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Abstract

The ability for a robot to be able to construct a map of the environment and recognize its
position on it was one of the biggest developments in robotics. It gives them the possibility
of being autonomous and safe, while creating new deployment opportunities where they
were previously not feasible nor skillful enough to operate. The Simultaneous Localization
and Mapping framework builds onto the perception of the robot, giving it the possibility
to online calculate its trajectory and avoid obstacles. Because of it, there is now a large
range of scenarios where robots can be used, ranging from a ship on open waters to a
ground vehicle on mars. Moreover, the continuous development of processing units has
given the possibility for previously hardware exhausting solutions to be used as an option
for the localization and mapping problem.

With this in mind, the dissertation work is focused on developing a Simultaneous
Localization and Mapping (SLAM) solution for a 6 Degrees of Freedom (DoF) vehicle
operating on a 3D environment using Moving Horizon Estimation (MHE). Throughout
the document it is presented relevant concepts to the modelling of 6 DoF vehicles as
well as other approaches to the SLAM problem. It is also tested the applicability of the
proposed solution, based on MHE, in a simulation environment of a 3D square-shaped
corridor with stationary landmarks, whilst comparing the obtained results with other
probabilistic approaches, the Extended Kalman Filter (EKF), which is commonly used
but loses stability on extremely nonlinear dynamics, and the Linear Kalman Filter (LKF)
sensor-based, which can also deal with the non-linearities of the system by characterizing
it on the sensors frame. Each of the algorithms is simulated in MATLAB and their
performance was compared considering two different Scenarios.

Keywords: Simultaneous Localization and Mapping, Moving Horizon Estimation, Ex-
tended Kalman Filter, Kalman Filter, Unmanned Aerial Vehicle
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Resumo

A capacidade de um robô ser capaz de construir um mapa do ambiente que o envolve
e reconhecer a sua posição no mesmo foi um dos maiores desenvolvimentos na área
da robótica. Esta capacidade possibilita a que estes sejam autónomos e mais seguros,
fomentando novas oportunidades de uso, para as quais a sua aplicação não era viável.
A localização e mapeamento simultâneos (com acrónimo em inglês, SLAM) possibilita
a perceção do robô, dando-lhe a capacidade de calcular, no momento, a sua trajetória
evitando assim obstáculos. Por causa disto, há um grande leque de cenários onde os
robôs podem ser aplicados, desde um navio em águas abertas até um veículo terrestre
na superfície de Marte. Para além disto, o contínuo desenvolvimento de unidades de
processamento possibilitou que soluções antigamente consideradas computacionalmente
pesadas possam ser consideradas como solução para o problema de SLAM.

Com isto em mente, este trabalho de dissertação foca-se no desenvolvimento de uma
solução SLAM baseada em estimação de horizonte movel (com acrónimo em inglês, MHE)
para um veículo com 6 graus de liberdade (DoF) que opera num ambiente 3D. Ao longo do
documento são apresentados conceitos relevantes para o desenvolvimento de modelos de
veículos de 6 DoF bem como outras abordagens para o problema SLAM. Também é testada
a aplicabilidade da solução MHE proposta num ambiente de simulação de um corredor
3D em forma de quadrado com marcos estacionários. A performance desta simulação
é comparada aos resultados obtidos em outras duas abordagens probabilísticas, o filtro
de kalman estendido (EKF) que é largamente utilizada mas que tem uma performance
limitada aquando se encontra na presença de dinâmicas extremamente não lineares, e
um filtro de kalman linear baseado nos sensores (sensor-based LKF), uma abordagem
interessante que lida com as não linearidades do sistema caracterizando-o a partir do refe-
rencial do sensor. Cada um dos algoritmos é simulado no MATLAB e o seu desempenho
foi comparado considerando dois cenários diferentes.

Palavras-chave: SLAM, MHE, UAV, EKF
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1

Introduction

The Simultaneous Localization and Mapping (SLAM) is a well-known robotics problem
for, as the name implies, the simultaneous effort of mapping a not previously known
environment and localizing the robot on the constructed map. The core of the problem,
firstly introduced at the 1986 Institute of Electrical and Electronics Engineers (IEEE)
Robotics and Automation Conference [1], is still a relevant issue with no final solution,
as there have been a continuous research, for over three decades, on how to solve it
considering distinct types of robot applications and environments. The best-known
solution may differ, considering different types of robots and their surroundings.

This work is part of a project called CAPTURE [2] which views on challenging the
typical airborne cargo transportation and urban mobility concepts, by reducing energy
consumption. The idea behind the project is that an Unmanned Aerial Vehicle (UAV) can
be able to launch and catch, on urban environments, a fixed wing aircraft with a long
range mission assignment, as demonstrated in Figure 1.1. This will enable fixed wing
aircrafts to deliver packages on an environment they previously could not, due to the lack
of space to land safely.

On this document it is proposed a SLAM solution algorithm based on Moving Horizon
Estimation (MHE) for a 6 Degrees of Freedom (DoF) vehicle in 3D space. To compare its
performance and robustness, it will also be done a comparison with two other solutions:
the Extended Kalman Filter (EKF) and the sensor-based Linear Kalman Filter (LKF). The
proposed solution will be a probabilistic approach using the MHE method. It should
be noted that this work was designed in a way that the algorithm can be implemented
in any type of vehicle, as long as there are linear and angular velocity data of the body
and some sort of landmark visualization, such as RGB-D cameras, Light Detection and
Ranging (LiDAR) and other types of sensors. With a special emphasis on vehicles with
nonlinear dynamics, such as UAV and satellites.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Project CAPTURE (retrieved from [2])

1.1 Motivation

Even though the SLAM has been addressed as a relative recent issue on robotics, the
capability of mapping and localization was a problem that humankind had to deal with
for a long time. Initially, with the help of landmarks that could be seen almost at any time
and at any location, mostly stars like the north pole on the north hemisphere, and the sun.
During the European Medieval Era, the ability of being able to read these maps, made
of stars, was considered one of the seven mechanical arts. However, with time and the
development of science and human desire of exploration, this human ability morphed
from an art to a commonly taught science. In fact, the beginning of the Portuguese sea
explorations was a catalyst for the boom of localisation technologies and the creation of an
intercontinental map. The advancements made on navigation were critical for the hugely
connected society we live in today, while also having a big impact on other key areas of
human development. Therefore, it is also expected that the maturing of this concept on
robotic systems will make possible their autonomy and, thus, many other new behaviours.

An autonomous robot is an intelligent system that can actuate without any human
interference [3]. For mobile robots, this means that they need to have the ability of
navigating any environment by themselves. For this, the robot needs to be able to precisely
localise itself on the surrounding environment. Its’ surroundings might be an indoor
environment, where Global Positioning System (GPS) data might be non-existent or
unreliable, an open sky, in which there are not many reference points to estimate the
robot’s position with visual sensors, or even a combination of both. Because of this, it
is necessary to accurately estimate and fuse different data sources for better localization
precision. The SLAM problems tries to tackle this need, but it has not been found any
definitive solution, as researches are continuously developing better techniques for always
emerging new challenges, with the end goal of creating robust algorithms for any scenario.

One of this algorithms is the MHE, which is an estimation method that has not been

2



1.2. PROBLEM STATEMENT

used much on robotic systems SLAM due to its heavier computational needs. However,
the tides are changing so much that robots use hardware with higher capacity and better
workload, which might be sufficient for the use of such algorithm. This work aims to find
out the viability of MHE on SLAM, and will compare its performance with two other
solutions: a more commonly used method, the EKF, and a completely different approach
using a LKF based on the sensor reference frame.

Figure 1.2: UAV (retrieved from [4])

Nonlinear dynamic vehicles are the major focus of research on SLAM applications,
as there are already very robust solutions for the linear ones. Some of the vehicles with
extremely high nonlinear dynamic systems are the UAVs and spacecrafts, which have seen
a continuous increase on their use on the last fifteen years.

The exponential use of UAVs, also known as drones, on the past decade, can be
explained by its use in many civil applications due to their ease of deployment, high
mobility, low maintenance cost and ability to hover [5]. They have been applied on the
agriculture industry, the mining sector, the transport branch and the security industry
[6][7]. While some types of UAV’s are operated through a remote control, others are
completely autonomous and need a SLAM system to navigate through its environment.

Additionally, satellites have also seen a big increase on their deployment, namely
nanosatellites like CubeSats, which suffered a decline after recording 300 launches in 2017,
but are on track to a record breaking 633 launches in 2023 according to Kulu in [8].

1.2 Problem Statement

As mentioned before, the SLAM problem is still an open discussion with no definitive
solution considering different environments. This is specially the case for vehicles with

3



CHAPTER 1. INTRODUCTION

nonlinear system dynamics. Considering the project CAPTURE, in which this thesis is
integrated, the UAVs taken into account there have to deal with urban 3D environments,
which is characterized by having nonlinear motion models and observation models, as it
is an extremely dynamic environment with a high number of possible landmarks. In such
environment it is possible that the sensing of some landmarks might be obstructed quite
often.

1.3 Proposed Approach

This work studies the viability of a SLAM algorithm based on MHE applied to any type
of rigid body, whilst having in consideration the high needs of computational power that
the algorithm requires. The big advantage of this method is its applicability on nonlinear
systems, since it does not have the linearity constraints imposed by other commonly used
solutions, such as the EKF, which needs a local linearization. As such, the performance of
the proposed solution will be compared, not only to a SLAM based EKF approach, but
also with a sensor-based LKF.

The algorithm will be design to work on any 6 DoF robot in 3D space with known
linear and angular velocities, which enables its deployment on the CAPTURE project. It
will also be validated through simulation tests.

1.4 Document Outline

This document is structured as follows. Chapter 2 reviews the state of the art, mentioning
probabilistic SLAM techniques, 3D visual SLAM applications and an overview over other
techniques and frameworks. It also introduces the reader to nonlinear solvers, such as
the Successive Quadratic Programming (SQP), active-set and interior-point. Chapter
3 introduces relevant concepts to a better understanding of the topics applied in this
dissertation, such as the definition of the SLAM problem, the design of the EKF and
MHE algorithms and the definitions and properties of orientation representations, such
as: Euler angles, quaternions and rotation matrices. Chapter 4, presents the modelling of
the dynamics of a rigid body with 6 DoF in 3D space using a quaternion approach. On
Chapters 5, 6 and 7, it is presented the three approaches to tackle the described SLAM
problem. The main one, an MHE algorithm with weights based on the EKF (Chapter 6),
a common EKF algorithm (Chapter 5) and lastly, a sensor-based LKF approach (Chapter
7). On Chapter 8 the results of the models considered are taken into account as their
differences in performance and error are showcased. The results are discussed having in
mind their feasibility, robustness and applicability. Lastly, in Chapter 9, final observations
are presented, as well as suggestions for future work regarding this topic.
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2

State of the Art

As briefly said in the Introduction, the SLAM problem was first introduced in San
Francisco at the 1986 IEEE Robotics and Automation Conference, with the recognition
that probabilistic mapping was key for the development and applicability of autonomous
robots in any environment. With this realization, this event turned out to be the ignition
point of many of the breakthroughs achieved over the next years on trying to better define
and solve the SLAM problem. The firsts major contributions to the maturing of this
idea were made by Smith and Cheeseman [9], and Durrant-Whyte [10] on the articles
where they define a statistical framework on how to describe and manipulate uncertainty
between spatial points. During this period there were also other works that helped the
development of the SLAM problem. One of them was written by Smith et al. [11], where
it is described a representation for spatial information, the stochastic map, and shown
that all the landmarks that one robot senses are highly correlated with each other, as
every landmark estimation shares the error of the robots pose. Moreover, in [12], Cadena
et al. discuss the past, present and future of SLAM. They particularly identify the key
requirements of any modern SLAM application, being: robust performance, high-level
understanding, resource awareness and task-driven perception the key characteristics. In
light of that, this dissertation tries to tackle the robust performance issue in the context of
highly nonlinear vehicles in 3D space.

Having in mind the considered objective of this work: solving the SLAM problem of a
six DoF vehicle using a MHE approach, this Chapter presents solutions and methodologies
on the topic. Nevertheless, and since there is a focus on different approaches to the SLAM
problem, it will also be presented other methods of SLAM estimation, such as Filter-
based SLAM algorithms, to which the EKF is part of. As well as an introduction to the
graph-based SLAM and other frameworks of the problem, and nonlinear optimization
methods.
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2.1 Probabilistic approaches for SLAM

Some of the solutions for the SLAM problem are approached through probabilistic meth-
ods. These solutions are mathematical derivations of the Bayesian estimation rule [13][14].
The Bayes filters are a two-step process, the first step is to estimate the vehicle’s pose
and the map states, whilst the second is to compare that estimation with sensors data
measurements, which will rectify the wrong predictions made on the first step [15]. This
type of filters, also known as filter-based, have in consideration the uncertainties related
to each of the sensors that it uses. Some of the most popular probabilistic approaches for
SLAM are: Particle Filter (PF), Information Filter (IF), Kalman Filter (KF), EKF and the
Unscented Kalman Filter (UKF). An overview of these filters was done by Bresson et al.
[16] and Takleh et al. [17].

2.1.1 Kalman Filters

Invented by Kalman and Swerling [18][19], the KF is an optimal estimation technique for
linear systems with addictive white Gaussian noise [20]. It utilizes a set of mathematical
equations to obtain an efficient recursive solution of the least-squares method [21]. Due
to its constraints in linearity and non-Gaussian disturbances [22][23], it is hardly used in
SLAM algorithms, since the convergence of the filter cannot be guaranteed in these cases.
However there has been developed derivations of the KF that have looser assumptions.
The most popular ones for SLAM algorithms are the EKF and the UKF.

