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Resumo

A popularidade dos veı́culos aéreos não tripulados (UAVs) tem aumentado de forma significativa nos

últimos anos, devido à sua estabilidade, resistência e versatilidade, com impacto em vários domı́nios

militares e civis. Tradicionalmente, o controlo de UAVs tem-se fundamentado em abordagens baseadas

em modelos. Contudo, a crescente complexidade dos sistemas e a ampla gama de dados disponı́veis

conduziram ao estudo e desenvolvimento de estratégias baseadas em dados que não requerem uma

representação exata do modelo a controlar. De modo a avaliar o desempenho destas estratégias apli-

cadas a UAVs, esta tese foca-se na implementação e análise de métodos de controlo baseado em da-

dos, com particular destaque para o algoritmo Data-enabled Predictive Control (DeePC). Este método

de controlo preditivo calcula controlos ótimos para sistemas desconhecidos, através da realimentação

da saı́da em tempo real e da implementação de um horizonte deslizante. Para além disso, este trabalho

estuda a influência de diferentes hiperparâmetros no desempenho do algoritmo DeePC e realiza uma

comparação realista entre este método e duas estratégias de controlo baseadas em modelos: o Linear

Quadratic Regulator (LQR) e o Model Predictive Control (MPC). Os resultados de simulação ilustram

a aplicabilidade e desempenho que pode ser obtido com o algoritmo DeePC. Adicionalmente, quando

comparado com as abordagens convencionais implementadas, este método revela-se mais robusto à

degradação do desempenho do anel interno do sistema e adapta-se melhor a um erro de calibração do

ângulo de guinada. Contudo, a implementação do método DeePC torna-se inapropriada para sistemas

não lineares mais complexos, sujeitos a trajetórias agressivas.

Palavras-chave: Veı́culos Aéreos Não Tripulados, Controlo Baseado em Dados, Data-enabled

Predictive Control, Avaliação de Performance, Robustez
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Abstract

Unmanned Aerial Vehicles (UAVs) have significantly grown in popularity due to their enhanced sta-

bility, endurance, and versatility in various military and civilian domains. Traditionally, the control of

UAVs has relied on model-based approaches, but the increasing complexity of the systems and the

widespread availability of data have led to the research and development of data-driven strategies that

do not require an accurate representation of the system to be controlled. To evaluate the performance

of data-driven control methods applied to UAVs, this thesis addresses the implementation and analysis

of these strategies, in particular, the Data-enabled Predictive Control (DeePC) algorithm. This predictive

control strategy computes optimal controls for unknown systems through real-time output feedback using

a receding horizon implementation. Moreover, this work investigates the influence of different hyperpa-

rameters on the performance of the DeePC algorithm and conducts a realistic comparison between this

method and two model-based control approaches: the Linear Quadratic Regulator (LQR) and the Model

Predictive Control (MPC). The simulation results confirm the applicability of the DeePC algorithm and

illustrate the performance that can be obtained. In addition, this method proves to be more robust to the

performance degradation of the system’s inner loop and adapts better to a yaw calibration error, when

compared to the implemented conventional approaches. However, for more complex nonlinear systems

subject to aggressive trajectories, the implementation of the DeePC method becomes inappropriate.

Keywords: Unmanned Aerial Vehicles, Data-driven Control, Data-enabled Predictive Control,

Performance Evaluation, Robustness
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) have grown significantly in popularity and notoriety in recent years,

largely attributable to their enhanced stability and endurance in several operations. Initially developed

on a large scale during World War I, these systems were primarily used for military applications such

as reconnaissance, airfield security, surveillance and target acquisition. Moreover, numerous civil ap-

plications have emerged over time, encompassing domains such as disaster management, education,

environmental and climate studies, construction and infrastructure inspection, tourism, mapping, preci-

sion agriculture, meteorology, real-time traffic monitoring, and many others [1].

Since 2020, this type of vehicle has played a vital role in the COVID-19 pandemic, being used to

deliver vaccines, medical supplies, and viral tests to potentially infected patients [2, 3]. Figure 1.1 depicts

an example of a quadrotor adapted to COVID-19 tests distribution. More recently, in 2022, quadrotors

have been extensively deployed in the Russia-Ukraine War, thereby marking a new era in air warfare

characterised by direct drone combat.

Figure 1.1: Retrofitted quadrotor for COVID-19 tests distribution [2].
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A UAV is commonly described as a pilotless aircraft with the capability to fly and stay airborne with-

out requiring any human onboard operator. These attributes enable UAVs to perform critical missions

without risking human life and provide more cost-effective operations than equivalent manned systems.

Although UAVs can be remotely piloted, numerous research groups have developed several control de-

sign methods that enable these vehicles to operate autonomously. Hence, the control of these systems

is conventionally tackled through a model-based approach, whereby an accurate representation of the

system is initially extracted from data, and subsequently, the control strategy is formulated based on the

identified model. Notwithstanding, with the increasing complexity of systems and the widespread avail-

ability of data, there has been a recent trend in the literature where classical model-based techniques

have been superseded by data-driven methodologies [4]. These data-based techniques are appropriate

for scenarios where first-principle models are not feasible, where the models are excessively complex

for control design, and where modelling and identification of parameters are too costly.

The Data-enabled Predictive Control (DeePC), as presented in [5], is an example of a data-driven

control technique, whose main goal is to learn the system’s behaviour rather than attempting to learn a

parametric model of the system. This predictive control strategy computes optimal controls for unknown

systems through real-time output feedback, using a receding horizon implementation. It is worth noting

that this methodology is much simpler to implement than model-based approaches that entail state

observer design and system identification.

1.2 Objectives

The main objective of this work is to evaluate the performance and key elements of data-driven

control techniques applied to quadrotors. To achieve this goal, the study and development of one of

these methods is required. Following a detailed analysis of the various steps of the method under study,

it is further intended to validate its performance through realistic simulation experiments.

Additionally, a comparison between the data-driven control strategy and other conventional control

techniques can also help to clarify the advantages and disadvantages of this type of strategy.

1.3 Proposed Solutions and Contributions

To achieve the aforementioned objectives, the DeePC algorithm presented in [5] is implemented,

adapted to the problem at hand and analysed in detail. Subsequently, a set of realistic simulation

experiments is conducted, which take into consideration uncertainties, constraints, and nonlinearities of

the quadrotor system. The performance of the DeePC algorithm is also evaluated on different models of

varying complexities, whereas a novel control architecture is developed and tested on a different vehicle

to the one used by the authors of the DeePC method.

Furthermore, a comprehensive examination of the influence of the data collection step and the se-

lection of each hyperparameter of the algorithm is presented and, finally, a comprehensive and realistic

comparison is performed between DeePC and two conventional model-based control methods of differ-
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ent complexity, designated by Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC).

This comparative analysis includes an assessment of the algorithms’ response to a simple trajectory

and their adaptability to performance degradation of the system’s inner loop and yaw calibration errors

in the system measurements.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 (Related Work): presents a comprehensive overview of the state-of-the-art in control

methods design, with a particular emphasis on classic model-based control techniques, system

identification strategies, data-driven control approaches, and control methods based on machine

learning techniques.

• Chapter 3 (Theoretical Background): provides the necessary theoretical background on the key

concepts to consider throughout this dissertation. A description of both the linear and nonlinear

models of the quadrotor’s dynamics is presented, followed by a review of the conventional model-

based methods relevant to this work.

• Chapter 4 (Data-enabled Predictive Control): formulates the optimisation problem associated

with the DeePC algorithm for both deterministic LTI and nonlinear systems. The implementation of

the data collection step is also detailed in this chapter.

• Chapter 5 (Implementation and Basic Simulation Results): describes the implementation and

simulation setup used to test the proposed algorithms. Subsequently, a set of simulated step

responses using the DeePC controller implemented in different control architectures is presented

and analysed.

• Chapter 6 (DeePC Performance Results): studies the influence of several parameters on the

simulated performance of the DeePC algorithm. A comparison between LQR, MPC and DeePC

control methods is also discussed.

• Chapter 7 (Conclusions): provides some concluding remarks and suggestions for future work.

3
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Chapter 2

Related Work

In this chapter, an overview of the research conducted on UAV control methods is presented. Firstly,

classical control methods are briefly summarised, followed by an examination of system identification

techniques, which are essential in the implementation of model-based control approaches. Next, data-

driven control techniques are discussed, with a particular focus on the methods utilised in this thesis.

Lastly, data-driven control methods based on machine learning strategies are discussed.

2.1 Classic Model-based Methods

UAVs were developed primarily for aerial operations without the need for a human operator, offering

more cost-effective operations than equivalent manned systems and, essentially, carrying out vital duties

without endangering human life. Therefore, much of the early work on UAVs developments focused on

reliable control of the system, which was considered to be an exciting challenge, mainly because these

vehicles exhibit characteristics of under actuation, nonlinearity, static instability, and strong coupling

between dynamic states [6]. This section provides an overview of classical control algorithms, including

linear and non-linear techniques.

In [7], Åström and Hägglund introduced the basic concepts of Proportional Integrative Derivative

(PID) control, describing the properties of the controller in a closed-loop system. The design and tuning

of these controllers were then examined, further demonstrating that they can be applied in a variety

of real-world applications. Regarding UAVs, Bouabdallah et al. designed a PID controller for a fully

autonomous micro quadrotor in [8], [9], and [10]. They used the Euler-Lagrange formulation to build

the dynamic system model of the quadrotor, which included gyroscopic effects. The PID controller was

then applied to a quadrotor test bench and the results were compared with a modern control strategy.

The experimental results proved that the PID controller successfully stabilised the attitude dynamics,

achieving success in hovering with the presence of small disturbances. In [11], Hoffmann et al. in-

vestigated the issues that arise when a quadrotor operates outside of a hover position. They focused

on the analysis of three different aerodynamic factors: vehicular velocity, angle of attack, and airframe

design. Through theoretical analysis and experiments using a test stand and actual flight tests, they

5



also verified the effectiveness of a Proportional Derivative (PD) controller in regulating the vehicle’s pitch

during manoeuvres at low speeds. However, at higher speeds, blade flapping created additional control

issues that required alternative approaches. On the other hand, position control was successfully imple-

mented using a PID controller that could stabilise roll and pitch control inputs. Furthermore, according to

their conclusions, the existing models and control methods were inadequate for tracking at high speeds

and in unpredictable environments with wind or other disturbances. T. Zhang et al. proposed a control

framework for achieving autonomous hovering, based on pose estimation and control, marker design,

image processing, and Inertial Measurement Unit (IMU) [12]. The framework employed a closed-loop

system with four PID controllers that utilised feedback from pose estimation to achieve stable hovering at

a fixed altitude. The authors also experimentally tested the efficacy of their control approach in real-time

by hovering over markers with some small oscillations. Overall, this work demonstrated the practical

viability of the proposed control framework for autonomous hovering in quadrotors.

In [13], Sadeghzadeh et al. further expanded the basic PID control by incorporating fault-tolerant

control strategies. They compared two different methods, designated as Model Reference Adaptive

Control (MRAC) and Gain-Scheduled PID (GS-PID), for handling damage in a quadrotor, specifically

partial damage to one of the propellers during flight. Through experiments, they demonstrated that both

the MRAC and GS-PID methods were effective in compensating for the damage during hovering and

flight conditions. Goodarzi et al. presented a nonlinear PID controller, in [14], that was designed to

track position and attitude commands while taking into account uncertainties that exist in the quadrotor’s

translation and rotation dynamics. This controller was developed using a special Euclidean group and in-

cluded a new integral term that allowed for asymptotic convergence of tracking errors in the presence of

uncertainties in the quadrotor’s dynamics. The simulation and preliminary experimental results demon-

strated the utility of these methods. Yang et al. presented a PD controller for a quadrotor based on a

dual closed-loop control framework [15]. In this work, active disturbance rejection control and PD con-

trol strategies are applied to the inner and outer loops, respectively. The gust wind perturbations were

estimated in the inner loop, and both convergence and stabilisation were achieved for the closed-loop

system. A simple PD control strategy was used for the control of attitude angles. Then, the stabilisa-

tion of the inner and outer closed-loop system was proved using the Lyapunov theory. The proposed

controller was validated through experimental results, which demonstrated its effectiveness in handling

wind disturbances.

To address some limitations of linear PID, a more flexible control strategy, designated as LQR, was

proposed. In [16], Valenti et al. suggested an LQR-based control for position and attitude. This work

focused on issues related to single and multi-vehicle health management. The control system was ex-

perimentally tested for hovering and waypoint tracking. Cowling et al. simulated a simple path-following

LQR controller [17]. The simulation results demonstrated that the quadrotor was capable of achieving

an accurate tracking of the desired reference trajectory, despite the presence of modelled wind and

other disturbances. In [18], Yu et al. compared the performance of LQR and MPC methods applied to

a quadrotor. Both control strategies were evaluated in scenarios with and without an actuator fault. The

static error was taken into consideration during the design of the LQR-based control algorithm. Hence,

6



the feedback control was implemented to ensure that the quadrotor followed a reference input without

a static error. The simulations demonstrated that these control algorithms were capable of delivering

satisfactory performance in both fault-free and actuator fault scenarios. Martins et al. proposed a con-

trol structure for trajectory tracking of UAVs employing an inner-outer loop design that included an LQR

controller with integrative action [19]. This control structure produced effective trajectory tracking results

and demonstrated robustness to perturbances in both the simulation and the real system.

Furthermore, the H∞ control technique was also employed to improve the quadrotor system’s ro-

bustness to external disturbances. In [20], Chen and Huzmezan created an H∞ linearised controller to

manage the quadrotor’s velocities, throttle, and yaw. They integrated the H∞ controller with an MPC

controller to increase the system’s constraint-handling ability during high-speed manoeuvres. To ad-

dress the issue of trajectory tracking, the suggested H∞ controller was optimised using a loop shaping

technique to stabilise the velocities, throttle, and yaw control. The simulation demonstrated that the com-

bination of these two techniques was effective for a wide range of trajectory scenarios. A generalised

H∞ controller with feedback linearisation to address actuator saturation was introduced by Mokhtari

et al. [21]. This method was effective in tracking reference inputs for a nonlinear quadrotor system.

