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Abstract. This paper addresses the problem of deriving attitude es-
timation and trajectory tracking strategies for unmanned aerial vehi-
cles (UAVs) using exclusively on-board sensors. The perception of the
vehicle position and attitude relative to a structure is achieved by ro-
bustly comparing a known pier geometry or map with the data provided
by a LiDAR sensor, solving an optimization problem and also robustly
identifying outliers. Building on this information, several methods are
discussed for obtaining the attitude of the vehicle with respect to the
structure, including a nonlinear observer to estimate the vehicle attitude
on SO(3). A simple nonlinear control strategy is also designed with the
objective of providing an accurate trajectory tracking control relative to
the structure, and experimental results are provided for the performance
evaluation of the proposed algorithms.

1 Introduction

Unmanned aerial vehicles (UAVs), more informally known as drones, were ini-
tially developed within a military context [3, 16], yet soon the world realized
that these small vehicles could be used in tasks other than warfare, such as the
inspection of infrastructures. The technological evolution has led to an increase
in the demand for more and larger wind turbines, cellphone towers, and power
lines, to name a few. All these large buildings and facilities are critical infras-
tructures that require maintenance through structural inspections and health
monitoring, which can become inefficient in situations where the access is dif-
ficult, time-consuming, and often dangerous. Small vehicles such as UAVs con-
stitute a tailor-made solution, able to navigate and track trajectories with great
accuracy. While the motion control of aerial vehicles in free flight is reaching
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its maturity, new challenges that involve interaction with the environment are
being embraced. Using local sensors, such as inertial measurement units (IMUs)
and light detection and ranging (LiDAR) sensors, some quantities required for
control tasks can be obtained depending solely on the vehicle. Having a GPS
enables these vehicles to fly autonomously, a feature that can become compro-
mised in the vicinity of large infrastructures, as the GPS signal can be easily
occluded by these structures. This paper aims to take the interaction with the
environment one step further, using information from the vehicle’s surroundings.

Using LiDARs for self localization in GPS-denied environments is by now an
ubiquitous and mandatory technology in mobile robots [15], and more applica-
tions of this type of sensor are emerging for UAVs, as in [8] or [6]. In comparison
with video cameras, also used in visual structure from motion algorithms [17],
LiDARs offer better depth resolution, range, and horizontal field of view at the
cost of lower horizontal and vertical resolution. Building on the work presented
in [7, 4], this work extends the relative pose of the vehicle to include its attitude,
allowing a full 3-D structure dependent trajectory to be defined, provided that a
known geometry in the environment is present (such as a pier). For detecting the
geometric primitives necessary for relative pose estimation, several approaches
are available, either for circular-like piers [14] or for planar-wise structures [11],
where the edges detected in the environment are the foundations to obtain the 3-
D attitude estimate. Given the resolution limitations of the considered LiDARs,
this work assumes the existence of a rectangular section pier, for which one or
two faces are always visible to the LiDAR. An edge detection strategy is pro-
posed, and based on simple geometric properties, the variations of the detected
edges can be used to extract a pair of 3-D vectors, in the vehicle and world
frames. With these vector pairs, several attitude estimation algorithms can be
used, such as the solution to the well-known Wahba’s problem [10], or more
evolved nonlinear filters [1]. This paper also proposes a nonlinear filter to com-
pute the rotation matrix describing the motion of a vehicle based on the fusion
of LiDAR and IMU measurements. Finally, the motion control design yields a
trajectory tracking controller solely based on local sensory information, therefore
providing a relative positioning solution for GPS-denied environments.

The paper is organized as follows. Section 2 discusses the edge detection
approach, combining algorithms such as the Split & Merge and least square fit-
ting. Section 3 designs several methods to obtain the vehicle’s attitude from the
detected edges. Next, Section 4 discusses the control strategies developed for tra-
jectory tracking, whereas Section 5 compares the attitude estimation algorithms
using experimental data and validates the control strategy with experimental
trials. Finally, some concluding remarks are offered in Section 6.

2 Environment Perception

Detecting a structure and obtaining the necessary information to determine the
vehicle’s attitude greatly depends on the knowledge of its geometry. This paper
considers piers with a rectangular section, where the LiDAR can see one or two
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Fig. 1. Cuboid pier detection during an experiment: 2 edges (left) or 1 edge (right).

faces of the pier, depending on its relative pose. The intersection of this sensor’s
plane with these faces will result in two straight lines, hereafter simply referred
as edges.

