummelin, 1984] for an extensive coverage of key de�nitions
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and results. The treatment and background of [Thorisson, 1983] and [Sigman, 1988] is particularly

relevant to this application, namely in what concerns the connection with coupling arguments.

A Markov chain that is positive Harris recurrent has a unique stationary distribution. It will be

shown, in Chapter 4, conditions under which a process fXn; n � 1g is positive Harris recurrent.

See the (natural) expressions below for the PS and the TS cases respectively.

E[
PX
p=1

Dp
0] < min

m
fCkmg (3.53)

KE[
PX
p=1

Dp
0] < min

m
fCmg (3.54)

In Section 3.4 it was shown that the derivative recursions are bounded for �nite horizon. If a

system is stable, regeneration occurs in �nite time with probability one. Therefore, in an in�nite

horizon setting the derivative recursions are also bounded.

For PS and TS modes it is necessary �rst to establish the following. Let Y kmp
n be the (appropri-

ate) shortfall, and W kmp
n be the derivative of shortfall Y kmp

n with respect to the base stock levels.

Let Y n and W n be the appropriate vectors for period n. Let Y km
n = [Y km1

n Y km2
n : : : Y kmP

n ] and

jjY km
n jj =

PP
p=1 Y

kmp
n .

Lemma 3.5.3 If fY n; n � 1g is positive Harris recurrent, then so is f(Y n;W n); n � 1g.

Proof: The derivative process admits coupling when the process is stable (Chapter 4). Also, the

shortfall process admits coupling under the appropriate stability condition for the PS mode. Note

that when the shortfall of level K and stage M hits zero (all values Y KMp
n are zero for this n), at

some �nite time NKM , the derivatives of Y KMp
NKM

are also zero for all p = 1; : : : ; P . Therefore, for

any n � NKM not only the process coincides with a copy started at zero, but all the derivatives

of that process coincide with a copy of the derivatives of a process started at zero. Suppose now

that for all n � Nkm, (jjY
km
n jj; : : : ; jjY KM

n jj) together with the derivative processes coincide with

the corresponding components started at zero. After, when jjY (km)�
n jj couples so it will be the case

for its corresponding derivative processes, since jjY (km)�
n jj only depends explicitly of Y kmp

n . By

induction, it is possible to conclude that the coupling of the whole shortfall process will imply the

coupling of the derivative processes.
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The result for the TS mode is trivially derived from the above due to the stochastic dominance

argument used in Chapter 4. Since the derivative processes for the shortfall process admit coupling

it is the case that the pair is positive Harris recurrent.

2

By imposing (3.53) for the PS case or (3.54) for the TS case, stability for the derivatives is

ensured along with stability of the state variables. Following the arguments similar to those in

[Glasserman and Tayur, 1995], it follows that

Theorem 3.5.4 Suppose fDp
n; n = 1; 2; : : :g are i.i.d. for each p with �nite expectation and that

the adequate stability condition holds for the PS mode. Then N�1PN
n=1 C

0
n ! c01, with proba-

bility one, at almost every z�.

If, in addition, supx f
p(x) <1, then ~�V

0

N ! �v01 and with probability one, at almost every z�.

Proof: See Appendix A.

3.6 Conclusions

This chapter presented a model for multi-product re-entrant 
ow shops subject to random

demand, using a discrete time, capacitated, production-inventory framework. As a �rst attempt at

dealing with complex re-entrant production systems it was assumed a cyclic re-entrant structure

with all products following the same path from entry point to exit. Moreover, it was assumed

that each product unit at any given level of production imposes the same load on the machines

visited (uniform load) and that yield is perfect. Assuming a multi-echelon base stock policy as the

backbone to decide on production levels, the IPA derivatives for several capacity allocation and

production rules were developed. These derivatives can be used to minimize operation costs. The

discussion on stability, due to its particularity and to avoid excessive cluttering, is postponed to

Chapter 4. A numerical study to gain insights to help manage multi-product re-entrant lines is

presented in Chapter 5.

Later, in Part III, the issue of stability will again be discussed for systems with random yield

and non uniform loads, in an attempt at moving to more complex systems. Both random yield and
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non uniform loads make the analysis more di�cult and require the use of broader classes of policies

than the one presented here.

3.6.1 Optimizing the Capacity Slots

Before closing this chapter, it remains to consider taking the derivatives with respect to all Ckm

on a PS model. Let C� = Ck�m�

denote the generic variable with respect to which the derivatives

are taken for some k� = 1; : : : ; K;m� = 1; : : : ;M . Note, that these derivatives are taken as if any

Ckm is a non constrained variable.

The derivative recursions of the production decisions for the Linear Scaling Rule with Partial

Sharing are given by

P 0(c)
kmp

n
= f 0(c)

kmp

n
gkmn + fkmp

n g0(c)
km

n
: (3.55)

The derivatives of fkmp
n and gkmn with respect to the capacity allocation are given by:

f 0(c)
kmp

n
=

8>>>>>>>>><
>>>>>>>>>:

(
�E0

(c)
KMp

n
bound by demand

0 if fKMp
n = 0

)
m =M and k = K

8>><
>>:
�E0

(c)
kmp

n
bound by demand

I 0(c)
(km)+p

n
bound by supply

0 if fkmp
n = 0

9>>=
>>; otherwise

(3.56)

g0(c)
km

n
=

8><
>:

1fC�=Ckmg
P

p
fkmpn �Ckm

P
p
f 0
(c)

kmp

n

(
P

p
fkmpn )2

bound by capacity

0 no bound in capacity
(3.57)

For the Priority Rule with Partial Sharing,

P 0(c)
kmp(1)

n
=

(
1fC� = Ckmg bound by capacity

f 0(c)
kmp(1)

n
otherwise

(3.58)

P 0(c)
kmp(i)

n
=

8<
: 1fC� = Ckmg �

Pp(i)�1
j=1 P 0(c)

kmp(j)

n
bound by capacity

f 0(c)
kmp(i)

n
otherwise
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Finally, for the Equalize Shortfall Rule with Partial Sharing note that on Section 3.4, when the

Equalize Shortfall Procedure is described, no explicit assumption is made as to which variable the

derivatives are taken. Therefore the derivatives w.r.t. capacity for this rule are the same as were

then.

Regarding the initial conditions derivatives, all variables have zero initial conditions for the

derivatives with respect to the capacity allocation, except for C0
(c)

km = 1fC� = Ckmg (see Equalize

Shortfall Procedure).

It is relatively trivial to extend the validation presented earlier for base stock variables to this

set of variables. For the sake of brevity, it will be skipped.



Chapter 4

Stability

To validate the in�nite horizon measures and derivatives in Chapter 3, the stability conditions

for the systems considered have to be established rigorously. While validating those measures,

this stability discussion was postponed to this chapter. The objective of this present chapter is to

address exclusively the topic of stability for re-entrant 
ow lines. The discussion of stability will

cover systems with uniform loads, perfect yield, and deterministic capacities.

There are two settings for which to investigate the stability conditions. The �rst refers to the

case where capacity is partially shared (PS). The second refers to the case where the capacity is

totally shared (TS). The no sharing (NS) case has been established in [Glasserman and Tayur,

1994] for a single product.

To study the conditions under which the system is stable it is necessary to resort to the technique

used in [Glasserman and Tayur, 1994]. There, the stability conditions were established for a single

product system and no re-entrant structure. Under adequate changes, the same technique will

be used to prove stability for the PS case. Then, using a stochastic dominance argument, the

conditions under which the TS case is stable will be established.

At �rst it will be assumed that the production decisions are taken with the use of the Linear

Scaling Rule. At the end, it will be shown that the results discussed here remain valid for any of

the other two production rules.

First, le us review the model discussed in Chapter 3 using shortfall variables to replace inventory

variables. Recalling (3.3), when yield is perfect, the shortfall variables satisfy the following dynamic

equation

103
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Y kmp
n+1 = Y kmp

n + dpn � P
kmp
n for all k;m; p: (4.1)

The order of presentation will be:

1. Establishing conditions for the stability of the shortfall echelon process when demands are

stationary and ergodic.

2. Examining the regenerative structure of fYn; n � 0g when fDn; n � 0g is an i.i.d. sequence.

The regenerative properties are valuable in establishing convergence of costs and also simu-

lation estimators.

It will be shown that the stability condition su�ces to ensure that fYn; n � 0g possesses the

regenerative structure of a Harris ergodic Markov chain. Under a stronger condition, it will be

established that the vector of shortfalls returns to the origin in�nitely often, with probability one.

Many of the attractive properties of classical regenerative processes have been shown to hold

for the somewhat weaker regenerative structure of Harris recurrent Markov chains. An extensive

coverage of key de�nitions and results of this framework can be found in [Assmussen, 1987] and

[Nummelin, 1984]; the treatment in [Sigman, 1988] is particularly relevant to this application.

Harris Recurrence and Explicit Regeneration Points

The general setting for Harris recurrence is a Markov chain X = fXn; n � 0g on a state space

S with Borel sets B. Let Px denote the law of X when X0 = x. Then X is Harris recurrent if there

exists a �-�nite measure  on (S, B), not identically zero, such that, for all A 2 B,

 (A) > 0) Px

 
1X
n=0

1fXn 2 Ag =1

!
= 1; for all x 2 S: (4.2)

Thus, every set of positive  -measure is visited in�nitely often from all initial states. Every

Harris recurrent Markov chain has an invariant measure � that is unique up to a multiplication by

a constant. The sets of positive �-measure are precisely those that are visited in�nitely often from

all initial states. If � is �nite (hence a probability, without loss of generality), then X is called

positive Harris recurrent. If, in addition, X is aperiodic, then it is Harris ergodic.
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The connection with regeneration enters as follows. If X is Harris recurrent, then there exists

a (discrete-time) renewal process f�k; k � 1g and an integer r � 1 such that

f(X�k+n; n � 0); (�n+k+1 � �n+k ; n � 0)g (4.3)

has the same distribution for all k � 1 and is independent of

f�1; : : : ; �k; (Xn; 0 � n � �k � r)g: (4.4)

When r > 1, there may be dependence between consecutive cycles fXn; �k�1 � n � �kg, in

contrast to the classical case of independent cycles (and this is indeed the case in this model).

However, if X is positive Harris recurrent and if f : S ! R is �-integrable, then the regenerative

ratio formula

E� [f(X0)] =
E[
P�k�1

n=�k�1
f(Xn)]

E[�k � �k�1]
(4.5)

remains valid, as does the associated central limit theorem (under second-moment assumptions).

Moreover, if X is Harris ergodic then for all initial conditions the distribution of Xn converges to

� in total variation; that is,

sup
A2B

jPx(Xn 2 A)� �(A)j ! 0 (4.6)

as n!1, for all x 2 S. Indeed, this total variation convergence to a probability measure completely

characterizes Harris ergodicity.

A powerful tool in the analysis of Harris ergodic Markov chains is a connection with coupling;

see for example [Thorisson, 1983] and [Sigman, 1988] for background. The main result is this:

a Markov chain with an invariant probability measure admits coupling if and only if it is Harris

ergodic. I will be using a coupling argument for Y while establishing the stability conditions, which

will by itself render the Harris ergodicity of the shortfall process.

While Harris recurrence ensures the existence of (wide-sense) regeneration times f�k; k � 1g,

it does not provide a means of identifying these times. Explicit regeneration times are not needed

for convergence results, but they are useful in, for example, computing con�dence intervals from
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simulation estimators. At the end of each section I will give a su�cient condition for fY n; n � 0g

to have readily identi�able regeneration times.

4.1 Stability and Regeneration for Partially Shared Systems

For this setting I will �rst de�ne a dynamic equation for a linear combination of shortfalls such

that the theoretical framework of [Glasserman and Tayur, 1994] is readily applicable. Although

the proofs are not di�erent from those, they will be presented for the sake of completeness of this

thesis. Recall that for the PS case under the LSR the production decision is de�ned as

P kmp
n = fkmp

n gkmn (4.7)

where fkmp
n denotes the net production vector if no capacity constraint is present and gkmn enforces

the capacity constraint as described earlier.

As discussed above the dynamic equation for the shortfall quantities is given by (4.1). To

simplify the analysis we can de�ne a vectorial dynamic equation for each stage and level by de�ning

Dn = [d1n d
2
n : : : dPn ]

T , P km
n = [P km1

n P km2
n : : : P kmP

n ]T , and Y km
n = [Y km1

n Y km2
n : : : Y kmP

n ]T .

Therefore, the dynamic equation will assume the form

Y km
n+1 = Y km

n +Dn � P
km
n for all k;m: (4.8)

Let jjxjj, be de�ned as the sum of all components of x. Note that jjxjj is not a norm and it

veri�es the following

jjx+ yjj = jjxjj+ jjyjj

(4.9)

jjaxjj = ajjxjj

Now, since level and stage (K;M) draws raw material from an in�nite source, we have

Y KM
n+1 = maxf~0; (Y KM

n +Dn)(1�
CKM

jjY KM
n +Dnjj

)g (4.10)
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Due to the structure of the above the following operation is valid

jjY KM
n+1 jj = maxf0; jjY KM

n jj+ jjDnjj � CKMg (4.11)

which is a Lindley equation. Note the use of (4.9).

For the remaining cases we will have

Y km
n+1 = maxfY km

n +Dn �
CkmminfY km

n +Dn; I
(km)+
n g

jjminfY km
n +Dn; I

(km)+
n gjj

;

(4.12)

~0;Y km
n +Dn � I

(km)+
n g

From this equation it is possible to compute jjY km
n+1jj as follows

jjY km
n+1jj = max

n
0; jjY km

n jj+ jjDnjj � C
km;

(4.13)

PX
p=1

�
Y (km)+p
n + dpn � (z(km)+p � zkmp)

�+9=; :

The scalar equations (4.11) and (4.13) are the multiple product generalizations of the dynamic

equations for shortfalls presented in [Glasserman and Tayur, 1994] for single product systems.

4.1.1 The Stationary Regime

Let us now introduce the framework and notation corresponding to Lemmas 1 and 2 of [Glasser-

man and Tayur, 1994] which help establishing the stability conditions.

Lemma 4.1.1 The echelon shortfalls satisfy Y n+1 = �(Y n;Dn) where � : RKMP
+ �RP ! RKMP

+

is de�ned by (4.10, 4.12). Also, the total shortfall satisfy jjY n+1jj = �(Y n;Dn) = jj�(Y n;Dn)jj

where � : RKMP
+ � RP ! RKM

+ is de�ned by (4.11, 4.13). In particular, � is increasing and

continuous.
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Supposing that the demands form a stationary process, without loss of generality, we can assume

that Dn is de�ned for all integer n with fDn;�1 < n <1g stationary. In what follows I will use

) to denote convergence in distribution. Some of the proofs will be omited here to avoid excessive

clutter. Some of them are relatively trivial extensions of similar results published. Some others are

exactly the same. Some of the former will be presented in Appendix B for the sake of completeness

of the present document.

Lemma 4.1.2 Let fDn;�1 < n <1g be stationary. There exists a (possibly in�nite) stationary

process f ~Y n;�1 < n <1g satisfying jj ~Y n+1jj = �( ~Y n;Dn) for all n, such that if jjY 0jj = 0, a.s.,

then jjY njj ) jj ~Y 0jj.

Proof: See Appendix B.

With the support of the above two Lemmas it is now easy to establish the stability condition

for this model.

Theorem 4.1.3 Suppose the demands fDn;�1 < n <1g are ergodic as well as stationary. If

E[jjD0jj] =
PX
p=1

E[dp0] < minfCkm : k = 1; : : : ; K;m = 1; : : : ;Mg; (4.14)

then jj ~Y 0jj is almost surely �nite. If for some (k;m), E[jjD0jj] > Ckm, then jj ~Y
qr
0 jj = 1, a.s., for

all (q; r) corresponding to levels and stages coming after (k;m).

Proof: See Appendix B.

This result for the scalar dynamic equations implies the stability of the vectorial process.

Corollary 4.1.4 Under the assumptions of Theorem 4.1.3 ~Y kmp
0 is almost surely �nite for all p,

where ~Y kmp
0 denotes component p of ~Y

km
0 .

Proof: The result follows trivially due to the non negativity of the shortfalls.

2

The above results show that the process fY n; n � 0g converges to a stationary distribution

only if Y 0 = 0. The following theorem establishes that the convergence occurs for any initial point,

that is, the process admits coupling.
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Theorem 4.1.5 Under the stability condition E[jjD0jj] < mink;mfC
kmg, the echelon shortfall

process admits coupling. Consequently, its stationary distribution is unique, and Y n ) ~Y 0 for all

Y 0.

Proof: See Appendix B.

4.1.2 Regeneration and Explicit Regeneration Times

Recall that a Markov chain with an invariant probability measure admits coupling if and only

if it is Harris ergodic. In the previous subsection we used a coupling argument for Y , therefore it

is now easy to show that,

Theorem 4.1.6 Let demands fDn; n � 0g be i.i.d. with E[jjD0jj] < mink;mfC
kmg. Then

fY n; n � 0g is a Harris ergodic Markov chain.

Proof: Since Y n+1 = �(Y n;Dn), n � 0, Y is a Markov chain when D is i.i.d. We established

in Theorem 4.1.3 and Corollary 4.1.4 that Y has an invariant (i.e., stationary) distribution and in

Theorem 4.1.5 that Y admits coupling. Thus, Y is Harris ergodic.

2

As a result of Theorem 4.1.6, Y inherits the regenerative structure of Harris ergodic Markov

chains, the attendant ratio formula, and convergence results. The same holds for the inventory

levels:

Corollary 4.1.7 The inventory process f(I11n ; : : : ; I
KM
n ); n � 0g, under the conditions of Theo-

rem 4.1.6, is a Harris ergodic Markov chain.

Proof: There is a one-to-one correspondence between shortfalls and inventories for all n as de�ned

by

I11pn = z11p � Y 11p
n

(4.15)

Ikmp
n = (zkmp � z(km)�p) + (Y (km)�p

n � Y kmp
n ):
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Consequently, I = fIn; n � 0g is Markov if Y is, and I is Harris ergodic if Y is.

2

It is now possible to give the characterization of the regeneration times.

Theorem 4.1.8 Let demands be i.i.d. with E[jjD0jj] < mink;mfC
kmg. De�ne z(11)

�

� ~0 and

suppose that

P (dp0 � zkmp � z(km)�p) > 0; k = 1; : : : ; K; m = 1; : : : ;M ; p = 1; : : : ; P: (4.16)

Then Y returns to the origin in�nitely often, with probability one.

Proof: See Appendix B.

Corollary 4.1.9 The inventory process f(I11n ; : : : ; I
KM
n ); n � 0g, under the conditions of Theo-

rem 4.1.8, returns to (z11; z(11)
+
� z11; : : : ; zKM � z(KM)�) in�nitely often, with probability one.

Proof: Consequence of the relationship between shortfalls and inventories.

2

The conclusion of Theorem 4.1.8 is not in general true without (4.16) or further distributional

assumptions on demands. This is particularly clear when z(km)+p = zkmp for some value of k, m,

and p; that is, stage (km)+ keeps no safety stock for product p. In this case, the total shortfall

jjY kmjj can never reach zero unless dp0 = 0 with positive probability.

4.2 Stability and Regeneration for Totally Shared Systems

Operating on a TS mode with the LSR, the production decision is given by

P kmp
n = fkmp

n gmn ; (4.17)

capacity is shared among all products and levels for each machine, and g is given by (3.33).
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For this model the shortfall process is governed by the following

Y km
n+1 = maxfY km

n +Dn �
CmminfY km

n +Dn; I
(km)+
n gPK

k=1 jjminfY
km
n +Dn; I

(km)+
n gjj

;

(4.18)

~0;Y km
n +Dn � I

(km)+
n g

Due to the structure of the decision process, it is the case that

jjY km
n+1jj = maxf0; jjY km

n jj+ jjDnjj �
CmjjminfY km

n +Dn; I
(km)+
n gjjPK

k=1 jjminfY
km
n +Dn; I

(km)+
n gjj

;

PX
p=1

�
Y (km)+p
n + dpn � (z(km)+p � zkmp)

�+
g; (4.19)

where it is assumed that I(KM)+
n =1 for all n.