Through simulation, the performance of the proposed controller was evaluated by examining the tracked

error trajectories, which showed that the quadrotor system can handle disturbances and uncertainties in

mass and inertia, despite limited actuator saturation. Lastly, in [22, 23], Raffo et al. presented an H∞

control technique for solving the path-tracking problem. The control structure in both works relied on a

nonlinear H∞ controller, combined with other strategies, to enable path following even in the presence

of external disturbances and modelling errors. The robustness of this controller was demonstrated in

simulation tests.

Although various works demonstrated the effectiveness of tackling the control problem with linear

techniques, it was found that applying nonlinear control methods that considered a more comprehensive

model of vehicle dynamics led to better performance. To overcome some shortcomings of these linear

controllers, a variety of nonlinear approaches applied to quadrotors can be found in the literature.

One of these nonlinear control techniques is the Backstepping method. The Backstepping control

approach is a recursive technique that integrates the selection of a Lyapunov function with the design of

feedback control. It decomposes the design problem for the complete system into a sequence of prob-

lems for lower-order systems. This approach can often resolve stabilisation, tracking, and robust control

issues with less restrictive conditions than other methods [24]. Bouabdallah and Siegwart presented

implementations of control strategies for the quadrotor using the Backstepping technique in [25, 26]. In

[25], they proposed a Backstepping control approach for the quadrotor based on tracking position errors

and utilising the Lyapunov theorem. Subsequently, they designed an improved controller through an

integral Backstepping method in [26]. Both articles presented simulation and experimental outcomes.

The proposed controller in [25] demonstrated effective tracking of the target position and heading angle.

On the other hand, the control strategy proposed in [26] achieved favourable results for not only position

control but also attitude and altitude controls. In [27], Madani and Benallegue employed the Backstep-

ping method in a simulation to stabilise the system and effectively track a desired trajectory and yaw
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angle. They partitioned the quadrotor model into three interconnected subsystems. The simulation re-

sults demonstrated the robust performance of the proposed control strategy. Lippiello et al. published a

research work based on the emergency landing of a quadrotor with a failed propeller [28]. The method

involved turning off the opposing rotor to the broken one, effectively making the quadrotor a birotor, and

using the Backstepping approach for control. While the birotor control allowed the quadrotor to success-

fully follow the planned emergency path, the performance of the control approach showed that yaw and

roll angles were uncontrollable but bounded. The simulation results revealed promising path-following

performance in various cases, including a simulation with an obstacle.

Subsequently, Sliding Mode Control (SMC) is another nonlinear methodology that is extensively em-

ployed. This control technique is characterised by the application of a discontinuous control signal to

induce the system state to slide along a predefined manifold. The sliding mode is reached when the

system state trajectory intersects with the sliding manifold, resulting in robustness to disturbances and

uncertainties [24]. In [25], Bouabdallah and Siegwart implemented the SMC on a quadrotor by design-

ing it for rotation subsystem control. The sliding surface was defined and confirmed using the Lyapunov

theory. The proposed SMC’s efficacy was compared to the Backstepping controller and the latter was

determined to be superior to the SMC. Xu and Ozguner presented an SMC approach to stabilise a

quadrotor under model error, parametric uncertainties, and other disturbances [29]. The objective of the

proposed controller was to enable the quadrotor to reach a desired position with a specific heading angle.

Furthermore, the proposed controller utilised a continuous approximation of the sign function to avoid

the chattering effect. The simulation outcomes demonstrated that the proposed controller effectively

achieved the desired objective with satisfactory outputs, even in the presence of parametric uncertain-

ties. In [30], López-Gutiérrez et al. presented an adaptive SMC that was combined with robust attitude

control. The proposed controller incorporated an adaptation rule in the control law, which reduced the

gain while maintaining minimal control input and ensuring finite-time convergence. The simulation and

experimental results indicated the effectiveness of the proposed controller, in the presence of external

disturbances. Moreover, the study concluded that the proposed controller succeeded in reducing the

chattering amplitude by minimising the gain.

On the other hand, the Feedback Linearisation method is also a nonlinear control technique, whose

main objective is to algebraically transform the dynamics of the nonlinear system into a partially or fully

linearised system so that linear control techniques can be applied [31]. Altug et al. introduced techniques

for controlling quadrotors by primarily relying on visual feedback [32]. Their study involved implementing

Feedback Linearisation and Backstepping controllers using various simulations of the model to validate

their findings. Hence, these simulations revealed that the Backstepping controller outperformed the

Feedback Linearisation controller. In [33], Lee and Sastry presented two types of nonlinear controllers

for an autonomous quadrotor. These comprised a Feedback Linearisation controller involving high-

order derivative terms and an adaptive SMC. According to their findings, the first method was sensitive

to sensor noise and modelling uncertainty, in contrast to the adaptive SMC. In [34], Voos introduced a

control system for a quadrotor, which combined various control strategies. These included Feedback

Linearisation to handle the quadrotor’s nonlinear dynamic behaviour. The simulation results demon-
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strated satisfactory performance in controlling the quadrotor’s attitude using the suggested Feedback

Linearisation technique.

Lastly, MPC is a control approach that employs a system’s dynamic model to predict its future be-

haviour and optimise a control input over a finite time horizon, while considering the constraints. The

control input is then applied to the system for a given period and the process is repeated at each time

step [35]. In [36], Alexis et al. proposed using the MPC technique to design a position and attitude

controller for a quadrotor in an indoor setting where there was no absolute localisation data available.

Their approach aimed to achieve precise trajectory control. In a series of experiments that included

tracking positions, hovering, aggressive attitude regulation manoeuvres, and mitigating the effects of

strong wind gusts, the proposed control strategy demonstrated significant overall effectiveness. In [37],

Abdolhosseini et al. developed an efficient MPC algorithm, which utilises a reduced number of predic-

tion points and demands less computational resources. The experimental outcomes demonstrated that

the suggested approach achieved a satisfactory performance when tested with the quadrotor. In [38],

Pinto suggested planning and control strategies, with a focus on MPC techniques, to enable safe and

efficient exchange of a parcel between two drones during flight. This work presented a model predic-

tive controller that plans trajectories in real-time and its effectiveness was verified through simulations.

Fang et al. introduced a fault-tolerant controller based on a nonlinear MPC algorithm to stabilise and

control a quadrotor that experiences a total failure of one rotor [39]. The proposed method was validated

through extensive simulations and real-world experiments. The results revealed that the approach was

successful in restoring the quadrotor even if the failure occurred during aggressive manoeuvres.

Table 2.1 details the summary of the model-based control methods presented in this section.

2.2 System Identification

In Section 2.1, it was discussed that a quadrotor dynamic system can be controlled using model-

based approaches that rely on explicit mathematical models of the system. Therefore, this section is

dedicated to the presentation of system identification techniques. The fundamental concept of these

techniques is to observe the behaviour of the dynamic system over a specific period and collect data on

the measurements of the system’s input and output to develop a mathematical model that describes its

behaviour [40].

Primarily, one of the most widely employed time-domain approaches for system identification is the

Least Squares (LS) method, which relies on Gauss method of minimising the summation of a sequence

of squared terms [40]. In [41], Gremillion and Humbert reported on the development of a linear mathe-

matical model to estimate the dynamics of a quadrotor micro air vehicle by implementing the LS method

on vehicle flight test data. This study employed time domain system identification software developed at

NASA Langley Research Center. Another study of the estimation of dynamic parameters for a quadro-

tor using the LS method was presented by Lopez-Sanchez et al. [42]. They aimed to improve upon

the nominal parameters provided by the manufacturer and used an optimised trajectory to excite the

quadrotor’s dynamics and gather experimental data. The research highlighted the effectiveness of the
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proposed method in accurately identifying the quadrotor’s parameters. In [43], Six et al. proposed a

novel approach to determine the propeller coefficients and dynamic parameters of quadrotor drones

in a single procedure. This method employs an LS identification technique and only necessitates the

measurement of the quadrotor’s mass, alongside a manual recording of flight data by an operator. The

efficacy of this approach was tested through experimental validation, where it enabled an estimation of

all pertinent dynamic parameters of the drone in proximity to hovering conditions.

Based on an additional statistical method, designated as Maximum Likelihood (ML), Burri et al. pro-

posed a systematic approach to accurately estimate physical parameters [44]. This approach was de-

signed to determine the parameters that provided the optimal explanation of sensor readings and also

furnished an estimate of their corresponding level of uncertainty. The efficacy of the approach was

demonstrated through an extensive evaluation of both simulated and real-world experimental data, ex-

hibiting a substantial convergence region and producing accurate estimates. To implement a robust

tracking controller, Rigter et al. described in [45] a system identification approach that identifies spe-

cific quadrotor parameters via ML estimation from flight data. This method was subsequently validated

through experimental results.

Furthermore, Autoregressive Moving Average with Exogenous Inputs (ARMAX) models have found

extensive application in system identification due to their ability to describe a broad range of real-world

processes with reasonable accuracy and relatively low complexity. In [46], Schreurs et al. were able to

obtain an ARMAX model that effectively described the behaviour of a quadrotor system. In [47], Angarita

et al. implemented an ARMAX model to accurately design a generic quadrotor system model, with the

primary aim of achieving accurate control over complex quadrotor manoeuvres.

Finally, Abas et al. implemented an Extended Kalman Filter (EKF), a commonly used estimation

method, to model and identify system parameters for quadrotor self-stabilisation [48]. The flight test

results demonstrated the EKF’s efficacy in terms of performance.

The summary of the system identification techniques discussed in this section is provided in Table

2.2.

2.3 Data-driven Control

The system identification task, described in the preceding section, is frequently the most time-

consuming and challenging component of model-based control methodologies. An inattentive system

identification has the potential to engender substandard performance of the implemented model-based

control method. Therefore, this stage usually needs expert knowledge and partial models of the system.

In the literature, a propensity towards approaches that design control inputs directly from data has been

observed, bypassing conventional model-based control techniques. These approaches, designated as

data-driven control methods, are particularly advantageous in complex systems where system identifi-

cation is excessively time-consuming and unwieldy, hence rendering them simpler to execute.

In [49], Willems et al. introduced the Fundamental Lemma which explained how to replace a system

model with data in the implementation of data-driven control methods for Linear Time-Invariant (LTI)
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systems. This research proposed that a single input-output trajectory with a finite length could serve as

a parametrisation for all feasible paths that an LTI system can generate, given that the input sequence

excited the system dynamics sufficiently, which is technically known as persistency of excitation.

In [50], Markovsky and Rapisarda introduced a technique that utilises the Fundamental Lemma to

compute the system response to a given input and initial conditions solely from a system trajectory, with-

out requiring explicit identification of the system from the data. They proposed a method for computing

a linear quadratic tracking control signal that bypasses the identification stage. Nevertheless, like the

conventional approach, this technique entails deriving a model representation from given plant data and

synthesising a control law based on the model and control specifications. The results were obtained

assuming exact data and the simulated response or control input was constructed offline.

A new controller tuning method called Virtual Reference Feedback Tuning (VRFT) was described by

Campi et al. in [51]. This approach involves the computation of a virtual reference signal based on the

system’s measured output. The controller is then optimised by minimising a performance criterion that

compares the real system output to the virtual reference model output. Simulation results demonstrated

the effectiveness of this method. In [52], Panizza et al. employed the VRFT method to address the

challenge of tuning a cascade attitude control system of a variable-pitch quadrotor. In this work, the

inner and outer loops were adjusted using only one set of experimental data. The resultant data-driven

controller demonstrated effective tracking and disturbance rejection capabilities.

Younes et al. applied the Model-Free Control (MFC) technique to a quadrotor vehicle in [53, 54].

The main objective of MFC is to provide compensation for time-varying disturbances and unmodeled

system dynamics that are beyond the capabilities of a basic controller to effectively handle. In [53], they

compared the performance of an LQR feedback controller with and without MFC on a real quadrotor.

Flight test results demonstrated that the use of MFC was critical for controlling the quadrotor system,

particularly when the feedback controller was not functioning optimally. In [54], the authors proposed

an integrated structure combining the nonlinear Integral Backstepping technique and the MFC. The pro-

posed combination was validated through flight tests in real-time, which revealed its robust performance

compared to other algorithms in both fault-free and actuator fault conditions.

Furthermore, the Subspace Predictive Control (SPC) method was introduced by Favoreel et al. in

[55]. The primary outcome of this method was the replacement of the system identification and controller

parameter computation steps with a process that involves the QR-decomposition and Singular Value

Decomposition (SVD) of a matrix created solely from input and output measurements of the unknown

system.

Moreover, the primary control technique explored in this thesis, the DeePC method, was introduced

by Coulson et al. in [5]. The algorithm, which is based on the Fundamental Lemma, eliminates the

need for function learning or system identification. Instead, the algorithm employs prior input/output

data to anticipate future trajectories directly. These previously recorded input/output data points, which

serve as motion primitives, establish the foundation for the range of feasible system trajectories. To

summarise, the DeePC algorithm utilises a finite dataset to learn the unknown system’s behaviour and

then applies real-time output feedback to compute optimal controls that guide the system towards a
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desired path, while respecting system constraints. In [5], it was formally showed that the DeePC tech-

nique is equivalent to the classical and widely used MPC algorithm for deterministic LTI systems. For

nonlinear stochastic systems, the authors suggested regularisations to this method. The simulation re-

sults indicated that the DeePC approach outperformed system identification followed by MPC. In [56],

Elokda et al. exhibited the effectiveness of the regularised DeePC algorithm in the position control of a

real-world quadrotor, thereby establishing a connection between theoretical developments and practical

applications. As part of this work, a sensitivity analysis of the DeePC algorithm’s hyperparameters was

conducted in simulation, resulting in valuable insights into their impact. The real-world deployment of the

DeePC method demonstrated its computational efficiency and ability to provide real-time solutions, with

solution times well within the required timeframe. In [57], Coulson et al. proposed a suitable regularisa-

tion to the DeePC algorithm, which resulted in end-to-end distributional robustness against uncertainties

in the data. In [58], Huang et al. introduced a novel data-driven approach for nonlinear systems, known

as Robust and Kernelised DeePC (RoKDeePC), which combines kernel methods with a robust DeePC

framework. The authors employed regularised kernel methods to learn the future behaviour of nonlin-

ear systems implicitly, followed by the formulation of a data-to-control min-max optimisation problem to

obtain robust and optimal control sequences. They proved that the cost of the system is bounded by

the optimisation cost of this min-max problem, ensuring deterministic performance guarantees. Fur-

thermore, it was shown that the min-max problem can be reformulated as a nonconvex yet structured

minimisation problem when uncertainty sets are considered. To enable real-time implementation, a pro-

jected gradient descent algorithm exploiting the problem structure was devised to solve the RoKDeePC

problem efficiently. Unlike learning-based control methods using Neural Networks (NN), this approach

does not necessitate time-consuming offline learning, and it can handle nonlinear systems in real time

with a plug-and-play ability.