The idea behind attitude determination is that a specific movement, in roll or
pitch, has an impact on both the edges’ lengths and angle between them (further
details can be found in [4]). The first step involves identifying how many edges
the vehicle is encountering at each moment, for which a strategy based on the
Split & Merge algorithm was developed [11, 12]. The basic principle to determine
if the LiDAR is detecting one or more edges is to compare a given threshold
with the perpendicular distance from each LiDAR measurement point pi =[
xi yi zi

]T ∈ R3 to a line. This distance can be defined as ei = pTi n + c, where

n =
[
nx ny nz

]T ∈ S2 is the unit vector normal to the line, as S2 denotes the unit
sphere in R3, and c is the offset from the origin. Additional deciding factors are
also used, taking into account the number of LiDAR measurements supporting
each edge, the geometry of the edges relative to the existing knowledge about
them, rejecting outliers using the average distance between consecutive data
points, among others. Fig. 1 presents the output of this detection strategy, either
with both edges clearly visible, or in a transition stage, where the algorithm helps
deciding how many edges should be considered in the next phases.

With this rough estimate of each edge, a least squares line fitting can be used
to further improve these estimates. The problem at hand is in the form

min
c,n∈S2

N∑
i=1

e2i

s.t. ei = c+ pTi n ,∀i=1,...,N

also found in [5], which after some mathematical manipulations, can be de-
termined by the singular value decomposition (SVD) of a reduced problem. A
reduced space Hough transform was also considered [13], but as it yielded similar
results at a much higher computational cost, the option was to use exclusively
the LS fitting strategy.
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Fig. 2. Decomposition of the edges in {E}.

The following step involves the computation of the edge lengths, or equiva-
lently, the boundary points of each edge, denoted as start point psi

∈ R3 and end
point pei

∈ R3. At this stage, it is important to define the reference frames used
in the remaining of the paper, the first being the Earth-fixed frame {E}, which
is considered to be the local tangent plane with the north east down (NED) con-
vention. There is also the body frame {B}, with the origin at the vehicle’s center
of mass, the x-axis pointing forward, and the z-axis pointing downward along its
vertical axis, whereas an intermediate horizontal frame {H} is also useful, which
can be seen as a projection of {B} on the xy-plane of {E}. Thus, the normed

direction of each edge can be represented by a vector qi =
[
qxi qyi qzi

]T ∈ R3,
expressed in {B}, such that qi = pei

− psi
.

The representation of the edges in {E} is also fundamental, as they can be
related through the rotation matrix from {B} to {E}, denoted by E

BR or simply
as R, according to Eqi = E

BR qi. As illustrated in Fig. 2, their projection in the
xy-plane of this reference frame corresponds to the section of the pier and can
be defined as li ∈ R3, with Li := ‖li‖ for i = 1, 2. The z coordinate in frame
{E}, represented by hi, is directly linked to the attitude of the vehicle, resulting

in Eqi = li ± hie3, where e3 =
[
0 0 1

]T
.

Knowing the dimensions of the pier, either from the initial LiDAR profiles or
from a known map, the z coordinate can be obtained using h2i = ‖qi‖2−L2

i from
the measured edges in {B} and the known edge lengths, which are independent
of the reference frame. Further using the cross product of both edges, to account
for the angle between them, leads to the following optimization problem

min
h2
1,h

2
2∈R+

0

3∑
i=1

ε2i

s.t. εi = h2i − ‖qi‖
2

+ L2
i ∀i=1,2

ε3 = h21 L
2
2 + h22 L

2
1 − ‖S(q1)q2‖2 + L2

1 L
2
2

where S(.) denotes the skew-symmetric matrix, such that S(a)b represents the
cross product a × b, for some vectors a,b ∈ R3. The above problem implies
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there is ambiguity in the sign of each hi, which can be solved through continuity,
by choosing the closest value to the previous one, assuming there are no swift
movements around leveled flight.

3 Pose Estimation

This section builds on the previous detection strategies to propose several meth-
ods capable of accurately extracting a partial or the full attitude of the vehicle.
The first approach is to obtain the vehicle’s rotation about the z-axis, assuming
full knowledge about the remaining angular motions, as the information provided
by a simple IMU is usually sufficient to obtain the roll and pitch angles. On the
other hand, two additional strategies are presented to compute the 3-D attitude
of the vehicle from LiDAR data, either considering a closed-form solution to the
Wahba’s problem or a nonlinear attitude filter. Obtaining the relative position
of the vehicle is straightforward when either one or two edge measurements are
available and the geometry of the pier is known, for which it omitted from this
discussion.

