
Vision Based Pose Computation from Landmarks: an
application to Quadrotors

André Filipe Marques da Silva

Dissertação para obter o grau de Mestre em

Engenharia Electrotécnica e de Computadores

Júri

Presidente: Doutor Carlos Filipe Gomes Bispo
Orientador: Doutor Carlos Jorge Ferreira Silvestre
Co-Orientador: Doutor Paulo Jorge Coelho Ramalho Oliveira
Arguente: Doutor Alexandre Bernardino
Vogal: Doutor César Santos Silva

Outubro de 2011

Abstract

Worldwide, UAVs have become an important tool for the realization of different tasks that, otherwise,

would have to be performed by humans in, sometimes, difficult and dangerous conditions. Even so, there

is plenty of space for improving the technical capabilities and functionalities of these vehicles. Particularly,

this thesis aims at the development of a module for providing pose error measurements to help stabilize the

vehicle’s position when it is airborne. This module is composed by lightweight hardware components that

can easily be attached to an UAV and uses visual information acquired by a camera for error estimation.

The first part of this thesis presents the theoretical background needed to the rest of the work developed.

Consisting of some basic computer vision concepts such as camera models and image transformations and

the description and analysis of features detectors and descriptors algorithms. The second part presents the

developed solution, its implementation and the experimental results. The developed module was attached

to a robotic arm and, by closing the loop with a control feedback law, the tests performed shown that the

end effector’s pose error is correctly estimated and can be driven to zero.

Keywords

Unmanned Aerial Vehicles; Visual Pose Estimation; Features Detectors; Features Descriptors

i

Resumo

Em todo o mundo, variadas tarefas têm vindo, progressivamente, a ser realizadas por veı́culos aéreos

não tripulados que, caso contrário, teriam de ser realizadas por humanos, muitas vezes em condições

difı́ceis e perigosas. Ainda assim, muito pode ser feito para melhorar as capacidades e funcionalidades

técnicas destes veı́culos. Mais especificamente, nesta tese pretendeu-se desenvolver um módulo para

calcular medidas de erro de pose para ajudar a estabilizar a posição do veiculo quando este está em vôo.

Este módulo é composto por componentes de hardware muito leves que podem ser facilmente colocados a

bordo de um veı́culo aéreo e usa informação visual capturada por uma câmara para estimar o erro de pose.

Na primeira parte da tese descrevem-se as metodologias teóricas necessárias para o trabalho realizado.

Este, composto por alguns conceitos básicos de processamento de imagem, como o modelo de uma

câmara e transformações de imagens e algoritmos de detecção e descrição de pontos de interesse. Na

segunda parte propõe-se uma solução para o problema em causa, a sua implementação e os resultados

experimentais. O módulo desenvolvido foi fixado a um braço robótico e, ao fechar o loop de controlo, os

testes realizados mostram que o erro da pose do end effector é correctamente estimado e pode ser levado

para zero.

Palavras Chave

Veı́culos Aéreos Não Tripulados; Estimação Visual da Pose; Detecção de Pontos de Interesse; Descrição

de Pontos de Interesse

iii

iv

Acknowledgments

This thesis represents a large amount of dedication, sacrifice and effort. Not only from myself, but for all

of those who were around me and were an important part of my life in the last few months.

First of all, I would like to thank Professor Carlos Silvestre for giving me the opportunity to integrate his

team, undertake this thesis and study this mixing area of control and image processing for which I have

particular interest.

I want to thank Bruno Cardeira, Rita Cunha, David Cabecinhas and André Oliveira for their practical and

pragmatic advices concerning the implementation issues that I, eventually, stumbled into.

A special acknowledgement, also, to Professor João Paulo Costeira for having the time and the patience

to review with me all my homography decomposition procedure, and giving me that last bit of hope that I

needed to solve a problem that I was having for a long, long time.