Finally, Waarde presented a new experiment design method for data-driven modelling and control in

[59]. The main concept involved the online selection of inputs based on past input/output data, which

resulted in desirable rank properties of Hankel data matrices. When compared to the traditional per-

sistency of excitation condition, this online method required fewer data samples and was shown to be

entirely sample efficient.

Table 2.3 outlines a comprehensive summary of the data-driven control methods presented in this

section.

2.4 Machine Learning Methods

The burgeoning interest in machine learning techniques has given rise to various approaches in data-

driven control for quadrotors. These approaches, as discussed in the preceding section, are primarily

directed towards resolving the issues encountered with traditional model-based control techniques.

Dierks and Jagannathan used neural networks in quadrotors, as reported in [60, 61]. In these works,

the authors presented an output feedback controller for a quadrotor based on NN. The primary objective

of this control strategy was to enable the quadrotor to follow a desired trajectory in the presence of model
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uncertainties and other disturbances. Lyapunov theory was employed to demonstrate that the proposed

control strategy successfully constrained errors in position, orientation, velocity tracking, observer es-

timation, and NN weight estimation to be semi-globally bounded. Simulation results indicated that the

proposed controller was more effective than a traditional linear controller. In [62], Bansal et al. used

deep neural networks to generalise the dynamics of the system beyond the trajectories used for train-

ing, in contrast to the traditional learning methods. The authors conducted an experiment in which they

acquired a quadrotor dynamics model through translational and rotational training trajectories, which

were controlled independently. They then employed this model to simultaneously control the yaw and

position of a quadrotor, which was a non-trivial task due to nonlinear couplings between the two motions.

The results of the experiment showed that even simple NN can have good generalisation capabilities

and can learn quadrotor dynamics with high accuracy. In summary, the study demonstrated that the

acquired dynamics can be employed effectively to control the system. In [63], Mohajerin and Waslander

implemented Recurrent Neural Networks (RNN) to discern the dynamics of two aerial vehicles. The

use of RNNs in multistep prediction needed appropriate state initialisation, which involves assigning ac-

curate initial values to the neuron outputs during the initial prediction step. The authors demonstrated

that the network initialised using an NN-based method outperformed the identical network initialised via

alternative methods.

In [64], Torrente et al. presented an approach to model aerodynamic impacts using Gaussian Pro-

cesses (GP), a widely used technique in supervised machine learning. This approach was integrated

into an MPC system to achieve effective and accurate real-time feedback control in a quadrotor. The

integration of these methods resulted in a notable enhancement of positional tracking accuracy, demon-

strated through simulation as well as in the real-world application of the quadrotor. Therefore, Bauersfeld

et al. also developed a quadrotor dynamics model that can precisely capture intricate aerodynamic ef-

fects [65]. To accomplish this, they combined a rotor model based on Blade-Element-Momentum (BEM)

theory with learned residual force and torque terms represented by a deep neural network. Experimental

results showed that this approach could accurately model quadrotors, even throughout aggressive tra-

jectories. Building upon the previous research, Salzmann et al. introduced a highly efficient framework

known as Real-time Neural MPC [66]. This framework enabled the integration of large-capacity neural

network architectures as dynamics constraints into the MPC formulation. In contrast to a naive integra-

tion of a deep network into an MPC framework, this approach allowed unconstrained model architecture

selection, embedded real-time capability for larger models, and GPU acceleration, all without sacrificing

performance. Through experiments conducted in simulation and on a real-world agile quadrotor plat-

form, the feasibility of this framework was demonstrated by significantly reducing positional tracking error

in comparison to MPC approaches without neural network dynamics.

Conversely, Reinforcement Learning (RL) is a distinct category of machine learning methods that

endows an agent with the ability to learn in an interactive setting through trial-and-error learning, using

feedback from its actions and experiences. Nonetheless, it is a challenge to utilise this technique in

unstable systems that may collapse irreparably during the learning process prior to obtaining an efficient

policy. To tackle these challenges, multiple strategies have been introduced in the literature. In [67],
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Zhang et al. presented a technique that integrated MPC with RL within the framework of guided policy

search. The authors utilised MPC for data generation during training, while having access to complete

state observations offered by an instrumented training environment. The generated data was then used

to train a deep neural network policy, which was only permitted to access the raw observations from the

vehicle’s onboard sensors. Following training, the neural network policy was able to effectively control

the vehicle, despite not knowing the complete state, and at a substantially reduced computational cost

compared to MPC. The authors assessed the efficacy of this approach by learning obstacle avoidance

policies for a simulated quadrotor, relying on simulated onboard sensors and no explicit state estimation

during testing. Furthermore, Berkenkamp et al. introduced a novel learning algorithm that took into

account safety considerations, as defined by stability guarantees [68]. The authors extended control-

theoretic results on Lyapunov stability verification and explained how statistical models of the dynamics

could be used to achieve high-performance control policies with verifiable stability certificates. More

precisely, they demonstrated that it was feasible to exploit the system’s regularity properties to safely

learn about the dynamics and thereby improve the policy while expanding the estimated safe region of

attraction without exiting it. Therefore, Kaufmann et al. conducted a benchmark comparison of existing

learned control policies for agile quadrotor flight [69]. Their results indicated that training a control policy

that regulated body rates and thrust was more resilient in transferring from simulations to real-world

scenarios, as opposed to a policy that directly specified individual rotor thrusts. Additionally, the authors

demonstrated that such a control policy, which had been trained through RL, could effectively operate a

quadrotor in real-world experiments.

Finally, Table 2.4 provides an overview of the data-driven control methods based on machine learning

strategies addressed in this section.
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Table 2.1: Related work on classic model-based control methods.

References Method Brief Description

[7–15] PID

Basic feedback control method that computes an error value at

each time step and subsequently uses the proportional, inte-

gral, and derivative terms to make corrections.

[16–19] LQR

Modern control strategy that aims to determine a linear feed-

back control law to meet the system’s physical constraints and

minimise a quadratic cost function.

[20–23] H∞
Control technique used to design robust controllers that min-

imise the effect of disturbances on the system.

[24–28] Backstepping

Recursive control technique that integrates the selection of a

Lyapunov function with the design of a feedback controller, in

order to stabilise and track the output of a nonlinear system.

[24, 25, 29,

30]
SMC

Nonlinear control method that involves the application of a dis-

continuous control signal to induce the system state to slide

along a predefined manifold.

[31–34]
Feedback

Linearisation

Nonlinear control technique that algebraically transforms the

nonlinear dynamics of a system into a partially or fully lin-

earised system to allow the application of linear control tech-

niques.

[35–39] MPC

Nonlinear control approach that uses a dynamics model of the

system to predict its future behaviour and optimise a control

input over a finite time horizon.
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Table 2.2: Related work on system identification techniques.

References Method Brief Description

[40–43] Least Squares
Identification method that involves minimising the summation

of a sequence of squared terms, based on Gauss method.

[44, 45]
Maximum

Likelihood

Technique used to identify the parameters of a statistical model

by finding the values that maximise the likelihood function.

[46, 47] ARMAX

Model used for system identification that incorporates autore-

gressive and moving average models along with exogenous

variables to represent the correlation between a variable of in-

terest and other explanatory variables.

[48] EKF

Recursive algorithm that estimates the state of a nonlinear sys-

tem, based on first-order linearisation of the process and mea-

surement functions.
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Table 2.3: Related work on data-driven control approaches.

References Method Brief Description

[51, 52] VFRT

Control approach that computes a virtual reference signal

based on the system’s measured output and then optimises the

controller by minimising a performance criterion that compares

the actual system output with the virtual reference output.

[53, 54] MFC

Control method which compensates for time-varying distur-

bances and unmodeled system dynamics that are beyond the

capabilities of a basic controller to handle effectively.

[55] SPC

Control technique characterised by the combination of predic-

tive control law and a subspace predictor, which also employs

a multistep forward prediction model to compute the finite fu-

ture trajectory in a single step.

[5, 56–58] DeePC

Control method that computes optimal controls for unknown

systems using real-time output feedback, through a receding

horizon implementation.
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Table 2.4: Related work on data-driven control methods based on machine learning strategies.

References Method Brief Description

[60–62, 65, 66] NN

System with the interconnection between artificial neurons in

different layers. Control methods that use NN aim to obtain a

control law that addresses system uncertainties by training the

network through the adjustment of its weights.

[63] RNN

Type of NN that can process sequential data by maintaining a

memory of the past inputs. It can also be employed as a control

strategy, whereby an optimal control action is computed using

predicted future states that are based on the current system

state and control inputs.

[64] GP

Generic supervised learning method designed to solve regres-

sion and probabilistic classification problems. It can also be in-

corporated into a control approach to accomplish effective and

accurate control by learning the unmodelled dynamics of the

system.

[67–69] RL

Type of machine learning that allows an agent to learn in an

interactive setting through trial-and-error learning, using feed-

back from its actions and experiences. This method can be

used to solve control problems by learning optimal control poli-

cies.
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Chapter 3

Theoretical Background

In this chapter, certain theoretical aspects needed through this dissertation are revised. First, an

overview of the nonlinear and linear models of the quadrotor dynamics is presented. Afterwards, the

model-based control strategies used in this thesis are discussed, particularly the LQR method, which

will play a fundamental role in the data collection stage, and the MPC method, which will serve as the

standard model-based control approach to be compared with DeePC.

3.1 Quadrotor Model

3.1.1 Nonlinear Model

This section presents the nonlinear model of the UAV, based on Newton-Euler formalism. The nonlin-

ear dynamics are described in both the body-fixed reference frame {B} and the inertial reference frame

{I}, as illustrated in Figure 3.1. The unit vectors along the axis of the body-fixed frame {B} are labelled

as {xB ,yB , zB}, while the unit vectors along the inertial frame {I} axis are denoted by {xI ,yI , zI}. It is

assumed that the origin of the body-fixed frame {B} coincides with the centre of mass of the quadrotor.

The xB and yB axes are situated in the plane defined by the four rotors, while the zB axis is perpendicu-

lar to this plane and points downward, indicating the direction of total thrust. Additionally, Figure 3.1 also

depicts the propeller numbering convention.

Figure 3.1: Reference frames and rotor numbering.
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Let p = [x, y, z]T denote the position vector of the centre of mass of the UAV in {I}. Let R represent

the rotation matrix from the body-fixed frame to the inertial frame, which can be parameterised by R(λ)

with λ = [ϕ, θ, ψ]T , where the Euler angles ϕ, θ, and ψ correspond to the roll, pitch and yaw angles,

respectively. Consider ω = [p, q, r]T as the angular velocity of frame {B} relative to {I} expressed in

{B}. Let the control input to the system u comprise the total thrust T ∈ R+ and the body torques

τ = [τx, τy, τz]
T ∈ R⊯, both defined in {B}. Based on [70], the rigid body equations of motion of the

quadrotor are given by

ṗ = v,

mbv̇ = mbgzI −RTzI ,

Ṙ = RS(ω),

Jω̇ = −S(ω)Jω + τ ,

(3.1)

where mb ∈ R+ represents the mass of the quadrotor, J ∈ R3×3 denotes the inertia tensor described in

{B}, the constant g corresponds to the Earth’s gravity, and S(·) denotes the skew-symmetric operator

such that S(a)b = a × b. Considering that the Euler angles follow the sequence of rotation Z-Y-X, it is

possible to conclude that the resultant rotation matrix R(λ) is given by

R(λ) =


cos(θ)cos(ψ) sin(ϕ)sin(θ)cos(ψ)− cos(ϕ)sin(ψ) cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ)

cos(θ)sin(ψ) sin(ϕ)sin(θ)sin(ψ)− cos(ϕ)cos(ψ) cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ)

−sin(θ) sin(ϕ)cos(θ) cos(ϕ)cos(θ)

 .

Subsequently, assuming also the effect of drag on the translational motion of the quadrotor, the equation

describing the translational dynamics presented in (3.1) is modified as follows:

mbv̇ = mbgzI −RTzI −RTCDRv, (3.2)

where CD denotes the drag coefficients matrix associated with the translational dynamics, which is

represented in {B}, and RT represents the rotation matrix from the inertial frame to the body-fixed

frame.

Furthermore, the angle rates λ̇ = [ϕ̇, θ̇, ψ̇]T are obtained from the body rotational rates ω by applying:


ϕ̇

θ̇

ψ̇

 = Q(λ)ω =


1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)



p

q

r

 .

On the other hand, according to [70], the force Fi and the torque τi generated by the rotor i, hovering

in free space, can be modelled using the following equations:

Fi = cFω
2
i ,

τi = (−1)i+1cτω
2
i ,

where cF , cτ ∈ R+. These constants, which can be obtained experimentally, are dependent on several
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factors such as the area of the disk, the rotor radius, the air density, the geometry and the profile of the

rotor, and the effect of drag produced by the rotor flow. Consequently, the relation between the torque τi

produced by a rotor and its generated force Fi is described by the following expression:

τi =
cτ
cF
Fi = cFi.