The EKF relaxes the linearity constraint imposed on the KF, while still considering
that the processes are Gaussian [24]. It achieves this by doing local linearization of the
motion and observability model [23][25], which makes it much more valuable and usable
on SLAM problems, since it deals better with nonlinear robot motion. It is widely used as
a SLAM solutions but it does not guarantee convergence nor consistency, as this can only
be truly valid for linear models [26][27][28]. Studies on the convergence and consistency
of a 3-D Right Invariant-Extended Kalman Filter (RI-EKF) SLAM were done by Zhang et
al. in [29].

Another derivation of the KF, the UKF was introduced by Julier et al. in [30]. This
filter, just like the EKF, performs a linearization on the system transition models. However,
it achieves that by doing a stochastic linearization using a process based on a weighted
statistical linear regression [24][27]. This linearization still has inconsistent results [31][28],
but relaxes the Gaussian assumptions of the KF [27].

2.1.2 Particle Filters

The PF method is a set of sequential based Monte Carlo algorithms [32] that are used
as an approximate inference method for calculating the posterior distribution of the
system’s processes, a controllable and non-totally observable Markov chain [33]. Because
of this property, it is irrelevant for this type of filters whether the system is nonlinear,
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non-Gaussian or both. Besides this, PFs also give the robot the capability to recover its
pose even when under global uncertainty [33]. One of the most relevant realizations of
PFs is the FastSLAM, which was introduced by Michael Montemerlo et al. [34]. In his
work he integrates the PF and KF representations, with the use of a Rao-Blackwellized
representation of the posterior, and states that the time required to update the posterior is
O(𝑀𝑙𝑜𝑔𝐾), in which M is the number of particles and K the number of landmarks, while
a KF based methodology would take O(𝐾2). However, it is also known that the FastSLAM
algorithm degenerates and loses consistency over the time [26]. Besides this, it is known
that this method takes a lot more time to recover from poor initial estimations than the
EKF and MHE methods [35].

There is also an improved version of FastSLAM called FastSLAM 2.0 [26], which
contemplates the problems with data association of the previous [36]. Several works use
this technique [37], one of them, by Saiadek et al. [38] compares the use of EKF and
FastSLAM on outdoor environments, considering a Gaussian and a Non-Gaussian model
of the noise.

2.1.3 Moving Horizon Estimation approach for SLAM

Another way of solving the maximum a posteriori estimate is to maximize the joint
probability for a given trajectory of state values. The MHE is a constrained [39], nonlinear
optimization problem, that unlike the KF and EKF, does not assume the noise to be
Gaussian [40]. Similarly to the Full Information (FI), the MHE has in consideration the
measured data at the current and previous steps. However, it uses a small window of
measured data to make its’ estimations, which makes it a more efficient and less exhaustive
estimator as the FI considers every past estimation. Changing the size of the horizon
creates a compromise between the computational requirements and the performance of
the method. In spite of that, the MHE still has a high computational cost [35]. Moreover,
the stability of the MHE for linear and nonlinear systems has been studied in [41], and
by Rao et al. in [42] and [43], where it is showed that this technique is an asymptotically
stable observer in a nonlinear deterministic modelling framework. Moreover, Müller M.
in [44] found that the MHE for nonlinear detectable systems with bounded disturbances
is robust and globally asymptotically stable (GAS).

To the best of the author’s knowledge there is still a limited number of work done
regarding the use of MHE on SLAM. Moreover, there are no applications of this technique
on a vehicle with complex dynamics, such as vehicles with six DoF, which demonstrates
the relevance of this work. However there are some use cases that should be pointed
out. On the work of Kasahara et al. [45] where it’s considered the effectiveness of a MHE
approach to the SLAM of a tricycle in a crowded environment, they try to reduce the
computational cost by applying the SQP optimization algorithm. On [46] this optimization
was done using the Continuation/Generalized Minimum Residual (C/GMRES) algorithm,
in which Kishimoto et al. apply the MHE technique on multi-robot SLAM, as a way to fuse
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the data from all the robots. In their work they evaluate the computational cost of using
the C/GMRES as better than with a quasi-Newton approach. The C/GMRES method is
often used as an online optimization in nonlinear model predictive control systems [47].

Besides the use of this technique on SLAM, there are other relevant applications such
as the work done by Ferrari-Trecate et al. in [48] and Bemporad et al. [49], in which
they exploit the use of MHE on hybrid systems. Ferrari-Trecate et al. uses MHE as a
state-smoothing algorithm whilst guaranteeing asymptotic convergence of the MHE filter.
Moreover in [50], Zou et al. present the current state, opportunities and challenges of using
MHE as a multi-sensor information fusion method. Additionally, another application that
should be mentioned is the work done by Haseltine et al. in [51], which demonstrates
examples of estimation failure in the EKF algorithm, namely when there are constraints at
play, and how the MHE performs in the same conditions. They are able to conclude that
the MHE algorithm consistently delivers better state estimations and greater robustness.
Lastly, Farina et al. in [52] studies the use of MHE as a distributed estimator for linear
constrained systems.

2.2 Graph-based SLAM

There are also other solutions which aren’t based on the probabilistic approach. The Graph-
based SLAM is one of them, as it is optimization-based and uses a graph to represent the
mapping problem. In this formulation the nodes are the vehicle’s pose and the edges the
measurements between these poses. In a similar way to the filter-based formulation, the
optimization-based is divided in two distinct parts. The first step predicts the constraints
of the vehicle pose to the measurements of the sensor. The second part, minimizes the error
between the sensor readings and the estimated positions of previous and current vehicle
poses in relation to the map. The Graph-based SLAM is a well-known optimization-based
approach and an introduction and tutorial about it was done by Grisetti et al. in [53].

Regarding relevant use cases, Labbe et al. studied the applicability of this method
with an online global loop closure detection approach, which is useful when the drone
has an unknown initial position [54]. Also, Kümmerle et al. in [55] considered the use of
the graph-based SLAM formulation to fuse satellites’ images and the information from
the vehicle sensors.

2.3 Other Frameworks

As it was explained before, the SLAM framework is based on estimating both, the pose and
the map simultaneous and cooperatively. However there are also other techniques that
tackle the mapping and localization as parallel tasks, usually defined as Parallel Tracking
and Mapping (PTAM) [56] they’re consider to be more time-efficient. Besides that, there
are also other methods called Visual Simultaneous Localization and Mapping (vSLAM)
and Sensor-based SLAM. The vSLAM uses image sensors, such as RGB cameras, and
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computes the camera pose using visual information of the landmarks positioning [57].
Successful uses of it can be found in [58] and [59].

The sensor-based approach tackles the filtering problem under a not so common
perspective. Unlike the typical representation of the state variables in an inertial reference
frame, usually called world-fixed frame, the sensor-based uses the vehicle sensor as the
reference frame, thus being called sensor-based. Even though, the sensor-based is not the
most widely used framework, there has been some research on its implementation over
the years. One of which by Castellanos et al. in [60], where the authors use the robocentric
map joining design to tackle consistency problems of the EKF-based SLAM. Further
endeavours were made on the sensor-based framework, namely the one developed by
Guerreiro et al. in [61]. In which the authors are able to design a GAS KF sensor-based
SLAM filter for nonlinear system dynamics. This is possible due to the sensor-based
approach enabling the reformulation of the nonlinear system dynamics into a linear time-
varying system. Furthermore, Lourenço et al. built upon this framework, which resulted
in a 3-D sensor-based GAS filter for aerial vehicles SLAM [62].

2.4 Nonlinear Optimization methods

This work focuses on solving the SLAM problem using the MHE approach, as such an
optimization algorithm will be needed to find the optimal solution for solving the cost
function. Even though, the MHE is an estimation method with a few static characteristics,
there are also others that might differ depending the application of the algorithm, such
as size, cost function, constraints and the considered models. As a result, there is not a
specific numerical method to solve it [63]. Besides that, the large number of variables to
be estimated and the common ill-posed formulations of the MHE can lead to powerful
nonconvexities [64][65].

The SQP defines a sequence of quadratic programming sub-problems and linearizes the
Karush-Kuhn-Tucker (KKT) conditions at each step, resulting in a set of linear conditions
that can be used on a Quadratic Programming (QP) method [66]. This solution is known
for handling better a large number of constraints [67]. A deep introduction to SQP methods
can be found in [68] and [69]. Moreover, Boggs et al. in [70] present the SQP algorithm
with an emphasis on large-scale nonlinear problems.

The active-set algorithm is also a method to have in consideration, as it is widely
used to solve nonlinear optimization problems with constraints [71]. It works in a similar
manner to the SQP, but with a set of active and inactive constraints. At each iteration,
a QP sub-problem is solved having in consideration the set of active constraints. The
algorithm terminates if this solution satisfies the non-active constraints. Otherwise, the
set of active constraints is updated with inactive constraints and the process is repeated
until it converges into an optimal solution [72].

Another algorithm to consider is the interior-point method. In this method, the KKT
conditions regarding the inequality constraints suffer a smooth approximation as they are
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handled by a logarithmic barrier function [63]. In [73] Potra et al. present and discuss
the interior-point methods in more detail. On top of that, Byrd et al. in [74] formulate an
interior-point algorithm for large-scale nonlinear programming.

Having considered the state-of-art of SLAM technologies, there is still the need to
introduce the reader to some relevant concepts. Wich will be done on the next Chapter.
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3

Conceptual Background

On this Chapter the reader is introduced to relevant concepts to the work done throughout
this dissertation, namely the definitions of a SLAM problem and the EKF and MHE
algorithms. Their designs and implications are also presented and discussed. Besides
that, it is also presented the definitions and properties of three-dimensional rotational
representations, namely the 3-dimensional rotation matrix, quaternions and the Euler
angles, whilst demonstrating the conversion from one representation to the other and
showcasing mathematically deductions relevant to the definition of the system dynamics
in Chapter 4.

3.1 Notation

In order to better comprehend the mathematical expressions throughout this document
some abbreviations were taken into account.

• Every vector is written in a bold lower case and each matrix on a bold higher case,
like v and M, respectively. Whilst the scalar values are represented by plain letters;

• The set of real numbers is defined by R, and R𝑛×𝑚 is the set of matrices of size 𝑛 ×𝑚
with real values;

• The symbols 0m×n and Im represent a matrix of zeros with dimensions 𝑚 × 𝑛 and
an identity matrix with dimensions 𝑚 × 𝑚;

• A diagonal matrix of values (𝑎1 , 𝑎2 , ..., 𝑎𝑛) on its main diagonal is defined as
𝑑𝑖𝑎𝑔(𝑎1 , 𝑎2 , ..., 𝑎𝑛) and a block diagonal matrix is denoted as 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(N0 ,N1 , ...,Ni),
in which N is a square matrix;

• H defines the quaternions group, and H𝑝 the group of pure quaternions

H𝑝 =
{
q ∈ H | q = (0, q𝑣)

}
, q𝑣 ∈ R3 (3.1)
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• The sympletic group, 𝑆𝑝(1), is the orthogonal group formed by the unitary quater-
nions, which is isomorphic to the unit sphere in R4, 𝑆3 [75]

𝑆3 =
{
q ∈ H | |q| = 1

}
(3.2)

• The special orthogonal group in 3-D space is defined as

𝑆𝑂(3) :=
{
R ∈ R3×3 | R𝑇R = I3 , 𝑑𝑒𝑡(R) = 1

}
(3.3)

where 𝑇 is the transpose superscript;

• S[.] is a map from R3 to the space of three-by-three skew-symmetric matrices, 𝑠𝑜(3),

S[v] =


0 −𝑣1 𝑣2

𝑣3 0 −𝑣1

−𝑣2 𝑣1 0

 , v =

[
𝑣1 𝑣2 𝑣3

]
∈ R3 (3.4)

S[v]u = −S[u]v (3.5)

• S′[.] is a map from H𝑝 to 𝑠𝑜(3)

S′[v] =


0 −𝑞1 −𝑞2 −𝑞3

𝑞1 0 𝑞3 −𝑞2

𝑞2 −𝑞3 0 𝑞1

𝑞3 𝑞2 −𝑞1 0


, q =

[
𝑞0 𝑞1 𝑞2 𝑞3

]
∈ H𝑝 (3.6)

• 𝑊
𝐵

R is the rotation matrix from 𝐵, the Body frame, to𝑊 , the World frame;

• Another relevant notation is the use of vector weighted norm,


v




Γ defined by



v




Γ = v𝑇 .Γ.v (3.7)

with Γ ∈ R𝑚×𝑚 and v ∈ R𝑚×1.

Besides that, it is assumed the following discrete-time system

x𝑘+1 = f(x𝑘 , u𝑘+1) + n𝑢𝑘+1 (3.8)

y𝑘+1 = h(x𝑘+1) + n𝑦𝑘+1 (3.9)

where:

• x𝑘 : is the state vector, compromised of the vehicle pose and landmarks, m𝑖 . Normally
the size of this vector is dynamic, since it changes with the number of landmarks
considered;
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• u𝑘+1: is the control action at 𝑘 + 1, whose input will induce the vehicle from state
x𝑘to the state x𝑘+1. This information usually comes from sensors data, such as an
Inertial Measurement Unit (IMU);

• m𝑖 : the location of landmark number 𝑖. This vector is part of the state vector and
may change at every 𝑘 instant, given if a new landmark is observed or not;

• y𝑘 : represents the set of measurements for the landmarks that were observed at the
instant 𝑘. Similarly to m𝑖 , this vectors size is dynamic, as its length is determined by
the number of sensor readings. But it should be noticed that it doesn’t necessarily
need to have the same size as m𝑖 , since a new landmark might have been identified,
or a landmark previously identified has not been seen by the sensor;

• n𝑦𝑘 represents the measurement noise, and is a zero mean Gaussian motion distur-
bance which is considered to have time-invariant density and a standard deviation
of 𝝈𝑦 ;

• n𝑢𝑘 represents a random variable called process noise, and is a zero mean Gaussian
motion disturbance with time-invariant density and a standard deviation of 𝝈𝑛𝑢 ;

• f(x𝑘 , u𝑘+1) is the system model, which characterizes the motion dynamics of a vehicle
given a probabilistic approach to the SLAM problem. Assumed here to be nonlinear,
since that is the focus of this thesis;

• h(x𝑘+1) is the measurement function, which , on the probabilistic approach to SLAM,
mirrors the transformation of the sensor readings to an actual location of a given
landmark.