As in the previous model we were interested on the total shortfall per level and stage, we will

now be interested in the Total Shortfall per Stage. Thus, the following expression is of importance

in what follows

KX
k=1

jjY km
n+1jj = maxf0;

KX
k=1

jjY km
n jj+KjjDnjj � C

m;

(4.20)
KX
k=1

PX
p=1

�
Y (km)+p
n + dpn � (z(km)+p � zkmp)

�+
g

4.2.1 The Stationary Regime

Lemma 4.2.1 The total echelon shortfall per stage satis�es

KX
k=1

jjY km
n+1jj =  (Y n;Dn) =

KX
k=1

�(Y n;Dn); (4.21)

where � : RKMP
+ � RP ! RKM

+ is de�ned by (4.19) and  : RKMP
+ � RP ! RM

+ is de�ned by

(4.20). In particular,  is continuous and increasing.
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It is easily possible to establish a result similar to that of Lemma 4.1.2 for this second model

and to prove stability we will make use of Theorem 4.1.3.

Theorem 4.2.2 Under the assumptions of Theorem 4.1.3, the system operated under the TS mode

is stable, in the sense that the shortfalls are almost surely �nite, if

KE[jjD0jj] < minfCm :m = 1; : : : ;Mg: (4.22)

Proof: Assume that the capacity of each machine is divided into slots of equal size, that is Ckm =

Cm

K . Assume the system operates as if capacity was not shared. Then, according to Theorem 4.1.3,

the system would be stable i�

E[jjD0jj] < minfCkm : k = 1; : : : ; K;m= 1; : : : ;Mg

=
1

K
minfCm :m = 1; : : : ;Mg

Now we have to evaluate how does the system behave under the TS case when compared with

its performance under the PS case. To show that stability of the PS case implies stability of the

TS case I will investigate a sample path.

Assume we have two identical systems subject to the same sample path. One is operated under

the PS mode with Ckm = Cm

K and the other is operated under the TS mode. In particular, one is

interested in the process de�ned by the total shortfall for each stage. Assume that both systems

start from the origin, that is

KX
k=1

jjY km
0 jj1 =

KX
k=1

jjY km
0 jj2 = 0 for all k;m: (4.23)

Comparing equation (4.19) with (4.11) and (4.13) it is obvious that while there is no bound in

capacity for any of the two systems they remain coupled. Let n� denote the �rst period for which

at least one of the two systems has a bound in capacity for some level and/or stage. Therefore, we

have for all k and m

jjY km
n jj1 = jjY km

n jj2 for all n = 0; : : : ; n�; (4.24)



4.2. STABILITY AND REGENERATION FOR TOTALLY SHARED SYSTEMS 113

which implies that

KX
k=1

jjY km
n jj1 =

KX
k=1

jjY km
n jj2 for all n = 0; : : : ; n�: (4.25)

The �rst time one of these two systems has at least one production decision bounded by capacity

there is a possibility for decoupling. Let us take system 1 as the reference. Whenever there is at

least a level and stage for which system 1 is bound by capacity, one of two things can happen to

system 2:

i) Bound in capacity for system 1 and no bound for system 2.

For this case there exists at least a k� and an m� such that

jjminfY k�m�

n� +Dn� ; I
(k�m�)+

n� gjj >
Cm�

K
; (4.26)

but

KX
k=1

jjminfY km�

n� +Dn� ; I
(km�)+

n� gjj < Cm�

: (4.27)

ii) Bound in capacity for both systems

In this case we have at least a k� and an m� such that

jjminfY k�m�

n� +Dn� ; I
(k�m�)+

n� gjj >
Cm�

K
; (4.28)

and

KX
k=1

jjminfY km�

n� +Dn� ; I
(km�)+

n� gjj > Cm�

: (4.29)

I am interested on knowing how does
PK

k=1 jjY
km
n jj (the total shortfall for stage m) behave for

both cases. In case i) since system 2 has no bound in capacity it must be the case that not all the

levels of stage m� have a bound in capacity for system 1. Therefore,
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KX
k=1

jjY km�

n�+1jj
1 =

X
k 6=k�

PX
p=1

�
Y

(km�)+p
n� + d

p
n� � (z(km

�)+p � zkm
�p)
�+

+

+
X
k=k�

(jjY km�

n� jj1 + jjDn� jj �
Cm�

K
)

>
KX
k=1

PX
p=1

�
Y

(km�)+p
n� + dpn� � (z(km

�)+p � zkm
�p)
�+

=
KX
k=1

jjY km�

n�+1jj
2 (4.30)

because there is a bound in capacity for all levels k� in system 1 and there is no such bound in

system 2 and using equations (4.13) and (4.19)1.

For case ii), when both systems are capacity bounded for some stage m�, there are two possi-

bilities: there is a bound in capacity for all levels of stage m� in system 1; not all levels of stage

m� are capacity bounded for system 1.

For the �rst situation it will be the case that

KX
k=1

jjY km�

n�+1jj
1 =

KX
k=1

(jjY km�

n� jj1 + jjDn� jj �
Cm�

K
)

=
KX
k=1

jjY km�

n�+1jj
2; (4.31)

because
PK

k=1 jjY
km�
n� jj1 =

PK
k=1 jjY

km�
n� jj2.

In the second situation we will have

KX
k=1

jjY km�

n�+1jj
1 =

X
k 6=k�

PX
p=1

�
Y

(km�)+p
n� + dpn� � (z(km

�)+p � zkm
�p)
�+

+

+
X
k=k�

(jjY km�

n� jj1 + jjDn� jj �
Cm�

K
)

>
KX
k=1

jjY km�

n� jj1 +KjjDn� jj � Cm�

1Note that equation (4.11) can be made equal to (4.13) by de�ning I
(KM)+

n = ~1 and making the adequate change

for z(KM)+.
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=
KX
k=1

jjY km�

n�+1jj
2 (4.32)

because the change in total shortfall for stage m� in system 1 is smaller than Cm�

.

Thus, we have that for period n� + 1 the total shortfall for each stage of system 2 is bounded

above by the total shortfall for each stage of system 1, with probability one.

Now it remains to see what happens after n� + 1 (the �rst decoupling period). Assume, there

is a third system that starts operating in a TS mode as system 2 with the state variables of sys-

tem 1, that is, coupled to system 1. System 1 and system 3 will remain coupled until a capacity

bound occurs at some other period. By the above discussion we know that a bound in capacity

is favorable to system 3, when compared with system 1. Due to Lemma 4.2.1 the total shortfall

per stage of system 2 will remain dominated by that of system 3. So we have that until the �rst

decoupling between system 1 and system 3, system 1 will dominate system 2, due to transitivity. If

we force system 3 to receive the state of system 1 whenever there is a decoupling between the two

the process repeats itself whenever there is a new bound in capacity and it follows then that the to-

tal shortfall per stage for system 2 will remain dominated by that of system 1, with probability one.

2

In order to establish the uniqueness of the distribution it is also possible to show that the total

shortfall per stage process admits coupling.

Theorem 4.2.3 Under the stability condition KE[jjD0jj] < minmfCmg, the total shortfall per

stage admits coupling and so does the shortfall process as a consequence. Therefore, its stationary

distribution is unique and Y n ) ~Y 0 for all Y 0.

Proof: According to the proof of Theorem 4.2.2 the total shortfall process per stage of the PS

case dominates that of the TS case. Therefore, if the �rst admits coupling, so does the second

because the shortfalls are always non negative. By Theorem 4.1.5, it is the case that the �rst

admits coupling.

Thus, the result follows.

2
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4.2.2 Regeneration and Explicit Regeneration Times

Since in the previous subsection a coupling argument was used for Y , it is now easy to show

the following.

Theorem 4.2.4 Let demands fDn; n � 0g be i.i.d. with KE[jjD0jj] < minmfC
mg. Then

fY n; n � 0g is a Harris ergodic Markov chain.

Proof: Since
PK

k=1 jjY
km
n+1jj =  (Y n;Dn), n � 0, Y is a Markov chain when D is i.i.d. The-

orem 4.2.2 established that Y has an invariant (i.e., stationary) distribution and Theorem 4.2.3

established that Y admits coupling. Thus, Y is Harris ergodic.

2

Corollary 4.2.5 The inventory process f(I11n ; : : : ; I
KM
n ); n � 0g, under the conditions of Theo-

rem 4.1.6, is a Harris ergodic Markov chain.

Proof: There is a one-to-one correspondence between shortfalls and inventories for all n. Conse-

quently, I = fIn; n � 0g is Markov if Y is, and I is Harris ergodic if Y is.

2

The regeneration times can now be characterized.

Theorem 4.2.6 Let demands be i.i.d. with KE[jjD0jj] < minmfC
mg. De�ne z(11)

�

� ~0 and

suppose that

P (d
p
0 � zkmp � z(km)�p) > 0; k = 1; : : : ; K; m = 1; : : : ;M ; p = 1; : : : ; P: (4.33)

Then Y returns to the origin in�nitely often, with probability one.

Proof: The proof follows from the fact that the same system operated under a PS mode with

Ckm = Cm=K will have a shortfall process that dominates that of a system operated on a TS

mode. Since for the PS mode Theorem 4.1.8 is applicable it is the case that if Y returns to

origin in�nitely often under the PS mode so it does for the TS mode due to the dominance earlier

discussed.
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2

Corollary 4.2.7 The inventory process f(I11n ; : : : ; I
KM
n ); n � 0g, under the conditions of Theo-

rem 4.1.8, returns to (z11; z(11)
+
� z11; : : : ; zKM � z(KM)�) in�nitely often, with probability one.

Proof: Consequence of the relationship between shortfall variables and inventories.

2

4.3 Total Shortfall Dynamic Equation for PR and ESR

In this section I will show that both rules satisfy dynamic equations similar to (4.10) and (4.12)

for the PS mode and (4.20) for the TS mode.

Let us consider the dynamic equation for jjY km
n jj for the PS case. In order to compute the

dynamic equation for jjY km
n jj note that under the Strict Priority Rule if product p(i�) �lls capacity

we have that for all p = p(1); : : : ; p(i� � 1), all net needs are �lled whereas for all p = p(i� +

1); : : : ; p(P ) nothing is produced. For the particular case of p = p(i�), only the available capacity

de�ned by Ckm �
Pi��1

i=1 P
kmp(i)
n will be used to reduce its shortfall. In any case, as long as one

product �lls capacity the change in jjY km
n jj is positive due to the total demand, jjDnjj, and negative

due to capacity, Ckm. If no product �lls capacity, then the total change in shortfall may be only

bounded by available inventory, otherwise the total shortfall drops to zero. Therefore, the total

shortfall for each stage and level, under strict priority, follows the dynamic equation given by

jjY km
n+1jj =

8><
>:

0 if no bound in capacity and inventoryPP
p=1(Y

kmp
n + dpn � I

(km)+p
n )+ if no bound in capacity

jjY km
n jj+ jjDnjj � Ckm if bound by capacity

(4.34)

which is exactly as (4.12). If k = K and m = M there will never be a bound in inventory, so

that the above equation will simplify to (4.10). It should not be di�cult to understand that the

Equalize Shortfall Rule yields the same dynamic equations for jjY km
n jj.

It should be evident that both rules yield (4.20) for the dynamic equation of
P

k jjY
km
n jj when

the system is operated on a TS mode.

Therefore, all results discussed eralier for the LSR are trivially applicable to both remaining

production rules. Although the stability results remain untouched by the di�erent production rules,



118 CHAPTER 4. STABILITY

it should be clear that the application of each rule impacts on the way each individual shortfall

evolves, which has implications only at the attained costs.



Chapter 5

Experimental Study

This chapter continues the previous two by analyzing some experimental results (obtained by

simulation based optimization) for a family of re-entrant systems. The analysis will concentrate only

on random demand, since otherwise it would be di�cult to have a minimally focused experimental

study.

A series of computational studies will be presented { for single product (Section 5.2) as well as

multi-product (Section 5.3) settings { that provide insights into the properties of the optimal solu-

tions within the class of capacity management, production rules, and inventory control proposed.

The experiments will cover the in�nite horizon average cost setting.

The chapter concludes, in Section 5.4, with a summary of the main insights obtained and some

comments on future research directions, bridging to Part III. A subsection of this one justi�es the

fact that we restrict the study in Sections 5.2 and 5.3 to a speci�c priority assignment within the

Priority Rule.

The experimental evidence that will be presented here on how to set the priorities for the several

products and bu�ers along the re-entrant line agrees with previously published experimental results,

[Glassey and Resende, 1988, Lu and Kumar, 1991]. On multiple product, we will provide a set of

data showing that keeping the same list of priorities along the production line has advantages over

di�erent priority lists on each production stage. The studies of [Glassey and Resende, 1988, Lu

and Kumar, 1991] were concerned with single product, so that such conclusions were not possible

to attain.

In Appendix C we detail some key features of the optimization procedure and of the experiments

conducted.

119



120 CHAPTER 5. EXPERIMENTAL STUDY

5.1 Optimality Condition

Before turning to the analysis of the data obtained with the simulator, there is a structural

result that often helps identify optimal solutions.

Proposition 5.1.1 If fdpn; n = 1; 2; : : : ; p = 1; : : : ; Pg are independent and stationary, where each

dpn is drawn from a density on (0;1), the optimal base stock levels for the average cost measure

for any production rule and any capacity sharing mode are such that

Pr(dp0 � I11p) =
bp

bp + h11p
for all p = 1; : : : ; P: (5.1)

Proof: We prove the result by considering that the optimization is made relative to the delta

variables. Let us �x the values of (�KMp; : : : ;�(11)+p) for all p = 1; : : : ; P , and �x the values of

�11p for all p 6= p̂. Consider the optimization made exclusively with respect to �11p̂.

Whatever the value of �11p̂ the production decisions will only depend on the other delta variables

and on demand because the production decisions are solely dependent on shortfalls (see Chap. 3).

Therefore, if we disturb �11p̂ by a small amount �, the sample path will only di�er from the

original undisturbed sample path for the values of I11p̂n . Thus, the cost function only depends on

�11p̂ through I11p̂n . Therefore, the equation de�ning the single stage cost derivative only depends

on product p̂ and will assume the simpler form

C0
n = C0p̂

n;

because the other components of the single stage cost have zero derivatives. C0p̂
n is given by

C0p̂
n = �1fI11p̂n � dp̂n < 0g(I 0)11p̂n bp̂ + 1fI11p̂n � dp̂n > 0g(I 0)11p̂n h11p̂

= �1fI11p̂n � dp̂n < 0gbp̂ + 1fI11p̂n � dp̂n > 0gh11p̂;

because (I 0)11p̂n = 1 for all n when the derivative is taken with respect to �11p̂ and zero otherwise.
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The average of the derivatives of a single run is obtained by summing for all periods up to N

and dividing by N

1

N

NX
n=1

h
�1fI11p̂n � dp̂n < 0gbp̂ + 1fI11p̂n � dp̂n � 0gh11p̂

i
: (5.2)

Note that
PN

n=1 1fI
11p̂
n � dp̂n < 0g counts the number of times I11p̂n � dp̂n < 0 during N periods.

When divided by N it measures the relative frequency of the event.

Since we can interchange expected value with taking derivatives, it follows that

lim
N!1

c0N = lim
N!1

E

"
1

N

NX
n=1

C0
n

#

= �Pr(I11p̂ � dp̂ < 0)bp̂+ Pr(I11p̂ � dp̂ � 0)h11p̂; (5.3)

given the stationarity of the demand process.

By setting the derivative equal to zero and because Pr(I11p̂n � dp̂n < 0) = 1� Pr(I11p̂n � dp̂n � 0),

it follows that the optimal �11p̂ is such that (5.1) holds.

Now, since one can choose arbitrary values for the other delta variables, it is the case that the

above holds also for the optimal values of those variables. Naturally, the above reasoning can be

repeated for any product.

2

In what follows, we will refer to the above result as the optimality condition1. There are cases

where the optimization algorithm stops short of achieving a set of optimal variables where the

optimality condition is satis�ed. These are the cases where the cost function is non di�erentiable as

indicated in Chapter 3 (see Section 3.4 therein); we will be discussing such situations in Section 5.2.2

below. This optimality condition establishes a clear equivalence between (average) operational costs

and Type-1 service level.

A comprehensive study of re-entrant systems is truly an enormous task to perform, given the

number of parameters to be taken into account: average demand, demand variance, holding costs,

penalty costs, number of machines, number of levels, capacity of the machines, allocation rules and

1It is a necessary condition.
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production rules. We limited the study to one and two products and assumed re-entrant structure

on a single machine. Even in this simpli�ed setting the range of parameters is very wide. We

start by investigating, in a single product setting, the optimal allocation of capacity to the di�erent

levels, when operating on the PS mode. After establishing simple rules for the optimal allocation of

capacity in PS mode, we study the relative performance of the several production rules. For single

product we also study the e�ect of changing holding costs along the line for di�erent machine loads.

One conclusion of this study is that changing both costs and loads, while a�ecting the absolute

value of costs, does not change signi�cantly the relative performance of di�erent modes of operation.

It will be possible to see a very subtle relationship between base stock values and capacity.

Next we will move to a two product setting, �rst con�rming that many results from the single

product case continue to hold. The few cases where they do not, will be brie
y discussed. Then,

we investigate the e�ect of penalty costs, mean demand and demand variance on the relative

performances of the capacity allocation and production rules.

5.2 Single Product

For re-entrant systems producing a single product we are interested �rst on determining how one

should allocate capacity to the di�erent levels when not operating on total sharing of capacity. The

experimental results of [Glasserman and Tayur, 1995] show that capacity should be nondecreasing

along the 
ow line. The main conclusions here are that for a wide range of holding costs along the

line, the optimal capacity allocation is obtained by giving the same share to each level on a uniform

load setting. This conclusion also carries through for multiple products. Therefore, it is possible to

cut out one order of complexity in the problem by always using equal capacity slots on the Partial

Sharing mode.

Next we investigate the impact of holding costs and machine load on the relative performance

of the production rules. For single product I �nd that, while a�ecting the values of the optimal

cost and of the optimal control parameters, the relative performance of the di�erent rules is not

a�ected by the machine load nor by the particular holding cost structure used.

This conclusions will also carry through for multiple products as will be shown. Therefore, we

proceed the experimental study with any choice on these parameters (holding cost pattern and

machine load), given that a particular choice is not establishing a speci�c preference to a rule over
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the others. There are exceptions to this, which will be discussed latter.

5.2.1 On the capacity allocation to levels for partial sharing

We are faced with the problem of deciding how to allocate slots of capacity to each one of the K

levels, out of a global available capacity for each stage (machine). Note that this PS case degenerates

to the NS case when dealing with only one product. This subsection uses Figures 5.1-5.7 as the

basis of discussion.
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Figure 5.1: Re-entrant system operated in the NS mode. C11 = E[d10]=0:7 = 14:29.

Figure 5.1 refers to a situation where the value of C11 was kept �xed and C21 was varied. C11

was �xed at 14.29 for a K = 2;M = 1; P = 1 system. Note that cost decreases as C21 approaches

C11 both from higher and lower values. When C21 < C11, level 2 is the bottleneck and builds up

inventory to avoid starvation of level 1, thus incurring high costs. When level 2 has its capacity

above that of level 1, this extra capacity only increases the speed at which inventory enters the

system but does not a�ect the speed at which it reaches the �nished goods inventory, since level

1 is now the bottleneck. Therefore the extra capacity at level 2 can only increase the cost as also

observed in [Glasserman and Tayur, 1995].

The behavior displayed in Fig. 5.2 refers to the situation where C21 is kept �xed and C11 is

now varied. Low values for C11 incur high costs because level one is the bottleneck and the load

imposed is high. Once, C11 goes above C21, the cost may not change because, although there is
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more capacity available at the last stage, it is not used since the input of inventory is bound by the

output of level 2 which becomes the bottleneck.
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Figure 5.2: Re-entrant system operated in the NS mode. C21 = E[d10]=0:7 = 14:29.
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Figure 5.3: Re-entrant system operated in the NS mode. C11 = E[d10]=0:7 = 14:29.