Furthermore, it is also defined that rotors 1 and 3 rotate anticlockwise, whereas rotors 2 and 4 rotate

clockwise. This configuration is chosen in such a way that the total moment generated by the pair of

rotors about the zB axis is null during the hovering flight. Thus, the control signal u for the system is

composed of the total thrust T ∈ R+ and the body torques τ = [τx, τy, τz]
T generated by the four rotors.

For the vehicle illustrated in Figure 3.1, the following expressions are verified:

T =

4∑
i=1

Fi,

τx = −(F1 + F2)bx + (F3 + F4)bx,

τy = (F1 + F4)by − (F2 + F3)by,

τz =

4∑
i=1

τi = c(F1 + F2 + F3 + F4),

(3.3)

where bx and by denote the perpendicular distance of the rotor to the xB and yB axes, respectively.

Therefore, by rearranging the terms of (3.3), it is possible to conclude that the control signal u can

be mathematically expressed in terms of the generated forces Fi as

u =


1 1 1 1

−bx −bx bx bx

by −by −by by

c −c c −c




F1

F2

F3

F4

 .

Finally, by considering the state vector x = [pT ,vT ,λT ,ωT ]T , the input vector u = [T, τT ]T , and

the equations described above, it is possible to express the nonlinear dynamics of the quadrotor in the

compact form ẋ = f(x,u), where

f(x,u) =


v

gzI − 1
mb

RTzI

Q(λ)ω

−J−1S(ω)Jω + J−1τ

 . (3.4)

3.1.2 Linear Model

Given the detailed derivation of the nonlinear model of quadrotor dynamics presented above, in order

to design linear control laws for the system, it is necessary to linearise the obtained model around the

equilibrium point.
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To simplify the process, it is assumed that the equilibrium point for which the linearisation is performed

corresponds to the quadrotor’s hover condition, at a particular position p0 and a specific yaw angle ψ0.

Assuming ψ0 = 0 and taking into account the hovering flight conditions, the equilibrium state vector x0

and the equilibrium input vector u0 can be, respectively, described as

x0 = [pT
0 vT

0 λT
0 ωT

0 ]
T = [pT

0 0T
3×1 0T

3×1 0T
3×1]

T ,

u0 = [T0 τT
0 ]

T = [mbg 0T
3×1]

T .
(3.5)

Then, continuing the linearisation process, the incremental variables of this model are defined as

δx = [δpT δvT δλT δωT ]T ∈ R12,

δu = [δT δτT ]T ∈ R4,

where
δx = x− x0,

δu = u− u0.

Hence, using the Taylor series expansion to linearise (3.4) around the equilibrium point results in the

following expression:

ẋ ≈ ∂ f

∂ x

∣∣∣∣
x0,u0

x+
∂ f

∂ u

∣∣∣∣
x0,u0

u, (3.6)

where the higher-order terms of the Taylor series are neglected.

Firstly, from (3.4) and (3.6), it can be inferred that

∂ ṗ

∂ x

∣∣∣∣
x0,u0

= [03×3 I3×3 03×3 03×3]. (3.7)

Regarding v̇ and taking into account (3.4), (3.5), and (3.6), the following auxiliary matrix is defined:

G :=
∂ v̇

∂ λ

∣∣∣∣
x0,u0

= − 1

m
T0

∂

∂ λ
(R(λ)zI)

∣∣∣∣
x0,u0

= −g ∂

∂ λ


cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ)

cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ)

cos(ϕ)cos(θ)


∣∣∣∣∣
x0,u0

= −g


0 1 0

−1 0 0

0 0 0

 =


0 −g 0

g 0 0

0 0 0

 .
(3.8)

Thus, it is possible to state that

∂ v̇

∂ x

∣∣∣∣
x0,u0

= [03×3 03×3 G 03×3]. (3.9)
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Concerning λ̇, from (3.4), (3.5), and (3.6), it yields

∂ λ̇

∂ x

∣∣∣∣
x0,u0

=

[
03×3 03×3

∂ Q(λ)

∂ λ
ω0 Q(λ0)

∂ ω

∂ λ

]
= [03×3 03×3 03×3 I3×3]. (3.10)

In relation to ω̇ and given that

∂ ω̇

∂ ω

∣∣∣∣
x0,u0

= −J−1 ∂

∂ ω
(S(ω)Jω)

∣∣∣∣
x0,u0

= −J−1 ∂ S(ω)

∂ ω
Jω0 − J−1S(ω0)J

= 03×3,

it is possible to conclude that

∂ ω̇

∂ x

∣∣∣∣
x0,u0

= [03×3 03×3 03×3 03×3]. (3.11)

In summary, from (3.7), (3.9), (3.10), and (3.11), one can establish the linear system state matrix as

Ac :=
∂ f

∂ x

∣∣∣∣
x0,u0

=


03×3 I3×3 03×3 03×3

03×3 03×3 G 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

 . (3.12)

A similar approach is employed for the input vector, resulting in

∂ ṗ

∂ u

∣∣∣∣
x0,u0

=
[
03×1 03×3

]
, (3.13)

∂ v̇

∂ u

∣∣∣∣
x0,u0

=
[
− 1

mb
R(λ0)zI 03×3

]
=

[
− 1

mb
zI 03×3

]
, (3.14)

∂ λ̇

∂ u

∣∣∣∣
x0,u0

=
[
03×1 03×3

]
, (3.15)

∂ ω̇

∂ u

∣∣∣∣
x0,u0

=
[
03×1 J−1

]
. (3.16)

Therefore, from (3.13), (3.14), (3.15), and (3.16), it is possible to define

Bc :=
∂ f

∂ u

∣∣∣∣
x0,u0

=


03×1 03×3

− 1
mb

zI 03×3

03×1 03×3

03×1 J−1

 . (3.17)

From (3.12) and (3.17), one rewrites (3.6) as

ẋ = Acx+Bcu.
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Figure 3.2: Discretisation of a signal using the ZOH method.

In addition to the linearised model deduced above, this work also uses another quadrotor model,

which assumes the existence of an inner loop of body rates. Therefore, the actuation signal transmitted

to the system comprises input commands of thurst and body rates. Subsequently, the system state

vector is constituted only by the position, velocity, and orientation vectors. Hence, in this case, the state

and input vectors are, respectively, given by:

x =
[
pT vT λT

]
,

u =
[
T ωT

]
.

By employing the identical linearisation process discussed above and considering the relevant formula-

tions in (3.4), the ensuing matrices can be obtained:

Ac =


03×3 I3×3 03×3

03×3 03×3 G

03×3 03×3 03×3

 , Bc =


03×1 03×3

− 1
mb

zI 03×3

03×1 I3×3

 . (3.18)

Finally, the discretisation of this linear system is necessary to allow the implementation of the sub-

sequent proposed methods. According to [71], the discretisation method referred to as Zero-Order Hold

(ZOH) assumes that the control input u remains constant over a sampling time Ts. Figure 3.2 shows the

piecewise-constant signal resulting from the application of this method. Thus, using the ZOH method,

the linear system can be described in the following equivalent discrete state space representation:

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),

where A = eAcTs , B =
(∫ Ts

0
eAcτ dτ

)
Bc, C = Cc, and D = Dc.

3.2 Model-based Methods

3.2.1 Linear Quadratic Regulator

In this subsection, the LQR is presented, based on [72]. The LQR is a modern control strategy

that aims to determine a feedback control law so that the system to be controlled can meet physical

constraints while also minimising a quadratic cost function.
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Figure 3.3: Structure of the Linear Quadratic Regulator.

Consider a discrete system described by the linear state-space representation

x(k + 1) = Ax(k) +Bu(k), (3.19)

where x ∈ Rn is the vector of state-space variables and u ∈ Rm is the system’s input. The optimal

regulator problem computes the gain matrix K of the optimal control vector

u(k) = −Kx(k) (3.20)

in order to minimise the cost function

J =

∞∑
k=0

x(k)TQx(k) + u(k)TRu(k), (3.21)

where Q ∈ Rn×n, denominated as state weighting matrix, is a positive semi-definitive matrix and R ∈

Rm×m, designated as control weighting matrix, is a positive definitive matrix. Hence, the matrices Q and

R determine, respectively, the relative importance of the deviation of the state x from the desired state

and the expenditure of the energy of the control signals. It is also important to note that since this is an

infinite time control problem, the control solution turns into a steady-state solution, leading to a constant

optimal gain matrix K. Figure 3.3 depicts a block diagram representation of an LQR controller.

Through algebraic manipulation, it is possible to conclude that the gain matrix K that minimises the

cost function J is given by

K = (BTPB +R)−1BTPA. (3.22)

The matrix P in (3.22) can be calculated by the discrete-time Riccati equation:

ATPA− P −ATPB(BTPB +R)−1BTPA+Q = 0.

It should also be noted that this thesis employs the LQR method to design a linear control law based

on the model resulting from the discretisation of (3.18).
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3.2.2 Model Predictive Control

Following the approach of classical methods, one of the most popular control strategies, known as

MPC, is introduced. The subsequent descriptions of this method are based on [5, 35, 73].

The fundamental principle of MPC is to predict the future behaviour of the controlled system over a

specified time horizon and compute an optimal control input that minimises a chosen cost function while

ensuring the satisfaction of the system constraints. Thus, Figure 3.4 depicts this fundamental rule of

MPC.

Figure 3.4: Basic principle of MPC strategy (adapted from [73]).

As in the previous section, let x ∈ Rn, y ∈ Rp, and u ∈ Rm denote the vector of state-space

variables, the system’s output, and the system’s input, respectively. Furthermore, the classical MPC

algorithm uses a receding horizon approach to solve the following reference tracking optimal control

problem:

minimise
u,x,y

Tf−1∑
k=0

[y(k)− y(k)]TQ[y(k)− y(k)]+

+[u(k)− u(k)]TR[u(k)− u(k)]

subject to x(k + 1) = Ax(k) +Bu(k),∀k ∈ {0, . . . , Tf − 1},

y(k) = Cx(k) +Du(k),∀k ∈ {0, . . . , Tf − 1},

x(0) = x̂(t),

u(k) ∈ U ,∀k ∈ {0, . . . , Tf − 1},

y(k) ∈ Y,∀k ∈ {0, . . . , Tf − 1},

(3.23)

where t is the current time, k is the temporal instance of the predictive horizon window, Tf ∈ N is

the time horizon, u,x,y are the decision variables, U ⊆ Rm is an input constraint set, Y ⊆ Rp is an

output constraint set, u(k) ∈ Rm and y(k) ∈ Rp are, respectively, the desired input and output reference

calculated for each iteration of the algorithm, Q ∈ Rp×p is the output cost matrix, R ∈ Rm×m is the

control cost matrix, and x̂(t) is the estimated state at time t.
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Finally, Algorithm 1 summarises the implementation of the MPC control strategy.

Algorithm 1 MPC [5]

Input: matrices (A,B,C,D), input and output references (u,y), current state x̂t, constraint sets U and
Y, and performance matrices Q and R.

1. Solve (3.23) for u⋆ = (u⋆(0)T , . . . ,u⋆T (Tf − 1))T .
2. Apply inputs u(t)T = u⋆(0)T .

3. Update x̂(t).

4. Return to 1.
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Chapter 4

Data-enabled Predictive Control

In this chapter, the DeePC is presented based on [5, 56]. First, the necessary preliminaries are

provided. Then, the optimisation problem related to the DeePC algorithm is defined, although it will

only be effective when applied to deterministic LTI systems. Hence, robustness regularisations are

introduced, which will enable the algorithm’s adaptation for the nonlinear quadrotor system with noisy

measurements. Finally, a detailed description of the implementation of the data collection stage is

provided, highlighting its influence on the performance of this data-driven control technique.

4.1 DeePC Algorithm

Consider an unknown deterministic discrete-time LTI system represented by

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(4.1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Assuming that (4.1)

is given in its minimal realisation, it is possible to ensure controllability and observability properties of

the represented system. The lag of the system (4.1) is defined by the smallest integer ℓ ∈ Z≥0 for which

the observability matrix

Oℓ(A,C) := [C,CA, ...,CAℓ−1]T

has rank n.

From the unknown system (4.1) and during an offline procedure, Td sequences of input/output data

(ud,yd) = {ud(k),yd(k)}
Td

k=0 are collected. After that, the collected data is reorganised into two Hankel

matrices, as shown below:
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HL(ud) =


ud(1) ud(2) . . . ud(Td − L+ 1)

ud(2) ud(3) . . . ud(Td − L+ 2)
...

...
. . .

...

ud(L) ud(L+ 1) . . . ud(Td)

 ,

HL(yd) =


yd(1) yd(2) . . . yd(Td − L+ 1)

yd(2) yd(3) . . . yd(Td − L+ 2)
...

...
. . .

...

yd(L) yd(L+ 1) . . . yd(Td)

 ,

(4.2)

where L is the sum of the length of the initialisation sequence, Tini ∈ Z≥0, and the prediction horizon,

Tf ∈ Z≥0.

Definition 4.1 (Persistency of excitation [49]). Let L, T ∈ Z≥0 such that T ≥ L. The sequence of signals

u = {u(k)}Tk=0 ∈ RmT is persistently exciting of order L if the Hankel matrix HL(u) has full row rank.

The term persistently exciting refers to an input signal that is sufficiently rich and long to excite the

system and produce an output sequence that is representative of its behaviour. Note that the DeePC

algorithm is based on the following fundamental result.

Theorem 4.1. [49] Consider (4.1) and let Td, L ∈ Z≥0. Let (ud,yd) = {ud(k),yd(k)}
Td

k=0 be a trajectory

of (4.1) of length Td, assuming that the sequence of signals ud is persistently exciting of order L. Hence,

(u,y) = {u(k),y(k)}Lk=0 is a trajectory of (4.1) if and only if there exists g ∈ RTd−L+1 such that

HL(ud)

HL(yd)

 g =

u
y

 .
Note that, in this particular case, considering that ud is persistently exciting of order L, it implies that

the condition Td ≥ (m+ 1)L− 1 must be satisfied.

According to the previous statement, the subspace spanned by the columns of the Hankel matrix,

[HL(ud),HL(yd)]
T , exactly matches the subspace of potential trajectory of (4.1). Therefore, the Hankel

matrix may be used as a nonparametric model for (4.1), which may be generated directly from raw

time-series data without the need for any learning.