This thesis, would also not be possible without the precious help from Doctor César Silva and all the

personnel at Reverse Engineering. They advised and guided me through a large part of my work. They

helped me to understand some important technical concepts and to gain some practical intuition.

Pedro Santos, Henrique Silva, Jorge Ribeiro: you were my colleagues, my brothers in arms and my

friends during this important stage of our lifes. Both those intellectual conversations and those relaxing

moments during lunch time were essential as well. Thank you and best of luck with your thesis.

To my parents, it has been a long road, with highs and lows. With good, excellent moments, and others

not so good. Now, I can say all of them helped me to grow and became the person I am today, thank you.

Of course, I also want to acknowledge the rest of the family for standing by me and supporting me during

these tough months.

To my closest friends in the personal sphere and to those special people who know who they are, I

cannot express my gratitude in words. Without those coffee and cookies times, trips, concerts, movies and

laughs, what is left of my mental sanity would not have survived.

Last but not least, I would like to thank to all the people, family and friends, for having the patience to

deal with me in those worst moments and also, for actually trying to understand what I was talking about,

when I was explaining to them what were my thesis subject.

October, 2011

André Silva

v

Contents

1 Introduction 1

1.1 Context, Motivation and objectives . 2

1.2 Problem Description . 2

1.3 Proposed Solution . 3

1.4 Related Work . 3

1.5 Main Contributions . 3

1.6 Thesis Outline . 4

2 3-D Structure from Images 5

2.1 Introduction . 6

2.2 Pinhole Camera Model . 6

2.3 Planar Homographies . 9

2.3.1 2D image transformations . 9

2.3.2 Planar Homography . 11

2.3.3 Calculation of the Planar Homography Matrix . 13

2.4 From Planar Homography to 3-D Displacement - Planar Homography Decomposition 15

3 Image Features 17

3.1 Introduction . 18

3.2 SURF - Speeded-Up Robust Features . 19

3.2.1 Integral Images . 19

3.2.2 Interest points detection . 19

3.2.3 Interest points descriptors . 22

3.2.4 Interest points matching . 24

3.3 BRIEF - Binary Robust Independent Elementary Features . 26

3.3.1 BRIEF descriptor . 26

3.3.2 Feature detector . 27

3.3.3 Scale and Rotation Invariance . 27

vii

Contents

4 Developed Algorithm and System Architecture 29

4.1 Introduction . 30

4.2 Developed Algorithm . 31

4.3 Gumstix Overo Fire . 33

4.4 Caspa VL Camera . 34

4.5 PUMA 560 Robotic Arm . 34

4.6 Overall Architecture . 38

5 Experimental Results 39

5.1 Introduction . 40

5.2 Simulation . 40

5.2.1 Synthetic Dataset . 40

5.2.2 Results Analysis . 42

5.3 Real Videos tests . 48

5.3.1 Real Dataset . 48

5.3.2 Results Analysis . 48

5.4 Real Videos with Camera Attached to PUMA tests . 52

5.4.1 Dataset . 52

5.4.2 Results Analysis . 52

5.5 Closed Loop Control tests . 54

5.5.1 Vision-Based control for rigid body stabilization and implementation on the PUMA 500

robotic arm . 54

5.5.2 Results Analysis . 55

6 Conclusions 57

6.1 Conclusions . 58

6.2 Future Work . 58

Bibliography 61

Appendix A Appendix A-1

A.1 Steps aiming the practical implementation . A-2

A.2 Camera Calibration . A-3

A.3 The Kronecker Product . A-5

A.4 Real videos experiments graphics . A-6

viii

List of Figures

2.1 Pinhole camera model. 7

2.2 Principal point offset . 8

2.3 Radially distorted image . 9

2.4 2D transformations . 9

2.5 Planar homography . 12

3.1 Using integral images, the calculation time of the sum of the pixels in the rectangular area

delimited by [ABCD] is independent of its size and takes only one sum and two differences . 20