3.2 The SLAM Problem

The general structure of the SLAM problem takes the representation shown at Figure 3.1,
where it is possible to visualize the robot, landmarks, the uncertainty related to the robots
pose and landmark positioning and the correlation between the error of the estimated
positions [76].

As previously stated, the SLAM problem aims to create a map of the surrounding
environment and also estimate the pose of the robot in every instant. From a probabilistic
point of view, there are two main resolutions for the SLAM problem with great importance
depending on the use case. The online SLAM, Figure 3.2a, which involves in finding an
estimation for the joint posterior density of the momentary pose and map [24]

𝑝(x𝑘+1 |y0:𝑘 , u0:𝑘 , x0) (3.10)

and the Full SLAM is in Figure 3.2b. In this formulation the posterior is calculated for the
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Estimated Landmark

True Landmark

Estimated Robot

True Robot

Figure 3.1: The SLAM problem (adapted from [1])

14



3.2. THE SLAM PROBLEM

𝑥𝑘−2 𝑥𝑘−1 𝑥𝑘

𝑧𝑘−2 𝑧𝑘−1 𝑧𝑘

𝑚𝑖

𝑢𝑘−2 𝑢𝑘−1 𝑢𝑘

… …

(a) Online SLAM

𝑥𝑘−2 𝑥𝑘−1 𝑥𝑘

𝑧𝑘−2 𝑧𝑘−1 𝑧𝑘

𝑚𝑖

𝑢𝑘−2 𝑢𝑘−1 𝑢𝑘

… …

(b) Full SLAM

Figure 3.2: Probabilistic formulations of the SLAM (adapted from [16])
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entire trajectory of x𝑘 alongside the map [24]

𝑝(x0:𝑘+1 |y0:𝑘 , u0:𝑘 , x0). (3.11)

Taking into account the system presented in Equations (3.8) and (3.9), it should be
pointed out the non-dependency between the control input and the observation sensors
data. Therefore, it is possible to define a state transition model and an observation model.
As so, considering the case of online SLAM, the motion model can be represented as

𝑝(x𝑘+1 |x𝑘 , u𝑘) (3.12)

whilst the observation model as
𝑝(y𝑘 |x𝑘). (3.13)

The online SLAM from a probabilistic point of view can be implemented, using the Bayes
Theorem, in a two-step recursive prediction correction form. Using

𝑝(x𝑘+1 |y0:𝑘 , u0:𝑘 , x0) =
∫

𝑝(x𝑘+1 |x𝑘 , u𝑘)𝑝(x𝑘+1 |y0:𝑘 , u0:𝑘 , x0)𝑑x𝑘 (3.14)

𝑝(x𝑘+1 |y0:𝑘+1 , u0:𝑘 , x0) =
𝑝(y𝑘+1 |x𝑘+1)𝑝(x𝑘+1 |y0:𝑘 , u0:𝑘 , x0)

𝑝(y𝑘+1 |y0:𝑘 , u0:𝑘)
(3.15)

the time-update and the measurement-update, respectively, it is possible to calculate the
joint posterior 𝑝(x𝑘+1 |y0:𝑘 , u0:𝑘 , x0).

The diagram of a probabilistic SLAM can be represented as depicted in Figure 3.3. The
observed landmarks at each given instant are used to correct the measurements from the
navigation sensors, which were used to make initial guesses of the current position of the
vehicle. The observation data from the sensors goes through a feature extraction and a scan
matching algorithm in order to identify them and characterize their quality as a feature
on the map. Only high-quality features are considered. If an observation matches with
an already known landmark, the position of that feature on the map is refined taking into
account the current estimation of the vehicles pose and the measurement. In opposition,
if the feature is not yet considered on the map (is not part of the state vector), it means
that it is a new landmark and as such the state vector has to be augmented.

The reason behind the existence of the SLAM problem lies on the uncertainties inherent
to every sensor, which, even though small, make the overall positional uncertainty grow
larger with time. The SLAM tackles this by fusing and estimating the position through
the methods mentioned before in Chapter 2. However these solutions also have some
problems/considerations by their own, namely: correspondence, data association and
time complexity problems [77].

• Correspondence might be considered the biggest problem in SLAM [78]. This builds
upon the necessity that SLAM algorithms need to be able to distinguish between
features, so that one landmark is not identified as another. This is especially hard
when the environment information is collected by a laser sensor, which can only
really differentiate landmarks by their shape and volume [77].
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• Data Association is also a key problem to have in consideration, as it is very common
for a vehicle to return to a part of the map that it had previously been on. For the
loop closure to happen, the revisited landmarks have to be recognised and correctly
associated with their already estimated position on the map [78].

• Time Complexity issues are related to how fast the whole SLAM process needs to
be executed. Dealing with the uncertainty of sensors, having the right identification
of landmarks and doing the data association takes time, which has to be minimum
if the vehicle that the algorithm is being applied to is fast and very dynamic. As a
result, algorithms have to be quick to respond to these necessities [78].

Figure 3.3: The SLAM problem as a diagram (adapted from [77])

3.3 Extended Kalman Filter

The EKF is part of a collective called Gaussian Filters. This type of filters are an Imple-
mentation of the Bayes Filter and all share the principle that beliefs are represented by
multivariate normal distribution. This filter was derived from the KF, which is a recursive
algorithm used to estimate the state of a linear system based on measurements with
Gaussian noise. The major difference between them is that the EKF relaxes the linearity
assumptions of the previous [23], which were very strict, whilst maintaining the belief
that noise is Gaussian [24]. It achieves this by approximating, for each sampling time,
the nonlinear system with a first-order Taylor series expansion. The EKF algorithm is
known as efficient and computationally inexpensive, making it a popular choice for many
estimation applications. Since it is an implementation of a Bayesian Filter, the EKF is
comprised of two steps on its core: the prediction step and the update step. As mentioned
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previously, the prediction step uses the motion model to make initial predictions, and the
update step uses the observation model to correct them.

3.4 Moving Horizon Estimation

Another way of solving the maximum a posteriori estimate of the probabilistic approach
to SLAM is to maximize the joint probability of a given trajectory of state values by treating
it as an optimization problem. The FI estimator does this by considering every state since
𝑡0

{x0 , ..., x𝑇} = arg max
x0 ,...,x𝑇

𝑝(x0 , ..., x𝑇 |y0 , ..., y𝑇). (3.16)

However, the computational complexity of calculating the maximum posterior gets larger
in each iteration, since the number of variables to be estimated grows. As a measure
of tackling this issue a finite horizon can be defined so the estimation method will only
consider the last 𝑁 measurements.

{x0 , ..., x𝑇−𝑁 } = arg max
x𝑇−𝑁−1 ,...,x𝑇

𝑝(x𝑇−𝑁 , ..., x𝑇 |y0 , ..., y𝑇). (3.17)

This technique is called MHE and is a very well-known estimation approach for both
linear and nonlinear systems. Similar to the FI estimator it is numerically equivalent to a
constrained, nonlinear optimization problem: it estimates the system’s state by minimizing
the difference between the system’s predicted output and the actual output over a certain
period of time, which can also be refered to as the Horizon. The representation of such
calculations is displayed in Figure 3.4.

The maximization in Equation (3.17) can be found through the minimization of the
arrival cost function 𝐽

min
xT−N ,...,xT

𝐽 (3.18)

where J has in consideration the difference between

• the relation between the estimated motion model dynamics over the horizon;

• the measured variable and the measurement model predicted value;

• the previously predicted estimations and the current estimation step.

The most common nonlinear moving horizon estimator solves the constrained opti-
mization problem defined by

𝑚𝑖𝑛
x𝑘 ,n𝑢𝑘 ,n𝑦𝑘

𝜙 = 𝑙0(x0) +
𝐻∑
𝑘=0

𝑙𝑘(n𝑢𝑘 , n𝑦𝑘 ) (3.19)

𝑠.𝑡. 𝜑𝑘(x𝑘 , n𝑢𝑘 ) ≥ 𝑑𝑘 (3.20)
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Figure 3.4: The MHE algorithm (adapted from [45])

where 𝐻 is the size of the Horizon and the stage and final cost are respectively defined as
weighted least squares [79], given by

𝑙0(x0) =
1
2 (x0 − x̂0)𝑇 P̂−1

0 (x0 − x̂0) (3.21)

and

𝑙𝑘(n𝑢𝑘 , n𝑦𝑘 ) =
1
2

[
n𝑢𝑘 − n̂𝑢𝑘
n𝑦𝑘 − n̂𝑦𝑘

]𝑇 [
Q̂𝑘 M̂𝑘

M̂𝑇
𝑘

R̂𝑘

]−1 [
n𝑢𝑘 − n̂𝑢𝑘
n𝑦𝑘 − n̂𝑦𝑘

]
. (3.22)

in which Q,M and R are weigths.
This type of cost function (3.19) takes into account the state 𝑥0, the sequence of

measurement noise and the sequence of process noise in the considered horizon 𝐻, with
the aim of minimizing it so that it is as close as possible to the sensor measurements whilst
respecting the constraints imposed in (3.20). The criteria for a good fit is specified by (3.21)
and (3.22) which state that x̂0 should be as near to x0 as possible and that the estimated
noise sequences should also be as close as possible to their true values, respectively [79].

In this method, and in opposition to the EKF approach, there is no assumption about
normally distributed noises.
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3.5 3D Orientation representation

In this section are presented different forms of representing the orientation of a body in
space, namely, the rotation matrices, Euler angles and quaternions.

3.5.1 Rotation Matrices

The rotation matrix is a transformation matrix of a rotation on the Euclidean space. A
rotation matrix, R ∈ 𝑆𝑂(3), can be interpreted as a rotation of angle 𝜃 around the axis
defined by the unitary vector u = (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧) and can be represented as

R =


cos𝜃 + 𝑢2

𝑥(1 − cos𝜃) 𝑢𝑥𝑢𝑦(1 − cos𝜃) − 𝑢𝑧 sin𝜃 𝑢𝑥𝑢𝑧(1 − cos𝜃) + 𝑢𝑦 sin𝜃

𝑢𝑥𝑢𝑦(1 − cos𝜃) + 𝑢𝑧 sin𝜃 cos𝜃 + 𝑢2
𝑦(1 − cos𝜃) 𝑢𝑦𝑢𝑧(1 − cos𝜃) − 𝑢𝑥 sin𝜃

𝑢𝑥𝑢𝑧(1 − cos𝜃) + 𝑢𝑦 sin𝜃 𝑢𝑦𝑢𝑧(1 − cos𝜃) + 𝑢𝑥 sin𝜃 cos𝜃 + 𝑢2
𝑧 (1 − cos𝜃)


(3.23)

or as according to Rodrigues’ rotation formula [80]

R = I + (sin𝜃)S[u] + (1 − cos𝜃)S[u]2. (3.24)

Given any rotation matrix R ∈ 𝑅𝑛 , R is an orthogonal matrix and therefore has the
following property

R𝑇 = R−1. (3.25)

The conversion from Euler angles to rotation matrix is also an important topic to
highlight, an explanation of such transition is described by Slabaugh in [81].

3.5.2 Euler Angles

The Euler angles are a representation of a rigid body orientation on three-dimensional
space, by a set of three different angles (𝜙, 𝜃,𝜓). These angles represent three successive
rotations around different axes. Considering the "x-convention" (ZXZ), as it is the most
common one, the orientation given by the Euler angles can be defined in the following
order [82]:

• rotation of 𝜙 around the z-axis;

• rotation by an angle 𝜃 around the former x-axis (x-axis of the coordinate system
which resulted from the first rotation);

• rotation of 𝜓 about the former z-axis (z-axis of the coordinate system which resulted
from the first two rotations).

The first and third rotation can be defined as
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3.5. 3D ORIENTATION REPRESENTATION

RZ(Ω) =

𝑐𝑜𝑠(Ω) 𝑠𝑖𝑛(Ω) 0
−𝑠𝑖𝑛(Ω) 𝑐𝑜𝑠(Ω) 0

0 0 1

 (3.26)

whilst the second rotation can be established by

RX(Ω) =

1 0 0
0 𝑐𝑜𝑠(Ω) 𝑠𝑖𝑛(Ω)
0 −𝑠𝑖𝑛(Ω) 𝑐𝑜𝑠(Ω)

 . (3.27)

In other notations a rotation around the y-axis might be used, which can be represented
as

RY(Ω) =

𝑐𝑜𝑠(Ω) 0 𝑠𝑖𝑛(Ω)

0 1 0
−𝑠𝑖𝑛(Ω) 0 𝑐𝑜𝑠(Ω)

 . (3.28)

The combination of the Eulersequence definedon the convention ZXZ,𝑅𝑧,𝑥,𝑧(𝜙, 𝜃,𝜓) =
𝑅𝑧(𝜓)𝑅𝑥(𝜃)𝑅𝑧(𝜙), can be simplified by the following matrix


cos 𝜙 cos𝜓 − cos𝜃 sin 𝜙 sin𝜓 − cos 𝜙 sin𝜓 − cos𝜃 cos𝜓 sin 𝜙 sin𝜃 sin 𝜙

cos𝜓 sin 𝜙 + cos 𝜙 cos𝜃 sin𝜓 cos 𝜙 cos𝜓 − cos𝜃 sin 𝜙 sin𝜓 − cos𝜃 cos 𝜙
sin𝜃 sin𝜓 cos𝜓 sin𝜃 cos𝜃

 . (3.29)

3.5.3 Unit Quaternions

Quaternions, which were introduce by Hamilton, W. in [83], are 4-dimensions vectors
commonly used in robotics for calculations of three-dimensional rotations. As such, they
are seen as alternatives to other three-dimensional representations like the Euler angles
and rotations matrices.