Returning to (4.2), these Hankel matrices, composed by input/output collected data, are divided into

two parts,

Up

Uf

 := HTini+Tf
(ud),

Y p

Y f

 := HTini+Tf
(yd), (4.3)

where Up consists of the first Tini block rows of HTini+Tf
(ud) and Uf consists of the last Tf block rows

of HTini+Tf
(ud) (similarly for Y p and Y f ). Hence, the data in Up and Y p are used to estimate the initial

conditions, whereas the data in Uf and Y f are used to predict future trajectories. Consider further that

the input signal ud, collected during an offline process, is persistently exciting of order Tini + Tf + n.
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From Theorem 4.1, (u,y) = {u(k),y(k)}Tf−1
k=0 is a possible future trajectory of (4.1) if and only if

there exists g ∈ RTd−Tini−Tf+1 such that


Up

Y p

Uf

Y f

 g =


uini

yini

u

y

 . (4.4)

In order to uniquely fix the initial condition from which the future trajectory departs, it is necessary to

ensure that Tini ≥ ℓ. Therefore, this condition also implies that the predicted trajectory calculated by

y = Y fg is unique.

Given a reference input ur ∈ Rm, a reference trajectory yr ∈ Rp, past input/output data [uini,yini]
T ,

an input constraint set U ⊆ Rm, an output constraint set Y ⊆ Rp, an output cost matrix Q ∈ Rp×p, and a

control cost matrix R ∈ Rm×m, it is possible to formulate the following data-driven optimisation problem:

minimise
g,u,y

Tf−1∑
k=0

[y(k)− yr]
TQ[y(k)− yr] + [u(k)− ur]

TR[u(k)− ur]

subject to (4.4)

u(k) ∈ U ,∀k ∈ {0, . . . , Tf − 1},

y(k) ∈ Y,∀k ∈ {0, . . . , Tf − 1}.

(4.5)

Hence, when the unknown system has the form (4.1), it has been demonstrated that the optimisation

problem (4.5) is equivalent to the MPC problem presented in (3.23).

4.2 Regularised DeePC Algorithm

One of the motivations of this work is to implement the DeePC algorithm in a real-world quadrotor

described in Section 3.1, i.e., in a nonlinear system corrupted by process noise. Thus, it is necessary to

include some regularisations in the optimal control problem (4.5), resulting in the following regularised

optimisation problem:

minimise
g,u,y,σy

Tf−1∑
k=0

c(u(k),y(k)) + λg∥g∥2 + λy∥σy∥2

subject to


Up

Y p

Uf

Y f

 g =


uini

yini

u

y

+


0

σy

0

0


u(k) ∈ U ,∀k ∈ {0, . . . , Tf − 1},

y(k) ∈ Y,∀k ∈ {0, . . . , Tf − 1},

(4.6)

where c(u(k),y(k)) = [y(k)− yr]
TQ[y(k)− yr] + [u(k)− ur]

TR[u(k)− ur], σy ∈ RpTini is an auxiliary

slack variable, and λg, λy ∈ R>0 are regularisation parameters.
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The inclusion of the slack variable σy is primarily intended to always ensure the feasibility of the

constraint equation, since this constraint may become inconsistent when the output measurements are

corrupted by noise. The slack variable was also penalised with a two-norm penalty function. Moreover,

it is intended to choose λy sufficiently large, in such a way that the condition σy ̸= 0 is only verified in

cases where the constraint is infeasible. Furthermore, the inclusion of the two-norm regularisation on g

is a common technique in a distributionally robust problem formulation.

Finally, the DeePC method, in which (4.6) is implemented in a receding horizon approach, is sum-

marised in Algorithm 2.

Algorithm 2 Regularised DeePC [56]

Input: Td, Tf , Tini, H = [UT
p ,Y

T
p ,U

T
f ,Y

T
f ]

T , input and output references (ur,yr), constraint sets U
and Y, performance matrices Q and R, regularisation parameters (λg, λy), and past input/output data
(uini,yini).

1. Solve (4.6) for g⋆.

2. Compute the optimal input sequence u⋆ = Ufg
⋆.

3. Apply inputs (u(t)T , . . . ,u(t+ s)T )T = (u⋆(0)T , . . . ,u⋆(s)T )T for some s ≤ Tf − 1.

4. Set t to t+ s and update uini and yini to the Tini most recent past input/output measurements.

5. Return to 1.

4.3 Data Collection

As mentioned in Section 4.1, the input signal used to fill the Hankel matrices represented in (4.3)

must be persistently exciting of sufficient order. Therefore, it is imperative to carefully collect the data for

the successful implementation of this data-driven control algorithm.

This data can be collected either by applying a random input sequence or by conducting a manual

flight experiment, where a human operator performs as an outer controller. The former approach was

adopted in order to ensure the repeatability of results. Consequently, a Pseudorandom Binary Sequence

(PRBS) was used, as it typically provides satisfactory performance for conventional system identification

techniques. It should also be noted that the input signals employed for data collection comprise the

PRBS excitation signal added to an existing simple controller that maintains the quadrotor around the

hover state. This controller is primarily used to stabilize the quadrotor, ensuring an improved algorithm

performance and minimum safe conditions throughout the data collection process.

According to [74], a PRBS is inherently periodic with a maximum period of 2n − 1, where n ∈ N is

the order of the PRBS. Given that it is intended to collect Td sequences of input/output data, it can be

inferred that the order of the PRBS to be generated is nTd = floor(log2(Td + 1)) and consequently, the

desired period of the PRBS is determined by PRBSperiod = 2nTd − 1. Moreover, the number of periods

of this PRBS can be obtained by ceil(Td/PRBSperiod). The MATLAB functions floor(X) and ceil(X)

round the elements of X to the nearest integers towards −∞ and +∞, respectively. In this dissertation,

the PRBS excitation signal was generated using the MATLAB function designated as idinput(). Hence,

this design process can be summarized in the following steps:
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1. Initially, a PRBS is generated, which will later serve as the basis for creating the excitation signals

used for each system input. Therefore, it is necessary to determine the amplitude, the period

length, the number of periods, and the desired clock period, i.e., the minimum number of sampling

intervals for which the value of the PRBS does not change. Note that performing future calculations

on entire periods is essential since generating only a partial period of a PRBS will not produce a

signal with the desired properties.

2. Then, select only the first Td elements of the generated PRBS.

3. Furthermore, determine the desired amplitude for the excitation signal of the first input of the

system. To obtain this excitation signal, it is necessary to multiply the chosen amplitude by the

PRBS generated previously.

4. To generate the excitation signal linked with the subsequent system input, it is once again re-

quired to multiply the PRBS by a predetermined amplitude. Nonetheless, it is crucial to execute

a circular shift of the positions of the original PRBS elements before performing the multiplica-

tion in this situation. The amount of positions by which the elements are shifted is determined by

floor(PRBSperiod(i+1)/m), where i ∈ Z≥0 denotes the number of circular shifts that have already

been conducted on the original PRBS.

5. Finally, repeat the previous step to produce the excitation signals of the remaining system inputs.

Finally, Figure 4.1 illustrates part of two generic PRBS, generated for different clock period values,

assuming Ts = 0.04s. When the clock period is set to 2 samples, signal value variations at successive

sample times are no longer observed. Thus, it is possible to corroborate that the clock period influences

the minimum number of sampling intervals during which the PRBS value does not change.
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Figure 4.1: Part of a generic PRBS for different clock periods, with sample time of Ts =0.04s.
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Chapter 5

Implementation and Basic Simulation

Results

This chapter presents a detailed description of the implementation of the proposed algorithms, along

with a concise analysis of the simulation results obtained by subjecting the system to a unit step. Firstly,

the vehicle model used, the DeePC controller’s implementation, and schematics of its control architec-

ture are provided. Then, the hyperparameters and constraints associated with the DeePC algorithm are

described. Finally, the step responses for the different types of control architectures using the DeePC

controller are discussed and compared.

5.1 Simulation Architecture

In order to evaluate the performance of the proposed methods, the simulated results are obtained

from a very realistic model implemented in MATLAB/Simulink [75, 76]. Based on the one provided by

the authors of [56], this simulation model includes the accurate modelling of rotor dynamics, actuation

constraints, drag, measurement noise, and inner-loop controller dynamics. It is also important to note

that the necessary adjustments were made to align the orientation axes employed in the simulation

with those detailed in Section 3.1. The subsequent outcomes were obtained from a computer with the

operating system Windows 11, equipped with an Intel Core i7-1165G7 CPU 2.80GHz, and 16GB of

RAM. The optimisation problems of the DeePC algorithm were solved using the OSQP solver [77].

5.1.1 3DR® Iris+ Quadrotor

The 3DR® Iris+ quadrotor, represented in Figure 5.1, was employed to run the simulations. This

commercial vehicle, developed by 3D Robotics (3DR), was chosen mainly because it is a vehicle widely

studied in the literature, whose parameters are well identified experimentally. Moreover, another advan-

tage is the existence of several realistic simulators of this quadrotor, which can be used in the future to

compare results. Table 5.1 details the physical properties used to simulate the quadrotor model.
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Figure 5.1: 3DR® Iris+ quadrotor [78].

Table 5.1: Experimental physical properties of 3DR® Iris+ quadrotor (obtained from [78]).

Mass (kg) Jxx (kg m2) Jyy (kg m2) Jzz (kg m2) bx (m) by (m) cF /cτ

1.37 0.0219 0.0109 0.0306 0.111 0.240 0.065

Hence, based on the experimental results presented in [78], it was possible to obtain:

• the vehicle mass, including the battery pack used;

• the inertia tensor, which was considered as a diagonal matrix;

• the average perpendicular distances of the rotor to the xB and yB axes, designated respectively

by bx and by;

• the torque-to-thrust coefficient of the rotor, denoted by cF /cτ .

5.1.2 DeePC Controller Implementation

As previously stated, before the implementation of the DeePC controller, it is essential to perform the

crucial task of data collection. Figure 5.2 illustrates the block diagram that succinctly schematises the

implementation of the data collection step in Simulink. In accordance with Section 4.3, the input signals

used for data collection also result from the sum of the PRBS excitation signal and the signal generated

by the LQR controller, which was appropriately tuned to maintain the quadrotor in the hover state.

Moreover, Figure 5.3 depicts the block diagram of the DeePC controller implementation in Simulink.

Initially, while the simulation time is lower than a predetermined DeePC trial start time, the quadrotor is

stabilised in a hover state through the LQR controller. Once the opposite is verified, the DeePC controller

is enabled, assuming exclusive control over the quadrotor. This transition between controllers is secured

through the utilisation of the logic and comparison blocks, presented in Figure 5.3. Additionally, the

merge block ensures that only the input signal generated by the active controller is effectively applied to

the quadrotor model.
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Figure 5.2: Simplified structure of the data collection step implemented in Simulink.
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Figure 5.3: Generic structure of the DeePC controller tested in Simulink.

It should also be noted that in contrast to LQR, the DeePC controller does not require access to the

measured full state. Instead, the latter only needs position measurements to function properly and is

thus referred to as a real-time output feedback controller.

5.1.3 Control Architecture

A more detailed representation of the implemented cascade control architecture is presented. In

the simulation model provided by the authors of [56], the outer controller, whether it is the LQR or

DeePC controller, applies thrust and body rate commands to the quadrotor system. Subsequently, in

the nonlinear case, an inner-loop PID controller is incorporated. This inner-loop controller generates a

torque command through the difference between the desired and estimated body rates. The combination

of thrust and torque commands is finally applied to the quadrotor dynamics model described in (3.4).

On the other hand, for the linear case, the resulting set of thrust and body rate commands is employed

in the linear quadrotor model defined by the matrices presented in (3.18). In this dissertation, the

architecture described above is designated as control architecture A. Figure 5.4 presents a schematic

representation summarising this control architecture, for both linear and nonlinear scenarios.

Nevertheless, the use of body-rate commands for actuation has its drawbacks. In the future, the

testing of the proposed algorithms in realistic Software-in-the-Loop (SITL) simulations and experimental

trails will use quadrotors equipped with the PX4 autopilot [79], which already provides a very fine-tuned

attitude controller. Hence, the implementation of control architecture A will lead to modifications in the
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Figure 5.4: Block diagram of the control architecture A.

PX4 code, making the process more difficult. Besides that, it should also be noted that the operating

rate of the DeePC method is not ideal for actuating on body-rate commands. Consequently, for these

reasons and in order to make a new contribution to the existing work developed by the authors of [56], a

novel control architecture, referred to as control architecture B, was designed and implemented in this

thesis.

After a block reconfiguration, the quadrotor system now also includes an angle controller, which

generates a body rate command by multiplying a gain with the difference between the desired and

estimated Euler angles. Thus, the outer controller has transitioned into a position controller, producing

thrust and orientation commands for the quadrotor system. The gains for both the outer and the angle

controllers are determined using the LQR method, as in control architecture A.

Furthermore, in the nonlinear case, the inner-loop controller responsible for generating torque com-

mands remains unchanged. Hence, the combination of thrust and torque commands is once again

applied to the quadrotor dynamics model defined in (3.4). For the linear case, the body rate commands

generated by the angle controller, alongside the thrust commands, is applied to the quadrotor linear

model characterised by the matrices specified in (3.18). Figure 5.5 depicts the block diagram of the

cascade control architecture B, for both linear and nonlinear cases.

In this control architecture, several modifications have been made to the outer controller. Firstly,

the position and velocity errors are inputted into a simple position controller that produces a virtual

signal, denoted as uv ∈ R3. Subsequently, this signal is applied to a new block which, after rotating
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Figure 5.5: Block diagram of the cascade control architecture for the controller model B.

the quadrotor about the z axis, generates the thrust and orientation commands based on the following

expressions:

fd = mbR
T
z (ψd)(gzI − uv),

ϕd = arctg

 −fd2√
f2
d1

+ f2
d3

 ,

θd = arctg
(
fd1

fd3

)
,

ψd = ψref,

T = −uv3 +mbg,

(5.1)

where T denotes the thrust commands, the vector (ϕd, θd, ψd) represents the orientation commands,

fd ∈ R3 is the desired force used to compute the orientation commands, ψref is the yaw angle reference,

and RT
z (ψd) denotes the rotation matrix about the z axis from {I} to {B} with a dependence on ψd.