The plots of the optimal base stock variables for the above two studies are presented in Figs. 5.3-

5.4). They contribute to understanding why the costs have the behavior observed in Figures 5.1-5.2.

Both Figs. 5.3 and 5.4 show that the di�erence in consecutive base stock levels remains constant

after the changing variable becomes higher than the �xed. This explains why costs increase in
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Fig. 5.1 and remain constant in Fig. 5.2. Note also, that whenever level 1 imposes a strong

bottleneck on the system, the quantity z211 � z111 equals C11. Basically, there is no need to have

inventory above the capacity of level one if it is not going to move forward in less than a period.

Observe that same behavior in Fig. 5.5.

10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

 o   z211 − z111

 z211

 z111

 C11

 C11

 Echelon base stock variables as functions of C11 for fixed C21

Figure 5.4: Re-entrant system operated in the NS mode. C21 = E[d10]=0:7 = 14:29.
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Figure 5.5: Re-entrant system operated in the NS mode. C11 + C21 = 2E[d10]=0:7 = 28:57.

One can also take derivatives with respect to the capacity slots in order to determine their

optimal values (with the additional feature that there is a bound for the sum of the capacity slots).
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In this scenario, there is a budget capacity on the machine, C1, and it is necessary to decide

what share to assign to each level. One can expect the optimal allocation of capacity to levels

to depend on the holding costs along the production line. Surprisingly, in the majority of cases,

the optimal allocation is to divide capacity equally among levels. This is observed in most of the

experiments with di�erent values of capacity, holding and penalty costs, number of levels (K),

number of machines (M) and di�erent demand distributions. Figure 5.6 displays the optimal cost

from a typical experiment, and Figure 5.5 displays the corresponding optimal base stock variables.
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Figure 5.6: Re-entrant system operated in the NS mode. C11 + C21 = 2E[d10]=0:7 = 28:57.

However, as the holding costs of early levels decrease to low values, the optimal allocation of

capacity changes. To evaluate the e�ects of holding costs on the optimal allocation of capacity we

ran a set of experiments for the above system keeping the values of h111 = 10 and b1 = 20 constant

while the value of h211 was changed from 0 to 10. For each case, we computed the optimal cost for

the optimal capacity allocation and the optimal cost with C21 = C11 = 12:5. The sum C21 + C11

was kept constant and equal to 25, corresponding to a load of 80%.

Note that one can �x h111 at any value and the conclusions do not change. Once h111 is �xed,

what matters is the relative value of h211 and b1 with respect to h111. We can take ĥ211 = h211=h111,

ĥ111 = 1, and b̂1 = b1=h111 instead, and achieve the same conclusions, given that the total costs will

only be changed by a multiplicative constant and the optimal base stock values will be the same.

Fig. 5.7 displays the results of such study. The graph on the right is a zoom of the graph on
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the left for low values of h211=h111. The line marked with \o" refers to the percent deviation of the

cost achieved with the equal capacity case relative to the absolute optimal cost. The line marked

with \+" refers to the absolute optimal cost. The line marked with \�" refers to the ratio of the

optimal value of C21 over the total capacity.
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Figure 5.7: Capacity allocation as a function of holding costs.

For values of h211 above 10% of h111, the optimal capacity allocation is achieved by dividing C1

into two equal slots. Below that value, the optimal capacity allocation is achieved with C11 > C21.

The limit situation is that of h211 = 0, where it is optimal not to give any capacity to level 2. In

this case, the optimal base stock levels and capacity are such that the earlier machines get less

capacity at the expense of building up an enormous amount of inventory at their output bu�er.

Since inventory at earlier stages does not have a signi�cant cost we can force them to be (nearly)

\in�nite" so creating a production system with less production stages or levels. The capacity of

later machines gets the extra amount taken from the earlier machines. It is as if we would have the

overall length of the production line reduced by some stages. In some cases, the di�erence in cost

between the optimal and equal capacity allocation is as high as 40%.

The value of the penalty cost also a�ects the optimal allocation of capacity. The higher the

value of b1, the higher the value of h211=h111 above which it is optimal to have C21 = C11. As

instances, take a case with b1 = 50 where such solution is optimal for h211=h111 � 0:15, with

b1 = 100 it is optimal for h211=h111 � 0:18, and with b1 = 1000 it is optimal for h211=h111 � 0:21.

For convenience and because the starting holding costs are usually fairly large, meaning that
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space does indeed cost or value is added to the products once they complete the �rst operation, in

the remaining of this chapter the allocation of capacity to levels is done by dividing the total amount

available into equal slots. Thus, some of the results obtained for very low values of the holding

costs should be interpreted carefully. This is specially relevant when comparing the performance

of the priority rule with others on the PS mode. In the TS mode the priority rule is the only one

which is able to build up inventory at early levels in order to emulate the behavior described here.

5.2.2 Total Sharing

This subsection uses the results obtained for a system with K = 3, M = 1, and P = 1, with

the optimization done with respect to the base stock variables, as the basis for discussion. The

study is intended at understanding the e�ect of di�erent holding cost structures for the levels

and at comparing the three production rules on the TS mode and the NS mode. The study also

encompasses an analysis for di�erent loads. We will be presenting only a representative sample of

the type of data obtained. The intermediate holding costs are changed for �xed values of h111 = 10

and b1 = 20.
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Figure 5.8: NS mode with di�erent system loads: optimal cost.

Figure 5.8 displays the optimal cost for the NS mode. The results for the three production

rules under the TS mode for three di�erent production loads as a function of the intermediate

holding costs are shown in �gures 5.9-5.11. The product cost structure ranges from [0; 0; 10; 20] to

[10; 10; 10; 20]. On the coordinate axis the entry (4; 4) represents a system with h311 = h211 = 4,
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h111 = 10, and b1 = 20, that is, [4; 4; 10; 20]. Between label (2; 2) and label (4; 4) lie labels

(2; 4); (2; 6); (2; 8), and (2; 10) in that order, which correspond to the cost structures [2; 4; 10; 20],

[2; 6; 10; 20], [2; 8; 10; 20], and [2; 10; 10; 20] respectively. All data presented for the Priority Rule

refers to priority given to levels closer to completion. Any other priority assignment, in the single

product setting, achieves higher costs (See Section 5.4).
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Figure 5.9: LSR with di�erent system loads: optimal cost.
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Figure 5.10: PR with di�erent system loads: optimal cost.

From the analysis of these �gures (see Figure 5.12 at 90 % load that compares all four rules

in one �gure), it is easy to see that the Priority Rule outperforms the other two rules in the TS
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mode as well as the NS mode. The Equalize Shortfall Rule has only a very slight advantage over

the NS mode and converges to the same levels of performance as those of the Priority Rule. The

LSR performs terribly in the TS mode.
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Figure 5.11: ESR with di�erent system loads: optimal cost.
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Figure 5.12: Optimal cost for 90% load comparing the four di�erent capacity management schemes.

A closer inspection reveals that this is due to the way the scaling of production net needs is

done. All levels except the entering level (level K) may be bound by feeding inventory. Level K

is never bound by feeding inventory because this is assumed to be in�nite. Therefore, if there is

a large shortfall, the production net needs of level K match the shortfall, but all other levels may
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be bound by inventory. Since the scaling (for capacity allocation) is done in terms of production

net needs, it turns out that level K gets a higher share, thus a�ecting the lower levels. So, it is

as if we are giving a higher priority to level K in terms of the dynamic capacity allocation. Thus,

this preference for new material makes it more di�cult for the products to move fast down the

production line. It is known, from the studies on the PR partially shown in the appendix, that

giving priority to level K over the others incurs always high costs. The LSR in the TS mode does

just that. As it will be seen for multiple products, this behavior is not as relevant in the PS mode.

That is due to the fact that the total available capacity for each level is smaller in the PS mode

that it is in the TS mode. Therefore, in the PS mode the distortion of level K over the others has

a smaller impact.
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Figure 5.13: Optimal � variables for the NS mode under an 85% load.

Figures 5.13-5.16 show how the optimal delta levels behave under the four rules at 85 % load

and various holding cost settings. Optimization can either be done with respect to the base stock

variables or with respect to the delta variables. These plots refer to the later, although they could be

generated from the former. The reason for the choice of these plots is because they help make some

of the structural properties of the solutions more evident2. Note that, besides the convergence in

optimal costs, there is also an interesting convergence for the optimal variables between the ESR,

the PR, and the NS mode for single product. The convergence between the PR and the other

two schemes occurs only when the holding cost structure becomes balanced (or even) along the

2Plots of the base stock variables can be found in Appendix D.
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production line. In the cases where the initial stage incurs no costs or very little cost, the PR takes

advantage of that by building up inventory and therefore emulating a system with one or two less

stages. Whenever that is no longer possible due to cost considerations then ESR or the NS mode

achieve the same costs as the PR.
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Figure 5.14: Optimal � variables for the LSR under an 85% load.
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Figure 5.15: Optimal � variables for the PR under an 85% load.

Referring still to Figures 5.13-5.16, note the almost constant behavior of z311 = �311 + �211 +

�111 in the NS mode and the ESR across the di�erent holding costs. Simply add the dashed line
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with the starred line on the plots3. This also occurs for the other rules once the intermediate

holding costs become signi�cant when compared with the terminal holding cost. This seems to

imply that the topmost base stock is more sensitive to the terminal holding and penalty costs than

it is to the intermediate values, if the intermediate values are not too small. For all the rules it

is also evident that the di�erent distribution of holding costs along the the system has the e�ect

of distributing the inventory on the di�erent levels. Note that �311 = z311 � z211 approaches zero

when h311�h211 approaches zero and that �211 = z211�z111 also approaches zero when h211�h111

approaches zero.
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Figure 5.16: Optimal � variables for the ESR under an 85% load.

It is interesting to note that for some instances the sum �311+�211 is constant (Figs. 5.13 and

5.16). The value achieved for those instances equals 2
3C

1. In some other instances, the value �311

or �211 is constant and equals 1
3C

1 (Fig. 5.16). This shows the interaction between capacity and

inventory levels is subtle, and in some sense, very exact.

Recall the proposition in Section 5.1 referring to the optimality condition. Most of the simulation

runs satisfy this condition, but not all. Consider Figures 5.17-5.18 that show the cost function

around the optimal. These plots were taken along the gradient direction. The �rst �gure of the

set was taken for the LSR and the second for the ESR. In the �rst case, the optimality condition

is satis�ed for the �ve values of a = h211. In the second case, the system failed to achieve the

optimality condition for one value of a = h311 (starred on the �gure). Note that it naturally

3Or check Appendix D.
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coincides with a situation where the cost function is non di�erentiable. The failure to achieve

the optimality condition coincides with a case where either �311 + �211 = 2
3C

1, �311 = 1
3C

1,

�211 = 1
3C

1, or some �k11 = 0. In these cases the cost function is not di�erentiable around the

optimum as these graphs show; recall the remarks made in Section 3.4.
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Naturally, to converge to the absolute optimal values, these couplings between successive vari-

ables would have to be explicitly included, reducing the number of variables to consider4. The

4See Appendix C for a more detailed discussion on this issue.
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results here displayed were obtained without this consideration. Whenever a non di�erentiable

point occurs during simulation, the system takes one of the subgradients. It turns out that, as the

cost function is relatively 
at around the optimal, the deviation to the optimal values is not very

signi�cative when doing this. That is, when trying to improve over the values obtained with the

�rst optimization, by explicitly forcing the coupling observed at the end of it, the gain in terms of

cost was marginal in all the cases tested.

5.3 Multiple Products

Turning to systems with multiple products, the objective is to understand the performance of

the capacity allocation and production rules in this setting. As in the single product case, the best

production rule for the TS mode always achieves better costs than the best production rule for the PS

mode, although in some cases the di�erence may be very small. This reinforces the generally held

belief that the bigger the 
exibility, the best advantage one can make of the available resources. A

notable fact is that the LSR is the only rule that degrades its performance in the TS mode relative

to the PS mode. We brie
y explained the reasons for this before. Speci�c observations and insights

gained will be mentioned in the following subsections.

First, we will analyze the e�ect of holding costs on the relative performance of the rules. The

main �nding is similar to that of the single product case. In general, the relative performance of

the rules is not a�ected by the particular holding cost structure for each product. The exception

occurs for negligible holding costs at earlier levels for reasons already discussed.

Once this is established, one can �x the holding costs arbitrarily for each product and move on

to analyze the e�ects of the penalty costs and demand variance.

This study considers systems with a single machine and two products. Each product is required

to visit the machine three times before completion. So, we will have K = 3, M = 1, and P = 2.

The average demand for both products is �xed in all the experiments conducted. Their values are

E[d10] = 8 and E[d20] = 12. The total capacity of the single machine is �xed to an average load of

80%, that is, C1 = (3� 8 + 3� 12)=0:8 = 75.

The presence of multiple products introduces additional options in the way priority can be

assigned within the PR. It was mentioned before, in the single product setting, that within the PR,

the best performances are achieved when higher priority is given to the levels closer to completion.
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For that reason we limited the studies to such situations. In the multiple product setting, even if

one decides to maintain such priority scheme, it is necessary to establish if the multiple products

are intertwined or if one product is always preferred to the other no matter the level. There

is also the option of establishing di�erent priorities for the products on each level. During the

experiments conducted, it was found that the best performance is obtained by keeping the same

priority across levels for all the products. Also, it was found that, for total sharing of capacity the

best performance is achieved when products are intertwined. See Section 5.4.1 for description of

this concept. Therefore, we will be using the following priority scheme on the studies reported here.

A global priority for the products is de�ned. For the partial sharing case that is all needed; for

the total sharing case the global priority for products is applied level by level, starting from the

level closer to completion. So, for K = 3, M = 1, P = 2 on total sharing mode with priority given

to product 1, the production decisions are taken by the order: P 111
n , P 112

n , P 211
n , P 212

n , P 311
n , and

P 312
n . Note that for this type of systems there are a total of (K � P )! = 6! = 720 di�erent priority

assignments.

5.3.1 Same holding cost structure for products

The �rst study was designed to establish a means of comparison for all the other studies. The

basic features of the systems considered are as de�ned above. Additionally we kept the coe�cient

of variation for both products �xed at 1. The costs h11p and bp were �xed at 10 and 20, respectively

for p = 1; 2. Twenty one di�erent systems were generated, by changing the holding costs of level 3

and level 2, that is h31p and h21p for p = 1; 2. All of the 21 systems have the same cost structure for

both products, that is, h311 = h312 and h211 = h212. The cost structure of the �rst system is given

by [0; 0; 10; 20] for both products and the cost structure of system number 21 is [10; 10; 10; 20]. For

each one of the 21 systems was obtained the optimal solution for all three production rules each

with PS and TS. For the case of the PR, there are two choices as discussed earlier. All combined,

there are 8 solutions per system what totals 168 solutions.

Figure 5.19 on the left displays the optimal costs for the PS mode. The �rst observation that

should be made is that the change in holding costs does not a�ect the relative performance for the

several rules. The LSR and the ESR achieve practically the same costs and perform better than

any of the two possible priority assignments. Within PR, priority should be given to product 1

over product 2 to achieve the best performances. In general, all things being equal, priority should
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be given to products with the lower average demand within PR.

For the TS mode it is also the case that priority should be given to the product with the

lowest demand to achieve better performances, as shown in Figure 5.19 on the right. There is no

best rule across all costs in this setting, in contrast to the PS setting. Priority to either product

achieve practically the same best costs for the situations where h31p = 0 and also for the case where

h31p = h21p = 2. ESR performs best in any situation with higher holding costs. The advantage of

the PR in the low holding cost cases is due to the build up of inventory since the costs are so low.

Recall Figure 5.7 and the associated discussion on the case with low holding cost at early levels.
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Figure 5.19: Optimal cost for the PS and TS modes as a function of the same holding costs for
both products.

5.3.2 Di�erent holding cost structure for both products

The second study concerns investigating the relative performances of the di�erent rules when

products have di�erent holding cost structures. The study is composed of two sets of experiments.

In the �rst set, the cost structure of product one was kept constant at [2; 6; 10; 20], and the cost

structure of product two was changed from [0; 0; 10; 20] to [10; 10; 10; 20] thus generating 21 di�erent

systems. In the second set we exchanged the positions of product one and product two, generating

another set of 21 di�erent systems. For each one of the two sets of experiments there were 8

solutions generated, as before. This study is comprised of 336 solutions.

Figures 5.20 and 5.21 on the left display the optimal costs for the PS case for both sets. The
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ESR rule continues to achieve the best performance irrespective of costs for the PS mode. The

LSR is a very close second. Regarding the priority assignment, the conclusion of the previous

sub-section remains valid: priority should be given to the product with the lowest demand, when

the coe�cient of variance is the same. Note the only exception to the conclusion over priorities,

which occurs in the second set with the cost structure of product 1 equal to [0; 0; 10; 20]. This is

the only case, in both sets, where the best performance for PR occurs by giving priority to product

2 over product 1. Note also the convergence in performance for the two choices of priority in the

�rst set (Fig. 5.20). It is noticeable that as the holding cost of product 2 increases and is higher

than the holding costs of product 1, giving priority to product 1 over product 2 achieves a lesser

gain. For the second set the behavior is naturally opposite. As the holding costs of product 1 rise

so does the net gain of switching from higher priority to product 2 to higher priority to product 1.
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Figure 5.20: Optimal cost for the PS and TS mode as a function of the holding costs for product
2.

When it comes to the TS mode (Figs. 5.20 and 5.21 on the right), things change a little for the

PR. One observation continues to hold: the ESR is still the best rule for moderate to high holding

costs. Also for moderate to high costs, priority to product 1 outperforms priority to product 2.

Only for very low holding costs the PR achieves the overall best performance. Moreover, priority

to product 2 is better than priority for product 1 only for low holding costs of the second set, when

the holding cost of product 1 is very close to zero. Also, the performance of the two choices for the

PR converge when the holding costs of product 2 rise above those of product 1, and they diverge

in the opposite situation.
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This and the previous sub-sections have shown that the average demand seems to be a deter-

minant factor in deciding to which product one should give higher priority. It is now necessary to

see the e�ect of changing the penalty cost for the products, which were kept constant and equal

for both products. This should probably justify why the ESR achieves an overall best score of all

the rules. Since the penalty for backlog is the same for both products, as are the terminal holding

costs, it is as if the shortfall has the same price (or cost), and therefore trying to equalize it should

be a good strategy.
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Figure 5.21: Optimal cost for the PS and TS mode as a function of the holding costs for product
1.

5.3.3 Changing the penalty costs

In studies described so far, although changing the holding cost patterns for the products, the

penalty costs were kept constant. This third study analyses the e�ect of changing the penalty costs.

So, the basic features remain the same as those of the two earlier studies. Two sets of experiments

were run. The �rst set is characterized for having the cost structure for product one �xed at

[6; 8; 10; 20] and the cost structure of product two is [2; 6; 10; b2], with b2 2 [10; 50]. The second set

of experiments has the cost structure of product one at [6; 8; 10; b1], with b1 2 [10; 50] and the cost

structure of product two �xed at [2; 6; 10; 20]. Each of the two sets comprises 21 di�erent systems,

leading to the generation of 336 di�erent solutions.

Let us analyze the results obtained set by set. The optimal costs of the �rst set in the PS mode
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are displayed in Figure 5.22 on the left. As before, both the ESR and the LSR tie for the �rst place

being very close to each other. It turns out that the ESR wins for high values of b2 and loses to the

LSR for low values. For the PR, the penalty cost variation introduces a more interesting behavior.

There is a value of b2 above which the best performance is achieved by the PR when priority is

given to product 2. However, only for very low values of b2 is possible for the PR with priority

given to product 1 to approach the performance of the ESR and the LSR.
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Figure 5.22: Optimal cost for the PS and TS mode as a function of the penalty cost for product 2.

The ESR is still the winner for the TS mode for a wide range of values. O� those cases, the

PR with priority given to product 1 achieves the best performance for low values of b2. As in the

PS mode, there is a value for b2 above which priority should be given to product 2. Observing the

slope of the curves in Figure 5.22 on the right one can argue that eventually there will also be a

value for b2 above which the best production rule is the PR, with priority given to product 2. To

con�rm this we ran a case with b2 = 200. The optimal cost achieved with the ESR was 1204.4 and

the PR, giving priority to product 2, achieved a cost of 1176.5, thus con�rming the hypothesis.