3.2 An example of the type of features that the Fast Hessian Detector detects 20

3.3 Box filters approximating Gaussians second order derivatives 21

3.4 Graphical representation of the filter side lengths for four different octaves. The octaves

overlap in order to cover all possible scales seamless . 22

3.5 Graphical representation of the 3× 3× 3 neighborhood . 22

3.6 Haar wavelet filters . 23

3.7 Sliding window used to assign the orientation . 23

3.8 Descriptor entries of a sub-region. 24

3.9 An example of a kd-tree . 24

3.10 Different approaches to choosing the test locations. All except the righmost one are selected

by random sampling. Showing 128 tests in every image. Figures adapted from [1]. 27

3.11 Illustration of the test circle. The pixel at p is the center of a candidate corner. The arc

indicated by the dashed line passes through 12 contiguous pixels which are brighter than p

by more than the t. Figure adapted from [2]. 28

4.1 Developed algorithm flowchart. 32

4.2 Gumstix Overo Fire COM board . 33

4.3 Tobi expansion board . 33

4.4 Gumstix Overo Fire attached to the Tobi expansion board . 34

4.5 The Caspa VL camera module . 34

4.6 The Gumstix-and-Camera module . 35

ix

List of Figures

4.7 The Puma 500 Robotic Arm. The end-effector was disassembled and in its place, the

Gumstix-and-Camera module, was attached. 35

4.8 The controller computer. 36

4.9 The controller computer front panel. 37

4.10 Gumstix Overo Fire attached to the Tobi expansion board . 38

5.1 The two scenes used to generate the synthetic datasets. 41

5.2 Some examples of dataset frames. 42

5.3 The datasets trajectories used to perform the tests. 44

5.4 Error of pose detection under several different conditions. 45

5.5 Error of pose detection under several different conditions. 46

5.6 Error of pose detection under several different conditions. 47

5.7 The image template. 48

5.8 Some examples of dataset frames. 48

5.9 Coordinates and number of features along the Scale Change dataset frames. 50

5.10 Coordinates and number of features along the Perspective Distortion dataset frames. 51

5.11 Template frame and some examples of dataset frames. 52

5.12 The trajectory traveled by the camera according to PUMA readings and the developed algo-

rithm estimation. 53

5.13 Template frame and some examples of dataset frames. 56

5.14 Error norm evolution over time . 56

6.1 An example of a circular TAG. 59

A.1 The e-cam50 camera module. A-2

A.2 Some examples of the calibration images used. A-3

A.3 Some examples of the calibration images used. A-4

A.4 Radially distorted image (a) compared to the undistorted image (b). A-4

A.5 Coordinates and number of features along the Pure Rotation dataset frames. A-6

A.6 Coordinates and number of features along the Scale Change dataset frames. A-7

A.7 Coordinates and number of features along the Pure Rotation Z dataset frames. A-8

A.8 Coordinates and number of features along the Perspective Distortion dataset frames. A-9

A.9 Coordinates and number of features along the Unconstrained dataset frames. A-10

x

List of Tables

2.1 2D transformations. The Preserves column is incremental from bottom to top, for example,

affine transformation preserves parallelism and also straight lines 11

2.2 The four possible solutions to the decomposition of the planar homography matrix 16

4.1 Joint limits . 36

5.1 Computation times . 40

xi

Abbreviations

API Application Programming Interface

AST Accelerated Segment Test

COM Computer On Module

DOF Degrees Of Freedom

DSP Digital Signal Processor

FAST Features from Accelerated Segment Test

FOV Field Of View

FPS Frames Per Second

G-C Gumstix-and-Camera

IMU Inertial Measurement Unit

ISR Institute for Systems and Robotics

OS Operating System

PUMA Programmable Universal Machine for Assembly

RANSAC Random Sample Consensus

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Features

TI Texas Instruments

UAV Unmanned Aerial Vehicle

List of Tables

xiv

1
Introduction

Contents
1.1 Context, Motivation and objectives . 2
1.2 Problem Description . 2
1.3 Proposed Solution . 3
1.4 Related Work . 3
1.5 Main Contributions . 3
1.6 Thesis Outline . 4