Furthermore, for simplicity, it is intended to maintain the yaw angle at zero through the inner-loop

controller. Hence, considering that the DeePC controller only requires position measurements, it can be

concluded that the number of outputs is p = 3. In addition, taking into account the control architectures

presented above and the yaw angle statement, it can be inferred that the number of inputs used ism = 3.

39



5.1.4 DeePC Algorithm Hyperparameters and Constraints

The regularised DeePC optimisation problem, defined in (4.6), incorporates several hyperparameters

that influence the performance of this algorithm. Therefore, in order to successfully implement the

DeePC method, it is crucial to tune the following hyperparameters:

• Td, the total number of data points used to build the Hankel matrices described in (4.2);

• Tini, the time horizon used for initial condition estimation;

• Tf , the prediction time horizon;

• λy, the weight on the regularisation of the initial condition constraint;

• λg, the weight on the regularisation of g;

• Q, the tracking error cost matrix;

• R, the control effort cost matrix.

In addition to these hyperparameters, the excitation amplitudes employed in the PRBS generation are

fundamental parameters in the data collection phase, thus having a significant influence on the perfor-

mance of the DeePC algorithm. Therefore, the importance of a correct selection of these parameters is

also highlighted.

Regarding constraint sets, for control architecture A, the control input constraint set U is given by

T ∈ [7.906, 30.094] N,

ωd,x, ωd,y ∈
[
−π
2
,
π

2

]
rad/s.

On the other hand, for the control architecture B case, the same constraint set U is defined by

T ∈ [7.906, 30.094] N,

ϕd, θd ∈
[
−π
4
,
π

4

]
rad.

Finally, for both architectures, the output constraint set Y is denoted by

x, y, z ∈ [−5, 5] m.

5.2 Step Responses

5.2.1 Control Architecture A

This section aims to analyse and discuss the system response to a unit step input in different position

variables, when using the DeePC controller implemented in the control architecture A. Table 5.2 presents

the tuned hyperparameters used in the implementation of this control architecture. In addition to the
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values presented in the table, it was also assumed that Q = diag(100, 100, 1000, 0, 0, 0, 0, 0, 40) and

R = diag(1, 10, 10, 2). These performance matrices are used for both LQR and DeePC controllers.

Hence, all the subsequent outcomes presented in this section were obtained using these specified

hyperparameters.

Figures 5.6, 5.7, and 5.8 illustrate the position and orientation responses to a unit step input in x, in

y, and in z, respectively. The nonlinear and linear results were obtained using the two variants of the

control architecture A as depicted in Figure 5.4.

Table 5.2: Tuned hyperparameters for implementation of DeePC algorithm, in the case of control archi-
tecture A.

Tini Td Tf λg λy

5 600 50 500 7.5×108
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Figure 5.6: Nonlinear and linear responses to a unit step in x for control architecture A.
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Figure 5.7: Nonlinear and linear responses to a unit step in y for control architecture A.
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Figure 5.8: Nonlinear and linear responses to a unit step in z for control architecture A.

From the analysis of the figures, it is evident that all three scenarios exhibit a satisfactory response,

characterised by an acceptable settling time. Concerning overshoot, although not significant, it is note-

worthy that the one observed in the position y stands out when the step is taken in that same variable.

Moreover, the coupling between the variables represented is noted, essentially in the position response

of Figures 5.7 and 5.8.

Regarding the comparison of nonlinear and linear responses, these are similar overall, especially

in the variables directly influenced by the applied step. For the other variables, the nonlinear response

tends to present larger amplitude oscillations. This can be attributed to the fact that the nonlinear quadro-

tor dynamics model incorporates significant interdependencies among the state variables, in contrast to

the linear model.

Proceeding with this analysis, Figure 5.9 presents the nonlinear and linear system responses to a unit

step applied to all three position variables. As previously observed, the quadrotor system demonstrates

an adequate position and orientation responses, characterised by an acceptable settling time and a

minimal overshoot. It is also denoted that the nonlinear response presents slightly better behaviour than

the linear one. This can be explained since the used hyperparameters were adjusted to the nonlinear

quadrotor model.

5.2.2 Control Architecture B

In this section, it is intended to repeat the same study for the two variants of the control architecture

B represented in Figure 5.5, analysing once again the simulated nonlinear and linear responses to a unit

step using the DeePC controller. During the implementation of this control architecture, it was necessary

to perform a new adjustment of the employed hyperparameters, resulting in the values presented in Table

5.3 and in the following LQR and DeePC performance matrices:

Q = diag(40, 40, 500, 0, 0, 0, 0, 0, 40),

R = diag(0.5, 20, 20, 2).
(5.2)
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Figure 5.9: Nonlinear and linear responses to a unit step in x, y, and z for control architecture A.
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Figure 5.10: Nonlinear and linear responses to a unit step in x for control architecture B.

Table 5.3: Tuned hyperparameters for implementation of DeePC algorithm, in the case of control archi-
tecture B.

Tini Td Tf λg λy

5 900 50 500 7.5×108

The main changes were applied to the most relevant hyperparameters in the data collection phase. This

observation was expected since the transition from control architecture A to B alters the inputs provided

to the quadrotor system, thereby influencing the Hankel matrices construction that occurs during the

data collection step. The following reported results were obtained using these hyperparameters.

The system responses to a unit step input in x, in y, and in z are depicted in Figures 5.10, 5.11,

and 5.12, respectively. From the presented plots, it is possible to verify an acceptable position and

orientation responses, especially those generated from the nonlinear quadrotor dynamics model. Upon

closer examination, it is concluded that the linear response exhibits not only a shorter settling time but

also a larger overshoot in comparison to the nonlinear one. Thus, given that the linear model does not
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Figure 5.11: Nonlinear and linear responses to a unit step in y for control architecture B.
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Figure 5.12: Nonlinear and linear responses to a unit step in z for control architecture B.

account for the physical limitations of the quadrotor, it can be inferred that the used controller gains

should be slightly higher in this case, resulting in an overly aggressive response. This observation is

further corroborated by the fact that the utilised hyperparameters were adjusted for the nonlinear model.

From the presented plots, it is possible to verify an acceptable position and orientation responses,

especially those generated from the nonlinear quadrotor dynamics model. Upon closer examination, it

is concluded that the linear response exhibits not only a shorter settling time but also a larger overshoot

in comparison to the nonlinear one. Thus, given that the linear model does not account for the physical

limitations of the quadrotor, it can be inferred that the used controller gains should be slightly higher in

this case, resulting in an overly aggressive response. This observation is further corroborated by the

fact that the utilised hyperparameters were adjusted for the nonlinear model.

As in the previous section, there are also couplings between the variables, which are accentuated

in the response to a step in z represented in Figure 5.12. Nevertheless, these plots indicate that the

nonlinear and linear responses exhibit different oscillation frequencies. Additionally, concerning the vari-

ables that are not directly linked to the applied step, the corresponding nonlinear and linear responses
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Figure 5.13: Nonlinear and linear responses to a unit step in x, y, and z for control architecture B.

show opposite behaviours.

Finally, Figure 5.13 shows the system responses to a step applied in x, y, and z, denoting once

again satisfactory results. The discrepancies between the nonlinear and linear responses are due to the

reasons already stated above.

5.2.3 Comparison of Control Architectures

This section aims to compare the results achieved for the two control architectures A and B, essen-

tially focusing on the position and orientation responses for the nonlinear quadrotor model defined in

(3.4). Figure 5.14 presents the system responses to a step applied in x, y, and z, implementing the

nonlinear variants of the control architectures A and B.

It is observed that the responses are similar, which would be expected since the control architecture B

arises from a reconfiguration of the control architecture A. Therefore, the differences, mainly observed in

the orientation response, can be explained by the inclusion of the nonlinearities expressed in (5.1). This

new element contributes to a less aggressive system response, corroborating the fact that the outcomes

of control architecture B present longer settling times and lower oscillation amplitudes in relation to the

Euler angles.

Adding a new comparative point to this discussion, Table 5.4 details the average computation time of

the DeePC algorithm, tc, for control architectures A and B. It is possible to infer that the tc of the control

architecture A is 70% lower than the tc of the control architecture B. This discrepancy was already

expected since the value of the hyperparameter Td is higher in case B. As will be further confirmed in

the next chapter, an increase in the value of Td leads to an increase in tc. Nevertheless, it should be

noted that, despite this difference, both values remain within an acceptable range, considering that the

sampling time of the outer controller is 40ms.

In sum, it can be concluded that control architecture A exhibits a superior performance. However,

considering that control architecture B emerges as a novel contribution of this work, the subsequent

chapter will analyse in detail the performance of the DeePC controller implemented in the nonlinear
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control architecture B, as illustrated in Figure 5.5(a).
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Figure 5.14: Nonlinear response to a unit step input for the control architectures A and B.

Table 5.4: Average algorithm computation time for the control architectures A and B.

Control Architecture tc (ms)

A 8.6

B 12.4
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Chapter 6

DeePC Performance Results

In the previous chapter, the details of the implementation of the proposed algorithms and the system’s

simulated response to an applied step were presented. Following this discussion, this chapter presents

the simulation results of the DeePC algorithm performance obtained for the nonlinear variant of control

architecture B. Initially, important details about the data collection phase are reviewed. Then, the in-

fluence of each hyperparameter on the DeePC performance is discussed. Next, the influence of drag

and noise on the measurements is also analysed. Finally, a complete comparison of the performance of

MPC, LQR, and DeePC control methods is conducted.

6.1 Data Collection Stage

This section aims to present the data acquired during the data collection stage, which were subse-

quently used by the DeePC controller, yielding the outcomes depicted in Section 5.2. Furthermore, it is

also intended to analyse the influence of various parameters characteristic of the data collection phase

on the performance of the DeePC algorithm.

According to Section 4.3, to acquire the collected data that fills the Hankel matrices, it is necessary

to establish the following parameters:

• the inverse of the required clock period, B = 1samples−1;

• the desired amplitude for the thrust excitation signal, Texcamp = g × 10−1N;

• the desired amplitude for the roll and pitch excitation signals, ϕexcamp = θexcamp = 0.1rad.

Using the hyperparameters defined in (5.2) and in Table 5.3, in conjunction with the aforementioned

parameters, it is possible to obtain the data collected at the input and output of the system after the

excitation process. These data are respectively illustrated in Figures 6.1 and 6.2.

Firstly, from Figure 6.1, it is possible to conclude that the x and y positions show a larger variation

than z, during the data collection stage. Thus, it can be inferred that a large variation in the z position is

not crucial for the acquired data to verify the persistency of excitation condition.
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Figure 6.1: Position data collected after the system excitation process.
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Figure 6.2: Input data collected after the system excitation process: (i) data generated by the LQR
controller; (ii) generated PRBS; (iii) collected thrust and orientation data.

Figure 6.2 shows the data generated by the LQR controller, the derived PRBS, and the respective

sum of these latter signals, resulting in the data collected at the system input after the excitation phase.

For the desired Euler angles ϕd and θd, it can be observed that the signal resulting from the sum of the

PRBS and the signal produced by the LQR controller is excessively oscillatory, being physically impos-

sible for the system to respond directly to all these transmitted inputs. However, after several attempts

to decrease the frequency and amplitude of the PRBS, it was concluded that the best performance of

the DeePC algorithm occurred for the situation displayed.

Proceeding to the analysis of the influence of the parameters used in the generation of the PRBS,

the illustration of the position response for different values of the thrust excitation signal amplitude is

available in Figure 6.3. From the examination of this figure, it can be noted that the DeePC controller

fails to stabilise the system when the amplitude is either excessively high or excessively low.

It is also observable that small variations in Texcamp result in a significant disparity in the performance of

the DeePC controller. For the scenario where Texcamp = 5g× 10−2N, a small decrease in amplitude leads

to a response characterised by a large settling time. Conversely, in the case of Texcamp = 5g × 10−1N, a

48



0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

2.5

3
P

os
iti

on
 X

 [m
]

g*10-2

5g*10-2

g*10-1

5g*10-1

g
Ref

(a) Position x response

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

0.5

1

1.5

2

2.5

3

P
os

iti
on

 Y
 [m

]

g*10-2

5g*10-2

g*10-1

5g*10-1

g
Ref

(b) Position y response

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

P
os

iti
on

 Z
 [m

]

g*10-2

5g*10-2

g*10-1

5g*10-1

g
Ref

(c) Position z response

Figure 6.3: Influence of the amplitude of the thrust excitation signal on the position response to a unit
step.

small increase in amplitude originates a response with high overshoot.

Therefore, Figure 6.4 depicts the influence of the amplitude of the roll and pitch excitation signals

on the performance of the DeePC controller. As can be seen in the plots, an increase in the order

of magnitude of ϕexcamp and θexcamp leads to an unstable response of the nonlinear system. However,

in contrast to the previous case, a significant decrease in the amplitude of these excitation signals

originates a very oscillatory but stable response.

Additionally, it is also ratified that ϕexcamp and θexcamp have a greater influence on the response of

positions x and y than on the position z response.

Subsequently, Figure 6.5 displays the influence of the band of the excitation signal on the perfor-

mance of the DeePC controller. The parameter B, shown in the legend of the plots, represents the

inverse of the desired clock period, as stated above. Thus, the generated signal has to remain constant

for at least floor(1/B) samples.

Overall, it can be concluded that for smaller values of B, the nonlinear position response shows

aggressive and oscillatory behaviour. It is also noteworthy that the position z is, once again, the least

influenced variable by changes in parameter B.
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Figure 6.4: Influence of the amplitude of the roll and pitch excitation signals on the position response to
a unit step.
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Figure 6.5: Influence of the excitation signal band on the position response to a unit step.
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Figure 6.6: Influence of step 4, described in Section 4.3, on the position response to a unit step.