Turning to the second set of this study, where the value of b1 was changed, in the PS mode

there is still a competition between the LSR and the ESR, and for high values of b1, the PR with

priority given to product 1 achieves the best costs. See Figure 5.23. The ESR wins for low values

of b1 and the LSR wins for intermediate values. Priority to product 2 is completely out of contest,

except that there is a range of values where it beats priority to product 1. As should be expected,

this occurs for values of b1 much lower than those of b2.
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In the TS mode, the only rules that are worth mentioning are the ESR and the PR with priority

to product 1. In fact, there is a value of b1 below which the ESR should be used and above which

the PR should be used. This observation and those made earlier on this sub-section re-enforce the

observation we set forth earlier that the ESR performs best when the shortfalls have similar prices.
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Figure 5.23: Optimal cost for the PS and TS mode as a function of the penalty cost for product 1.

5.3.4 Changing the coe�cient of variation for the demand

In this next study, the objective is to investigate the e�ect of variance on the relative performance

of the production rules.

Table 5.1: Parameters for the experiments.

Set Cost structure Cost structure Variance Product
for product 1 for product 2 range

1 [6, 8, 10, 20] [2, 6, 10, 14] 0.1 { 1.0 2
2 [6, 8, 10, 20] [2, 6, 10, 14] 0.1 { 1.0 1
3 [6, 8, 10, 20] [2, 6, 10, 50] 0.1 { 1.0 2
4 [6, 8, 10, 20] [2, 6, 10, 50] 0.1 { 1.0 1
5 [6, 8, 10, 14] [2, 6, 10, 20] 0.1 { 1.0 2
6 [6, 8, 10, 14] [2, 6, 10, 20] 0.1 { 1.0 1
7 [6, 8, 10, 50] [2, 6, 10, 20] 0.1 { 1.0 2
8 [6, 8, 10, 50] [2, 6, 10, 20] 0.1 { 1.0 1

The dimension of the system, average demand for the products, and load were kept the same
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as before. Eight sets of experiments were run. Their characteristics are described in Table 5.1.

Each of the eight sets has 10 di�erent systems for which 8 di�erent solutions were generated, which

totals 640 solutions.

1 2 3 4 5 6 7 8 9 10
400

450

500

550

600

650

700

750

800

850

C
os

t

Optimal cost for Partial Sharing

Inverse of the coefficient of variance for product 2

o − LSR

+ − PR: 1,2

x − PR: 2,1

* − ESR

1 2 3 4 5 6 7 8 9 10
400

450

500

550

600

650

700

750

800

850

Inverse of the coefficient of variance for product 1

C
os

t

Optimal cost for Partial Sharing

o − LSR

+ − PR: 1,2

x − PR: 2,1

* − ESR

Figure 5.24: Optimal cost for the PS mode of set number 1 and number 2.
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Figure 5.25: Optimal cost for the PS mode of set number 3 and number 4.

Figures 5.24 and 5.25 display the optimal costs for the �rst four sets in the PS mode. In all

but the second set, the ESR is the best rule with the LSR as a close second. For the second set,

we have the PR as the best rule and the LSR as second. In the second set, note that all elements

are combined in the same direction to favor the PR: the product to which is given priority has the
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lowest demand, the lowest variance, and the highest penalty cost.
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Figure 5.26: Optimal cost for the TS mode of set number 1 and number 2.
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Figure 5.27: Optimal cost for the TS mode of set number 3 and number 4.

These results allow the conclusion that variance has a very strong e�ect on the relative per-

formance of the PR. In the �rst set, as the variance of product 2 decreases, giving priority to

product 1 (with the lowest demand) does not translate in such a high gain over priority to product

2. Set number 2 also shows a clear preference for the product with the lowest demand. In set three

the decrease in variance for product 2, combined with its higher penalty cost, translates into an

increasing gap between product 2 and product 1. In set number 4, at �rst the winner is priority to
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product 2 which has the higher penalty cost but, as the variance of product 1 decreases, priority

should then be given to product 1 despite its lower penalty cost.
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Figure 5.28: Optimal cost for the PS mode of set number 5 and number 6.
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Figure 5.29: Optimal cost for the PS mode of set number 7 and number 8.

The optimal costs for the �rst four sets when capacity is run on a TS mode are shown in

Figures 5.26 and 5.27. The ESR achieves the overall best performance in sets number 1 and 4.

In set number 2, priority to the product with lowest mean demand, lowest variance and highest

penalty cost (product 1) is the best choice. In set number 3, the ESR and priority to product 2

(lowest variance and highest penalty cost) share the �rst place. The PR outperforms the ESR when
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variance for product 2 is su�ciently low. However, note that the di�erences between these two for

set number 3 are very small.
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Figure 5.30: Optimal cost for the TS mode of set number 5 and number 6.
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Figure 5.31: Optimal cost for the TS mode of set number 7 and number 8.

The last four sets of experiments do not change signi�cantly the main observations made for

the earlier sets. The LSR and the ESR share the �rst place on the PS mode, except for set number

8 (Fig. 5.29, right). For this set, the �rst place is shared between the LSR and priority to product

1, which is the product that simultaneously has the highest penalty cost, lowest mean demand,

and lowest variance. The advantage of the PR over the LSR grows as the variance for product
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1 decreases. The relative performance of the two choices of priority does not change signi�cantly

from those observed earlier in the �rst four sets.

In summary, for the TS mode, the winner is again the ESR, except for the cases where there

is a strong favorable combination of parameters towards a single product being given priority over

the other.

5.3.5 E�ects of Capacity for the TS Mode

Another aspect of interest is the evaluation of the e�ect of capacity distribution along a pro-

duction line on the di�erent machines. That is, given that some machines may have di�erent loads,

or di�erent capacities when loads are uniform, is there a real advantage in using all of the available

capacities on the TS mode?

To investigate this aspect a series of systems were evaluated. The dimensions areK = 2,M = 3,

and P = 2. The average demand for product 1 is 12 and for product 2 is 8, both with coe�cient

of variation set at 1. The cost structure for product 1 is [5 6 7 8 9 10 20] and for product 2 is

[2 2 2 10 10 10 50]. For each of the rules two sets of studies were performed. In the �rst set, each

one of the capacities was varied from 50 to 100 while keeping the other two �xed at the value of 50.

In the second set, each one of the capacities was kept �xed at 50 while the other two were varied

from 50 to 100.

In Fig. 5.32 is the plot of optimal costs for the LSR operated on the TS mode. The plot on the

left corresponds to the cases where only one of the capacities is changed from 50 to 100. The plot

on the right corresponds to the cases where only one capacity is �xed at 50 while the other two

change from 50 to 100 with equal values.

When only one capacity is increased (plot in the left), cost increases as C3 increases, for reasons

similar to those discussed earlier when referring to the input of new material into the system. In

fact, during the busy periods, given that C3 is higher it allows the input of more material than the

downstream machines can process it. Therefore, this extra material only increases holding costs.

When C2 increases, cost does not change given that whatever gets through machine C3 is always

under the capacity of machine C2. Therefore, since there is no change in the way inventories move

forward there should not be any change in costs. Things change when it is C1 to change. There is

some advantage in terms of having the capacity of the last machine a little over the previous two.
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This is easily explainable, since this extra capacity allows for faster recoveries during busy periods.

However, note that the improvement is not only marginal but it also stabilizes after some value of

capacity. In fact, the advantage on having extra capacity at the last machine is only relevant for

the last operation, since all the other levels continue to be constrained by the other machines in

the same fashion as with C1 = 50. There should be a point for C1 after which the edge provided

by the extra amount of capacity becomes irrelevant and the cost should stabilize as observed.
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Figure 5.32: E�ect of capacity along the line for the LSR.

When it comes to changing two capacities at the same time, the results are in line with the �rst

study. If there should be an advantage for having an unbalanced production system, it occurs for

the last two machines. Any other situation, where machine C3 has higher capacity, increases costs

relatively to the balanced case. That is why the only curve displaying a decrease in costs is the one

where C3 is kept �xed.

In Appendix D there are similar plots for the other two production rules. They are no di�erent

in structure relatively to those of Fig 5.32.

It is also interesting to compare the performance of the production rules to see if this type

of change in capacity may change the relative performance of them. In Fig. 5.33 there are plots

comparing the rules for the best con�gurations of capacity. The plot on the left refers to the case

where only C1 is varied and the plot on the right refers to the case where only C3 is kept �xed.

Again, as in previous studies when using the PR, priority should be given to the product with
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Figure 5.33: Comparison among the rules.

the lowest average demand and simultaneously with the highest penalty cost. The ESR continues

to be the best rule across the range of values considered. The change in capacity for the di�erent

machines does not a�ect in any way the relative performance of the rules.

5.4 Conclusions

This chapter concentrated on studying a multi-product re-entrant system with capacity con-

straints facing random demands via simulation based optimization. It is hoped that the insights

gained in Sections 5.2 and 5.3 provide guidelines into managing these systems e�ectively. The

evidence displayed in these past sections seems to point out a clear set of conclusions that can be

drawn:

� Service versus cost performance. There is a clear connection between optimal echelon base

stock values and the service level obtained as given by Proposition 5.1.1. They are equivalent

measures of performance.

� Allocation of capacity to levels. Unless the holding costs of earlier stages are very low, equal

allocation of capacity to levels is optimal (see Fig. 5.7).

� PS mode vs. TS mode The best rule in TS mode outperforms the best rule in PS mode.

However, if LSR is used in both modes, PS performance is better (see Fig. 5.12 and 5.23).
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� Load and holding costs impact on performance.

{ The holding costs along the production line have a limited in
uence on the relative

performance of the several production rules; only the cases with zero (or very low values

of) holding costs introduce distortions on the best rule to apply, because the PR rule

manages to raise inventory to in�nite levels, thus reducing the apparent length of the

production system (see Fig. 5.12).

{ The load has no e�ect on either the qualitative properties of the rules or in the relative

performance (see Fig. 5.8)

{ As loads decrease to very low values (uniformly across products), and the variances of

demand are also uniform, all production rules and capacity allocations behave similarly.

For low loads, capacity bounds are less frequent so that the di�erent dynamic and static

capacity schemes play no signi�cant role.

� Inventory levels. There is a subtle connection between capacity and inventory levels. For

balanced systems (or when capacity of lower level is below capacity of higher level) with high

loads, the optimal � variables tend to match the capacity of the downstream machine/level

as long as the value added per operation is not too low (see Fig. 5.4 and 5.13). When the

value added of one operation approaches zero, the associated optimal � variable tends to zero

(see Fig. 5.16).

� Performance of the PR. From the experimental results in the Section 5.4.1 we may restrict

ourselves to the following rules: (1) priority should be given to items closer to completion;

(2) priority to products should be intertwined, i.e., there is a global priority to individual

product types used at each level, but each level is taken care of completely before moving to

the next in the list; and (3) priority at each level and stage across all products should be the

same.

{ The average demand of products in
uences strongly the relative performance of the

PR when deciding which product to assign priority. All other parameters being equal

(variance of demand and penalty costs), priority should be given to products with the

lowest average demand (see Fig. 5.19 on the left).
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{ The penalty cost of products in
uences strongly the relative performance of the PR. All

other parameters being equal (expected demand and demand variance), priority should

be given to products with the highest penalty cost (see Fig. 5.22).

{ The variance of the demand process in
uences strongly the relative performance of the

PR. All other parameters being equal (expected demand and penalty costs), priority

should be given to products with lowest variance. Overall cost is more signi�cantly

reduced when decreasing the demand variance of products with higher expected demand

(see Fig. 5.25).

{ The products that should be given priority, in general, are the ones that exhibit a

combination of the following features: low mean demand, high penalty costs, low variance

(see Fig. 5.31 on the right). Trade-o�s have to be made in case there is a con
ict and

simulation can be used to evaluate the best among a set of dominant alternatives.

� In the PS mode.

{ When there is no strong case for a product to be given priority over the other, both the

ESR and the LSR perform very well (see Fig. 5.20 on the left).

{ When there is a strong case for a product to be given priority over the other, the best

choice is the PR and the LSR is a very close second (see Fig. 5.29 on the right).

� In the TS mode.

{ When there is no strong case for a product to be given priority over the other, the ESR

is the best performer (see Fig. 5.22 on the right).

{ When there is a strong case for a product to be given priority over the other, the PR

is the best performer and the ESR is a close second, but in some cases (low variance

or high penalty costs) its costs may be signi�cantly higher than those of the PR (see

Fig. 5.31 on the right).

Future work will have to address non-uniform loads, yield losses, random capacity, and di�erent

control policies. The in
uence of some of these features will be discussed in Part III. Before closing

this chapter, we will present a sample of data relative to the determination of the priority scheme

when using the PR.
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5.4.1 Alternate Choices within PR

The previous studies assumed a particular priority scheme for the PR, based on the evidence

collected in many experiments conducted. This section presents the essentials of those studies in

an attempt at justifying those choices. There is a need to di�erentiate between systems processing

a single product and systems processing multiple products.

Single product

In a single product setting, only one priority assignment to levels was considered when operating

the system in the TS mode (Section 5.2). It was then claimed that giving priority to levels closer

to demand is the best among the K! options. Let us look at some data, obtained for a system

with K = 3, M = P = 1, and 80% load, to justify this statement. There are 3! = 6 di�erent

priority assignments for the levels. Table 5.2 displays the optimal costs for each one of the priority

assignments. The leftmost column lists the levels by decreasing order of their priority. Thus 1-2-3

stands for priority to level 1, then to level 2, and �nally to level 3; similarly, 3-1-2 stands for priority

to level 3, then to level 1, and �nally to level 2. There is a tie for the optimal assignment, that

occurs in both situations for which priority to level 3 is lowest. Any other priority assignment,

where level 3 is not the last in priority, incurs a higher cost, and the highest among these costs is

over three times higher than the lowest (optimal) cost. The behavior here displayed is typical of all

systems for which this comparison, between di�erent priority assignment of levels on the TS mode,

was made.

Table 5.2: Optimal costs for single product.

Priority of levels Optimal Cost

1 - 2 - 3 463.57
1 - 3 - 2 677.69
2 - 1 - 3 463.57
2 - 3 - 1 1110.14
3 - 1 - 2 701.75
3 - 2 - 1 1390.86

In general, the range of costs is usually very wide and the lowest costs are achieved whenever

level K is the lowest in priority. For these situations (level K having the absolute lowest priority),

if there is ever a di�erence in costs, the case where priority increases as the products are closer to
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demand always incurs the lowest. Therefore, in all experiments in a single product setting, priority

was assigned in this manner.

Multiple product

In a multiple product setting there are more options within the PR. Several experimental studies

were performed. The �rst study serves as a benchmark and it is similar to the one just presented

for the single product setting. Therefore, consider a case with K = 3,M = 1, P = 2, and 80% load.

The average demand of product 1 is 8 and for product 2 is 12. Also, their holding and backlog

costs are di�erent. Both product demands have the same coe�cient of variance.

Table 5.3: Optimal costs for multiple products.

Priority of levels Priority of products Optimal Cost

1 - 2 - 3 1 - 2 771.41
1 - 3 - 2 1 - 2 1003.93
2 - 1 - 3 1 - 2 771.41
2 - 3 - 1 1 - 2 1644.92
3 - 1 - 2 1 - 2 1033.68
3 - 2 - 1 1 - 2 1654.78

1 - 2 - 3 2 - 1 752.62
1 - 3 - 2 2 - 1 1031.05
2 - 1 - 3 2 - 1 752.73
2 - 3 - 1 2 - 1 1613.78
3 - 1 - 2 2 - 1 1066.89
3 - 2 - 1 2 - 1 1635.31

The overall product priority was �xed and the priority to levels was changed in the same manner

as in the single product case. Therefore, a situation where the priority for levels is f2; 1; 3g and

the priority of products is f2; 1g signi�es that, in the TS mode, production decisions are taken in

the order: fP 212; P 211; P 112; P 111; P 312; P 311g. That is, one decides the production amounts level

by level, according to the priority to levels and on each level one uses the global product priority.

Table 5.3 displays the optimal costs for the 12 di�erent combinations. There are six di�erent

priority lists for each possible product priority.

The best assignment of priority to levels is f1; 2; 3g no matter what is the priority of the

products. There is again a tie with f2; 1; 3g, when priority is given to product one over product

two. However, such a tie is no longer present for the opposite case of product priority; nevertheless,
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the di�erence is minor. This is in line with what was observed in the single product setting.

Table 5.4: Comparison between method 1 and method 2.

Priority of levels Priority of products Method Optimal Cost

1 - 2 - 3 1 - 2 1 771.41
1 - 2 - 3 1 - 2 2 786.38

1 - 2 - 3 2 - 1 1 752.62
1 - 2 - 3 2 - 1 2 783.04

There is still another priority scheme to be considered in the multiple product setting. So far, the

data presented concerns studying priorities primarily between levels. Alternately, one may choose

to assign priority primarily by product. That is, if priority to levels is f2; 1; 3g and to products

is f2; 1g the production decisions may be taken by the order fP 212; P 112; P 312; P 211; P 111; P 311g.

Table 5.4 presents the comparison of this method (which will be called method 2) with the previous

(which will be designated as method 1). Given the previous observation on the priorities to levels,

the systems were run only for the best choice of priority for the levels.

Table 5.5: Comparison of method 1 and method 2 as the penalty cost changes.

Priority of products b1 b2 Method Optimal Cost

1 - 2 14 20 1 771.41
1 - 2 14 20 2 786.38
1 - 2 1000 20 1 1186.13
1 - 2 1000 20 2 1194.68

2 - 1 14 20 1 752.62
2 - 1 14 20 2 783.04
2 - 1 14 1000 1 1329.18
2 - 1 14 1000 2 1353.34

From this table, one concludes that method 2 is worse than method 1 for the parameters

presented. We need to investigate if changing variance and penalty costs produces any qualitative

change to the above conclusions. All the data presented from now on was obtained by using the

list f1; 2; 3g for priority to levels. Table 5.5 presents the comparison in costs for both methods as

the penalty cost of either product 1 or product 2 is changed. If there should be any change, that

would have to occur when the product which has highest priority also has the highest penalty cost.

For this reason we have only changed the penalty cost of the product with the higher priority. The
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conclusion is that the penalty cost change does not a�ect the previous conclusion: it is better to

solve level by level rather than product by product.

Table 5.6: Comparison of method 1 and method 2 as the demand variance changes.

Priority of products b1 b2 E[d10]=�
1 E[d20]=�

2 Method Optimal Cost

1 - 2 1000 20 5 1 1 697.33
1 - 2 1000 20 5 1 2 697.77
1 - 2 2000 20 5 1 1 717.08
1 - 2 2000 20 5 1 2 718.07

2 - 1 14 1000 1 5 1 643.80
2 - 1 14 1000 1 5 2 638.57
2 - 1 14 2000 1 5 1 677.30
2 - 1 14 2000 1 5 2 669.86

Finally, Table 5.6 presents the results of changing the coe�cient of variance for the demand.

The systems were run by giving priority to the product with the lowest demand variance and

highest penalty cost simultaneously. For product 1, the one with the lowest average demand, the

previous qualitative conclusions do not change; that is, it is better to use method 1, even when the

variance is lower. However, for product 2, the one with the highest average demand, method 2 is

better than method 1 when the variance decreases. Note also that the di�erences for product 1 {

�rst four rows of the table { are almost negligible. The di�erences for product 2, last four rows of

the table, are a little higher, but under 1.2%. We do not present results for priority to products

with lowest penalty cost or highest variance since those are always worse than the ones displayed

here. If we keep decreasing the variance of product 1 we will eventually come to a point where

method 2 is preferable to method 1. We ran a test case for E [d10]=�
1 = 10 and b1 = 1000 where

method 2 beats method 1 by a slight margin.

The data here presented, as a sample of many other experiments conducted, constitutes a strong

case in favor of method 1, despite the results of this last table. This is why the data of the early

sections of this chapter were obtained with method 1 and by giving higher priority to levels closer

to demand, when experimenting with the PR for multiple products in the TS mode.