The quaternions are normally defined as

q = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 = 𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘 (3.30)

in which 𝑎, 𝑏, 𝑐 and 𝑑 are real numbers and 𝑖, 𝑗, 𝑘 are the quaternions units.
Quaternions have some unique, or not so common, properties. An important character-

istic to have in mind in this work is the unitary quaternion, 𝑞 ∈ 𝑆3, which is a quaternion
of norm equal to one

∥q∥ =
√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1. (3.31)

The complex conjugate of a quaternion is the same as the quaternion with its vector part
multiplied by −1

𝐶𝑜𝑛𝑗(q) = q∗ = [𝑎,−𝑏,−𝑐,−𝑑]𝑇 . (3.32)

Moreover, the inverse of the quaternion is also defined as the inverse of a normal complex
number

𝐼𝑛𝑣(q) = q−1 =
q∗

∥q∥2 (3.33)
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Furthermore, if 𝑞 ∈ 𝑆3 then
𝐼𝑛𝑣(q) = 𝐶𝑜𝑛𝑗(q). (3.34)

Considering two quaternions q0 = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 and q1 = [𝑒 , 𝑓 , 𝑔, ℎ]𝑇 following the
nomenclature defined in equation (3.30). The addition of quaternions q0 and q1 can be
seen as

q0 + q1 = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 + [𝑒 , 𝑓 , 𝑔, ℎ]𝑇 = [𝑎 + 𝑒 , 𝑏 + 𝑓 , 𝑐 + 𝑔, 𝑑 + ℎ]𝑇 (3.35)

whilst the multiplication of a scalar 𝛽 and a quaternion q0 is

𝛽q0 = 𝛽[𝑎, 𝑏, 𝑐, 𝑑]𝑇 = [𝛽 ∗ 𝑎, 𝛽 ∗ 𝑏, 𝛽 ∗ 𝑐, 𝛽 ∗ 𝑑]𝑇 . (3.36)

On the other hand, the product of two quaternions q0 and q1, also called Hamilton product,
can be done as

q0 × q1 =


𝑎𝑒 − 𝑏 𝑓 − 𝑐𝑔 − 𝑑ℎ
𝑎 𝑓 + 𝑏𝑒 + 𝑐ℎ − 𝑑𝑔
𝑎𝑔 − 𝑏ℎ + 𝑐𝑒 + 𝑑𝑓
𝑎ℎ + 𝑏𝑔 − 𝑐 𝑓 + 𝑑𝑒


(3.37)

or defined as a multiplication of matrices, using the following 𝑇 transform

q0 × q1 = 𝑇(q0)q1 =


𝑎 −𝑏 −𝑐 −𝑑
𝑏 𝑎 −𝑑 𝑐

𝑐 𝑑 𝑎 −𝑏
𝑑 −𝑐 𝑏 𝑎



𝑒

𝑓

𝑔

ℎ


(3.38)

or

q0 × q1 = 𝑇̄(q1)q0 =


𝑒 − 𝑓 −𝑔 −ℎ
𝑓 𝑒 ℎ −𝑔
𝑔 −ℎ 𝑒 𝑓

ℎ 𝑔 − 𝑓 𝑒



𝑎

𝑏

𝑐

𝑑


. (3.39)

A rotation of an angle 𝜃 around the unit vector u can be defined as a quaternion [84]
[85] following

q = cos
(
𝜃
2

)
+u sin

(
𝜃
2

)
. (3.40)

Moreover, given q ∈ 𝑆3, the rotation of a vector v ∈ R3 by q is given by [84]

w = q ×
[
0
v

]
× q∗. (3.41)

Additionally, the variation of the quaternion over time in regards to the angular velocity
in the world-fixed frame is given by

𝑑q
𝑑𝑡

=
1
2w × q. (3.42)
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Regarding the angular velocity in the body frame, consider the following equation

𝑑q
𝑑𝑡

=
1
2q × Ω. (3.43)

The proof for Equations (3.42) and (3.43) is relevant in the context of this work, as such it
is presented in Annex I.

Furthermore, it is possible to convert from quaternion to otherknown three-dimensional
representations, such as Rotation Matrices and Euler angles.

Having in consideration Equation (3.41), for a value of 𝑣 for each of the x,y and z
axis, it is possible to get the rotation around each individual axis, rx(q), ry(q) and rz(q),
respectively. With that in mind, the rotation matrix can be defined [86] [84] as

R𝑞(q) =
[
rx(q) ry(q) rz(q)

]
(3.44)

R𝑞(q) =

𝑞2

0 + 𝑞2
1 − 𝑞

2
2 − 𝑞2

3 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)
2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞2

0 − 𝑞2
1 + 𝑞

2
2 − 𝑞2

3 2(𝑞2𝑞3 − 𝑞0𝑞1)
2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞2

0 − 𝑞2
1 − 𝑞

2
2 + 𝑞2

3

 (3.45)

in which R𝑞(.) ∈ 𝑆𝑂(3).
For the inverse operation, of converting the rotation matrix into a quaternion, there are

a few methods that can be used, such as the Shepperd’s method, first introduced in [87],
Hughes’s method [88] or Sarabandi and Thomas’s method published in [89]. This last one
increases the probability of finding the original quaternion by 4% when compared to the
Shepperd’s method [89].

Both, rotation matrices and quaternions circumvent the singularities and discontinu-
ities related to the 3-dimensional Euler angles by adding extra dimensions. This, however,
introduces a new issue, as different values might represent the exact same rotation. In the
quaternion world, q and −q would represent the same rotation [90]. Regardless, there are
some works on how to avoid the singularity of the Euler angles, as showcased by Singla
et al. in [91] and Kang et al. in [92].
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4

System Dynamics

This Chapter details the system dynamics of a six DoF vehicle in 3D space, considering
both the motion model and the measurement model. A six DoF vehicle is a vehicle that
can move through and over the 3 Cartesian axis.

The system dynamics was designed in order to model the behaviour of any vehicle
in 3-D space, as it considers it as the movement of an abstract rigid body. Moreover, it
also defines the relation of the data collected by a set of sensors to the vehicles pose and
reference frame. For a better understanding of the model considered, it should be noted
that the state vector of the system

x𝑘 =

[
x𝑉 𝑘
x𝐿

]
(4.1)

can be divided into two subgroups: the state vector related to the vehicles position and
quaternion orientation

x𝑉𝑘 =



p𝑘
𝑞0,𝑘

𝑞1,𝑘

𝑞2,𝑘

𝑞3,𝑘


(4.2)

and the set of landmarks in the earth-fixed reference frame,

x𝐿 =


p1

p2

...

p𝐿


. (4.3)

Moreover, every position p can be defined as a vector with x,y and z coordinates in the
form of

p =


𝑝𝑥

𝑝𝑦

𝑝𝑧

 . (4.4)

The set of landmarks x𝐿 considers every 𝑙-th landmark that has been observed.
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4.1 Motion Model

For the purpose of the motion model it was opted to view it as a simple rigid body. This
decision enables the use of this filter to any type of vehicle, as long as the velocities at
play on the rigid body are available. The proposed model works by considering the
measurements of the vehicle’s linear and angular velocities applied to the body. It was
also considered that the sensor that returns such values, for example an IMU, is aligned
with the body’s reference frame and that its values are distorted by noise. As such, it is
not necessary to do a transformation from the sensors frame to the robot frame. Take into
account v and 𝝎 as the linear and angular velocities given by

v =

[
𝑣𝑥 𝑣𝑦 𝑣𝑧

]𝑇
(4.5)

𝝎 =

[
𝜔𝑥 𝜔𝑦 𝜔𝑧

]𝑇
. (4.6)

The measured angular and linear velocities, vm(𝑡) and 𝝎𝒎(𝑡) respectively, can be
defined as the sum of the actual value and the noise associated with the environment,
sensor and system, as follows

v𝑚(𝑡) = v(𝑡) + 𝝃𝑣(𝑡) (4.7)

𝝎𝒎(𝑡) = 𝝎(𝑡) + 𝝃𝜔(𝑡). (4.8)

Following the demonstration to get to Equation (3.43), the variation of a quaternion,
q ∈ 𝑆3, imposed by the angular velocities on the vehicles’ frame can be represented as

¤q(𝑡) = 1
2q(𝑡) ×

[
0

𝝎𝒎(𝑡)

]
(4.9)

which can be translated into the multiplication between a matrix and a vector if it is mod-
elled using the transformation, T̄(.), showed in Equation (3.39). For simplicity purposes,
the transformation T̄ of the angular velocity pure quaternion, will be defined as S′[.]

S′[𝝎𝑚(𝑡)] = T̄

([
0

1
2𝝎𝑚(𝑡)

] )
. (4.10)

The nomenclature used to define S′ is a reference to its characteristic of being a skew-
symmetric matrix, which is a square matrix that has its transpose equal to its negative

S′𝑇 = −S′. (4.11)

Taking into consideration equations (4.9) and (4.10), the derivative of q can be defined as

¤q(𝑡) = S′ [𝝎𝑚(𝑡)
]
q(𝑡). (4.12)

Regarding the position of the robot related to the world frame, the variation of p(𝑡)
can be defined as

¤p(𝑡) = 𝑊
𝐵

R𝑞

(
q(𝑡)

)
v𝑚(𝑡) (4.13)
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in which 𝑊
𝐵

R𝑞 ∈ 𝑆𝑂(3), is the transformation of the quaternion q to a rotation matrix,
similarly to what was displayed at Equation (3.45). In short, and having in consideration
both Equation (4.12) and (4.13), the full motion model of a rigid body on 3D space can be
given by {

¤p(𝑡) = 𝑊
𝐵

R𝑞(q(𝑡))v𝑚(𝑡)
¤q(𝑡) = S′ [𝝎𝒎(𝑡)

]
q(𝑡)

(4.14)

Considering that the former system of equations is inherently nonlinear, the data fusion of
the EKF and MHE approaches will be performed in the discrete-time. The discretization
of the first equation, p(𝑡), uses the forward Euler method [93], as it was considered that
the linear velocities on the body are constant during the considered step, Δ𝑡 . In contrast,
this consideration was not made in relation to the discretization of q(𝑡), as it would be a
gross approximation. It was therefore obtained considering the integral approximation
method, which approximates the time-continuous differential system dynamics by a
discrete infinite series, 𝑒S′(𝝎𝒎(𝑘))Δ𝑡 . The discretization results on the following system of
equations {

p(𝑘 + 1) = p(𝑘) + Δ𝑡 .
𝑊
𝐵

R𝑞

(
q(𝑘)

)
.v𝑚(𝑘)

q(𝑘 + 1) = 𝑒
S′
[
𝝎𝒎(𝑘)

]
Δ𝑡 .q(𝑘)

(4.15)

where the discrete time steps might be defined as 𝑘 = Δ𝑡 .𝑘 + 𝑡0 in which 𝑡0 is the initial
time and 𝑘 ∈ N0.

The decision of defining the vehicles orientation by a quaternion representation over
other options like the rotation matrices and Euler angles was derived by two factors. The
choice of the quaternion over rotation matrices was made taken into account the number
of variables in each option. While the quaternion is represented by a 4-by-1 vector, the
3-D rotation matrices are represented by a 3-by-3 matrix which has nine elements, instead
of the four elements of the quaternion. This is relevant due to the number of variables in
the vector state that the MHE would have to consider and estimate, which would demand
a bigger work load on the algorithm that minimizes the cost function. As this method is
known for its computational cost the most wise option is to make its life easier and choose
the quaternion representation. The Euler angles are able to define the attitude of an object
with only three variables, as it only needs to define the angles related to the rotations on
the x, y and z axis. However, their use comes with the presence of a singularity whenever
the angle of the second rotation is equal to 90 degrees (or 270 degrees), as that would result
in an infinite number of solutions to the Euler sequence represented in the "x-convention"
at Equation (3.29). On the "roll-pitch-yaw notation" of the Euler angles, this singularity
appears whenever the pitch rotation is equal to the values mentioned before. Even though
this work defines the vehicle in a general way, its six DoF makes it possible for the vehicle
to reach such pitch values. Furthermore, this work is within the scope of research on
spacecraft and of the CAPTURE project, which relies on fixed-wing aircrafts and UAVs,
with that in mind, and considering that UAVs exhibit a complicated and dynamic motion
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that can realistically achieve a pitch of 90 degrees, is was opted to not use the Euler angles
representation.