Finally, Figure 6.6 represents the influence of step 4, described in Section 4.3, on the position re-

sponse to a unit step input in x, y, and z. From the visualisation of the plots, it becomes evident that the

DeePC controller fails to stabilise the system response when the generation of the PRBS neglects this

step. Upon further analysis, this step involves executing a circular shift of the standard PRBS positions,

which yields the resulting excitation signals. Therefore, by not performing this circular shift, the resulting

excitation signals will not be independent of each other and consequently, the constructed Hankel ma-

trices do not contain sufficiently relevant information. Thus, it is concluded that the acquisition of data

obtained from independent signals is crucial for the proper functioning of the DeePC controller.

6.2 Influence of Hyperparameters on Algorithm Performance

In this section, the influence of each hyperparameter on the performance of the DeePC controller is

addressed. Therefore, to study this impact in detail, series of experiments were conducted, changing

only the value of a single hyperparameter at each time. The remaining hyperparameters were fixed at

the values specified in Table 5.3 and (5.2). Subsequently, the performance of the DeePC controller in

each scenario is evaluated by analysing the average overshoot S, maximum settling time ts, average

algorithm computation time tc, and average static error e.

Table 6.1 details the influence of the hyperparameter Tini on the position response to a unit step

applied in x, y, and z. In a first analysis, it is possible to infer that for all displayed values of Tini, the

system demonstrates a stable response without static error. Moreover, an increase of Tini tends to di-

rectly increase both S and tc parameters. However, it should be noted that the selected value was not

the minimum possible option (Tini = 3), taking into account that the settling time does not evolve as the

other parameters. Corroborating this observation, it is important to emphasise that this particular hyper-

parameter determines the time horizon used for initial condition estimation and consequently, choosing

an excessively small value would fail to expose certain nonlinearities inherent in the system’s response

to the controller. Hence, Tini = 5 exhibited the best performance, characterised by a shorter settling

time when compared to the remaining tested values.
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Table 6.1: Influence of Tini on the position response to a unit step input.

Tini S (%) ts (s) tc (ms) e (m)

3 0.71 2.48 13.05 0

4 1.69 2.56 13.83 0

5 1.07 1.80 15.87 0

6 1.87 2.52 16.56 0

7 1.06 2.28 18.75 0

8 3.64 2.80 18.73 0

9 3.55 2.48 18.93 0

10 6.18 2.92 19.48 0

Table 6.2: Influence of Td on the position response to a unit step input.

Td S (%) ts (s) tc (ms) e (m)

300 - - 5.93 0.40

600 8.86 3.84 9.56 0

800 2.39 2.36 12.88 0

900 1.07 1.80 15.87 0

1000 7.09 2.60 18.26 0

1200 6.02 2.36 22.19 0

1500 3.53 2.40 28.27 0

2000 6.14 2.24 39.26 0

The influence of the hyperparameter Td on the performance of the DeePC controller is represented

in Table 6.2. It is observed that, for an excessively low value of Td, the system stabilises in a position

with an average static error of 0.40m. In addition, an increase in Td leads to an unequivocal increase in

tc. This finding was already expected since Td is directly associated with the dimension of the Hankel

matrices used by the algorithm in the optimisation problem, defined in (4.6). Thus, a higher value of Td

implies a larger size of the Hankel matrices, which consequently leads to a higher computation time of

the DeePC algorithm. In this case, Td = 900 was chosen since it is linked to the response with lower S

and ts.

Then, Table 6.3 presents the influence of the hyperparameter Tf on the system position response. It

can be inferred that for low values of Tf , the results obtained are characterised by a high value of S and

ts. However, there is a threshold beyond which augmenting Tf does not improve the performance of the

DeePC controller. Instead, only the significant increase of tc is verified. Hence, the best performance

was obtained for Tf = 50.
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Table 6.3: Influence of Tf on the position response to a unit step input.

Tf S (%) ts (s) tc (ms) e (m)

10 38.99 26.12 3.41 0

25 4.30 2.60 6.99 0

40 2.92 2.48 12.30 0

50 1.07 1.80 15.87 0

60 1.33 2.52 21.94 0

75 1.69 2.56 26.11 0

90 2.11 2.64 33.67 0

100 1.59 2.52 38.78 0

Table 6.4: Influence of λg on the position response to a unit step input.

λg S (%) ts (s) tc (ms) e (m)

0 - - 14.26 1.03

100 7.76 2.16 15.02 0

300 2.00 2.28 16.34 0

500 1.07 1.80 15.87 0

700 0.50 2.12 16.29 0

1000 0.23 2.64 17.55 0

2000 0.01 5.12 16.21 0

5000 0.27 21.60 16.46 0

The influence of the regularisation parameters λg and λy is respectively detailed in Tables 6.4 and

6.5. In both situations, the importance of including regularisations in the optimisation problem of the

DeePC algorithm is ratified. In the case of λg = 0, although the controller manages to stabilise the re-

sponse, the latter presents a static error of 1.03m. Regarding λy, its non-utilisation leads to an infeasible

optimisation problem and consequently, the DeePC controller fails to stabilise the system.

After a more detailed analysis, it becomes evident that the value of these regularisations parameters

do not have a significant influence on tc. Concerning λy, there is once again a threshold from which the

results obtained are similar. This observation reinforces the notion that the crucial factor is to select a

value of λy sufficiently high to render the optimisation problem feasible, regardless of its precise tuning.

With regards to λg, an increase in this value produces a softer but significantly slower response. On the

other hand, low values of this parameter lead to an oscillatory response. Subsequently, λg = 500 and

λy = 7.5× 108 were chosen, since these values exhibited the best performance results.

Lastly, Tables 6.6 and 6.7 show the impact of the performance matrices Q and R, respectively, on

the position response of the system to a unit step. It should be noted that the displayed values Qold and

Rold are referred to the values defined in (5.2).
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Table 6.5: Influence of λy on the position response to a unit step input.

λy S (%) ts (s) tc (ms) e (m)

0 - - - -

1 ×105 0.17 3.52 15.40 0

1 ×108 1.05 1.80 16.12 0

7 ×108 1.07 1.80 16.91 0

7.5 ×108 1.07 1.80 15.87 0

8 ×108 1.07 1.80 16.20 0

1 ×109 1.07 1.80 16.24 0

1 ×1010 1.07 1.80 16.39 0

Table 6.6: Influence of Q on the position response to a unit step input.

Q S (%) ts (s) tc (ms) e (m)

0.01·Qold 29.20 21.00 13.65 0

0.1·Qold 7.44 4.56 14.43 0

Qold 1.07 1.80 15.87 0

10·Qold 21.77 2.20 16.43 0

100·Qold - - - -

Table 6.7: Influence of R on the position response to a unit step input.

R S (%) ts (s) tc (ms) e (m)

0.01·Rold - - 14.41 0.31

0.1·Rold 0.01 3.20 14.27 0

Rold 1.07 1.80 15.87 0

10·Rold 9.85 3.60 16.85 0

100·Rold 26.05 9.88 16.24 0

In an initial analysis, it is denoted that the performance matrices used in the DeePC and LQR con-

trollers demonstrate a significant impact on the system response. Regarding the tracking error cost

matrix Q, an increase in this matrix leads to an aggressive response, characterised by a high overshoot

and a low settling time. Moreover, an excessive increase of this hyperparameter results in system in-

stability. On the other hand, a severe decrease in the value of Q leads to an overly slow and oscillatory

position response. In relation to the control effort cost matrix R, changes in this parameter originate

opposite outcomes compared to when the same alteration is applied to the value of the matrix Q. Thus,

a significant increase in R generates a slow and oscillatory response. Nevertheless, a decrease in the

matrix R, although not resulting in an unstable response, leads to a static error of 0.31m. Based on the

above statements, the values chosen for these performance matrices are the same as those presented

in (5.2).
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6.3 Influence of Noise and Drag

Next, the objective of this section is to demonstrate the influence of noise in the measurements and

translational drag on the performance of the DeePC controller. The results presented below were ob-

tained through the implementation of the DeePC controller in the nonlinear variant of control architecture

B. To account for the presence of translational drag, the nonlinear quadrotor dynamics model defined

in (3.1) and (3.2) was utilised, where CD = diag(1, 1, 2). The simulation of the noisy measurements

was executed following the implementation approach described in the simulation model provided by the

authors of [56].

Figure 6.7 illustrates the system response when subjected to noise. It can be immediately concluded

that the presence of noise in the system measurements does not change the good performance already

observed.

Subsequently, the comparison between the response of the system subject to noise with the one

subject to both noise and drag is depicted in Figure 6.8.

Overall, the inclusion of drag in the simulation model resulted in a slower response with fewer os-

cillations. Specifically, in the case of the orientation response, the observed reduction in oscillations is

highlighted, confirming the fact that drag dissipates energy from the system.

Finally, Figure 6.9 shows the influence of noise and drag on the system response to a square wave

input. Once again, it is possible to observe satisfactory behaviour in both cases. Thus, it can be ratified

that the performance of the DeePC controller is not adversely affected by the presence of translational

drag and noise in the system measurements. Additionally, it is also noted that changing the type of input

supplied to the system does not have a significant effect on the performance of this controller.

6.4 Comparison of the Performance of Control Methods

After a detailed study of the DeePC algorithm, this section aims to compare the performance of the

DeePC controller with two conventional model-based controllers: the LQR and MPC controllers. In this

thesis, these traditional controllers were implemented according to the information presented in Section

3.2.

Firstly, it should be noted that in this work we employ an LQR controller in conjunction with the DeePC

controller as depicted in Figures 5.2 and 5.3. This choice is made since the implementation of the latter

requires the existence of another simpler controller that can specifically maintain the quadrotor in the

hovering state during the data collection phase.

Therefore, implementing both the DeePC and LQR controllers in the nonlinear control architecture B,

using the same performance matrices defined in (5.2), and considering the presence of noise, the results

illustrated in Figure 6.10 are obtained. It can be noted that the performance of the DeePC controller is

superior in comparison to the LQR controller, especially in the responses of x and y positions. This

observation leads to the conclusion that a successful implementation of the DeePC controller does not

require the utilisation of a finely tuned conventional control method with good performance.
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Figure 6.7: Response to a unit step input subject to noise.
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Figure 6.8: Response to a unit step input subject to noise and drag.
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Figure 6.9: Response to a square wave input subject to noise and drag.
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Figure 6.10: Comparison of the performance of DeePC and LQR controllers.

Then, to ensure a fair comparison between the methods, the tuned LQR and MPC controllers were

implemented. Regarding the LQR controller, the utilised state and control weighting matrices were

respectively defined as follows:

QLQR = diag(50, 50, 500, 1, 1, 10, 20, 20, 40),

RLQR = diag(1, 10, 10, 20).

On the other hand, the linear and unconstrained version of the MPC controller was implemented using

the following parameters:

N = 5,

QMPC = diag(220, 220, 350, 7, 7, 11, 10, 10, 5),

RMPC = diag(0.5, 10, 10, 5),

where N denotes the prediction time horizon.

Figure 6.11 shows the system responses to a unit step employing the DeePC, LQR, and MPC con-

trollers. It is important to highlight that the results presented were obtained using the same inner-loop

controllers of the nonlinear control architecture B presented in Figure 5.5(a). The DeePC results were

also achieved assuming the hyperparameters defined in (5.2) and Table 5.3.

The initial analysis shows a satisfactory performance of all controllers. It can also be inferred that

the DeePC responses in general are characterised by a longer settling time when compared to the

others. Nevertheless, it is important to emphasise that these results allow the conclusion that the DeePC

algorithm exhibits similar performance to the other two conventional model-based control approaches,

when the quadrotor system is subjected to simple trajectories. It should also be noted that the noisy

responses observed, especially in the yaw angle case, are due to the presence of noise in the system

measurements.

The next step is to study the robustness of the implemented methods to performance degradation
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Figure 6.11: Comparison of the performance of DeePC, LQR, and MPC controllers.
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Figure 6.12: Comparison of the performance of DeePC, LQR, and MPC controllers when the inner angle
controller gains are changed.

of the inner-loop controllers. Hence, the gains of these controllers were modified to slow down their

response. Starting with the inner angle controller, its gains were obtained through the multiplication of

the original values by 1
3 . Regarding the inner body rates PID controller, only the proportional gains were

modified in the same proportion as for the inner angle controller.

Figures 6.12 and 6.13 depict, respectively, the effect of the degradation of the inner angle controller

and the inner body rates controller on the performance of the DeePC, LQR and MPC controllers.

Regarding Figure 6.12, the poor performance of the LQR controller is immediately observed, as it

exhibits very oscillatory position and orientation responses. Additionally, this change in the inner angle

controller leads to slightly oscillatory and slow responses from the DeePC and MPC controllers. From the

orientation results, it can be inferred that the DeePC controller response stabilises faster than the MPC

controller response. Thus, it is concluded that the DeePC controller is the most robust to performance

degradation of the inner angle controller.

Furthermore, the analysis of Figure 6.13 concludes that the MPC controller shows an excessively
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Figure 6.13: Comparison of the performance of DeePC, LQR, and MPC controllers when the gains of
the inner body rates controller are changed.

oscillatory response, failing to converge the response of θ. Moreover, it is also observed that the modi-

fications in the inner body rates controller lead to the oscillatory behaviour of the LQR controller, while

in the DeePC controller, these changes result in a slow response with overshoot. In the orientation

response, it is again inferred that the DeePC response is the fastest method to converge to zero.

In summary, from the detailed analysis of Figures 6.12 and 6.13, it can be concluded that the DeePC

controller is the least influenced method by the performance degradation of the inner loop controllers.

This robustness demonstrates the adaptive properties of this data-driven control method, which is one

of the advantages of DeePC over conventional model-based methods.

Finally, the effect of the presence of a bias in the system measurements was evaluated. Considering

that it is not always possible to obtain accurate measurements of the yaw angle in a real-world experi-

ment, it was decided to simulate a yaw miscalibration, by introducing a 25◦ offset between the true and

measured yaw angles. It should be noted that this value is excessively high, but it was selected to high-

light the differences between the results of the different controllers. In addition, it is also stated that the

controllers implemented in the simulation are not aware of this calibration error. Figure 6.14 illustrates

the simulation results obtained for each controller in the presence of a yaw calibration error of 25◦ .