Part III

Non Uniform Loads and Random

Yield
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Chapter 6

Theoretical Foundation Revisited

This chapter deals with the extension of some of the theory presented in Chapters 3 and 4 to

systems where the loads are not uniform and where random yield is present. Many of the validation

results carry through trivially. However, there are some exceptions which will be discussed in detail

below. A notable one being the stability issue, as the technique to establish it is drastically di�erent

from the one presented earlier. Consequently, we open this chapter with a complete stability

analysis for re-entrant systems, subject to random demand, random yield, and with non uniform

loads. The stability discussion will be done by phases. First, the model of Part II will be changed

to accommodate non uniform loads while assuming perfect yield (Section 6.1). In the second phase,

the model of Part II will be changed to accommodate random yield while keeping the uniform load

assumption (Section 6.2). Finally, both random yield and non uniform loads will be pieced together,

thus concluding the stability analysis (Section 6.3). After this, in Section 6.4, the validation results

will be reviewed and the signi�cant changes to the earlier results will be underlined. Section 6.5

will discuss the impact of non uniform loads into the main conclusions drawn in Chapter 5.

6.1 Non Uniform Loads and Perfect Yield

We review the models presented in Section 3.1 to accommodate this extra feature. The recur-

sions for inventory, echelon inventory, and shortfall do not change. What changes are the speci�cs

of the production decisions. Recall that the production expression for the LSR operated in the PS

mode is

P kmp
n = fkmp

n gkmn : (6.1)
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Since the production net needs, fkmp
n , only depend on shortfalls and feeding inventories their

expressions and derivatives do not change to include the non uniform loads. What changes is the

expression for gkmn , because it accounts for the impact of the net needs over the available capacity.

Let us assume that every product p on level k and stage m needs �kmp units of capacity per unit of

material produced. In the analysis so far it was assumed that �kmp = 1 for all k;m; p. Given the

inclusion of the �kmp constants, not necessarily all equal to 1, the expression for gkmn becomes:

gkmn = min

(
CkmP

p �
kmpfkmp

n

; 1

)
(6.2)

Whereas fkmp
n expresses the production net needs in terms of parts, the term �kmpfkmp

n expresses

those needs in terms of machine capacity. According to (6.2), its derivative will be

g0(z)
km

n
=

8><
>:

�Ckm
P

p
�kmpf 0

(z)

kmp

n

(
P

p
�kmpf

kmp
n )2

bound by capacity

0 no bound in capacity

(6.3)

This is the only change we need to take care of in order to model the existence of non uniform

loads for the LSR. We skip the presentation of the changes needed for the other two production

rules given the fact that, as in Chapter 4, it su�ces to show stability for the LSR. Recall that the

stability arguments were solely made in terms of the overall dynamic equation for shortfalls and it

is possible to show that all rules follow similar such equations. Also, the model extension to the

TS mode follows trivially from the discussion above.

As before, let us �rst address the discussion of stability for the PS mode.

6.1.1 Stability and Regeneration for Partially Shared Systems

For this setting there is no change relative to the partially shared systems with perfect yield

and uniform loads by replacing jjY km
n jj with jjY km

n jj� , de�ned as

jjY km
n jj� =

PX
p=1

�kmpY kmp
n : (6.4)

With this change, equation (4.11) becomes
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jjY KM
n+1 jj� = maxf0; jjYKM

n +Dnjj�(1�
CKM

jjY KM
n +Dnjj�

)g

= maxf0; jjYKM
n jj� + jjDnjj� � C

KMg (6.5)

and equation (4.13) becomes

jjY km
n+1jj� = max

n
0; jjY km

n jj� + jjDnjj� � Ckm;

(6.6)

PX
p=1

�kmp
�
Y (km)+p
n + dpn � (z(km)+p � zkmp)

�+9=; :

These dynamic equations, for the weighted shortfall sums, fall exactly into the framework de-

scribed in Section 4.1. Therefore, the adequate stability condition becomes the following.

Theorem 6.1.1 Suppose the demands fDn;�1 < n <1g are ergodic as well as stationary. If

E[jjD0jj� ] =
PX
p=1

�kmpE[dp0] < Ckm for all k;m: (6.7)

then the shortfall process is stable when the system is operated in the PS mode.

Proof: After performing the changes above indicated, the proof is the same as that of Theorem 4.1.3.

2

All the results presented for the PS mode in Section 4.1 are valid for this setting without change.

6.1.2 Stability and Regeneration for Totally Shared Systems

A simple observation of equations (6.5) and (6.6) helps to understand why we cannot resort to

the technique used in Section 4.1, when proving stability for totally shared systems with perfect

yield and uniform loads. Note that the stochastic dominance may be destroyed when production

is bound by inventory. When loads are uniform, all values of �kmp = 1 and stochastic dominance
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follows trivially. This dominance would be maintained if the value Y
(km)+p
n would be multiplied by

� (km)+p in the expressions above, but it is multiplied by �kmp. In general �kmp 6= � (km)+p.

For totally shared capacity systems we are unable to present a strong stability proof for all

production rules as before. There is a need to introduce some changes on the structure of the

control policies. The stability will be established by presenting a particular choice of parameters

for the new control policy that yields a stable system. Given the proposed choice of parameters is

feasible and induces stability, it necessarily constitutes an upper bound on the cost. The optimal

parameters will have to incur lower costs. Therefore, by providing an upper bound which is stable

the stability of the system will be asserted.

The main structural change on the control policies proposed is the addition of an input bound.

That is, there is a need to impose a maximum amount of new material entering the production

system for each product per period. Although some bound exists already, given that machines have

�nite capacity, this is not enough to establish stability. It is necessary to de�ne tighter bounds.

Recall that in Chapter 5 the PR performs quite poorly when the entering level has priority over

the others. Recall also that the degradation of the LSR when switching from the PS mode to the

TS mode was due to the fact that the potential input of new material jumped from CKM to a total

of CM per period, distorting the proportions between the several levels in favor of the input of new

material. This preference is given at the expense of a slower travel speed along the production line.

Moreover, it was shown in Chapter 5 that in the PS mode a system with K = 2, M = P = 1, and

C21 > C11 improves its performance if we chop the excess capacity of level 2, making C21 = C11.

Then it was argued that having a higher capacity on level 2 only increases the speed at which

inventory moves to the bu�er feeding level 1, but does not make it move faster towards the output

bu�er, since level 1 is the bottleneck.

Although stability is not at risk for the cases discussed in Chapter 5, the fact that we could

bene�t from the existence of an input bound in such cases constitutes strong evidence favoring

the de�nition of this richer class of control policies. Besides having the base stock variables as the

control parameters, we can have the input bound as an additional control variable, thus de�ning a

wider class of multi-echelon base stock policies. The existence of such bounds is crucial to establish

stability.

With this new class of policies in mind, it is now easy to de�ne a set of parameters that stabilizes
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any of our re-entrant systems for any of the proposed production rules. Let

�p = min
k;m

f
E[dp0]PK

i=1

PP
j=1 �

imjE[dj0]
Cmg for all p = 1; : : : ; P; (6.8)

and de�ne I(KM)+p = �p as the bound for the input of product p into the system. That is, I(KM)+p

is the feeding inventory of stage M and level K. Set �kmp = �p for all k and m, except for �11p

that may assume any positive value.

Assume that the system is operated using any production rule in the TS mode. With this set

of delta variables all inventory variables, except I11pn , will always be �p for each product. At any

level and stage, the amount

KX
k=1

PX
p=1

�kmp�p � Cm; (6.9)

by the de�nition of �p. Therefore, there is never a bound in capacity and the system behaves

as if there is no capacity sharing, thus being operated as if there exist P di�erent and decoupled

production systems with no re-entrance. The only bound in capacity occurs for the equality between

production needs and capacity which can be seen as a no capacity bound situation, since the match

is perfect.

We know that for no sharing of capacity a system is stable as long as �kmpE[dp0] < Ckmp. This

conclusion is easily derived from the stability result for partially shared systems with single product,

discussed before (Theorem 6.1.1). Slicing the capacity of machine m into k � p slots and calling

each one Ckmp, for k = 1; : : : ; K and p = 1; : : : ; P and adding over all products and levels we get

KX
k=1

PX
p=1

�kmpE[dp0] <
KX
k=1

PX
p=1

Ckmp = Cm; (6.10)

which is the stability condition for totally shared systems with non uniform loads and perfect yield.

This condition holds i� E[dp0] < �p for all p = 1; : : : ; P .

Having provided a set of parameters which stabilizes the production system for any production

rule in the TS mode it should now be evident that the optimal set of parameters will have to incur

lower costs than the costs incurred by the parameters just de�ned. The optimal set of parameters

cannot, therefore, induce an unstable system as long as �p > E[dp0]. De�ne the original class of
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base stock policies as �0 and the new class introduced as �1. Clearly, �0 � �1 and the following

result has been proven.

Theorem 6.1.2 Suppose the demands fDn;�1 < n < 1g are ergodic as well as stationary. If

(6.10) holds, then the shortfall process is stable when the system is operated in the TS mode, using

class �1.

The regeneration and explicit regeneration times discussed earlier carry through trivially for

this setting.

Remarks on the Class �1

For the system to be stable, the minimum amount of each product that can get through the

system at any period has to be above the average demand. This is the same as saying that the

bottleneck machine, the machine for which (6.9) holds in the equality, has capacity above the load

imposed by the demand process.

Note that one can use any of the production rules and, in the particular case of the priority

rule, one can use any arbitrary priority list without risking stability. This constitutes a strength of

the class of policies introduced (recall the literature review on stability).

Moreover, the argument here used for stability allows us to drop one of the main constraints

of the present model: the re-entrant structure adopted. This technique extends easily to more

complex re-entrant systems where not all the products are processed by the same number of levels

and not all the products visit all the machines in the same order. Such was not the case of the

stability proof for systems with uniform loads, since the stochastic dominance argument relies on

the fact that the shortfalls added belong to the output bu�ers of the same machines.

The optimal policy does not necessarily have the above bound for the entering inventory. It may

be the case that, during the optimization, the solution converges to values of I(KM)+p which are

equal or above CM for all p = 1; : : : ; P . If such is the case we may drop the explicit bound on input

inventory, since being above CM has no physical signi�cance. The cases where the optimization

procedure converges to values of I(KM)+p below CM , can be clearly identi�ed as systems that may

need such bound for the input inventory in order to remain stable. Naturally, it is not necessarily

the case that all the systems for which the optimal I(KM)+p is under CM are only stabilized by
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policies from class �1, since cost considerations are taken into account when determining such

values. Note also that while policies in �0 are nonidling in terms of the shortfalls, such is no longer

the case for policies in �1.

6.2 Uniform Loads and Random Yield

To accomodate random yield we simply change the dynamic equations for inventories and for

shortfalls. The inventory dynamic equations now assume the form

Ikmp
n+1 =

8><
>:
I11pn � dpn + �11pn P 11p

n m = 1 and k = 1

Ikmp
n � P

(km)�p
n + �kmp

n P kmp
n otherwise

(6.11)

The �rst line refers to the depletion of inventory by the external demand at the last stage and

level of production. The second line of (6.11) describes the standard evolution of an intermediate

level and stage: inventory of a given level and stage is depleted by the amount engaged in production

by the downstream stage and level, and is increased by the amount actually produced at the

corresponding level and stage.

The multiplicative random yield, �kmp
n , is assumed to be independent for each level, stage,

and product. Also, it is assumed that the random yield is continuous and i.i.d. for each period

taking values in the set [0; 1]. Demands are assumed continuous, independent across products, and

i.i.d. for each product along time. Both sets of random variables, demand and yield, are assumed

independent.

The shortfall dynamic equation in the presence of random yield assumes the following form:

Y kmp
n+1 = Y kmp

n + dpn � �
kmp
n P kmp

n +
q;r=1;1X

qr=(km)�

(1� �qrpn )P qrp
n ; (6.12)

where the additional summation accounts for the parts lost in the downstream machines due to the

presence of random yield.

For the random yield case it is easy to show stability for single product, NS mode, with uniform

or non uniform loads. To prove stability for the multiple product cases and other sharing schemes

we follow the approach of Section 6.1.
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6.2.1 Stability and Regeneration for Partially Shared Systems

The presence of random yield in the context of uniform loads does not change the basics of

the formal result. The main di�erence is the explicit stability condition. Aside from that, we can

repeat the same steps as in Section 4.1. Therefore, the stability condition proof will be presented

and the natural extension of previous results to this situation will be listed.

Assume a system operating in the PS mode with the LSR and replace P kmp
n in the dynamic

equation for the shortfall variables.

Y kmp
n+1 = Y kmp

n + dpn +
q;r=1;1X

qr=(km)�

(1� �qrpn )P qrp
n � �kmp

n minffkmp
n ; fkmp

n

CkmPP
p=1 f

kmp
n

g

= maxfY kmp
n + dpn +

q;r=1;1X
qr=(km)�

(1� �qrpn )P qrp
n � �kmp

n fkmp
n ;

Y kmp
n + dpn +

q;r=1;1X
qr=(km)�

(1� �qrpn )P qrp
n � �kmp

n fkmp
n

CkmPP
p=1 f

kmp
n

g (6.13)

where fkmp
n = minfY kmp

n + dpn; I
(km)+p
n g.

The above dynamic equation for the shortfall variables is not as easy to deal with as it was for

previous settings. Because of this, one has to proceed di�erently. First, the stability condition for

single product systems with no re-entrance is established. Later, by the approach of Section 6.1,

stability for the PS mode for multiple products will be de�ned. We show that the stability condition

for the PS mode is

PX
p=1

E[dp0]Qq;r=k;m
q;r=1;1 E[�qrp0 ]

< Ckm for

8><
>:
m = 1; : : : ;M

k = 1; : : : ; K
(6.14)

The indexes in
Qq;r=k;m

q;r=1;1 h(q; r) signify that the factors are taken up the production line from

h(1; 1) to h(k;m). It does not mean that the iteration is taken from 1 to k and from 1 to m

independently of each other.

To simplify the notation, consider a system with single product and no re-entrance in the

presence of random yield and composed ofM machines. Except for random yield, this is addressed

by [Glasserman and Tayur, 1994, Glasserman and Tayur, 1995]; we add random yield here. For
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this simpli�ed version, we have

Theorem 6.2.1 Suppose the demand fdn;�1 < n < 1g is ergodic as well as stationary. Addi-

tionally, suppose the random yield f�mn ;�1 < n < 1g is ergodic and stationary. The shortfall

process is stable i�

E[d0]Qi=m
i=1 E[�i0]

< Cm; for all m = 1; : : : ;M; (6.15)

holds for the single product system.

Proof: The dynamic equation for shortfalls will be

Y m
n+1 = maxfY m

n + dn +
1X

i=m�1

(1� �in)P
i
n � �

m
n f

m
n ;

Y m
n + dn +

1X
i=m�1

(1� �in)P
i
n � �mn C

mg (6.16)

which, by direct comparison with the equation for perfect yield leads to the following necessary

and su�cient stability condition

E[d0 +
1X

i=m�1

(1� �i0)P
i] < E[�m0 C

m]: (6.17)

In the perfect yield situation, it holds that �kmp
n = 1 and it is the case that the system is

stable i� E[dn �C
m] < 0. A similar reasoning is applied here to propose the above condition: this

condition ensures the existence of a negative drift when production is bound by capacity. We need

only to establish a connection between (6.15) and (6.17). To do so, we �rst establish a relationship

between production amounts in consecutive machines.

The production of machine i is conditioned by what is e�ectively produced by machine (i+ 1).

What is e�ectively produced by machine (i+ 1) during period n is �i+1
n P i+1

n . If production starts

at a point where I i+1
0 = �i+1 = zi+1 � zi it turns out that

NX
n=1

P i
n � �i+1 +

NX
n=1

�i+1
n P i+1

n ; (6.18)
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since machine i cannot engage more material in production than the available inventory.

Dividing the above by N and taking the limit as N !1 we get

E[P i] � E[�i+1
0 ]E[P i+1]: (6.19)

Given that �i+1
n is independent of P i+1

n , the yield process is i.i.d., and the machines are capac-

itated, the limit exists and equals the expected value.

Assume now that the inequality above holds strictly. If that is the case, the inventory sitting

in front of machine i, I i+1, grows to in�nity because

I i+1
n = �i+1 +

nX
j=1

(�i+1
j P i+1

j � P i
j ); (6.20)

and taking the limit as n!1 we get

I i+1
1 = �i+1 + lim

n!1

nX
j=1

(�i+1
j P i+1

j � P i
j )

= �i+1 + lim
n!1

nX
j=1

�i+1
j P i+1

j � lim
n!1

nX
j=1

P i
j

= �i+1 + lim
n!1

nE[�i+1]E[P i+1]� lim
n!1

nE[P i]

= 1; (6.21)

by the law of large numbers and because of the assumption on the strict inequality.

If the value of the feeding inventory for any machine grows to in�nity the system is unstable.

Also, if the value of the feeding inventory grows to in�nity, it must be the case that production of

that machine is being bound by capacity in the long run. Thus, it is established that on a stable

system it must be the case that (6.19) holds at equality for all machines. It is also easy to show

that

E[P i] � Ci for i = 1; : : : ;M: (6.22)

The expected production of any machine is either bounded by the expected production of the

preceding machine as presented in (6.19) or is bounded by the available capacity as presented in
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(6.22). That is, only one of these inequalities will hold at equality. If at least for one machine the

bound occurs due to capacity, then the system is unstable, implying E[�10]E[P
1] < E[d0] and the

value of I1 grows to �1. For a system to track demand, E[�10]E[P
1] has to be equal to E[d0].

Now, observe that if all m� 1 stages are stable, each E[P i], for i = 1; : : : ; m� 1, can be written

as a function of E[P 1] as follows1:

E[P i] =
E[P 1]Qi
j=2E[�

j
0]
; (6.23)

and E[P 1] = E[d0]
E[�10]

.

Proceeding by backward induction, consider �rst the case of m = 1. Expression (6.17) will

reduce to

E[d0] < E[�10]C
1; (6.24)

which is exactly the same as (6.15) for m = 1. To prove the stability condition for stage m, let us

assume that all m � 1 downstream stages are stable. That is, assume that unstability cannot be

caused by the last m� 1 machines. Therefore, (6.17) becomes

E[�m0 ]C
m > E[d] + E[1� �m�1]

E[P 1]Qm�1
j=2 E[�j ]

+ : : :E[1� �1]E[P 1]

= E[d] + E[P 1](
1Qm�1

j=2 E[�j ]
� E[�1])

= E[d] + E[d](
1Qm�1

j=1 E[�j ]
� 1)

= E[d]
1Qm�1

j=1 E[�j ]
(6.25)

showing that if (6.17) holds, so does (6.15). It remains to see what happens when (6.17) does not

hold.

Let us assume that (6.17) does not hold for at least one machine. Given that this is a necessary

and su�cient condition for stability, it follows that the system is unstable. Therefore, it must be

the case that E[P 1] < E[d0]=E[�
1
0].

1Using (6.19) with the equality sign.
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Given that there is at least one machine violating (6.17), let m� be the bottleneck machine of

the line. That is, the machine that is furthest away from the stability region. For this machine it is

the case that E[Pm�

] = Cm�

and for all the machines downstream it is the case that (6.19) holds at

equality. Therefore, for i = 1; : : : ; m�, E[P i] can be expressed as a function of E[P 1] as described in

(6.23), since there is no unstability caused by machines following the bottleneck. Inequality (6.17)

for machine m� does not hold, so

E[�m
�

0 ]Cm�

< E[d0 +
1X

i=m��1

(1� �i0)P
i]

= E[d0] +
m��1X
i=1

E[(1� �i0)]E[P
i]

= E[d0] +E[P 1]
m��1X
i=1

E[1� �i0]Qi
j=2E[�

j
0]

< E[d0]

 
1 +

m��1X
i=1

E[1� �i0]Qi
j=1E[�

j
0]

!

= E[d0]
1Qm��1

j=1 E[�j0]
; (6.26)

showing that (6.15) does not hold for machine m�. Thus, the equivalence between (6.15) and (6.17)

is established and the result for single product follows.