3.1 Yaw Motion

As the roll and pitch angles can be obtained fairly easy and accurately using
accelerometers and gyroscopes, at low acceleration motions, a better estimate of
the yaw angle ψ can be obtained using LiDAR measurements, independently of
possible distortions on the Earth magnetic field. Thus, the LiDAR measurements
can be projected into {H} using Hpi = Πe3

H
BR pi for i = 1, . . . , N , where

Πe3 = diag (1, 1, 0) and H
BR depends only on the roll and pitch angles.

As this projection leaves the yaw angle ψ as the only remaining degree of
freedom, a new optimization problem can be defined to fit simultaneously two
orthogonal edges to the data, after the Split & Merge algorithm, yielding

min
c1,c2,n∈S1

N1+N2∑
i=1

e2i

s.t. ei = c1 + HpTi T1 n , i = 1, . . . , N1

ei = c2 + HpTi T2 n , i = N1 + 1, . . . , N1 +N2

where T1 n =
[
nx ny 0

]T
, and T2 n =

[
−ny nx 0

]T
. With this approach, the es-

timation error of the relative heading can be reduced, as the data points of both
edges now contribute to an unified objective. The estimated edges in {E} can
then be computed using Eqi = E

HRHqi, while the yaw angle estimate can be sim-

ply computed using ψ̂ = atan2
(
Eqyi,

Eqxi
)

+ψ0i, where atan2 is the 4 quadrant
inverse tangent function and ψ0i is the relative yaw difference for edge i.



6 Alexandre Gomes et al.

3.2 3-D Attitude Estimation

Considering the motion capabilities of a rotary-wing UAV, with the intrinsic lim-
itations of using LiDAR measurements relative to a pier, this section considers
the estimation of the 3-D attitude of the vehicle relative to the infrastructure.
The information provided by an IMU is a product of the combination of three
types of sensors: accelerometers, gyroscopes, and magnetometers. The data pro-
vided by the accelerometers, for low vehicle acceleration motions, has a direct
connection with the attitude of the vehicle relative to the earth surface, but it
cannot be used to describe the attitude about the z-axis. The gyroscopes’ data
can act as a complement, bearing in mind that the integration of angular velocity
over time accumulates errors with ever growing significance. The magnetome-
ters can compensate some of these errors, but are highly susceptible to drifts
and environmental disturbances, in particular when close to infrastructures.

A commonly used approach to obtain 3-D attitude from vector measurements
is the solution to the Wahba’s problem, estimating the proper orthogonal matrix
B
ER by solving the minimization problem

min
B
ER∈SO(3)

1

2

nobs∑
i=1

wi
∥∥oi − B

EREoi
∥∥2

where Eoi and oi, for i = 1, . . . , nobs, denote the normalized vector measure-
ments represented respectively in {E} and {B}, denoted in matrix form as EO
and O with columns as the individual vector measurements, whereas wi are pos-
itive weights associated with each individual measurement and nobs is the total
number of observations.

One solution to this problem can be traced back to [10], considering that the
measurements are free of errors, implying that the true rotation matrix B

ER is
the same for all measurements, yielding the closed-form solution

B

ER̂ = U diag (1, 1,det(U) det(V)) VT

where U and V are orthogonal matrices, obtained from the SVD of matrix

H =
nobs∑
i=1

wi oi
EoTi . While most of the times there are two LiDAR-based edges

that fully define the attitude of the vehicle, an ambiguity arises when only one
edge is visible. To avoid this, the acceleration vector can be used, assuming
that the vehicle’s acceleration is negligible relative to Earth’s gravity. With that
in mind, the extended observation matrices can be defined as O =

[
q1 q2 a

]
,

where the additional observation is the normalized acceleration vector and a
similar matrix EO can be defined. This can also be translated into the following
assumption.

Assumption 1 There are at least two non-zero and non-collinear vector mea-
surements, oi and oj, with i 6= j.

Another approach is to design a rotation matrix observer that further uses
the gyroscopes information to drive the filter. To this end, consider the kine-
matics of B

ER, given by B
EṘ = −S(ωωω)B

ER, where ωωω is the angular velocity. An
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observer for B
ER replicates this structure, as B

E

˙̂
R = −S(ω̂ωω)B

ER̂, where ω̂ωω is yet
to be determined. As such, the error between the true rotation matrix and its
estimate can be defined as R̃ = B

ER B
ER̂T , resulting in the error dynamics

˙̃R = R̃ S(ω̂ωω)− S(ωωω) R̃ (1)

for which the stability of the equilibrium point R̃ = I3 is stated in the following
result.