1

1. Introduction

1.1 Context, Motivation and objectives

The work performed under the scope of this thesis is motivated by the project Advanced Interactive

Robotic Tools for the Inspection of Critical Infrastructures (AIRTICI) [3]. The main objective of this project is

to develop advanced robotic tools and techniques for the inspection of critical infrastructures, like bridges

and dams, for example. These infrastructures require a periodic monitoring programs, in order to evaluate

preservation conditions and to detect possible damages due to aging or meteorologic conditions. Consid-

ering, for example, the case of dams, the monitoring program, normally consists of a team of technicians

who have to examine, possibly using climbing equipment or mobile platforms, all the infrastructure looking

for damages, such as cracks. A more practical and safer alternative to this possibly dangerous activity,

would be to use an unmanned aerial vehicle (UAV) that could capture images from the whole infrastructure

surface and send them to a base station. This would require to maintain at least one person fully focused

on teleoperating the vehicle, and another one analyzing the images looking for cracks. This has many draw-

backs: the teleoperator has to either remain always within eyesight of the UAV or have video feedback of its

surroundings to properly maneuver it without colliding with obstacles, the range of teleoperation is limited

and it is known that a human cannot maintain his fully level of attention for long continuous periods. If the

vehicle were autonomous, being able to navigate over a path that covered all the infrastructure surface, all

the referred drawbacks would be overcome. Plus, it would be possible for a operator to control more than

one vehicle at once. An autonomous UAV as the one referred is one of the possible solutions that can be

developed by the end of the AIRTICI project.

For a UAV to navigate over all the infrastructure surface, it will need a navigation, guidance and control

system. One of the most basic functionalities of these systems is to stabilize the vehicle around a desired

position. The present thesis aims at developing a module that helps on this activity.

1.2 Problem Description

Using only a camera and a reference image captured at the desired position, the developed algorithm

will be able to calculate the error of translation and rotation, from the current pose to the desired one.

With this information, it is possible to take the error to zero and, consequently, the vehicle to the desired

pose. One of the requirements for this to work is that the scene captured at the reference pose has to be

planar. Nevertheless, in a man made environment, and even more when talking about big infrastructures

such as dams, this type of scene is very abundant. Consider the following example of usage: the vehicle is

teleoperated into a desired pose where a wall is seen by the camera. Due to winds and other factors, the

vehicle will be dragged from the desired pose. The developed algorithm is initiated, and errors start being

calculated. With these errors, the vehicle will stabilized around the desired pose using control techniques.

2

1.3 Proposed Solution

1.3 Proposed Solution

The first main issue is related to the overload capacity of an UAV, the hardware where the developed

solution is implemented has be lightweight enough for the vehicle to carry it. The Gumstix Overo Fire

Computer-On-Module (COM) together with the Caspa VL camera module will be used. The COM consists

of a board as small as a stick of gum that contains the essential components that form a computer (CPU,

RAM and storage memory).

Considering specifically the pose estimation problem, several computer vision algorithms will be used.

First, features from the reference image are analyzed and characterized using features detection and de-

scription algorithms. Then, using the same algorithm, each frame is analyzed to determine if the reference

scene is present on the current frame. If it is, an homography matrix that describes the transformation from

the current frame to the reference one can be calculated. From this homography it is possible to calculate

the rotation matrix and the translation vector that takes the vehicle from its current pose into the desired

one. Finally, using an appropriate control law, the vehicle will converge into the reference pose.

1.4 Related Work

Vision based control of unmanned aerial vehicles is an active area of investigation. Several works exist

on the topic with different approaches, and all have advantages and disadvantages.