2

It remains to generalize the above to the multiple product situation. By using a class of policies

that imposes bounds on production quantities it will be possible to provide a set of parameters that

ensure no sharing of capacity when the system is operated in the PS mode.

To simplify the notation, assume we are dealing with a 
ow line constituted by M̂ machines

and with no re-entrance. In the PS mode, set M̂ = KM . De�ne 
m as the long run expected

amount of work imposed on machine m by all products. This amount is given by


m =
PX
p=1

E[dp0]Qm
j=1E[�

jp
0 ]

for all m = 1; : : : ; M̂: (6.27)

De�ne the long run average load of machine m, for all m = 1; : : : ; M̂ , as
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�m =

m

Cm
: (6.28)

It is not di�cult to see that it is necessary for all values of �m to be below unity in order for

the system to be stable.

Now, de�ne as the long run bottleneck machine the one which has the highest long run average

load. So, we have m� as the machine for which

�� =

m�

Cm�
= max

m
f�mg: (6.29)

De�ne the share of each machine that can be used by each product in the long run as

Cmp =
E[dp0]=

Qm
j=1E[�

jp
0 ]

�m
; (6.30)

and set the values for �mp that constitute the control variables for this problem as

�m+p =

8>>>>><
>>>>>:

Cm�pQm�

j=m+1 E[�
jp
0 ] if 1 � m � m�;

Cm�p if m = m�;

Cm�p=
Qm
j=m�+1E[�

jp
0 ] if M̂ > m � m�:

(6.31)

Note that �m+p is the nominal inventory of product p that sits in front of machine m. That is

why there is no need to de�ne �1p, which remains free as before2. The other control variables are

the bounds on the input of new material per period for each product, which are

IM̂
+p = Cm�p=

M̂Y
j=m�+1

E[�jp0 ]: (6.32)

Given the fact that each value of �m+p � Cmp, it is the case that, as long as Im
+p

n � �m+p,

there is never a situation where the capacity of machine m has to be shared in the PS mode. This

would always be the case if yield would be deterministic and exactly equal to its average value for

all periods. Since in general Pr(�mp
n > E[�mp

0 ]) > 0, we cannot ensure that the available inventory

2The same is true of the non negativity constraint.
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for all products sitting in front of a given machine is always such that its summation is below the

machine's capacity. Thus, in the PS mode, there will be periods where sharing does indeed occur

and equation (6.13) would have to be used explicitly to establish stability. It was said earlier that

such dynamic equation is too cumbersome to be tackled. This implies that it is not possible to

derive stability just by imposing a bound on the new material entering the system as it was done

in Section 6.1. It is necessary to add further features to the control policies in order to obtain an

instance that ensures no sharing in the PS mode and which can constitute an upper bound on the

optimal cost, while maintaining stability.

The natural extension of class �1, furthers the extension proposed in Section 6.1 by adding a

new set of variables. These new variables impose bounds on the amount of material allowed to

enter production for each product at every machine on any given period. In this way one imposes a

maximum share that each product can take from each machine, even if there is available inventory

to produce more. This class of control policies, which will be called �2, turns out to be the sensible

thing to do from the practitioners' point of view as well3.

With this broader class of base stock policies in mind, the obvious instance which ensures

stability and constitutes an upper bound on the cost of the optimal solution is such that all the

new variables are equal to �m+p as well. That is, the additional bound for machine m to produce

product p is the nominal value of the associated delta variable.

As was remarked at the end of Section 6.1, it may also be the case here that the optimal values

for those bounds are such that sharing will eventually occur. It should be clear that there is no

intention of running these systems as P independent production lines. Doing that would signify

losing the 
exibility allowed by the sharing of resources. For instance, it was discussed in Chapter 5

that the best performance in the TS mode was always better than the best performance in the PS

mode. The greater the 
exibility the better potential use one can make of the available resources.

However, it may be the case that such 
exibility may need a minimum amount of restraint to ensure

fairness for all the products. Again, the use of the bounds is only essential to establish stability

for in�nite horizon systems.

Thus, the above discussion established the following theorem.

Theorem 6.2.2 Suppose the demand fdpn;�1 < n < 1g is ergodic as well as stationary. Addi-

3Clearly, �0 � �1 � �2.
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tionally, suppose the random yield f�kmp
n ;�1 < n < 1g is ergodic and stationary. If equation

(6.14) holds, then the shortfall process is stable for multiple product systems operated in the PS

mode, using class �2.

We argued in terms of a 
ow line composed of M̂ machines. When a re-entrant system with

K levels and M machines is operated in the PS mode it is transformed into a 
ow line with no

re-entrance, where it is possible to map each pair (km) into a global ordering for M̂ = K �M

machines.

Once the stability condition has been established, all the other results discussed in Section 4.1

are trivially derived. Theorem 4.1.8 and the associated corollary are the exceptions. In order to

characterize the regeneration times we need one additional assumption, due to the presence of

random yield. Additionally to condition (4.16), the following condition has to hold so that the

shortfall process returns to the origin in�nitely often, with probability one

Pr(�kmp = 1) > 0; k = 1; : : : ; K ;m = 1; : : : ;M ; p = 1; : : : ; P: (6.33)

If this does not hold, then the convergence of the shortfalls to zero can only occur in in�nite

time, since it will be accomplished through a geometric series.

6.2.2 Stability and Regeneration for Totally Shared Systems

The stability condition for the TS mode is the natural extension of the previous condition for

random yield in the PS mode.

Theorem 6.2.3 Suppose the demand fdpn;�1 < n < 1g is ergodic as well as stationary. Addi-

tionally, suppose the random yield f�kmp
n ;�1 < n <1g is ergodic and stationary. If

KX
k=1

PX
p=1

E[dp0]Qq;r=k;m
q;r=1;1 E[�qrp0 ]

< Cm form = 1; : : : ;M; (6.34)

then the shortfall process is stable for multiple product systems operated in the TS mode, using

class �2.

Proof: To establish this result we only need to produce an instance of class �2, de�ned in the

earlier subsection. The instantiated parameters of �2 follow the same reasoning just presented at
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the end of the previous subsection. That is, compute the average work on each machine; de�ne

the machine with the highest average load; determine the average share that each product at each

level demands from the bottleneck machine; and use that share to determine the values of �kmp

and the values for the bounds on the production for all the levels, stages, and products. Given

those, the system operated in the TS mode never shares capacity across products and levels. Also,

every share allocated is never below the average work imposed. This implies that the P decoupled

systems are all stable and the cost incurred by such control variables constitutes an upper bound

on the performance of the optimal control variables.

Therefore, the optimal values of these same control variables will have to incur a lower cost and

have to necessarily maintain stability. Also, the optimal values of the control variables may be such

that sharing of capacity does indeed occur and the TS mode really allows a 
exible use of all the

available capacity as intended.

2

Taking into account the discussion on the regeneration times made at the end of the previous

subsection, all the results discussed for the TS mode in Section 4.2 carry through trivially for this

setting.

Remarks on the Class �2

The class �2 of modi�ed base stock policies constitutes a similar qualitative step from �1 as

this latter constituted from �0. It may be the case that while optimizing relative to the base stock

levels and production bounds the optimal values are such that no sharing really occurs either in

the PS or the TS mode. This only means that such is the optimal thing to do and may have no

direct relation with the fact that policies from �1 or �0 may induce unstability.

Recalling the discussion of Section 2.3, and in particular the plots of the optimal switching

curves, the existence of production bounds other than the net capacity may be bene�cial in terms

of minimizing operational costs, independent of the stability issue.

Modeling the production system by means of a periodic review inventory control turns out to

allow the de�nition of a broad class of policies that can incorporate nonidling features in a very

natural way. The lack of this feature was one of the drawbacks of other approaches, as queueing

networks is one paradigmatic example.
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Other modi�cations can be added to these policies, namely the need to impose upper bounds

on the amount of inventory sitting at each bu�er, which could be of advantage due to cost consid-

erations and also to tackle the existence of machine failures. However, the modi�cations introduced

to �0 to generate �2 are the minimal needed to establish stability.

Note also that, when controlling systems with random yield, deciding to produce the exact dif-

ference between a target value and the present value of inventory is known to be non-optimal. Other

classes of policies would have to be proposed in order to eventually achieve better performances.

Namely, in
ating each current production decision by the reciprocal of the expected random yield

would be a good candidate for a �rst approximation, although this is also known to be non-optimal.

This type of generalizations are outside the scope of the present thesis and are only here referred

to clarify that there is no substantial claim on the class �2 other than it may allow lower costs

than �0, it ensures stability for the re-entrant systems addressed by this thesis, and even ensures

stability for more complex re-entrant systems as mentioned in Section 6.1.

6.3 Non Uniform Loads and Random Yield

Given the discussion of the previous two sections, the stability results for this setting are

Theorem 6.3.1 Suppose the demand fdpn;�1 < n < 1g is ergodic as well as stationary. Addi-

tionally, suppose the random yield f�kmp
n ;�1 < n <1g is ergodic and stationary. If

PX
p=1

�kmp E[dp0]Qq;r=k;m
q;r=1;1 E[�qrp0 ]

< Ckm for

8><
>:
m = 1; : : : ;M

k = 1; : : : ; K
(6.35)

then the shortfall process is stable for multiple product systems operated in the PS mode, using

class �2.

Theorem 6.3.2 Suppose the demand fdpn;�1 < n < 1g is ergodic as well as stationary. Addi-

tionally, suppose the random yield f�kmp
n ;�1 < n <1g is ergodic and stationary. If

KX
k=1

PX
p=1

�kmp E[dp0]Qq;r=k;m
q;r=1;1 E[�qrp0 ]

< Cm form = 1; : : : ;M; (6.36)

then the shortfall process is stable for multiple product systems operated in the TS mode, using

class �2.



174 CHAPTER 6. THEORETICAL FOUNDATION REVISITED

6.4 Validation for Non Uniform Loads and Random Yield

This section discusses the validation of the IPA algorithm for the general case with random

yield and non-uniform loads. For simplicity on the presentation, only the LSR case will be formally

presented for the PS mode, skipping the details of the other production rules and other modes of

operation.

Unlike the simpler case of uniform loads, the IPA validation does not carry through for all

production rules, once the LSR in the PS mode is validated. For example, it is not valid for the

PR in the TS mode. So, after discussing the result for the speci�cs of the LSR, the details of the

PR operating in the TS mode will be described. Later, the result for the LSR in the PS mode will

be extended to the other rules and to the TS mode. The cases for which the extension is not valid

will be discussed.

The production decision for the LSR in the PS mode when random yield is present and the

loads are non uniform is as presented in (6.1). The production net needs are as in (3.5) and their

derivatives as in (3.22). The capacity constraint is expressed as in (6.2) and its derivative as in

(6.3).

With this in mind we have the following result for �nite horizon and using class �0.

Theorem 6.4.1 If fdpn; n = 1; 2; : : : ; p = 1; 2; : : : ; Pg and f�kmp
n ; n = 1; 2; : : :, k = 1, 2, : : :, K,

m = 1; 2; : : : ;M , p = 1; 2; : : : ; Pg are independent, each dpn has a density on (0;1), and each �kmp
n

has a density on (0; 1) then the following hold:

1. For k = 1; : : : ; K;m= 1; : : : ;M; p = 1; : : : ; P; and n = 1; 2; : : :, each Ikmp
n and Ekmp

n , as given

by (6.11) and (6.12) respectively is, w.p.o., di�erentiable at (z111; : : : ; zKMP ) with respect to

each zqrs, q = 1; : : : ; K; r = 1; : : : ;M; and s = 1; : : : ; P:Moreover, these derivatives satisfy the

obvious extensions for non uniform loads and random yield of (3.19) and (3.20), respectively.

Also for

a. Linear Scaling Rule with Partial Sharing

P kmp
n as given by (6.1), where the individual factors are given by (3.5) and (6.2), is also

di�erentiable w.p.o. and its derivative satis�es (3.31), where the individual factors are

given by (3.22) and (6.3), respectively;
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2. If in addition E[dpn] < 1 for all n, then E[Ikmp
n ]0(z), E[E

kmp
n ]0(z), and E[P kmp

n ]0(z) exist and

equal E[(I 0(z))
kmp
n ], E[(E0

(z))
kmp
n ], and E[(P 0(z))

kmp
n ].

Proof: It should not be di�cult to see that the inclusion of the constants �kmp in the inventory and

echelon inventory equations, together with the random yield e�ects does not change the substance

of the reasoning presented for the proof of Theorem 3.4.6. The only qualitative change refers to the

situations under which the theorem is not valid due to the occurrence of non di�erentiable points

with non zero probability. Taking one of the examples used for the above referenced proof, a non

di�erentiable point will now be attained on �kmp(z(km)+p � zkmp) = Ckm (see the remark below).

It should be obvious how to reduce this case to a fully di�erentiable one.

2

Remark: In the presence of random yield, the optimal base stock variables do not

satisfy relations such as (z(km)+p� zkmp) = Ckm, that hold in the perfect yield case. In

the experiments conducted for random yield, the optimal base stock variables are such

that (z(km)+p � zkmp) > Ckm. The system tends to prefer that the di�erence between

consecutive base stock values is a little over the capacity of the machine, attempting,

we believe, to hedge against the uncertainty caused by the random yield.

The above result extends easily for the other two production rules in the PS mode as well as

for the LSR in the TS mode.

6.4.1 The Singularity of the PR in the TS Mode

The production decision with non uniform loads will assume the following form for the PR in

the TS mode.

P k(1)mp(1)
n = minffk(1)mp(1)

n ;
Cm

�k(1)mp(1)
g

P k(2)mp(2)
n = minffk(2)mp(2)

n ;
Cm � �k(1)mp(1)P

k(1)mp(1)
n

�k(2)mp(2)
g

... (6.37)

P k(K�P )mp(K�P )
n = minffk(K�P )mp(K�P )

n ;
Cm �

PK�P�1
i=1 �k(i)mp(i)P

k(i)mp(i)
n

�k(K�P )mp(K�P )
g
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The derivatives of the above production decisions are

P 0(z)
k(1)mp(1)

n
=

(
0 bound by capacity

f 0(z)
k(1)mp(1)

n
otherwise

(6.38)

P 0(z)
k(i)mp(i)

n
=

8<
: �

Pi�1
j=1

�k(j)mp(j)

�k(i)mp(i)
P 0(z)

k(j)mp(j)

n
bound by capacity

f 0(z)
k(i)mp(i)

n
otherwise;

for i = 1; : : : ;minfi�; K�Pg, with i� the level and stage above which all decisions are zero, due to

a possible capacity bound.

It turns out that the above recursions for the derivatives, although they seem innocuous, cannot

be used as they are shown in equation (6.38). In fact, when loads are non uniform, irrespective of

yield, it may be the case that the above expression generates values that grow exponentially as the

simulation evolves.

In what follows we will explain why and how an exponential growth can be generated with the

above expressions, when that growth does not take place for the other production rules, and why

we cannot use the gradient information so generated.

To understand why we can get exponential growth with the above expressions note �rst that,

for any particular machine with total sharing of capacity, a bound in capacity for a particular

product at any given level depends linearly on the derivatives of higher priority levels of the same

product. Moreover, such dependence is proportional to the load ratio between the higher priority

levels and the level that is bound by capacity. Assume that such ratio is above one for at least one

higher priority level and let that ratio be (1 + a), with a > 0. Assume also that the derivative of

the production decision for that higher priority level is b 6= 0, possibly by a bound in inventory.

The amount produced by the level bound by capacity will have one term on its derivative given by

�(1 + a)b and it will move down the line until it gets to be the input of the higher priority level.

At that moment, the production of this higher priority level, if it is not bound by capacity, will

necessarily be bound by inventory and therefore its derivative will be that of the inventory itself,

that is, one of its terms will be �(1 + a)b. If again the same lower priority level gets bound by

capacity, one of the terms of its production derivative will be (1+ a)2b. If this process goes on like

this for a set of consecutive periods the derivative will grow in modulus at a rate of (1 + a) and

therefore it will grow exponentially.
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Example 6.4.2 To better illustrate the concept take a simple system with K = 2 and

M = P = 1, such that �211 = 1 and �111 = 2. Suppose capacity is 15, z211 = 20 and

z111 = 15. Suppose also the system starts from the base stock values4, priority is given

to P 111
n , and that demand is �xed at 10 each period during the �rst L=2 periods, is 1 on

period L=2+1, and zero after that. On the �rst period, the value of P 111
1 will be bound

by inventory, I2110 , and its derivative with respect to z211 is 1. The value of P 211
1 will

be bound by capacity and therefore its derivative is going to be �P 01111 �111=�211 = �2

(from (6.38)).

On the second period, the inventory levels will be [5; 10]. Again the value of P 111
2 will

be bound by inventory, but the derivative of this inventory with respect to z211 is now

-2 because the available inventory on period two is exactly the value of P 211
1 . The

decision P 211
2 will be bound by capacity and, as a consequence, its derivative will be

�P 01112 �111=�211 = 4. The inventory entering period 3 is [5; 5].

At the end of the L=2 periods we will have the following inventory levels entering period

L=2 + 1: [5; 15� 5L=2]. The derivative of I211L=2 with respect to z211 is (�2)L=2. It will

take the system L=2 + 1 more periods5 to bring the shortfalls to zero and at the end of

the L periods the derivative for I211L will be (�2)L. The moment the shortfall reaches

zero, at the end of period L+ 1 the derivatives of the inventory variables will be reset

due to the regeneration of the inventories themselves.

De�ning busy period as the time that elapses between two regeneration points, the example

above shows that a busy period will yield derivatives for some variables that grow exponentially

with the period size. This is not to say that those derivatives are not correct. They are correct only

for very small perturbations of the base stock variables. In what follows we specify what is meant

by a derivative being correct.

In the formulation presented so far we have only imposed physical meaning on the recursions of

the state variables and trusted that such meaning would be preserved for the derivative recursions.

It was imposed that the intermediate inventories are always positive variables, and consequently

that the production decisions are always positive and bounded by the available inventories. The

derivative recursions also have a physical meaning. If we change any of the base stock variables by

4[I2110 ; I1110 ] = [5; 15].
5Counting with period L=2 + 1.
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an amount �, the state variables or production decisions will change proportionally to � according

to the value speci�ed by the derivatives. Since there are bounds of variation for state and decision

variables (non negativity, for one), it is the case that those derivative recursions are only valid for

values of � 2 [���; ��] such that, when changing one base stock variable by any amount with modulus

above ��, we force some state variable to go out of its physically meaningful bounds. Regarding

the derivative recursions generated by expression (6.38), it is the case that the value of ��, being

inversely proportional to the modulus of the derivatives, may be negligible. This creates numerical

di�culties for the optimization procedure because it will be impossible to move out of the initial

solution given that a feasible step along the gradient direction may be too small to be represented

in a computer.

Moreover, it turns out that a slight change in one of the base stock levels may incur a radical

change in the cost. As a consequence, being the case that the derivatives are so high, and being

the case that for �nite choices of the base stock variables the cost function is always �nite (for

stable systems and/or �nite horizon), it must be the case that the cost function is not smooth as

a function of the base stock variables. Additionally to this, the size of the busy period is highly

sensitive to very small changes of the base stock variables.

Experimental evidence

To better illustrate the above ideas, let us look at some experimental results that fully describe

the behavior obtained with the PR in the TS mode. The setting is that of non uniform loads and

perfect yield.

The data displayed here concerns the usage of the PR in the TS mode for a system with

K = 3, M = P = 1. The capacity is C1 = 50, the average demand is E[d10] = 10, and �111 = 2,

�211 = �311 = 1.

All the plots displayed in Figs. 6.1{6.3 were taken around the same nominal point and along the

same direction. The direction used was an estimate of the gradient obtained through simulation.

The plots on the right are zooms of the ones on the left. The di�erence in the three �gures has to

do with the di�erent step size used on the successive estimates of the cost.