Theorem 1. Considering the error dynamics in (1), let ω̂ωω be defined as

ω̂ωω = ωωω + kobs

nobs∑
i=1

S(oi)R̃
Toi (2)

with kobs > 0. Under Assumption 1, the equilibrium point R̃ = I3 is almost
globally asymptotically stable.

Proof. For the proof outline, let the candidate Lyapunov funcion be defined as

V (R̃) = tr
(
I3 − R̃

)
(3)

where I3 is the identity matrix. It can easily be seen that this function is positive
definite and vanishes at the equilibrium point, as V (R̃) > 0 for all R̃ ∈ SO(3) \
I3 and V (I3) = 0. After replacing (2) and some algebraic manipulation, the
derivative of (3) can be written as

V̇ (R̃) = −kobs
2

nobs∑
i=1

∥∥∥(I3 − R̃2)oi

∥∥∥2 .
Considering Assumption 1, it can be seen that V̇ (R̃) ≤ 0 for all R̃ ∈ SO(3) and
that V̇ (R̃) = 0 if and only if R̃ = I3 and R̃ = rot(π,n), for all n ∈ S2, where the
notation rot(θ,n) denotes a rotation about the unitary vector n of an angle θ.
As such, it can be shown that the error system is almost globally asymptotically
stable, meaning that the region of attraction covers all of SO(3), except for a
zero measure set of initial conditions, following the approach in [2, 1]. ut

The integration of angular velocity measurements directly from the gyro-
scopes usually suffers from drift over time. In this event, these measurements ωωωm

are corrupted by a measurement bias bω according to ωωωm = ωωω+bω, and the con-
vergence of the observer to the true rotation matrix cannot be guaranteed with-
out further modifications. Nonetheless, it can be shown that the derivative of the
Lyapunov function is negative definite as long as |sin(θ)| > ‖bω‖ /Kobsλmin(P),
where θ is the angle of the error matrix R̃ in the angle-axis representation and
P = tr

(
OOT

)
I3 −OOT is a positive definite matrix, as Assumption 1 ensures

that λmin(P) > 0. Thus, in the presence of a sufficiently small angular veloc-
ity bias, the estimation error can be shown to be ultimately bounded [9]. A
preliminary experimental evaluation of the combined detection and estimation
strategies is presented in Section 5.
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4 Trajectory Tracking Control

This section addresses the combination of the detection and estimation strategies
and the design of controllers, aiming at tracking a trajectory defined relatively to
a structure using only an IMU and a 2-D LiDAR. A nonlinear position controller
is considered, for which the simplification of the force balance that describes the
vehicle can be defined by the error dynamics

˙̃p = Eṗ − Eṗd = Ev − Evd

˙̃v = Ev̇ − Ev̇d = ge3 − T
mr3 − Ev̇d

˙̃r3 = ṙ3 − ṙ3d = −S(r3)RTΠe3ωωω − ṙ3d

(4)

where m is the vehicle mass, g is the gravitational acceleration, Ep, Ev, r3, and
T are respectively the vehicle’s position, velocity, third column of the rotation
matrix R = E

BR, and the thrust input, whereas Epd, Evd, r3d , and Td are their
respective desired values. In these error dynamics, only the first two elements of

the angular velocity are used as inputs, denoted as Πe3
ωωω =

[
ωx ωy 0

]T
, leaving

the angular motion about the vehicle’s z-axis as an extra degree of freedom. An
alternative input ω̄ωω can also be defined for simplicity as Πe3

ωωω = −RS(r3)2ω̄ωω .
The approach to stabilize this nonlinear system consists of first stabilizing the

position and velocity outer-loop driven by r3d and Td, introducing a new state

x =
[
p̃T ṽT

]T
, and then using backstepping techniques to drive the attitude

and trust to the desired values using the vehicle thrust and part of the angu-
lar velocity vector. The following result provides the conditions for asymptotic
stability of the closed-loop system, assuming full state feedback.

Theorem 2. Consider the error dynamics (4), for which the feedback law is
chosen as T = Td rT3 r3d , r3d = m

Td
f , Td = m ‖f‖, with the alternative input ω̄ωω

defined as

ω̄ωω =
1

‖f‖
S(r3d)ḟ − S(r3)

[
2Td
m

(P12 p̃ + P22ṽ) +Kr̃3 r̃3

]
(5)

and f = ge3 − Ev̇d + Kp̃ p̃ + Kṽ ṽ, ḟ = −Ev̈d + Kp̃
˙̃p + Kṽ

˙̃v, while P12 and
P22 are constant design matrices, and Kr̃3 > 0 is a controller gain. Then the
closed-loop system is asymptotically stable.