4.2 Observation Model

The observation model consists of the Cartesian coordinates of the 𝑙-th landmark to the
vehicle’s visual sensor. As a result the observation model is defined by converting the
𝑙-th landmark point from the world frame to the vehicles frame. This conversion can be
obtained following

𝐵p𝐿,𝑘 =


𝐵𝑥𝑚,𝑘
𝐵𝑦𝑚,𝑘
𝐵𝑧𝑚,𝑘

 = 𝐵
𝑊R𝑞

(
q(𝑘)

) (
𝑊p𝐿,𝑘 − p𝑉,𝑘

)
(4.16)

in which
𝐵

𝑊
R𝑞

(
q(𝑘)

)
is given by

𝑊

𝐵
R𝑞

(
q(𝑘)

)
𝑇 . In spite of that, some sensors might work

with polar coordinates. If that is the case, each landmark position on the body-frame as to
be transformed following

ym,k =


𝑟𝑚,𝑘

𝜃𝑚,𝑘
𝜙𝑚,𝑘

 =


√
𝐵𝑥𝑚,𝑘2 + 𝐵𝑦𝑚,𝑘2 + 𝐵𝑧𝑚,𝑘2

atan2
(
𝐵𝑦𝑚,𝑘 ,

𝐵𝑥𝑚,𝑘
)

atan2
(
𝐵𝑧𝑚,𝑘 ,

𝐵𝑥𝑚,𝑘
)

 + 𝝃𝑦,𝑘 (4.17)

where 𝑟𝑚,𝑘 is the sensor reading for the distance to the landmark, 𝜃𝑚,𝑘 the angle of the
landmark to the robots x axis on the XY plain, and 𝜙𝑚,𝑘 the angle of the landmark to the
robots x axis on the XZ plain.

In addition to that, it should be mentioned that the landmarks were considered as
stationary, as a result they don’t have a dependency on k like the position of the vehicle.
In other words, every position vector, p, present in the landmarks set of the state vector,
x𝐿, follows the following assumption

¤p = 0 (4.18)

Every time the vector y𝑘 is updated one or more landmark position measurements
are available. Whenever a new landmark is observed, the state vector is augmented, in
order to accommodate the brand new landmark position. The state vector regarding the
landmarks, x𝐿 can also be divided into two subgroups: the observed landmarks x𝐿𝑂 and
not observed landmarks x𝐿𝑈 at each given instant 𝑘.

x𝐿 =

[
x𝐿𝑂
x𝐿𝑈

]
. (4.19)

To solve this system of equations, different approaches were taken into account. The
proposed solution based on MHE, which integrates the EKF on the estimation step is
described in Chapter 6. As a basis of comparison, an approach using EKF and another
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using the sensor-based LKF were developed, which are presented in Chapter 5 and 7,
respectively. The choice of opting for the EKF as a benchmark algorithm, was made
having in consideration its widely use on nonlinear SLAM applications, whilst the sensor-
based LKF showed interesting characteristics when dealing with nonlinear dynamics. The
considered scenarios will be discussed in next the Chapters regarding their advantages
and limitations, computing time and robustness.
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5

Extended Kalman Filter for 3-D SLAM

This work is based on the evaluation of the MHE algorithm as a method of solving the
SLAM problem for a vehicle with non-linear dynamics. As such, the EKF method will
be used as a comparison base for the evaluation of the MHE performance. As such, this
Chapter details the use and design of an EKF algorithm considering the system defined
in Chapter 4.

Even though the EKF approximates the nonlinear dynamics by a linear system using
the first-order Taylor series expansion, it is widely used on similar scenarios, having
proven its reliability and being known for its fast computing time.

As presented on Chapter 3 the EKF method is comprised of two steps, the prediction
step and the update step, as described hereafter.

5.1 Prediction Step

The prediction step estimates the next values of the state vector based on the systems
motion model and the error covariance matrix associated with such movement, according
to the following equations

x̂𝑘+1|𝑘 = f(x̂𝑘 |𝑘 , u𝑘+1) (5.1)

Σ𝑘+1|𝑘 = F𝑘+1Σ𝑘 |𝑘F𝑇𝑘+1 + Q𝑘 (5.2)

where Σ𝑘 |𝑘 represents the estimated covariance matrix and x̂𝑘 |𝑘 the estimated state vector
at time 𝑘 + 1, considering the information up to time 𝑘. Whereas Σ𝑘+1|𝑘 and x̂𝑘+1|𝑘 are
estimations of the covariance matrix and state vector at time 𝑘 + 1 considering the data
collected until time 𝑘. The process noise covariance Q𝑘 ∈ R7×7 represents the vehicles
dynamics process noise covariance and is defined as

Q𝑘 = Γ.QΩ,𝑘 .Γ𝑇 (5.3)

with
QΩ,𝑘 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝝈2

𝜉𝑢
) (5.4)
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as 𝝈𝜉𝑢 denotes the standard deviation of the process noise regarding the linear and angular
velocities of the body given by the IMU sensor attached to it.

𝝃𝑢 =

[
𝝃𝑣 𝝃Ω

]
. (5.5)

The Γ value correspondd to the Jacobian matrix of the system function f(x𝑘 |𝑘 , u𝑘) with
respect to the measured data from the IMU at instant 𝑘 + 1

Γ =
𝛿f
𝛿u

|u(𝑘+1) . (5.6)

Lastly, F𝑘+1 ∈ R(7+3𝑛𝐿)×(7+3𝑛𝐿) is the transition matrix and is defined as

F𝑘+1 = 𝑑𝑖𝑎𝑔(∇f𝑥 , 03𝑛𝐿×3𝑛𝐿) (5.7)

where ∇fx is the Jacobian matrix of the system dynamics, f(x𝑘 |𝑘 , u𝑘), regarding x𝑘 |𝑘 .

5.2 Update Step

Whenever a new measurement is received, the vector y𝑘 is updated and the update step
is triggered on that 𝑘 instant. As mentioned before, this new measurement can be either
relative to an already known landmark, therefore already consider on the state vector, or
a new landmark, which will require the augmentation of the state vector, x𝐿. The update
step is given by the following equations

x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 + K𝑘+1ỹ𝑘+1 (5.8)

Σ𝑘+1|𝑘+1 = Σ𝑘+1|𝑘 − K𝑘+1S𝑘+1K𝑇
𝑘+1 (5.9)

where x̂𝑘+1|𝑘+1 represents the updated state vector and Σ𝑘+1|𝑘+1 the updated estimation
of the covariance matrix at time 𝑘 + 1, considering the information gathered up to that
instant. While the measurement residual ỹ𝑘+1, the respective residual covariance S𝑘+1 and
the Kalman gain K𝑘+1 are defined by

ỹ𝑘+1 = y𝑘 − h(x̂𝑘+1|𝑘) (5.10)

S𝑘+1 = H𝑘+1Σ𝑘+1|𝑘H𝑇
𝑘+1 + R𝑘 (5.11)

K𝑘+1 = Σ𝑘+1|𝑘H𝑇
𝑘+1S−1

𝑘
(5.12)

in which, R𝑘 ∈ R3×3 is the measurement noise covariance defined as

R𝑘 = 𝑑𝑖𝑎𝑔(𝝈2
𝜉𝑦
) (5.13)

in which 𝝈𝜉𝑦 is the standard deviation of the measurement noise. Moreover, H𝑘+1 ∈
R(7+3𝑛𝐿)×3 is the measurement matrix which is described as

H𝑘+1 = ∇h𝑥 (5.14)
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if every landmark defined on the state vector was observed. If, for example only the first
landmark of state vector was visualized, the measurement matrix takes the following
aspect

H𝑘+1 =

[
∇h𝑥𝑉 ∇h𝑥1 03(𝑛𝐿−1)×3

]
(5.15)

where ∇hx is the Jacobian matrix of the observation model regarding x𝑘 , while ∇hxv and
∇hxL are the Jacobian matrix of the observation model regarding x𝑉𝑘 and x𝐿𝑘 , respectively.

5.3 Simulation results

In this Section the proposed solution is applied to a drone on a simulated environment,
which helps on evaluating its’ performance and robustness as a solution for the SLAM
problem. The simulations were done using MATLAB 2021a program.

5.3.1 Simulation environment

The simulated environment is a 3-D square shaped corridor, with 48 landmarks along
its sides and edges. The simulation takes 215 seconds to be complete and the drone has
an average speed of 0.1 m/s. This velocity is quite low, however it only considers one
iteration per second. A faster vehicle would require a higher frequency of estimation.
The simulation system disturbances are zero-mean white Gaussian noise and have the
following standard deviations

𝝈𝜉𝑢 =

[
𝝈𝜉𝑣 𝝈𝜉𝜔

]
(5.16)

𝝈𝜉𝑣 =

[
0.015 0.015 0.015

]
𝑚/𝑠 (5.17)

𝝈𝜉𝜔 =

[
1 1 1

]
𝑑𝑒𝑔/𝑠 (5.18)

𝝈𝝃𝒚 =

[
5.0 5.0 5.0

]
𝑐𝑚 (5.19)

This will be consideredScenario 1, in which the rigid-body does a loop on the horizontal
plane. This environment simulates the scenario where a vehicle moves over a corridor on
the XY plane. The linear and angular velocities regarding this movement are presented in
Figures 5.1 and 5.2, as well as the inherent noise regarding this measurements which have
the standard deviation presented in the previous equations. From Figure 5.1 is possible
to understand that the body only has a linear velocity on its’ x axis, as the others are
exclusively noise. On Figure 5.2 it is possible to visualize the angular velocities that make
the horizontal loop, which appear on the z axis.
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Figure 5.1: Scenario 1 - input values of linear velocities
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Figure 5.2: Scenario 1 - input values of angular velocities
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5.3.2 Results

The true and estimated trajectories of the simulation in the Scenario 1 are presented in
Figure 5.3, as well as in Figure 5.4 however projected on the XY plane, being the true
trajectory represented in purple and the estimation in blue. Moreover it is also possible
to visualize the resulting map and the final vehicle position after the vehicle trajectory
in the square shaped corridor. Every estimated position is associated with two ellipses
as a characterization of their 3-sigma bounded ellipsoid representation of the covariance
matrices. The green ellipses are related to the covariances of the landmarks, whilst the
pink one is related to the vehicle pose. Analyzing Figures 5.3 and 5.4 it is possible to see
that the estimated trajectory, as well as the landmarks positions, are near their true values.
This can be corroborated through Figures 5.5 and 5.6. As the first shows the true position
(in red) and the estimate of the vehicle (in brown) on the x,y and z axis, and also the
respective 3-sigma bound regarding the covariance matrix of the position error over the
simulation period. Similarly, Figure 5.7 also has in consideration the 3-sigma bounds but
instead of representing the actual estimated values, it presents the estimation error for a
better visualization. From these Figures it is possible to see that the estimation is always
within the 3-sigma bounds and recognise where the closed loop happens, as in step 192
the estimation is corrected, thus the error goes towards zero and the 3-sigma bounds get
narrower and closer to the estimation., which translates to a smaller uncertainty regarding
the position of the vehicle.

Additionally, Figure 5.7 shows the estimated orientation error, from which it is possible
to identify the relation between the position error and the error regarding the orientation,
specially when the loop closure happens. This error was calculated following the next
Equation

𝑒𝑅 =
1
2𝑆

−1
[
R𝑞(q)𝑇R𝑞(q̂) − R𝑞(q̂)𝑇R𝑞(q)

]
(5.20)

where S−1[.] is the inverse operation of S[.] as

S−1
[
S[w]

]
−→ w. (5.21)

In top of that, it is also possible to recognise the relation between the error of the
estimated vehicle position and the landmarks position, as one influences the other. This
connection can be visualized in Figure 5.8, where it is depicted the sum of the estimation
error of each landmark on the x,y and z axis of the 3 dimensional Cartesian plane. It is also
visible that the observation of an already seen landmark does a backwards propagation
for the landmarks estimation, which happens on the case of a close loop event and results
in a closer to reality estimation of the map.

Overall, the results obtained detail a good approximation of the EKF filter to the true
values of landmarks and vehicle position, confirming why the EKF estimation filter is so
widely used.
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Figure 5.3: Scenario 1 - Simulation result with the EKF method

Figure 5.4: Scenario 1 - Simulation result with the EKF method, XY plane
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Figure 5.5: Scenario 1 - Vehicle true and estimated position with 3-sigma bounds using
the EKF method
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Figure 5.6: Scenario 1 - Vehicle position error with 3-sigma bounds using the EKF method
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Figure 5.7: Scenario 1 - Vehicle orientation error with the EKF method
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Figure 5.8: Scenario 1 - Sum of the landmarks position error with the EKF method

39





6

Moving Horizon Estimation for 3-D
SLAM

The MHE method, as presented on Chapter 2, deals better with nonlinearities than other
algorithms, such as the EKF which is a widely used estimation method for nonlinear
systems. This is due to the fact that the MHE can inherently deal with nonlinear dynamics,
and solutions like the EKF have to process linearized version of it. Moreover, there are no
assumptions regarding the type of noise on this method.

On this chapter, it is presented in full detail the design and use of a probabilistic MHE
algorithm as a solution to the SLAM problem. As it was taken a probabilistic approach
to the MHE, there is the need to know the covariances at play, which were calculated
using the EKF algorithm. With that in mind, this Chapter was divided into three Sections:
Section 6.1 design of the MHE algorithm, Section 6.2 integration of the EKF in the MHE
filter and Section 6.3 the respective simulation.

6.1 MHE

Differently than the EKF, the MHE estimates the previous robot positions, p𝑘 , in each
iteration, in a similar manner to the full information estimator, but with a restricted horizon
𝐻 of past data. As such, the estimated vector, x̂, of the MHE is given as

x̂ =



x𝑉,𝑘
x𝑉,𝑘−1

...

x𝑉,𝑘−𝐻
x′
𝐿


(6.1)

which is comprised of vehicle positions, x𝑉 , over time and the landmarks position, x′
𝐿
.

Moreover, the x′
𝐿

is not the same as the one presented in the system dynamics in Chapter
4, as the one here presented is the collection of observed landmarks 𝑂 in the horizon 𝐻, as
such a subset of the broader x𝐿 vector. This subset is used because the complete one grows
as fast as new landmarks are visualized. This is already a challenge on every approach to
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solving the SLAM problem, however in the use case of the MHE it’s even more relevant as
it will have a bigger impact on the velocity of the algorithm that finds the best solution to
the cost function. As such, x′

𝐿
is created dynamically having in consideration the vector x𝐿

and the horizon. It changes in each iteration having in account the landmarks visualized
in the past 𝐻 instants, which corresponds to the size of the MHE window.