The explanation for this behavior is simple. For any �nite choice of base stock variables, or �

variables, the overall cost is �nite. This is due to the fact that demand has a bounded expected
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value. It is the case that the derivatives at any given point have high absolute values, many orders

of magnitude above the cost itself. Therefore, the only way to ensure bounded costs with derivatives

many orders of magnitude above them is by having a cost function that oscillates.
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Figure 6.1: Plot of cost using a step size of 0.01.
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Figure 6.2: Plot of cost using a step size of 0.001.

This is not to say that the cost function is not di�erentiable. At any given �nite choice of the

control variables there is a su�ciently small neighborhood for which the derivatives are valid. The

point is that once we get out of the neighborhood the derivatives will change very rapidly and will

change signs equally fast, thus ensuring a bounded cost, but working against the possibility of using
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a gradient based optimization procedure.
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Figure 6.3: Plot of cost using a step size of 0.0005.

If for a given busy period the derivative at the end of it is say x, for a busy period with one more

period in size it will be �ax, with a > 1. So, the change in signs occurs in very small neighborhoods

of the control variables, due to the fact that the size of the busy period is very sensitive to those

changes.
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Figure 6.4: Change on I111n from sample path #1 to sample path #2.

The next set of �gures (Figs. 6.4{6.6) displays the comparison between two sample paths. The

sample paths have a length of 250 periods and were taken with base stock variables that di�er
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from each other by 10�5, that is, if zi is the base stock vector for sample path i = 1; 2, then

jjz1 � z2jj = 10�5.

Each �gure shows the actual di�erence between the inventories for both paths. So, they should

be seen as a con�rmation on the correctness of the derivative estimates.

Note also that this behavior of the PR in the TS mode is due to the non uniform loads. It did

not occur before because all �kmp = 1.
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Figure 6.5: Change on I211n from sample path #1 to sample path #2.

6.4.2 The Other Production Rules

Let us now address the issue of exponentially growing derivatives for the other production rules

and other capacity sharing modes. The question is to investigate if whether or not the behavior

just described in Example 6.4.2 and illustrated in the above �gures may happen in any of the other

production rules. It turns out that such behavior is not exclusive of the PR in the TS mode. Recall

that the exponential growth is due to the fact that a particular upstream level of production is

bounded by capacity during a string of periods and that the downstream levels of the same product

will as a consequence be bounded by inventory and retroactively impose the capacity bound.

Such e�ect cannot take place in the partial sharing mode, no matter what production rule

is being used. The reasoning is simple: in the partial sharing mode, downstream levels cannot

induce capacity bounds on upstream levels because they do not share the same capacity slots;
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Figure 6.6: Change on I311n from sample path #1 to sample path #2.

therefore, although an upstream level that is bound by capacity may induce bounds in inventory

for downstream levels, those downstream level decisions have no e�ect on the upper levels; for

partial sharing of capacity, the production decisions on a given level only depend on the level itself

and on past decisions for upper levels. So, we are left with the total sharing cases.

Remark: The above reasoning is only valid for perfect yield. The presence of random

yield induces feedback e�ects, since parts lost downstream will have to be produced

upstream again. However, they are not of the same type as the ones described above.

Take the LSR in the TS mode. It is impossible for any level to be bound by capacity alone.

As the production decision is taken, either all of the decisions are bound by capacity or none is

bound by capacity. The importance of this is that if a bound in capacity for an upstream level

later induces a bound in inventory for a downstream level, this bound in inventory cannot occur at

the same time as a bound in capacity for that upstream level due to the scaling. So the coupling

does not occur.

Regarding the Equalize Shortfall Rule, it is possible that a bound in capacity will occur for

a single level and product, unlike the LSR. However, for the exponential growth to occur it is

necessary that during a busy period a downstream level is always bound by inventory and the

upstream is bound by capacity. For this to happen in the ESR it is necessary that the downstream
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level has a shortfall consistently higher than that of the upstream level, and that it is always

bounded by inventory.

This can happen in the ESR and in fact there are situations were the derivatives grown expo-

nentially. We have been able to produce one such case for K = 5, M = P = 1, with �111 = 10 and

all the others equal to 1. However, there is a striking di�erence between the ESR and the PR. While

for the PR, no matter what is the starting point, the optimization locks in a close neighborhood of

the starting point, for the ESR this behavior seems to depend on the starting point.

The system above described converges to the optimal solution if the starting delta variables are

su�ciently high (around C1=
P

k �
k11). However, if the starting delta variables are very small there

is no convergence.

Given that the exponential growth is due to bounds in inventory that keep the ordering of the

shortfalls the same, when the starting point is very low on the delta variables those bounds in

inventory occur and lead to exponentially growing derivatives.

Although IPA is not valid, we have been able to use ESR without any problems. That is,

the theoretical possibility exists but the occurrences of systems and/or parameters for which the

exponential growth occurs appears to be very rare. Some systems have the right structure to

produce exponential derivatives, but during optimization it is very rare to encounter such numerical

di�culties. For the PR, such growth is always present as long as the parameters are chosen according

to the structure described earlier.

6.5 Experimental Studies

Experiments similar in scope to the ones of Chapter 5 were conducted for systems with non

uniform loads and, in some cases, random yield was also included. Although the class of policies

that should be used is �2, all the experiments were done with class �0. This thesis does not

present the validation of the IPA approach for class �2. Also, in none of the systems studied was it

ever necessary to use any sort of bounds to ensure stability. The exceptions were the two machine

unstable system of [Lu and Kumar, 1991] and the three machine unstable system of [Dai and Weiss,

1996]. For these systems it was impossible to obtain bounded costs using class �0, but the costs

became bounded simply by means of using policies from class �1 and keeping the same priority

lists as in the original papers. However, as these systems do not possess the re-entrant structure
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adopted here and neither does this thesis address the validation of class �1, their discussion will

be limited to these observations.

The optimality condition continues to hold when the loads are non uniform, random yield is

present, and class �0 is used.

The main conclusions presented in Section 5.4 do not change much when moving from uniform

loads to non uniform loads. The optimal allocation of capacity to levels in the PS mode becomes

proportional to the loads imposed on each level, rather than being equally divided. This is a natural

and expected extension. The optimal capacity slots, when the holding costs of early stages are very

close to zero, exhibit a behavior similar to the one discussed in Section 5.2.1.

The structure of the holding costs along the production system and the di�erent loads continue

to have no signi�cant impact over the relative performance of the the production rules.

Regarding the in
uence of the average demand on the performance of the PR, its in
uence is

now replaced by the concept of expected load. That is, whereas before priority should be given

to products with lower expected demand (all other things being equal), now priority should be

given to products with lower expected load. This particular property is very di�cult to identify for

generic systems with non uniform loads. One given product may impose a lower expected load in

late stages of production and impose a higher expected load in early stages. Additionally to this,

we could not get any results on the PR for the TS mode, for reasons already explained.

Although, the ESR possesses the same theoretical shortcomings as the PR for the TS mode,

we were able to get some results with it. In the TS mode, the ESR performs better than the

LSR. There should be cases for which the PR performs better than the ESR, but we found these

impossible to determine.

Given the fact that the experimental data is so similar for non uniform loads and given the fact

that class �0 may be less adequate for systems with random yield, we will skip repeating �gures

and tables that are not substantially di�erent from the ones presented in Chapter 5. In Appendix D

we present graphics relative to some of the studies conducted.



Chapter 7

Conclusions and Future Research

This thesis proposed a framework to manage re-entrant 
ow lines producing multiple prod-

ucts. It concentrated the analysis on a simple (and implementable) set of capacity management

schemes and production rules as a �rst step towards understanding broader classes of systems. The

re-entrant lines were modeled as discrete time capacitated multi-product production/inventory sys-

tems, operating under modi�ed multi-echelon base stock policies. At the beginning of any period,

production decisions have to be made constrained by available inventory and capacity. Several

capacity sharing mechanisms were discussed and some production rules to manage capacity both

from dynamic and static points of view were proposed.

Since these systems are too complex to handle analytically, the study used simulation opti-

mization. To study the properties of optimal policies within the classes proposed, an In�nitesimal

Perturbation Analysis approach was validated in Chapter 3. A set of recursions that describe the

dynamics of the state variables and production decisions was provided and their derivative recur-

sions validated. The IPA approach was validated for �nite horizon performance measures such as

operation costs and Type-1 service level and their respective derivatives. To validate the in�nite

horizon measures and their derivatives, stability conditions were rigorously established in Chap-

ter 4. By doing so, the thesis provided a framework where simulation can work as an optimization

tool to derive the optimal parameters of the control policies proposed.

Once the general framework that supports the utilization of IPA was established, the thesis

presented a series of computational studies that allowed the extraction of insights about how to

manage re-entrant systems and provided a series of interesting structural properties. Moreover, the

study provided substantial hints about the structure of the true optimal polices, which are useful
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for determining better sub-optimal approximations. See Section 5.4 for a detailed summary of the

main conclusions drawn from the experimental data.

One key advantage of the IPA technique, together with the modeling paradigm proposed in this

thesis, is the fact that it does provide a good basis for studying more general control policies, as

long as their description can be done by a well determined and unambiguous set of parameters.

The stability discussion made in Chapter 6 places the emphasis on determining stable poli-

cies rather than determining conditions under which a given policy induces stability. One of the

elegances of the stability discussion is that it agrees with some of the insights produced by the

experimental data and works concurrently with them. Therefore, the classes of policies that ensure

stability provide an important contribution of this thesis for further research. Although some of the

features of the richer policies are not particularly new nor unexpected their study is still relatively

insigni�cant. That has to do with the complexity of those policies in terms of analytical analysis.

However, as long as a general tool like IPA can be used, their study becomes an easier task to

undertake.

Although this thesis does not present any type of formal validation for the policies proposed in

Chapter 6, nor presents any computational study on them, the validation of Chapter 3 provides

the strong intuition that their validation can be obtained straightforwardly. There should not be

any major technical shortcomings on future developments, given the robustness of the approach

and the simplicity of the extensions needed, regarding the original model (see discussion below).

The thesis concentrates on simple re-entrant 
ow lines, but we can state a set of very general

conclusions useful to the wider problem of production control in wafer fabs. Production control

involves two types of decisions: input control and 
ow control. Input control concerns deciding the

type and amount of new material that should be allowed into the system at any given moment.

Flow control concerns the type and amount of material allowed into the next operation.

The main insight provided by the stability discussion together with the experimental data

analysis is the fact that there is a de�nite advantage in controlling production with idling policies.

Even when backlogs are high there should be some restraint on the amounts of new material entering

the system and on the amounts of material allowed to move to the next operation. Much of the

research in the past has concentrated on nonidling policies for intuitive reasons: \a machine should

not be kept idle when there is work to do". This thesis clearly states that this intuition is not
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rigorous and nonidling policies should be avoided for non acyclic systems, multiple products, non

uniform loads, and random yield.

Regarding the dynamic capacity management schemes, the main conclusion for uniform loads is

that the Equalize Shortfall Rule achieves the best performances across a wide range of parameters.

The option to use the Priority Rule should only be made if there is a clear hierarchy of products in

terms of expected demand, demand variance, and penalty costs. The Priority Rule outperforms the

Equalize Shortfall Rule for sure when it is possible to unambiguously order the products with these

three combined parameters, i.e., when the product with the lowest expected demand has lowest

variance and highest penalty cost.

In terms of static capacity allocation, the best performances are achieved with the greater 
exi-

bility, i.e., when the overall capacity is shared by all products in di�erent processing stages. Also,

if a system is unbalanced it should be run as a fully balanced system. By unbalanced we mean a

system where the machines are subject to di�erent loads. The excess capacity of upstream machines

should be ignored, whereas there may be a marginal advantage on having increasing capacities as

we move from the �rst machine in the line to the last one.

Setting the adequate holding and penalty costs is usually a di�cult task. In general, it is hard

to measure the exact value added by a given operation. It is also hard to measure the exact impact

of backlog in terms of cost. However, noting that the signi�cant in
uence of intermediate holding

costs has to do with inventory distribution along the line, it will be possible to assign those holding

costs so that the inventory levels along the line are relatively moderate and balanced. If early holding

costs are very close to zero, it is likely that some early bu�ers will have high inventory quantities.

Moreover, noting the equivalence between penalty costs and service level estalished by Propo-

sition 5.1.1 and knowing that what matters for the performance is the relative proportion between

holding and penalty costs, it is easy to assign an overal set of holding and backlog costs. De�ning

a target service level is an easier task than measuring exactly the value added by each operation.

Given the theoretical di�culties of the PR and the ESR (described in Section 6.4.1), the nat-

ural choice for systems with non uniform loads will have to be the Linear Scaling Rule. The bad

performances observed for this rule in the TS mode can be easily improved with idling versions

of it, as the experimental results seem to support. The question is the fact that the LSR does

not treat products di�erently from each other as much as one would desire in some circumstances.
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Namely, what if there is a clear reason to prefer a product over the other? Are we to scale their

needs linearly and simply hope that the right setting of penalty cost parameters will force the right

inventory levels? Or is there something else that should be done1?

7.1 Future research

There is a broad set of issues that are worthy of further investigation. Probably, the main one

has to do with considering control policies from class �2, i.e., a multiechelon base stock policy with

bounds on production amounts for each operation. A �rst priority coming out of the discussion

along the thesis would be to validate the IPA approach for this broad class of policies. It would be

interesting to investigate the impact it has in terms of costs even for systems where its utilization

is not required by stability considerations. The experimental evidence from this thesis and some

theoretical and experimental work done by other authors seems to point in this direction.

Eventually, the LSR in the TS mode may see its performance signi�cantly improved to the

point of being competitive with the other two rules. This is of special importance due to the formal

shortcomings of these two production rules, as pointed at the end of Chapter 6.

The shortcomings of the PR and the ESR seem to point out that it is not a good idea to

dynamically assign capacity in ways that may take care of a product at a time. The LSR takes care

of all products simultaneously and has no theoretical problems. Therefore, we need a production

rule that takes care of all products simultaneously but takes into consideration that some of those

products should be preferred over the others.

With these considerations in mind, the natural next step would be to convert the desired priority

list into a set of weights and dynamically allocate capacity with a Weighted Scaling Rule. Assume

that those weights are real numbers and can be optimized through an IPA procedure (or some other

optimization tool). Then, the combinatorial problem of setting a priority list would be reduced to

the non linear programming problem of �nding a set of real valued weights.

Besides class �2 there are other classes of policies that require attention. As the discussion of

Chapter 2 illustrated, there are other desirable features on a production control policy. Namely, the

ability to deal with machine uncertainty. Any of the three policy classes discussed along the thesis

is able to deal with a certain type of machine variability, but none of them is su�ciently sound to

1Section 7.1 provides more details on this.



7.1. FUTURE RESEARCH 189

deal with any type of machine variability. In what follows we present a brief characterization of

this.

It can be said that there are two basic types of machine uncertainty to consider: the short term

variation and the long term variation.

Short term variation of machines refers to machine uncertainty in terms of processing times,

which translates into random capacity. We modeled the capacity of each machine as being a

constant value. It would be possible to model it as being a random variable, in line with the

approach of [Ciarallo et al., 1994]. It should be noted that the inclusion of this feature does not

pose any major di�culty for class �0. Both the validation of the IPA and the stability discussion

of Part II carry through trivially. Note that the stability condition derived in Theorem 4.1.3 is

equivalent to

E[jjD0jj � C
km] < 0 k = 1; : : : ; K;m = 1; : : : ;M: (7.1)

The requirement for the existence of a negative drift when the capacity is a random variable

translates into the expected demand to be below the expected capacity. Recall that we used this

same argument in Section 6.2 when presenting inequality (6.17).

One could argue that by considering random capacities we could take care of any sort of machine

variability. However, such an approach may not apply to long term variation, which results from

machine breakdowns. This type of variation occurs less frequently in time and when it does it

remains for relatively long periods. A machine may be down for several periods, whereas when it

is up its capacity may oscillate from period to period, as discussed above.

Incorporating both these types of variation at the same level would imply a very high variance

process for the machines' capacity. The e�ects of such a high variance process, due to the inclusion

of failures, would impact the costs of the attained optimal controls since the safety stocks would

naturally be higher than they really need be. Therefore, a two level approach, in line with [Kimemia,

1982], would have to be pursued. The optimization procedure would have to be run for each possible

state of the machines in order to determine the optimal parameters. Each calculation would take

into account the higher frequency disturbances caused by the short term variation of the machines.

Besides this hierarchical framework, it should be obvious that none of the three classes of policies

addressed in this thesis is good enough. Given that the three classes concentrate on shortfalls and
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they possess no bounds for local inventories, it would follow that in case a given machine would

fail for a long period, all the machines upstream would still be producing to reduce shortfall and

restore the echelon base stock. The three classes of policies lack the existence of a blocking feature

to prevent this occurrence, in line with [Wein, 1988] or [Glassey and Resende, 1988]. To ensure

that local inventories will not grow needlessly once a particular machine is down for a long enough

period it is necessary to impose bounds for local inventories.

This calls for another class of control policies that di�ers from �2 by the existence of maximum

values for the local inventories. Note that the approach of [Wein, 1988] de�nes this type of bound

only in terms of the amount of work headed to the bottleneck machine. We are proposing here the

de�nition of such bounds for all the machines, products, and levels. From the modeling perspective,

this extra bound is easily incorporated and the validation of the IPA should not pose any major

di�culties. However, the moment one considers this new class of policies the questions of stability

will have to be re-evaluated.

One other aspect that was not fully addressed in this thesis was the design of control policies

more adequate to deal with systems subject random yield. The general strategy has to incorporate

some sort of order ampli�cation to compensate for yield losses. The IPA technique is nothing but

a good tool to investigate the possible bene�ts of policies that will order more than e�ectively

needed to compensate for random yield, as long as a control policy is described by a simple set of

parameters and the overall model ensures the adequate smoothness properties.



Appendix A

Validation Related Proofs

This appendix includes some of the proofs on auxiliary results, skipped in Chapter 3 that were

omited then to avoid loosing sight of the essentials and because some of them are relatively trivial

extensions of other results published.

Their inclusion here is intented at making this document the more self contained possible.

Derivation of Equation 3.26
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Proof of Lemma 3.5.1

Taking expectations, we get

E[ ~C�;L] = E[
1X
n=1

Cn1fL � ng]

= E[
1X
n=1

CnP (L � n)]
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= E[
1X
n=1

Cn�
n] = c�;1:

2

Proof of Theorem 3.5.4

We detail the case of c1, the argument for �v1 being exactly the same. It follows from the

Harris recurrence of fXn; n � 1g that

lim
N!1

1

N

NX
n=1

E[Cn] = c1; (A.1)

for all initial states. Similarly, via Lemma 3.5.3, we get the existence of

lim
N!1

1

N

NX
n=1

E[C0
n] = c01; (A.2)

For the rest of the proof, we incorporate the value of z� as an explicit argument; e.g., we write

Cn(z) for the value of Cn when z� = z. From Theorem 3.4.7 we know that, for all z1; z2,

E[Cn(z2)]�E[Cn(z1)] =

Z z2

z1

E[C0
n(z)]dz; (A.3)

the function E[Cn(:)] is the integral of its derivative because it is Lipschitz (since Cn(:) is). Now

take in�nite horizon time averages of both sides. The left side converges to c1(z2)� c1(z1). On

the right side we get

lim
N!1

N�1
NX
n=1

Z z2

z1
E[C 0

n(z)]dz =

Z z2

z1
lim
N!1

N�1
NX
n=1

E[C0
n(z)]dz (A.4)

for all z1; z2. But this means that, at almost every z, c
0
1(z) exists and is given by the integrand

on the right.
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Stability Related Proofs

This appendix includes some of the proofs on auxiliary results, skipped in Chapter 4 that were

omited then to avoid loosing sight of the essentials and because some of them are relatively trivial

extensions of other results published.

Their inclusion here is intented at making this document the more self contained possible.

Proof of Lemma 4.1.2

De�ne

�1 = �;
�n(Y ;D1; : : : ;Dn) = �n�1 (�(Y ;D1);D2; : : : ;Dn) ;

�1 = �;
�n(Y ;D1; : : : ;Dn) = jj�n(Y ;D1; : : : ;Dn)jj = �n�1 (�(Y ;D1);D2; : : : ;Dn) ;

n = 2; 3; : : :, with � and � as in Lemma 4.1.1. Then

jjY njj = �n(Y 0;D0; : : : ;Dn�1); a:s: (B.1)

Each �n is increasing and continuous.