Proof. The proof outline for this strategy starts by defining the Lyapunov func-
tion candidate

V (p̃, ṽ, r̃3) = xTPx +
1

2
r̃T3 r̃3

where P is a symmetric positive definite matrix. The constant design matrices
P12 and P22 from 2 correspond to the blocks of P that are relevant to the
control task, depending only on the position and linear velocity gains, Kp̃ and
Kṽ . Using (5), after some agebraic manipulation, the derivative of this function
corresponds to

V̇ (p̃, ṽ, r̃3) = −xTQx−Kr̃3 ‖S(r3)r̃3‖2 (6)
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(a) Vehicle and pier (b) Control Console

Fig. 4. Experimental setup at ISR/IST.

where Q is a positive definite matrix. Therefore, the derivative (6) is composed
of only negative definite terms leading to asymptotic stability guarantees. ut

The remaining degree of freedom can be tackled using a simple heading lock
controller, with the objective of maintaining a certain heading relative to the
pier. A first order model of the yaw kinematics can be easily obtained using a
proportional controller, resulting in a closed-loop defined as Tψ̇ ω̇z = −ωz +ωzd,
where Tψ̇ is the time constant of the system. As such, the input to the system

dynamics can now be defined as u =
[
ωx ωy ωz T

]T
. The overall architecture of

the proposed approach is presented in Fig. 3, where the controller, the simulated
vehicle and LiDAR sensor, the detection, and the attitude estimation blocks can
be identified.

5 Results

This section presents some experimental results regarding both the estimation
algorithms and the overall controlled system. The vehicle used in these trials
is based on the Mikrokopter Quadro XL, as shown in Fig. 4a, customized at
ISR/IST to feature a Hokuyo LiDAR UTM30LX, a Microstrain IMU, a Gumstix
mini PC, among other sensors. The detection and control algorithms were ran on
board the vehicle, while a ROS-based control console was used to switch between
control modes and monitor the experiments, depicted in Fig. 4b.
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Fig. 5. Attitude determination experiments, featuring results from the IMU, the yaw
estimation (YE), the Wahba’s solution (WPA), and the nonlinear observer (RMO).

5.1 Estimation

Regarding the attitude estimation results, the described algorithms were tested
using experimental data to assess the impact of the sensor’s noise and the ef-
fectiveness of the data treatment, as shown in Fig. 5. It can be seen that both
the yaw estimator (YE) and the solution to the Wahba’s problem (WPA) are
more prone to the measurement noise than the nonlinear rotation matrix ob-
server (RMO) or the IMU internal filter. As such, the rotation matrix observer
obtains the best results, where the attitude description obtained in the experi-
ments can be seen as a filtered version of the previous methods, maintaining a
similar proximity to the reference.

It can also be seen that the roll and pitch estimates provided by the observer
have an offset relative to the attitude obtained from the IMU. This is a result
from the precision of the LiDAR sensor on detecting the edges of the pier, more
particularly, the end or length of each edge. It should also be noted that the
oscillation in the YE and WPA methods are directly related to the uncertainties
while determining the length of the edges. Moreover, all estimation methods
presented a yaw motion description very similar among themselves and to what
was observed in reality. In some cases not included in this paper due to space
constraints, the IMU yaw measurements where severely biased, probably due
to magnetic interference, while the proposed methods remained immune to this
problem.

5.2 Control

The overall closed-loop system was implemented as presented in Fig. 3 and exper-
imentally tested. The results of this preliminary experimental trial are presented
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Fig. 6. Experimental results of the closed-loop system, using a step reference.

in Fig. 6, where the position, heading, and actuation signals are show, consider-
ing a reference with steps in position relative to the pier. It can be seen that the
vehicle is able to track the reference with fair accuracy, although there is still
margin for gain adjustment towards a more accurate trajectory tracking. At the
same time, the vehicle actively maintains the relative heading pointing towards
the pier, even when the position of the vehicle switches between two points.

6 Concluding Remarks

This paper proposes a solution to the problem of laser-based control of rotary-
wing UAVs, considering the entire process comprising the acquisition and treat-
ment of the sensor’s measurements, the development of methods to compute
the relevant quantities to describe the motion of the vehicle, and the design
and implementation of stable and effective observers and controllers within the
scope of Lyapunov stability methods. The proposed algorithms where tested in
preliminary experimental trials, allowing to validate their effective applicabil-
ity to the envisioned scenarios. Future work will focus on further experimental
tests of the trajectory tracking controller and attitude observer, as well as in the
development of more reliable, robust, and stable observers and path-following
controllers.
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