With that in mind, the MHE cost function was designed following the equation (3.19),
defined as

𝑚𝑖𝑛
x𝑘 ,𝝎𝑘 ,v𝑘

𝜙 = 𝑙0(x0) +
𝑁∑
𝑘=0

𝑙𝑘(𝝃𝜔𝑘
, 𝝃𝑣𝑘 ) (6.2)

which tries to minimize the differences between the true and estimated measurement
noise, as well as the true and estimated system noise, whilst considering the state vector
of the previous iteration. Moreover, as it was considered a probabilistic approach to
the MHE, the weights were defined as the covariances of the system dynamics. Which
resulted on the following cost function

𝐽 =

𝑘0∑
𝑘=𝑘0−𝐻



p̂𝑘+1 − 𝑓 (p̂𝑘 , u𝑘)


2

Q−1
𝑘

+
𝑘0∑

𝑘=𝑘0−𝐻

∑
𝑗∈𝑂𝑘



(ℎ(p̂𝑘 , ˆp′
𝐿𝑗
) − y𝑗 ,𝑘)



2
R−1

+


x̂ − x̂−



2
Σ−1
𝑘

, (6.3)

in which 𝑘0 is the current SLAM step,𝑂𝑘 is the set of observed landmarks at time 𝑘, x̂ is the
current state vector estimation and x̂− the previous state vector estimation. The first term
in equation (6.3) has in consideration the error of the vehicles motion dynamics, while
the second term evaluates the error related to the measurements taken of each observed
landmark. The last term is the arrival cost, which has in account the previous estimation.
Moreover, a constrain on the initial iteration of the MHE was set up, in order to guarantee
that the optimization algorithm would converge to the initial position, which is known.
Another relevant constraint would be the restriction of the observed landmarks position
at a given instant to be within the sensors range.

Additionally, the weights R,Q𝑘 ,𝚺𝑘 are the measurement noise, process noise and sys-
tem EKF covariances, respectively. These matrices will be calculated before each iteration
of the MHE, as an EKF algorithm will run in series with it. This interaction is depicted in
Figure 6.1, in which is noted that both filters receive sensor and measurement data and
propagate their own estimation, whilst the MHE waits for the covariance matrices of the
EKF. The choice of designing a probabilistic MHE, thus using the covariances matrices as
weights, was made having in account the robustness of this approach in comparison to
a user defined or hand tailored algorithm. As this method has in consideration the real
probabilities of each movement and visualization, it guarantees a better overall estimation
on the long run. The choice of the EKF for calculating the covariance matrices was made
having into account the stability and, more relevantly, the quickness of the algorithm, as it
had to be considerably faster than the MHE to not create a bigger delay on the estimation
filter.
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EKF

MHE

Q k ,R ,∑k

uk ,yk

Figure 6.1: MHE+EKF Algorithm

6.2 EKF-based weights

As mentioned before, on this iteration of the filter the weights on the MHE cost function are
covariance matrices associated with the system and measurement dynamics. To achieve
this it was designed an EKF similar to the one presented at Equations (5.1) to (5.15) from
the previous Chapter.

While the inverse of the process noise covariance matrix Q𝑘 ∈ R7×7 is the weight
used to influence the estimated positions to follow the motion model, the inverse of the
measurement noise R𝑘 ∈ R3×3 has an impact regarding the observation model. Lastly, the
system covariance matrix 𝚺 considers the importance of the each of the previous state
estimation values. Additionally, the system covariance matrix is considered to be 𝚺𝑘+1|𝑘+1

if the update step of the EKF was executed at instant 𝑘+1. Whenever that does not happen
(there are no measurements at 𝑘 + 1) it is consider the covariance matrix obtained at the
prediction step of the EKF, 𝚺𝑘+1|𝑘 .

Note that at every iteration of the MHE, it has to be considered the values of the
covariances on the time window 𝐻.

6.3 Simulation results

On this Section it is presented the simulation environment considered, Scenario 1, and
the results obtained on such environment using the MHE filter. A discussion regarding
the performance of the estimation will also be done.
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6.3.1 Simulation environment

The simulated environment is identical to the one described on Chapter 5, a 3-D square
shaped corridor, with forty-eight landmarks along its sides and edges. A simulation of
215 seconds has to be complete by a vehicle with an average linear speed of 0.1 m/s which
does a horizontal loop. The simulated system disturbances are zero-mean white Gaussian
noise and have the follow standard deviations

𝝈𝝃𝒖 =

[
𝝈𝝃𝒗 𝝈𝝃𝒘

]
(6.4)

𝝈𝝃𝒗 =

[
0.015 0.015 0.015

]
𝑚/𝑠 (6.5)

𝝈𝝃𝒘 =

[
1 1 1

]
𝑑𝑒𝑔/𝑠 (6.6)

𝝈𝝃𝒚 =

[
5.0 5.0 5.0

]
𝑐𝑚 (6.7)

and the input velocities are precisely the same as the ones considered in Scenario 1 and
presented in Figures 5.1 and 5.2.

6.3.2 Results

For the initial test of the MHE filter it was considered a window of 3 past steps, 𝐻 = 3.
The overall result of Scenario 1 is depicted in figures 6.2 and 6.3, in which it is possible
to visualize the true positions of the vehicle and of each landmark, and their MHE
estimated value. Moreover, it also depicts the actual trajectory and its estimate, as they are
represented in red and blue, respectively. From these Figures it can be concluded that the
MHE estimation followed the dynamics of the vehicle considerably well, which can also
be corroborated by Figure 6.4 which shows the ABS error of the position of the vehicle
during the simulation period, p̃𝑘 = |p̂𝑘 − p𝑘 |. Moreover, the orientation error, which was
calculated using Equation (5.20), during the simulation is presented at Figure 6.5. It can
be observed that the velocity along the x axis and the rotation on the z axis had a bigger
impact on the orientation error regarding the x and y axis. Additionally, the sum of the
error of each estimated landmark position in the x,y and z axis is depicted in Figure 6.6.
In which is visible that the error is continuously growing, which can be explained by the
weak capability of the MHE to do loop closures. As a result of these figures it is possible
to conclude the good performance of the algorithm, and that, even though subtle, it was
able to identify that the loop closure occurs in the step 195, at which the error related
to the estimated position of the vehicle decreases in a tenuous manner. Moreover, since
the MHE is known for not being the fastest algorithm on solving the estimation problem,
Figure 6.7 displays the time that the algorithm took at each step. This value is considerably
high when considering its use as a SLAM approach, however there are more optimized
ways of solving it, as it will be discussed next.
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Figure 6.2: Scenario 1 - Simulation result with the MHE method

Figure 6.3: Scenario 1 - Simulation result with the MHE method, XY plane
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Figure 6.4: Scenario 1 - Vehicle’s position error with the MHE method
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Figure 6.5: Scenario 1 - Vehicles’ orientation error with the MHE method
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Figure 6.6: Scenario 1 - Sum of the landmarks position error with the MHE method
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Figure 6.7: Scenario 1 - Processing time at each step for the MHE method
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Table 6.1: Scenario 1 - Comparison of the vehicle final position error, sum of landmarks
error, average processing time and peak processing time of each optimization algorithm
on solving the MHE cost function considering four observed landmarks at each iteration
and a horizon of 10 iterations

Method ABS error of p̃𝑘 𝑓 Sum of LMs ABS error Mean 𝑡𝐶𝑃𝑈 Max 𝑡𝐶𝑃𝑈
Active-set 0.4429 m 19.7292 m 30.2316 s 42.2277 s

SQP 0.4429 m 20.1721 m 22.106 s 29.2181 s
interior-point 0.4429 m 19.7292 m 30.527 s 42.3698 s

bnb 0.4429 m 19.923 m 35.342 s 43.4451 s
bmibnb 0.4429 m 19.923 m 38.782 s 45.2945 s

The optimization algorithm can have an influence on how fast it reaches a solution. To
understand which one would be best suited for this specific application, it was considered
an horizon of 𝐻 = 10 and compared the error, average computation time per step and
the peak computation time per step for MATLABs’ fmincon using active-set, SQP and
interior-point algorithms, as demonstrated in Table 6.1. Other solvers were also included,
such as the bnb and bmibnb, which were integrated in MATLAB using the yalmip package
[94]. The algorithms gurobi and mosek, which have free access for academia, and KKTQP
could not deal with the polynomial characteristics of the cost function, whilst bmibnb
and bnb displayed a big delay compared to the options above, as it uses an upper and
lower solver. The Table 6.1 shows that the SQP algorithm has not only a lower average
processing time per step, but also a lower peak processing time per step, in relation to the
other approaches, whilst maintaining an equal or similar error on the estimated positions.

Another consideration to have in mind, is the influence of the optimization algorithm
on the overall stability and performance of the filter. The cost function in equation 6.3 has
local minimums, which makes the work of the optimization algorithm hard as they might
not guarantee an optimal solution. An approach to solving this issue, would be the use of
parallel computing to run multiple instances of the nonlinear optimization algorithm and
choosing the one with the lowest cost function value. However, the implementation of
parallel computing on MATLAB introduces a noticeable delay when compared to a single
run of the optimization algorithm. As such, this option was considered but disregarded
as a potential solution for this scenario.

Regardless of the optimization algorithm being used, considering a fewer number of
landmarks also makes the MHE algorithm simpler, and as result more efficient. However,
this might result on a worse estimation if the noise regarding the sensors is relatively
big. Besides that, the size of the horizon is also a big factor on computational complexity
as it introduces more constraints and estimation variables into the cost function. With
that in mind, Table 6.2 displays the relation between size of the horizon and number
of landmarks with the time that each step take using the fmincon’s SQP optimization
algorithm. Analyzing the Table it is possible to note that the horizon and number of
landmarks influences not only the positional error, but also the average processing time.

48



6.3. SIMULATION RESULTS

The bigger the horizon the better for the MHE to adapt to abrupt dynamics such as the
rotation at each edge of the square-shaped corridor. Moreover, the number of landmarks
identified in each step also guarantees a better estimation of the pose, as they help to filter
the noise associated to them.

Table 6.2: Scenario 1 - Influence of the size of the Horizon and the number of landmarks
considered on the MHE cost function execution time and final vehicle position error

𝐻 𝑛𝑂 ABS error of p̃𝑘 𝑓 Mean 𝑡𝐶𝑃𝑈
3 4 0.4789 m 2.086 s
3 8 0.4392 m 4.271 s
5 4 0.4501 m 3.525 s
5 8 0.4445 m 10.803 s
10 4 0.4429 m 22.106 s
10 8 0.4429 m 36.237 s
15 4 0.4429 m 35.004 s
15 8 0.4429 m 47.938 s

Considering the data displayed at tables 6.1 and 6.2, it is considered that the SQP
algorithm with a limit of 4 landmarks at each iteration and an horizon of 3 steps is sufficient
to our considered scenario, since the lost in performance to other sets of parameters is not
relevant enough.
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7

Sensor-based LKF for 3-D SLAM

On this Chapter it is presented another solution to the SLAM problem: the LKF sensor-
based approach. This methodology turns a nonlinear dynamic system into an almost
linear one by revolutionizing the standard SLAM approach, as the system is described in
the visual sensor’s frame. This characteristic enables the use of the standard KF on the
estimation of the landmarks position, as there is no need to linearize the dynamics of the
vehicle. As such, the system dynamics designed and presented in Chapter 4 cannot be
used in this framework. Instead, the design is based on the work of Lourenço et al. in
[62], which presents a 3D sensor-based GAS filter with positive experimental results. The
Chapter is divided in: system dynamics, KF design and simulation results.

7.1 Sensor-based system Dynamics

Let the following equations define the position of the landmark and its respective variation
in time regarding the sensor frame

p𝐿 = R𝑇
(
𝑊p𝐿(𝑡) − 𝑊p𝑉 (𝑡)

)
(7.1)

¤p𝐿(𝑡) = −v(𝑡) − S
[
𝝎𝑚(𝑡)

]
p𝐿(𝑡) (7.2)

where R(𝑡) ∈ 𝑆𝑂(3) is the rotation from the body-frame to the earth-fixed frame that
satisfies ¤R(𝑡) = R𝑆[𝝎𝒎(𝑡)], in which 𝝎𝑚(𝑡) ∈ R3 is the angular velocity applied on the
body [95], and v(𝑡) ∈ R3 is the linear velocity on the body. As mentioned before, on the
considered environment it is assumed that the landmarks are fixed, as such the velocities
of the landmarks on the sensor-frame will be the negative value of the velocity of the
vehicle.

The angular velocity 𝝎𝑚(𝑡) is defined differently than the one considered previously,
at Chapter 4. In this formulation, 𝝎𝑚(𝑡) only considers the actual angular velocities and
the biased of the gyros measurements b𝑤(𝑡) ∈ R3, as in

𝝎𝑚(𝑡) = 𝝎(𝑡) + b𝑤(𝑡). (7.3)
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As a result, the noise on the angular velocity measurements is considered in the system
noise and not directly on the measured values, as it was in the previous formulation.
Exploiting this equality and considering that S[a]b = −S[b]a, equation 7.2 can be defined
as

¤p𝐿(𝑡) = −v(𝑡) − S
[
p𝐿(𝑡)

]
b𝑤(𝑡) − S

[
𝝎𝑚(𝑡)

]
p𝐿(𝑡). (7.4)

The variables b𝑤(𝑡) and v(𝑡) are included on the state vector as part of the vehicle state,

x𝑣(𝑡) =
[
v𝑇(𝑡) b𝑇𝑤(𝑡)

]𝑇
∈ R𝑛𝑣 , which are considered to be constant

¤x𝑣(𝑡) = 0 (7.5)

and, as such, Equation (7.4) can be rewritten as

¤p𝐿(𝑡) = A𝑙𝑣

(
p𝐿(𝑡)

)
x𝑣(𝑡) − S

[
𝝎𝑚(𝑡)

]
p𝐿(𝑡) (7.6)

with
A𝑙𝑣(p𝐿(𝑡)) =

[
−I3 −S

[
p𝐿(𝑡)

] ]
. (7.7)

Similarly, to the previous system dynamics it is possible to define the landmarks into
two different subgroups, the visible, 𝑂, and the non-visible landmarks,𝑈 . As a result, the
vector state of the landmarks can be described as the following

x𝑙(𝑡) =
[
x𝑇
𝑙𝑂
(𝑡) x𝑇

𝑙𝑈
(𝑡)

]
(7.8)

in which x𝑙𝑂 (𝑡) is the collection of observed landmark positions p𝐿(𝑡), and x𝑙𝑈 (𝑡) the
collection of unobserved landmark positions, at the instant 𝑡.