For integer i, de�ne iY 0 such that jjiY 0jj = 0 and

jjiY njj = �n(~0;Di�n; : : : ;Di�1); n � 1: (B.2)

That is, jjiY njj is the nth-period total shortfall for a process starting at the origin a time i�n.

Therefore, if jjY 0jj = 0, then jjiY njj has the distribution of jjY njj, due to the stationarity of fDng.
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Moreover, since � is increasing,

jjiY n+1jj = �n+1(0;Di�n�1; : : : ;Di�1) (B.3)

= �n(�(0;Di�n�1);Di�n; : : : ;Di�1)

� �n(0;Di�n; : : : ;Di�1)

= jjiY njj:

This means that, for each i, jjiY njj increases almost surely to a limit as n ! 1. Denote this

limit by jj ~Y ijj. Notice that

jji+1Y njj = �
�
�n�1(~0;Di�n+1; : : : ;Di�1);Di

�
= �(iY n�1;Di): (B.4)

Letting n increase and using the continuity of �, we conclude that

jj ~Y i+1jj = �( ~Y i;Di) (B.5)

for all i. For the last assertion in the lemma, notice (as above) that jj0Y njj has the same distribution

as jjY njj if jjY 0jj = 0, so that if fjj0Y njj; n � 0g increases almost surely to jj ~Y 0jj, then the

distribution of fjjY njj; n � 0g increases to that of jj ~Y 0jj.

2

Proof of Theorem 4.1.3

The proof follows a reasoning similar to the one used in [Glasserman and Tayur, 1994] to prove

their Theorem 1 by using here equations (4.11) and (4.13).

For level K and stage M the total shortfall process fjjY KM
n jj; n � 0g follows a Lindley recur-

sion, (4.11). It follows from Loynes' analysis of the single-server queue that if E[jjD0jj] < CKM

then jj ~Y
KM
0 jj <1, a.s., whereas if E[jjD0jj] > CKM then jj ~Y

KM
0 jj =1, a.s..
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The proof proceeds by induction on the levels and stages from (K;M) down to 11, assuming

that (4.14) holds. Suppose jj ~Y
km
0 jj is �nite, a.s.. To show that the same must be true of jj ~Y

(km)�

0 jj,

we argue that if jj ~Y
(km)�

0 jj = 1, then we would have E[jjD0jj] � C(km)� . Observe, �rst, that if

jj ~Y
(km)�

n jj = 1, then so is jj ~Y
(km)�

n+1 jj. In other words, the event fjj ~Y
(km)�

n jj = 1g is invariant

under a shift in the time index and must therefore have probability zero or one (by the ergodicity

of demands).

Now we use the random variables jjiY njj de�ned in Lemma 4.1.2. As shown there, jjiY n+1jj �

jjiY njj, a.s., for all n and i. Moreover, jjiY n+1jj has the same distribution as jji+1Y n+1jj, so

E[jji+1Y n+1jj � jj
iY njj] � 0; this holds, in particular, for the (km)�-th component:

E[jji+1Y
(km)�

n+1 jj � jjiY (km)�
n jj] � 0: (B.6)

From (B.4) we know that jji+1Y n+1jj = �(iY n;Di). So, jji+1Y
(km)�

n+1 jj � jjiY (km)�
n jj is the

increase in the echelon-(km)� total shortfall due to demand Di, and therefore cannot exceed jjDijj.

Thus,

jji+1Y
(km)�

n+1 jj � jjiY (km)�
n jj � jjDijj; for all n � 0: (B.7)

If every Ckm is in�nite, then the conclusion of the Theorem is immediate; suppose then that

some Ckm is �nite. Then E[jjDijj] <1, so a consequence of Fatou's lemma and (B.7) is

E[lim sup
n!1

jji+1Y
(km)�

n+1 jj � jjiY (km)�
n jj] � lim sup

n!1
E[jji+1Y

(km)�

n+1 jj � jjiY (km)�
n jj]; (B.8)

and, by (B.6), this is non negative. Now if jj ~Y
(km)�

0 jj is in�nite while jj ~Y
km
0 jj is �nite, then

lim sup
n!1

fjji+1Y
(km)�

n+1 jj � jjiY (km)�

n jjg = lim sup
n!1

max
n
0; jjiY (km)�

n jj+ jjDijj � C(km)� ;

PX
p=1

�
iY kmp
n + d

p
i � (zkmp � z(km)�p)

�+ )
� jjiY (km)�

n jj

= jjDijj �C(km)� ;
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implying E[jjDijj]�C
(km)� � 0. Thus, if in fact E[jjDijj] < C(km)� , then jj ~Y

(km)�

0 jj must be �nite

with probability one.

Conversely, suppose that E[jjD0jj] > Ckm and let (k;m) be the earliest level and stage for

which this holds. From (4.13) we see that jjY km
n+1jj � jjY km

n jj+ jjDnjj � Ckm, and similarly

jj0Y km
n+1jj �

n+1X
r=1

(jjD�rjj � C
km): (B.9)

Hence, letting n increase to 1,

jj ~Y
km
0 jj � lim sup

n!1

n+1X
r=1

(jjD�rjj � Ckm); (B.10)

and this is 1 when E[jjD0jj]� Ckm > 0. For qr such that level q and stage r occur after level k

and stage m, notice that

Y qr
n = Y (qr)+

n � (z(qr)
+
� zqr) + Iqrn

= Y ((qr)+)+
n � (z((qr)

+)+ � z(qr)
+
) + I(qr)

+

n � (z(qr)
+
� zqr) + Iqrn

= Y ((qr)+)+
n � (z((qr)

+)+ � zqr) + I(qr)
+

n + Iqrn
...

...
...

= Y km
n � (zkm � zqr) +

(km)�X
s;t=q;r

Istn

for all n, which leads to

jjY qr
n jj = jjY km

n jj � (jjzkmjj � jjzqrjj) +

(km)�X
s;t=q;r

jjIstn jj

� jjY km
n jj � (jjzkmjj � jjzqrjj)

because jjIstn jj � 0 for all n, s, and t.

From this we can conclude that jj ~Y
qr
0 jj =1 if jj ~Y

km
0 jj =1.

2
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Proof of Theorem 4.1.5

The proof follows exactly the same reasoning as that of Theorem 2 in [Glasserman and Tayur,

1994].

It su�ces to show that for all jjY 0jj, the process fjjY njj; n � 0g eventually coincides with a

copy started at zero when both are driven by the same demands. Notice that jjY km
n jj is always at

least as large as the corresponding component of a copy started at zero. Since jjY KM
n jj follows a

Lindley recursion withe negative drift, it hits zero at a �nite time NKM . Subsequently, it coincides

with the (KM)�th component of the process started at zero. Suppose now that for all n � Nkm,

(jjY km
n jj; : : : ; jjY KM

n jj) coincides with the corresponding components started at zero. We claim that

for some almost-surely �nite N(km)� � Nkm,

jjY
(km)�

N(km)�
jj = max

8<
:0;

PX
p=1

�
Y kmp
n + dpn � (zkmp � z(km)�p)

�+9=; ; (B.11)

this will provide the coupling time for jjY (km)� jj since jjY kmjj has already coupled. Suppose there

is no such N(km)�. Then

jjY
(km)�

n+1 jj = jjY (km)�
n jj+ jjDnjj � C

(km)� (B.12)

for all n � Nkm, implying that lim infn jjY
(km)�
n jj = �1, since E[jjD0jj] < C(km)� . This is

impossible, because the shortfalls are always non negative, so (B.11) must indeed occur in �nite

time. Subsequently, jjY (km)� jj coincides with the copy started at zero. We conclude by induction

that there is an N11, �nite a.s., such that the entire vector jjY njj couples with the initially zero

process at time N11. From this it follows that jjY njj ) jj ~Y 0jj since jj ~Y 0jj is the limit in distribution

when jjY 0jj = 0.

Uniqueness follows. If jjŶ 0jj is stationary then jjŶ njj couples with jj ~Y njj in �nite time, implying

that they must have the same distribution.

2

Proof of Theorem 4.1.8

If E[jjD0jj] < Ckm, then P (jjD0jj < C11) > 0. Consequently, under the conditions of the

theorem there exists an � with � < mink;m Ckm and �=P � mink;m;p(zkmp � z(km)�p) such that
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�
�
= P (d10 � �=P; : : : ; dP0 � �=P ) > 0. Since Y has a �nite stationary distribution, there exists a

constant b > 0 such that the set Bb � RK�M de�ned by

Bb = f(y11; : : : ; yKM) : 0 � ykmp � b=P; k = 1; : : : ; K;m = 1; : : : ;M ; p = 1; : : : ; Pg (B.13)

is visited in�nitely often by Y . We will show that there exists an integer r � 0 and a real q such

that

Px(jjY rjj = 0) � q > 0 for all x 2 Bb; (B.14)

from which it follows that Y visits 0 in�nitely often.

If dp0 � �=P , then either jjY KM
1 jj = 0 or jjY KM

1 jj � jjY KM
0 jj � (CKM � �). Thus, every time a

demand for all products falls in [0; �=P ], the echelon-KM shortfall is decreased by at least CKM � �,

until it reaches zero. Starting in Bb, it takes at most rKM = db=(CKM � �)e consecutive such

demands to drive that shortfall to zero. Thus, with qKM = �rKM , we have Px(jjY
KM
rKM

jj = 0) � qKM

for all x 2 Bb.

Suppose now that jjY
(km)+

0 jj; : : : ; jjY KM
0 jj = 0 for some (k;m) and that Y kmp

0 jj � b=P , for

all p = 1; : : : ; P . With probability at least �n, shortfalls (km)+; : : : ; (K;M) will remain at zero

for the next n transitions. Moreover, for any n, if jjY (km)+
n jj = 0 and jjY km

n jj > 0, then the

inventory I
(km)+p
n available for use by stage (k;m) is greater or equal to (z(km)+p � zkmp), for all

p = 1; : : : ; P , being it the case that the inequality holds for at least one product, because of (4.15).

Thus, if jjdpnjj � �=P , stage (k;m) cannot be constrained by inventory, and either jjY km
n+1jj = 0 or

jjY km
n+1jj � jjY km

n jj � (Ckm � �). If we set rkm = db=(Ckm � �)e then, with probability at least

qkm = �rkm . jjY kmjj is driven to zero in rkm steps. We conclude that with probability at least

q = q11 � � �qKM , jjY r11+���+rKM
jj = 0 for any Y 0 2 Bb.

2



Appendix C

Optimization Procedure and

Experiments

This appendix describes the optimization procedure and details the experiments conducted.

Each simulation run provides a cost estimate for the present setting of parameters and an estimate

of the cost gradient with respect to the parameters describing the control policy used.

C.1 Optimization Procedure

One simulation run only provides �rst order derivatives. The use of �rst order derivatives in

large scale non linear programming problems has a very slow convergence. In order to speed up

the convergence we used a discrete step version of the BFGS algorithm. See [Bazaraa and Shetty,

1979] for a description of the BFGS algorithm and discrete step optimization algorithms.

This algorithm uses gradient and cost information to build an estimate of the inverse of the

Hessian matrix so that a measure of local curvature can improve the search during the optimization.

We detail the speci�cs of the our implementation for the � variables.

Let �i denote the value of the � variables for iteration i, J(�i�1) denote the cost estimate at

the end of a simulation run for the previous iteration, rJ(�i�1) denote the cost gradient, B(�i�1)

the estimate of the inverse Hessian, and �i the step size for iteration i. Therefore,

�i = �i�1 � �i
rJ(�i�1)B(�i�1)

jjrJ(�i�1)B(�i�1)jj
: (C.1)

If J(�i) < J(�i�1) the iteration is called a success. Otherwise, it is called a failure. In the case
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of a success, a new estimate of the inverse Hessian is computed and the step size for next iteration

is increased by 5%. In the case of a failure, the simulation is run for

�i+1 = �i�1 � �i+1
rJ(�i�1)B(�i�1)

jjrJ(�i�1)B(�i�1)jj
; (C.2)

where �i+1 = �i=2.

As long as we keep getting better costs the step size increases slightly at each iteration, as it

is increasing its con�dence that it is moving in the right direction. The 5% increase was chosen

through experimentation. We do not want a step size which grows too fast nor we want a step size

that grows too slow.

If we have a sequence of 4 failures in a row we drop the second order information contained in

matrix B, and perform a simple steepest descent step from the point reached in the last success

using the step size of the �rst failure of the sequence. The second order estimation is resumed as

soon as we get the �rst success iteration after this. For the steepest descent step there is no limit

in the number of failures. So we keep cutting the step size in half until the �rst success.

The reason to have this decoupling step after a given number of failures has to do with the fact

that for some choices of parameters, the cost function is non-di�erentiable at optimality. Close to

these points the curvature information provided by matrix B is meaningless. See [Luenberger, 1973]

for details on this steepest descent step strategy in the context of fully di�erentiable optimization.

The stopping criteria is based on the value of the step size. When the step size becomes lower

than a pre-speci�ed amount the optimization algorithm stops. We experimented using as stopping

criteria the cost function variation between two successes. Given that the cost function is usually

very 
at around optimality we found that for a given stopping error we would get more precise

information for service level measures if the stopping is based on the step size. The service level

measure is more sensitive to step size than is the operational cost measure.

If the search direction combined with the current step size is such that one of the � variables

becomes negative, the procedure replaces that negative value by a small positive value. This value

is proportional to the current step size to ensure that the given variable is able to converge to zero

but to prevent it to be strictly equal to zero. A zero value for a � variable is a situation were the

cost function is non-di�erentiable with nonzero probability. For this case, Lemma 3.4.3 does not

hold and IPA cannot be carried out.
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C.2 Details of the Experiments

We tested several simulation run lengths to determine what would be the a good number of

periods simulated trading o� the variance of the estimates and the computational time. All the

simulation runs correspond to a horizon of 21,000 periods. Each system is simulated for 1,000

periods before starting the collection of data to ensure that stationarity has been achieved.

The stopping step size was set at 10�6. To improve the e�ciency of the simulation, all random

numbers are generated up-front and stored for further use in each iteration of the optimization

procedure. Using the same sample path in simulation based optimization ensures lower variance

and faster convergence for the optimal parameters. See [L'Ecuyer, 1994] for a discussion on variance

reduction procedures.

The information contained in an input �le describes the dimensions of the system, which rule

to use, which capacity sharing mode, expected demand, coe�cient of variance, priority list (used

if needed), units of capacity needed per unit of product at each operation, capacities, starting

control parameters, holding and backlog costs, stopping error, initial step size, number of periods

simulated, number of periods not used for computing cost and derivatives, which variables to

optimize, maximum string of failures after a success in order to drop second order information, and

yield parameters.

The output �le contains the same format of the input �le plus additional information about

number of iterations performed, initial cost, �nal cost, optimal variables, and service level estimate.

This output �le can be used as an input �le for another optimization. This feature is of particular

importance given that an input �le may contain a smaller subset of the information needed and

the program will generate the remaining parameters randomly, like holding and backlog costs as

an example. So, it is convenient to store the randomly generated features for future use.

C.3 Non-di�erentiability

It was observed before that the cost function is non-di�erentiable at some singular surfaces. In

the experiments conducted there were cases were the optimization procedure would stop in one of

those surfaces. In all of these cases there was some � variable (or a set) that was either close to

zero or close to a capacity slot (or a multiple of a capacity slot). In all of these cases, the values
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achieved were correct in the sense that there was a sound explanation for those variables to have

such singular values.

However, in some of those cases the optimization procedure stopped short of satisfying the op-

timality condition. As discussed in Chapter 3, problems with this optimal structure can be reduced

to fully di�erentiable problems by imposing the singular values a priori and taking derivatives with

respect to the remaining variables.

This was done in many of those cases and the �ndings were that the gain in cost was relatively

marginal, regarding the original optimization cycle. That is, although designed for di�erentiable

problems, the version of the BFGS algorithm used was able to get very close to the actual optimal

solutions in cases were there was non-di�erentiability at optimality.

Naturally, future work in these problems will have to address the issue of non-di�erentiability

optimization explicitly. Bundle methods are an example of some of the methods available for this

type of optimization problems. See [Lemar�echal, 1989] for a review on optimization methods for

non-di�erentiable performance measures.

Another issue that may be raised on this discussion is the validity of Lemma 3.4.3 for these

cases. The case were some � variable converges to zero was already discussed. The situation that

remains is for the cases were it converges to the value of a capacity slot. It should be noted that

each variable is free to be above and below a capacity slot, unlike the case of zero value. Therefore,

during optimization it is the case with probability one that the actual value of each given � variable

is never exactly equal to a capacity slot although it may converge to it. Therefore, at any given

iteration di�erentiability is preserved almost always and the lemma supporting the IPA procedure

holds.



Appendix D

Complementary Plots

This appendix includes some plots that complement the data discussed in Chapter 5 and some

others that support the brief summary of Section 6.5.

D.1 Optimal Base Stock Values

Figures D.1-D.4 display the optimal base stock variables for the single product case discussed in

Section 5.2.2. They were obtained for the same parameters of Figs. 5.13-5.16, with the derivatives

being taken with respect to the base stock variables during the optimization.
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Optimal values of the base stock variables for the NS mode at 85% load

Figure D.1: Optimal base stock levels for the NS mode under an 85% load.
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Figure D.2: Optimal base stock levels for the LSR under an 85% load.
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Figure D.3: Optimal base stock levels for the PR under an 85% load.
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Figure D.4: Optimal base stock levels for the ESR under an 85% load.

D.2 E�ect of Capacity Along the Line for the TS Mode

This next set of �gures refers to the study of Section 5.3.5. They correspond to the utilization

of the PR for the two alternatives of priority and to the utilization of the ESR.
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Figure D.5: E�ect of capacity along the line for the PR with priority to product 1.



206 APPENDIX D. COMPLEMENTARY PLOTS

50 55 60 65 70 75 80 85 90 95 100
1350

1400

1450

1500

1550

Capacity

C
os

t

Changing one of the capacities for the PR (TS mode): 2,1

o − C1
+ − C2
x − C3

50 55 60 65 70 75 80 85 90 95 100
1350

1400

1450

1500

1550

Capacity

C
os

t

Fixing one of the capacities for the PR (TS mode): 2,1

o − C1
+ − C2
x − C3

Figure D.6: E�ect of capacity along the line for the PR with priority to product 2.
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Figure D.7: E�ect of capacity along the line for the ESR.
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D.3 Experimental data for systems with non uniform loads

This section presents a sample of results obtained for systems with non uniform loads, and it

illustrates that the global structure of the experimental data does not change signi�cantly relatively

to the case of uniform loads.

Figure D.8 corresponds to a system with K = 3, M = 1, and P = 2. The expected demand is

12 and 8 for product 1 and 2, respectively. The loads imposed by each product are �1 = [1 3 5]

and �2 = [3 2 1]. The leftmost number corresponds to �31i and the rightmost number corresponds

to �11i, with i = 1; 2.
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Figure D.8: Optimal cost as function of the holding costs for non uniform loads.

The capacity of the machine was set at 80% load, i.e., C1 = [12�(1+3+5)+8�(3+2+1)]=0:8.

The holding costs were changed simultaneously for both products, while keeping the backlog costs

�xed. This is similar to the study presented in Section 5.2.2.

The graph on the left corresponds to the PS mode and the graph on the right to the TS mode.

Naturally, there are no results for the PR in the TS mode. The load imposed by product 2 is

below the load imposed by product 1, justifying why giving priority to the former achieves the

best performances for the PR in the PS mode. The ESR in the TS mode achieves the overall best

performance.

Next �gure, (Fig. D.9), shows the comparison between both priority choices in the PS mode

for a system with expected demand of 9 and 11 for product 1 and 2, respectively. The loads are
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�1 = [4 3 5] and �2 = [3 4 2]. The overall load imposed by product 2 is below the load imposed by

product 1 and, as shown in the �gure, priority should be given to product 2, although its expected

demand is higher that that of product 1.
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Figure D.9: Comparison between priority choices for non uniform loads.
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