In the initial analysis, it is noticeable that the position z response is not affected by the yaw offset error,

as expected. Moreover, it can be concluded that the presence of this yaw error in system measurements

yields a very oscillatory LQR response. For the MPC controller, a deterioration in its performance is also

observed, particularly in the position x response. Although not as obvious as in the LQR case, the

response associated with the MPC controller becomes more oscillatory and with a longer settling time

compared to its original response without a yaw calibration error. Lastly, it is possible to note that the

DeePC algorithm provides robustness to this bias error since its response remains the same. Thus, it

can be concluded once again that the DeePC algorithm has the ability to adapt to the unknown operating

conditions of the system, in contrast to the other model-based control methods.
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Figure 6.14: Comparison of the performance of DeePC, LQR, and MPC controllers when there is a yaw
calibration error of 25◦ .
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Chapter 7

Conclusions

The main goal of this thesis was to investigate and develop a data-driven control technique suitable

for the control of a quadrotor system. For this purpose, the implementation of the DeePC algorithm

was first proposed, and a very realistic simulation was conducted to evaluate the proposed method on

models of different complexity. Finally, a detailed comparison between the DeePC and other model-

based methods was performed, to situate this framework in relation to conventional control methods.

The implemented DeePC algorithm, presented in Chapter 4, uses a finite data set rearranged into

Hankel matrices to learn the behaviour of the unknown system. Subsequently, it applies real-time output

feedback to compute optimal input controls that guide the system towards a desired trajectory while

satisfying the system’s constraints. Moreover, for nonlinear systems that are corrupted by process noise,

such as quadrotors, it is necessary to include some regularisations in the optimisation problem of the

DeePC algorithm. At the end of this chapter, the data collection step, which is critical to the successful

implementation of this data-driven control algorithm, was also detailed. The input signals used to excite

the system in this stage consist of a PRBS excitation signal added to an existing simple controller that

maintains the quadrotor in the hover state.

A detailed overview of the realistic simulation model used was presented in Chapter 5. This simu-

lation model, which includes accurate modelling of rotor dynamics, actuation constraints, translational

drag, measurement noise, and inner-loop controller dynamics, was developed using the software MAT-

LAB/Simulink to evaluate the performance of the proposed method. In addition, the implementation of

the DeePC controller demonstrates that it does not require access to full-state measurements, unlike

traditional control methods. Furthermore, a basic simulation test was conducted to analyse the system

response to a unit step in the position variables using the DeePC controller implemented in different

control architectures. The obtained results demonstrate adequate nonlinear and linear responses, char-

acterised by an acceptable settling time and minimal overshoot.

The detailed simulation results of the performance of the DeePC algorithm were reported in Chapter

6. Firstly, the analysis of the data collection phase concludes that the acquired data do not need to

show a large variation in the z position to verify the persistence of excitation condition. In addition to

the importance of adjusting the frequency band and amplitudes of the excitation signals, it is concluded
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that the acquisition of data from independent excitation signals is also critical to the proper functioning

of the DeePC controller. Then, the effect of each hyperparameter on the performance of the DeePC

controller was addressed. Consequently, the latter is evaluated by analysing some relevant metrics,

such as the average overshoot, the maximum settling time, the average algorithm computation time,

and the average static error. In the results obtained, it is important to highlight that the non-use of the

regularisation parameters leads to a degradation of the controller performance, thus corroborating their

important inclusion in the DeePC optimisation problem. Furthermore, it can also be concluded that

the performance of the DeePC controller for a square wave reference is not adversely affected by the

presence of drag and noise in the system.

Finally, the comparison between the DeePC controller and the conventional LQR and MPC con-

trollers was described in Chapter 6. It is concluded that a simple controller, used to maintain the

quadrotor in the hover state during the data collection step, does not need to be fine-tuned to yield

a good performance of the DeePC controller. Furthermore, it is also confirmed that the DeePC algo-

rithm performs similarly to MPC and LQR model-based control approaches when the quadrotor system

is subjected to simple trajectories. This data-driven method demonstrates greater robustness to the

performance degradation of inner-loop controllers and the presence of a yaw calibration error than the

conventional approaches. Thus, it can be concluded that the DeePC algorithm shows the ability to

adapt to the unknown operating conditions of the system, in contrast to the other model-based control

methods. Nevertheless, it is important to note that, despite the positive results presented in this thesis,

the implementation of the DeePC method becomes impractical when tracking aggressive trajectories.

Moreover, for more complex nonlinear systems, the data collection step may fail to capture the essen-

tial dynamics of the system or, on the other hand, the dimension of the Hankel matrices may become

excessively large, leading to a significant increase in the computational time of the solver.

7.1 Future Work

Future developments could be introduced to improve the performance evaluation of the proposed

method. First, the presented algorithms could be validated through SITL simulations and experimental

results. Although the simulation model used was realistic, conducting experiments in an environment

closer to the real world would provide more guarantees of the performance of the proposed algorithm.

Second, to increase the applicability of the DeePC method, the data collected for the Hankel ma-

trices could be updated online, resulting in an algorithm that is more adaptable to various unexpected

scenarios. By performing the data collection step online, any changes in the environmental conditions

around the system will be transmitted to the controller, leading to an improvement in its performance.

Finally, other data-driven control approaches that can outperform the DeePC method could be inves-

tigated and implemented. For this purpose, the development of a data-driven control method based on

machine learning techniques is proposed, following the trend reported in the literature.
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[39] F. Nan, S. Sun, P. Foehn, and D. Scaramuzza. Nonlinear mpc for quadrotor fault-tolerant control.

IEEE Robotics and Automation Letters, 7, 2022. doi: https://doi.org/10.1109/LRA.2022.3154033.

[40] R. J. Heaston. Modern Control Theory; State-of-the-Art Review. TACTICAL WEAPONS GUID-

ANCE AND CONTROL INFORMATION ANALYSIS CENTER CHICAGO IL, 1995.

[41] G. Gremillion and J. Humbert. System identification of a quadrotor micro air vehicle. In AIAA

Atmospheric Flight Mechanics Conference, 2010. ISBN 978-1-62410-151-9. doi: https://doi.org/

10.2514/6.2010-7644.

[42] I. Lopez-Sanchez, J. Montoya-Cháirez, R. Pérez-Alcocer, and J. Moreno-Valenzuela. Experimental

parameter identifications of a quadrotor by using an optimized trajectory. IEEE Access, 8:167355–

167370, 2020. doi: https://doi.org/10.1109/ACCESS.2020.3023643.

[43] D. Six, S. Briot, J. Erskine, and A. Chriette. Identification of the propeller coefficients and dynamic

parameters of a hovering quadrotor from flight data. IEEE Robotics and Automation Letters, 5(2):

1063–1070, 2020. doi: https://doi.org/10.1109/LRA.2020.2966393.

[44] M. Burri, M. Bloesch, Z. Taylor, R. Siegwart, and J. Nieto. A framework for maximum likelihood

parameter identification applied on mavs. Journal of Field Robotics, 35, 2017. doi: https://doi.org/

10.1002/rob.21729.

[45] M. Rigter, B. Morrell, R. G. Reid, G. B. Merewether, T. Tzanetos, V. Rajur, K. Wong, and L. H.

Matthies. An autonomous quadrotor system for robust high-speed flight through cluttered environ-

ments without gps. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 5227–5234, 2019. doi: https://doi.org/10.1109/IROS40897.2019.8968127.

[46] R. J. A. Schreurs, S. Weiland, H. Tao, Q. Zhang, J. Zhu, Y. Zhu, and C. Xu. Open loop system

identification for a quadrotor helicopter system. In 2013 10th IEEE International Conference on

68



Control and Automation (ICCA), pages 1702–1707, 2013. doi: https://doi.org/10.1109/ICCA.2013.

6565145.

[47] J. Angarita, K. Schroeder, and J. Black. Quadrotor model generation using system identification

techniques. In 2018 AIAA Modeling and Simulation Technologies Conference, 2018. doi: https:

//doi.org/10.2514/6.2018-1917.

[48] N. Abas, A. Legowo, Z. Ibrahim, N. Rahim, and A. Kassim. Modeling and system identification

using extended kalman filter for a quadrotor system. Applied Mechanics and Materials, 313-314:

976–981, 2013. doi: https://doi.org/10.4028/www.scientific.net/AMM.313-314.976.

[49] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor. A note on persistency of excitation.

Systems & Control Letters, 54(4):325–329, 2005. doi: https://doi.org/10.1016/j.sysconle.2004.09.

003.

[50] I. Markovsky and P. Rapisarda. Data-driven simulation and control. International Journal of Control,

81(12), 2008. doi: https://doi.org/10.1080/00207170801942170.

[51] M. Campi, A. Lecchini, and S. Savaresi. Virtual reference feedback tuning: a direct method for

the design of feedback controllers. Automatica, 38:1337–1346, 2002. doi: https://doi.org/10.1016/

S0005-1098(02)00032-8.

[52] P. Panizza, D. Invernizzi, F. Riccardi, S. Formentin, and M. Lovera. Data-driven attitude control

law design for a variable-pitch quadrotor. In 2016 American Control Conference (ACC), pages

4434–4439, 2016. doi: https://doi.org/10.1109/ACC.2016.7525620.

[53] Y. Al Younes, A. Drak, H. Noura, A. Rabhi, and A. El Hajjaji. Model-free control of a quadrotor

vehicle. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pages 1126–

1131, 2014. doi: https://doi.org/10.1109/ICUAS.2014.6842366.

[54] Y. Younes, A. Drak, H. Noura, A. Rabhi, and A. El hajjaji. Robust model-free control applied to a

quadrotor uav. Journal of Intelligent & Robotic Systems, 84, 2016. doi: https://doi.org/10.1007/

s10846-016-0351-2.

[55] W. Favoreel, B. D. Moor, and M. Gevers. Spc: Subspace predictive control. IFAC Proceedings

Volumes, 32(2):4004–4009, 1999. ISSN 1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)

56683-5. 14th IFAC World Congress 1999, Beijing, Chia, 5-9 July.

[56] E. Elokda, J. Coulson, P. N. Beuchat, J. Lygeros, and F. Dörfler. Data-enabled predictive control for

quadcopters. International Journal of Robust and Nonlinear Control, 31:8916 – 8936, 2021. doi:

https://doi.org/10.1002/rnc.5686.

[57] J. Coulson, J. Lygeros, and F. Dörfler. Distributionally robust chance constrained data-enabled

predictive control. IEEE Transactions on Automatic Control, 67(7):3289–3304, 2022. doi: https:

//doi.org/10.1109/TAC.2021.3097706.

69



[58] L. Huang, J. Lygeros, and F. Dörfler. Robust and kernelized data-enabled predictive control for

nonlinear systems. arXiv preprint arXiv:2206.01866, 2022. doi: https://doi.org/10.48550/arXiv.

2206.01866.

[59] H. Waarde. Beyond persistent excitation: Online experiment design for data-driven modeling and

control. IEEE Control Systems Letters, PP:1–1, 2021. doi: https://doi.org/10.1109/LCSYS.2021.

3073860.

[60] T. Dierks and S. Jagannathan. Neural network output feedback control of a quadrotor uav. In 2008

47th IEEE Conference on Decision and Control, pages 3633–3639, 2008. doi: https://doi.org/10.

1109/CDC.2008.4738814.

[61] T. Dierks and S. Jagannathan. Output feedback control of a quadrotor uav using neural networks.

IEEE Transactions on Neural Networks, 21(1):50–66, 2010. doi: https://doi.org/10.1109/TNN.2009.

2034145.

[62] S. Bansal, A. Akametalu, F. Jiang, F. Laine, and C. Tomlin. Learning quadrotor dynamics using

neural network for flight control. In 2016 IEEE 55th Conference on Decision and Control (CDC),

2016. doi: https://doi.org/10.1109/CDC.2016.7798978.

[63] N. Mohajerin and S. L. Waslander. Multistep prediction of dynamic systems with recurrent neural

networks. IEEE Transactions on Neural Networks and Learning Systems, 30(11):3370–3383, 2019.

doi: https://doi.org/10.1109/TNNLS.2019.2891257.

[64] G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza. Data-driven mpc for quadrotors. IEEE

Robotics and Automation Letters, 6(2):3769–3776, 2021. doi: https://doi.org/10.1109/LRA.2021.

3061307.

[65] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza. Neurobem: Hybrid aerody-

namic quadrotor model. In Robotics: Science and Systems 2021, 2021. doi: https://doi.org/10.

15607/RSS.2021.XVII.042.

[66] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scaramuzza, and M. Ryll. Real-time

neural mpc: Deep learning model predictive control for quadrotors and agile robotic platforms.

IEEE Robotics and Automation Letters, 8(4):2397–2404, 2023. doi: https://doi.org/10.1109/LRA.

2023.3246839.

[67] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control policies for autonomous aerial

vehicles with mpc-guided policy search. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 528–535, 2016. doi: https://doi.org/10.1109/ICRA.2016.7487175.

[68] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. Safe model-based reinforcement

learning with stability guarantees. In Proceedings of the 31st International Conference on Neural

Information Processing Systems, NIPS’17, pages 908–919, Red Hook, NY, USA, 2017. Curran

Associates Inc. ISBN 9781510860964.

70



[69] E. Kaufmann, L. Bauersfeld, and D. Scaramuzza. A benchmark comparison of learned control

policies for agile quadrotor flight. In 2022 International Conference on Robotics and Automation

(ICRA), pages 10504–10510, 2022. doi: https://doi.org/10.1109/ICRA46639.2022.9811564.

[70] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation, and control

of quadrotor. IEEE Robotics & Automation Magazine, 19(3):20–32, 2012. doi: https://doi.org/10.

1109/MRA.2012.2206474.

[71] C. Chen. Linear System Theory and Design. HRW series in electrical and computer engineering.

Holt, Rinehart, and Winston, 1984. ISBN 9780030602894.

[72] K. Ogata. Modern Control Engineering. Prentice Hall, 5th edition, 2010.
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