Considering the complete state vector as

x(𝑡) =
[
x𝑇𝑣 (𝑡) x𝑇

𝑙
(𝑡)

]𝑇
(7.9)

the system dynamics can be defined as
¤x(𝑡) = A(x𝑙)x(𝑡)
y(𝑡) = x𝑙𝑂 (𝑡)

(7.10)

where

A(x𝑙) =
[

0𝑛𝑣 0𝑛𝑣×𝑛𝑙
A𝑙𝑣

(
x𝑙(𝑡)

)
A𝑙(𝑡)

]
(7.11)

and A𝑙(𝑡) and A𝑙𝑣(x𝑙(𝑡)) are defined as the influence of x𝑙 and x𝑣 on the position of the
landmarks, following

A𝑙(𝑡) = 𝑑𝑖𝑎𝑔

(
−S

[
𝝎𝑚(𝑡)

]
, ...,−S

[
𝝎𝑚(𝑡)

] )
(7.12)

A𝑙𝑣

(
x𝑙(𝑡)

)
=

[
A𝑙𝑣

(
x1(𝑡)

)
... A𝑙𝑣

(
x𝑛𝑙 (𝑡)

) ]
. (7.13)

52



7.2. KF DESIGN

The discretization of the system was done using the Euler method and can be given by
x𝑘+1 = F𝑘x𝑘 + n𝐹
y𝑘+1 = H𝑘+1x𝑘+1 + n𝐻

(7.14)

where F𝑘 is the transition matrix and H𝑘+1 the measurement matrix. Considering that

the state vector is arranged as x𝑘 =

[
x𝑇𝑣 x𝑇

𝑙𝑂
x𝑇
𝑙𝑈

]𝑇
in each step 𝑘 and that F𝑘 = I𝑛𝑥 +

𝛿𝑡.A(y𝑘 , x̂𝑙𝑈 𝑘), and

H𝑘+1 =

[
0𝑛𝑙𝑂×𝑛𝑣 I𝑛𝑙𝑂 0𝑛𝑙𝑂×𝑛𝑙𝑈

]
(7.15)

since it works as a selection of the observed set of landmarks.
The noise vector of the system, 𝝃𝐹, and the noise vector of the measurements, 𝝃𝐻 ,

are zero-mean white Gaussian noise with a vector of standard deviations of 𝝈𝑭 and 𝝈𝑯 ,
respectively. This discretized system estimates the unobserved landmarks position based
on their previous estimation, whilst using the sensors readings for the observed ones.

7.2 KF design

The application of a Kalman filter on the discretized system displayed at Equation (7.14)
can be done through the following prediction and update steps.

7.2.1 Prediction Step

Similar to the EKF on Chapter 5, the prediction step estimates the next values of the state
vector based on the systems motion model and the error covariance matrix associated with
such movement, as such it can be defined as a estimation of 𝑘 + 1 based on 𝑘, according to
the following equations 

x̂𝑘+1 = F𝑘 x̂𝑘 + 𝜉𝐹

Σ𝑘+1|𝑘 = F̂𝑘Σ𝑘 |𝑘 F̂𝑇𝑘 + Q𝑘

(7.16)

in which, the Jacobian of the system dynamics, F̂𝑘 , is defined as

F̂𝑘 =

[
I(𝑛𝑣+𝑛𝑙𝑂 ) + Δ𝑡A(y𝑘) 0(𝑛𝑣+𝑛𝑙𝑂 )×𝑛𝑙𝑈[
A𝑙𝑣

(
𝑥̂𝑙𝑈

)
0𝑛𝑙𝑈×𝑛𝑙𝑂

]
−𝑑𝑖𝑎𝑔

(
S[𝝎𝑚 − b̂𝜔]

) ] (7.17)

and Q𝑘 = 𝑑𝑖𝑎𝑔(𝝃𝐹𝝃𝑇𝐹).

7.2.2 Update Step

The update step corrects the estimation done on the prediction step of the visualized
landmarks. The update step of the LKF is given by the following set of equations
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x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 + K𝑘+1ỹ𝑘+1 (7.18)

Σ𝑘+1|𝑘+1 = Σ𝑘+1|𝑘 − K𝑘+1H𝑘+1Σ𝑘+1|𝑘 (7.19)

in which x̂𝑘+1|𝑘+1 is the updated state vector, Σ𝑘+1|𝑘+1 the updated covariance matrix, ỹ𝑘+1

the measurement residual, S𝑘+1 the residual covariance and finally K𝑘+1 the Kalman gain.
These values can be defined by

ỹ𝑘+1 = y𝑘+1 − H𝑘+1x̂𝑘+1|𝑘 (7.20)

S𝑘+1 = H𝑘+1Σ𝑘+1|𝑘H𝑇
𝑘+1 + R𝑘 (7.21)

K𝑘+1 = Σ𝑘+1|𝑘H𝑇
𝑘+1S−1

𝑘
(7.22)

and R𝑘 = 𝑑𝑖𝑎𝑔(𝝃𝐻𝝃𝑇𝐻).

7.3 Simulation results

On this Section it is presented the simulation considering the Scenario 1, and the results
obtained on such environment using the sensor-based LKF filter. Additionally, it will be
discussed its performance regarding the estimation.

7.3.1 Simulation environment

The simulated environment is identical to the one described in the previous Chapter, a
3-D square shaped corridor, with forty-eight landmarks along its sides and edges. A
simulation of 250 seconds to be complete and the drone has an average speed of 0.1 m/s.
The simulation system disturbances are zero-mean white Gaussian noise and have the
following standard deviations

𝝈𝝃𝑭 =

[
𝝈𝝃𝒗 𝝈𝝃𝒘

]
(7.23)

𝝈𝝃𝒗 =

[
0.015 0.015 0.015

]
𝑚/𝑠 (7.24)

𝝈𝝃𝒘 =

[
1 1 1

]
𝑑𝑒𝑔/𝑠 (7.25)

𝝈𝑯 =

[
5.0 5.0 5.0

]
𝑐𝑚. (7.26)

The vehicle values of linear and angular velocities over time are exactly the same as
the ones used in Chapters 5 and 6, as represented in Figures 5.1 and 5.2.
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7.3.2 Results

To give meaning to the estimation on the sensor-based approach, the values estimated can
be converted into the earth-fixed frame. As such, at each step the approximate rotation
and translation need to be calculated having in consideration the position of the visible
landmarks at the present and previous step. Which can be found solving the optimization
problem [96]

(𝛿R∗
𝑘+1 , 𝛿p∗

𝑘+1) = arg min
𝛿R𝑘+1 ,𝛿p𝑘+1

1
𝑛𝛿𝑘+1

∑
𝑖∈𝑂

∥e𝑖𝑘+1 ∥2 (7.27)

where 𝑒𝑖𝑘+1 is the error defined by

e𝐿𝑘+1 = p𝐿𝑘+1 − 𝛿R𝑘+1p𝐿𝑘 − 𝛿p𝑉𝑘+1 . (7.28)

The problem defined in (7.27) can be solved by means of the Singular Value Decom-
position (SVD), in order to find the rotation and translation between the sets of visible
landmarks at 𝑘 + 1 and 𝑘. The SVD can decompose a matrix into three matrices, U𝑘+1 and
V𝑘+1 orthogonal and a diagonal matrix with singular values D𝑘+1. The centroid of both
sets of landmarks at the current and previous step are given by

𝝁𝑘+1 =
1

𝑛𝑂𝑚

∑
𝑖∈𝑂𝐿

p𝑖𝑘+1 (7.29)

𝝁𝑘 =
1
𝑛𝑂𝑚

∑
𝑖∈𝑂𝐿

p𝑖𝑘 (7.30)

in which 𝑂𝐿 is the set of landmarks visualized in both instances. Considering that

Π𝑘+1 =

(
x𝑙𝑂 𝑘+1 −

[
𝝁𝑘+1

] ) (
x𝑙𝑂 𝑘 −

[
𝝁𝑘

] )𝑇
(7.31)

and that
U𝑘+1D𝑘+1V𝑘+1 = 𝑆𝑉𝐷

(
Π𝑘+1

)
(7.32)

it is possible to find the optimal rotation and translation through
𝛿R∗

𝑘+1 = V𝑘+1U𝑇
𝑘+1 , if 𝑑𝑒𝑡(V𝑘+1U𝑇

𝑘+1) ≥ 0

𝛿R∗
𝑘+1 = 𝑑𝑖𝑎𝑔

( [
0 0 −1

] )
V𝑘+1U𝑇

𝑘+1 , if 𝑑𝑒𝑡(V𝑘+1U𝑇
𝑘+1) < 0

(7.33)

𝛿p∗
𝑘+1 = −𝛿R∗

𝑘+1𝝁
𝑇
𝑘+1 + 𝝁𝑇

𝑘
. (7.34)

It should be taken into account Equation (7.33), specially to the determinant of V𝑘+1U𝑇
𝑘+1.

If negative, the rotation obtained is in fact a reflection which has no physical meaning,
and the last column of V𝑘+1 has to be multiplied by −1.

The true and estimated trajectories, represented by red and blue respectively, can be
evaluated through Figures 7.1 and 7.2, from which it is possible to recognise that the
estimation, even if not very smooth, is proximate to reality.

55



CHAPTER 7. SENSOR-BASED LKF FOR 3-D SLAM

Figure 7.1: Scenario 1 - Vehicle position error with the LKF sensor-based method

Figure 7.2: Scenario 1 - Vehicle orientation error with the LKF sensor-based method
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In order to better understand the performance of this filter, the evolution of the
estimated vehicle position error is presented in Figure 7.3, in which is possible to visualize
that there is a considerable small error regarding the estimation. Moreover, the orientation
error, calculated using equation (5.20), is displayed in Figure 7.4. The orientation error
is also within acceptable values, as the changes in angular velocity introduce error, but
not enough to destabilize the estimation. This results are in accordance with the work of
Lourenço et al. in [62] and Guerreiro et al. in [96] wich present and validate the relevance
of this approach as a solution to the SLAM problem. However, the assumption of a
constant linear velocity introduces errors to the dynamics of the system whenever there
is a big change in angular velocity. Moreover, the transformation of the sensor-based
information into the world-frame through Equations (7.33) and (7.34), introduces errors
on the estimated robot position.
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Figure 7.3: Scenario 1 - Vehicle position error with the LKF sensor-based method
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Figure 7.4: Scenario 1 - Vehicle orientation error with the LKF sensor-based method
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8

Comparative results and discussion

This Chapter introduces a more challenging 3-D scenario to compare the algorithms
presented in the previous Chapters, aiming at comparing the performance and robustness
of each the EKF, MHE and LKF approaches to SLAM.

A first set of results involves the comparison and discussion of the results presented
separately in Chapters 5, 6, and 7 in a joint manner. These results use the Scenario 1, as
depicted in Figure 6.2. For the formulation of the environment it was considered that
the MHE had an horizon equal to three, the number of landmarks to be used on each
iteration was limited to five and the weights of its cost function were the weights of the
EKF covariance matrices. On Figure 8.1 and 8.2 it is possible to evaluate which algorithm
performed the best regarding the estimation of the vehicle position and orientation, which
was calculated taking in consideration equation (5.20). The sum of the absolute error of
the EKF position was of 64.39 whilst the error using the MHE was 46.99 and the LKF was
75.59. Taking into consideration these values it is possible to recognise that each of the
algorithms performed well under the defined circumstances, however the MHE had the
best overall estimation. Regardless, it is not reasonable to compare the performance of the
EKF and MHE algorithms to the LKF, as the LKF uses a completely different formulation
of its dynamics from the other two. However, from the three it is the only filter capable of
directly estimate the vehicle velocity. It is also possible to recognize that the error pattern
for the EKF and for the MHE has similar dynamics. Which is expected to an extent, since
in certain conditions the MHE is equivalent to the EKF, as explained by Rao et al. in [43].
Moreover, in Figure 8.3 it is possible to compare the performance of the MHE and EKF
algorithms regarding the error of the landmarks position. From which it is possible to
conclude that the EKF had a worse overall performance, as it had a bigger error in the x
and y axis, whilst having better estimation of the z axis.

To validate the experiment on more challenging conditions, another simulation envi-
ronment was set up: Scenario 2. Similarly to the previous one, it has a loop on the XY
plane, but it was added another one on the XZ plane: after a horizontal loop, the vehicle
returns to its’ initial position and does a vertical loop. This scenario not only simulates
the dynamics of the vehicle on a corridor on the XY plane, but also considers the Z axis,
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Figure 8.1: Scenario 1 - Vehicle position error between the MHE, EKF and LKF algorithms
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Figure 8.2: Scenario 1 - Comparison of the vehicle orientation error between the MHE,
EKF and LKF algorithms
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Figure 8.3: Scenario 1 - Comparison of the estimated landmarks position error between
the MHE and the EKF algorithms

which is relevant having in account that any 6 DoF vehicle can move over the 3 Cartesian
axis. During this scenario the linear and angular velocities suffered from a similar noise
as previously, as the standard deviations were the ones previously defined. These input
values are depicted in Figures 8.4 and 8.5 during the simulation period in Scenario 2 of
485 seconds. In Figure 8.4 it is possible to note that the linear motion of the rigid-body
mainly moves on the x direction, as the other axis are only disturbed by noise. On the
other hand, in Figure 8.5 the changes in direction during loops, which happen as rotations
on the z axis, are noticeable, as well as the one in the y axis which represents the change
between loops.

The results of the three algorithms are discussed regarding this new Scenarion. The
Evolution of the trajectory for the EKF, MHE and the LKF can be observed on Figures 8.6,
8.7, 8.8, 8.9, 8.10 and 8.11 where it can be seen both loops and that the filters follow the
true trajectory dynamics quite well. Moreover, on Figures 8.12 and 8.13 it is displayed the
vehicle estimatedEKF, MHE andLKF position andorientation, respectively. Through these
simulations it is possible to analyse that overtime the estimation of the MHE algorithm
gets worse than the estimation of the EKF, which did not happen previously. This can be
explained by the capability of the EKF algorithm to close the loop, as it identifies that the
landmarks at the end of the first loop are the same as the ones it started the simulation
with, which have a smaller covariance associated to them, and corrects the positioning of
the vehicle and the previous landmarks. This also happens to an extent in MHE, but it
is only able to correct estimations of the previous landmarks that are still on the horizon
and gets a worse performance with the increase of the horizon 𝐻. Since, the bigger the
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Figure 8.4: Scenario 2 - input values of linear velocities
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Figure 8.5: Scenario 2 - input values of angular velocities
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window is, the less relevance a single landmark will have in the optimal solution for the
cost function 𝐽, result in a tenuous effect on the estimation. Moreover, from Figure 8.13
can also be understood that, even though the pose estimation of the LKF is on par with the
others, its orientation error was more influenced by noise, specially on the z axis. This can
be a result of the transformation from the sensor-based to the world-frame. The evolution
of the error related to the estimated landmarks position is depicted in Figure 8.14, from
which it is possible to identify the closing loop of the EKF and the propagation of the error
on the MHE, specially on the z axis.

Figure 8.6: Scenario 2 - EKF-based SLAM method

Lastly, the computation time, considering Scenarios 1 and 2, for each of the approaches
is presented in Table 8.1, in which can be observed that the computation time of the MHE
is extremely big when compared to the other two. In which it is noticeable that the MHE
presented an average computation time 100 times bigger than the EKF and 1000 times
bigger than the LKF, which can be explained by having to solve a non-linear optimization
problem on the MHE approach. Additionally, it is possible to recognise that the overall
estimation time grows larger with the duration of the simulation. This can be explained
by the influence of the accumulated noise on the estimation process.

63



CHAPTER 8. COMPARATIVE RESULTS AND DISCUSSION

(a) XY plane (b) YZ plane

Figure 8.7: Scenario 2 - EKF-based SLAM method

Figure 8.8: Scenario 2 - MHE-based SLAM method

Table 8.1: Computation times of EKF, MHE and LKF in Scenarios 1 and 2

Scenario 1 Scenario 2
EKF 0.0196 s 0.0218 s
MHE 2.751 s 2.974 s
LKF 0.0022 s 0.0058 s
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(a) XY plane (b) YZ plane

Figure 8.9: Scenario 2 - MHE-based SLAM method

Figure 8.10: Scenario 2 - LKF-based SLAM method
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(a) XY plane (b) YZ plane

Figure 8.11: Scenario 2 - LKF-based SLAM method

0 50 100 150 200 250 300 350 400 450 500
step (s)

-0.4
-0.2

0
0.2

(m
)

X Direction

MHE
EKF
KF

0 50 100 150 200 250 300 350 400 450 500
step (s)

-0.6
-0.4
-0.2

0
0.2

(m
)

Y Direction

0 50 100 150 200 250 300 350 400 450 500
step (s)

-0.4
-0.2

0
0.2

(m
)

Z Direction

Figure 8.12: Scenario 2 - Comparison of the vehicle positional error between the MHE,
EKF and LKF algorithms
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Figure 8.13: Scenario 2 - Comparison of the vehicle orientation error between the MHE,
EKF and LKF algorithms
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Figure 8.14: Scenario 2 - Comparison of the sum of the estimated landmark error between
the MHE and the EKF algorithms
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9

Conclusions

The objective of this thesis was to investigate the feasibility, through simulation, of the
MHE algorithm as a solution to the SLAM problem of vehicles in 3D space with six DoF,
as that work, to the best of the author’s knowledge, had never been done.

During this document it was presented not only information regarding the history
and the current state of the art on the SLAM problem, but also discussed the role of
the MHE, EKF and sensor-based LKF on solving the SLAM formulation. As such three
different approaches were developed and taken into consideration: an EKF, a MHE and a
sensor-based LKF algorithms.

The system dynamics of the first two was design as depicted in Chapter 4, in which
the model of a rigid body with six DoF was created. Besides that, the measurement model
was made having into account that the input values were the position of the landmarks
related to the rigid-body frame. As for the movement of the body, linear and angular
velocities are needed to estimate its position.

The choice of using the EKF as one of the approaches, was made having in consideration
that it is widely used in general estimation and, in particular, in the SLAM framework,
when the dynamics of the system are not linear. However it is not an optimal solution, as
showed throughout this document, as it does a linearization of the nonlinear dynamics.
The results obtained showcased that, the estimation error was not considerably big when
considering the disturbances, but was bigger than the results of the MHE.

The MHE was the actual case study of this dissertation, as its application as a SLAM
approach is still a maturing concept, which shows the relevance of the work done in this
dissertation. The MHE was designed having in mind a probabilistic approach based on
the covariance values of the system. For that, the integration of an EKF filter was made,
in which it was calculated the process covariance matrix as well as the system covariance
matrix. The measurement covariance matrix was constant, as the observation model was
only affected by the sensors error. Regarding the performance of the MHE it was possible
to conclude that the MHE is heavily constrained by the time that it takes to solve its cost
function. A few different optimization algorithms, such as yalmip’s bnb and bmibnb,
and MATLAB’s active-set, SQP and interior-point, were tested in order to reduce the
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computation time. The best result was achieved with the MATLAB’s SQP algorithm, as it
not only guaranteed a smaller average processing time, but it also displayed the smaller
maximum processing time. Moreover, it was also stated that the size of the considered
past data window 𝐻 also has a big impact on the estimation time, as it introduces more
variables and constraints to be estimated, which might result in a stronger non-convex
optimization problem. Additionally, it was also tested the influence of the number of
observed landmarks on the estimation error and processing time, which resulted on
finding that, for the considered Scenarios 1 and 2, a number of four landmarks was
sufficient for the estimation and guaranteed a drastically improvement on the solving time
of the cost function 𝐽. From Scenario 1 it is possible to recognise the good performance
of the MHE when compared to the other solutions. However, on Scenario 2 it can be
recognised the importance of the loop closure capability, specially of the EKF, as it is
possible to see the correction of its position and landmark estimations. As mentioned
before, this capability is almost nonexistent on the probabilistic approach to MHE as the
importance of each observation is exclusively defined by the weights, in this case the
covariance matrices.

Lastly, for the sensor-based LKF approach it had to be defined another formulation of
the system dynamics, as they have to be constructed regarding the sensor frame. Even
though, the results were transformed from the body-frame to the world-frame, which
introduces further errors in the estimation, it was possible to recognise the value of this
type of approach, as the estimated position and orientation are on par with the values
obtained on the other two methods.

From the results, it is possible to conclude the satisfactory performance of the three
approaches considered in this document as solutions to the SLAM problem, having the
MHE displayed a better estimation when there are no loop closures.

In light of the results obtained for the MHE, the author recommends the use of this
method when dealing with a less dynamic vehicle, as they require a much lower estimation
frequency. This is the case for the tricycle in the work of Kasahara et al. [45], which used
the same optimization algorithm (SQP) as the one here proposed as the best to tackle the
MHE SLAM problem. Nevertheless, it should be pointed that the MHE was not optimized
to its fullest, had not this project been done on MATLAB2021a. An application running
online would require the proposed filter to be designed on a compiled language, such as
Fortran or C/C++, for quicker and more efficient usage of CPU resources. Besides that,
other third-party optimization algorithms might be worth considering, as the ones used
in this work were either free to use or had an academic license.

To conclude, even though the application of the MHE is partially conditioned by
the computing power onboard of the robot, the author believes that in the future that
will not be a constraint and this algorithm will be used in numerous applications where
nonlinearities and dynamic environments are present.
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9.1 Future Research

As the author believes in the success of this method as a solution to the SLAM problem, it
also recognises that further investigation should be done to make it more robust. One of the
aspects that should be worked on is the inability of the probabilistic MHE of not being able
to correct past estimations when it reaches a loop closure event. A backwards approach to
the MHE could be triggered in such events as it is done in other SLAM algorithms. This
backwards algorithm would be running in parallel with the other instance of the MHE in
order to not extend the computation time. Besides that, the development of a sensor-based
approach to the MHE should be considered, as it would reduce the complexity of the cost
function, resulting in a more reliable estimation when dealing with harsh dynamics. Lastly,
a real-time experiment with real data and optimized libraries would be an interesting
information to corroborate the results found throughout this dissertation.
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I

Annex 1 Use of quaternions on rigid
body dynamics

In this annex, the proof of the quaternion variation in terms of angular velocity is addressed
based on the notions presented in [97][98][99] [100].

The quaternion, first introduced by William Rowan Hamilton, is a system that extends
the complex numbers. This relation can be particularly explained using the Cayley-
Dickson construction: given two complex numbers 𝐴 = 𝑎 + 𝑏𝑖 and 𝐶 = 𝑐 + 𝑑𝑖, then
𝑄 = 𝐴 + 𝐶𝑗 is a number in the quaternion space H. Defining 𝑘 := 𝑖 𝑗, 𝑄 is equal to

𝑄 = 𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘 ∈ H (I.1)

in which {𝑖 , 𝑗 , 𝑘} are the quaternion units and {𝑎, 𝑏, 𝑐, 𝑑} ∈ R}
Other representation of the quaternion, is the sum of a scalar and a vector in 3D space,

in the form of a vector with dimension equal to four:

𝑄 :=

[
𝑞𝛼

q𝑣

]
(I.2)

I.0.1 Proof: Variation of a quaternion

Considering 𝑊x′ as the coordinate vector of a vehicle on the world-fixed frame and 𝐵x′ the
coordinate vector of the vehicle on his own body’s frame, we get that

𝑊x′
= Q(𝑡) 𝐵x′ (I.3)

in which Q(𝑡) is an orthogonal transformation. The time evolution of the equation, can be
given by

𝑑
𝑊x′

𝑑𝑡
=
𝑑Q
𝑑𝑡

𝐵x′ + Q
𝑑
𝐵x′

𝑑𝑡
(I.4)

Knowing that
𝐵x′

= Q𝑇 𝑊x′ (I.5)
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equation (I.4) can be rewritten as

𝑑
𝑊x′

𝑑𝑡
=
𝑑Q
𝑑𝑡

Q𝑇 𝑊x′ + Q
𝑑
𝐵x′

𝑑𝑡
(I.6)

Besides that, the coordinate vector of the vehicle on his own body frame does not change
over time

𝑑
𝐵x′

𝑑𝑡
= 0, (I.7)

as such equation (I.6) takes the following representation

𝑑
𝑊x′

𝑑𝑡
=
𝑑Q
𝑑𝑡

Q𝑇 𝑊x′ (I.8)

Since Q(𝑡) is orthogonal, QQ𝑇 = 1, and as such, ¤QQ𝑇 is a skew-symmetric matrix. Defining

¤QQ𝑇 = S[w] (I.9)

we get that
𝑑
𝑊x′

𝑑𝑡
= w × 𝑊x′ (I.10)

The vector w is the instantaneous angular velocity in the world frame.
Consider now the relation between the coordinates of a vector in body and space

coordinates, given by the unit quaternion q(𝑡) [84] as in equation (3.41)
𝑊x = q. 𝐵x.q∗ (I.11)

in which 𝑊x = [0,𝑊x′] and 𝑊x = [0, 𝐵x′] are pure quaternions. Given the assumption at
(I.7), the evolution of the equation over time can be depicted as [98]

𝑑𝑊x
𝑑𝑡

=
𝑑q
𝑑𝑡
. 𝐵x.q∗ + q. 𝐵x.

𝑑q
𝑑𝑡

= (𝑑q
𝑑𝑡
.q∗).𝑊x + 𝐵x.(q. 𝑑q∗

𝑑𝑡
) (I.12)

Having in mind that ( 𝑑q
𝑑𝑡
.q∗) is a pure quaternion, it will be defined that v = ( 𝑑q

𝑑𝑡
.q∗) = [0, v′].

Since the conjugate of pure quaternions its equal to their negation, we have

𝑑𝑊x
𝑑𝑡

= 2v × 𝑊x (I.13)

or
𝑑
𝑊x′

𝑑𝑡
= 2v′ × 𝑊x′ (I.14)

Having in consideration the result of (I.10), it is possible to define

w = 2v = [0, 2v′] (I.15)

which results in defining the variation of the quaternion over time in regards to the angular
velocity

𝑑q
𝑑𝑡

=
1
2wq (I.16)

Regarding the angular velocity in the body frame Ω, we have that Ω = q∗wq or that
w = qΩq∗, which results in

𝑑q
𝑑𝑡

=
1
2qΩ (I.17)
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