Altüg et al. used a camera located on the ground to estimate the pose of a quadrotor in order to achieve

a stable flight [4]. Later, they extended their work by using a second camera on-board the quadrotor[5]. Earl

and D’Andrea estimated the quadrotor by using a Kalman filter with on board gyroscopes measurements

and off board vision sensor measurements [6]. Regarding the challenge of flying a quadrotor indoors,

Romero et al., proposed a simple vision system using off board computation hardware [7]. All these so-

lutions require a ground station to process the visual information, making the vehicle dependent upon a

continuous connection with ground.

Concerning on board only solutions, Mondragón et al., Martinez et al. and Bourquardez et al. works

estimate the pose of an UAV at real time using an on board camera [8] [9] [10]. Similarly to the approach

chosen in this thesis, they explore the information obtained by the projective transformation of planar opb-

jects into a calibrated camera. But the plane that is captured is previously known, such as a landmark or an

helipad for example.

1.5 Main Contributions

With the work performed under the scope of this thesis a module was developed. This module, which we

called Gumstix-and-Camera module, is composed by ultra-compact and lightweight hardware: a Gumstix

Computer-On-Module, for performing all the computations, and a Caspa VL camera, for image capturing.

Together with the developed algorithm , this module is able to compute the camera pose error in relation

3

1. Introduction

to a reference image, without the need of special visual marks or of any other type. The only restriction

is that the scene captured at the reference image is planar. Finally, the Gumstix-and-Camera module is

attached to a robotic arm and is used to close the control loop driving the arm end effector into the pose

corresponding to the reference image, making the pose error converge to zero.

1.6 Thesis Outline

The remaining of this thesis is organized as follows. Chapter 2 provides basic concepts from computer

vision, introduces the Pinhole Camera Model, the notion of image transformations including planar homog-

raphy and the steps to the calculation of translation and rotation from the homography matrix. Chapter 3

discusses the algorithms available to detect and describe features on images. Chapter 4 describes the

algorithm developed and the hardware used to test it. Chapter 5 shows the results of the tests realized.

Finally, on Chapter 6, the results are discussed and final remarks are provided along with possible future

work.

4

2
3-D Structure from Images

Contents
2.1 Introduction . 6
2.2 Pinhole Camera Model . 6
2.3 Planar Homographies . 9
2.4 From Planar Homography to 3-D Displacement - Planar Homography Decomposition . 15

5

2. 3-D Structure from Images

2.1 Introduction

One of the main requirements to control a rigid body using a vision based system is the ability to extract

three-dimensional (3-D) information from two-dimensional (2-D) data. That is, using data that lies on a 2-D

space, such as images acquired from a camera, determine the 3-D relations between such images.

To have any knowledge of how one image is related to another, it is first necessary to understand how

one single image is formed. That is, it is necessary to know the mathematical relationship between the

coordinates of a 3-D point and its projection onto the image plane. The most basic model that represents

this relationship is known as the pinhole camera model [11]. It describes the camera aperture as a point

and assumes that no lenses are used to focus light. Although its simplicity it can often be used to describe

how a camera represents a 3-D scene. But, sometimes the camera suffers from some strong non-idealities

such as radial and tangential distortions. This causes the effect of seeing curved lines that in reality are

straight. So, besides determining the pinhole camera model, this effect also has to be taken into account.

After having a model that copes with these effects, the camera is said to be calibrated.

The next step involves the determination of how the 2-D coordinates from two images of the same scene

relate to each other. With this purpose, the notion of 2-D image transformations are introduced. When the

scene being captured is planar, one transformation which is of particular interest is the planar homography.

If the camera is calibrated, the planar homography describes exactly how the points in one image project

into the other.

Once the planar-homography is known, it is possible to extract some 3-D information about the camera

pose when the images were taken. The procedure is known as planar-homography decomposition [12] and

has as input the planar homography matrix. It provides as outputs two possible solutions for the rotation

matrix and the translation vector up to a scale factor. This describes the change of camera pose from one

image into the other.

The remaining of this chapter is organized as follows. Section 2.2 shows how the pinhole camera model

is constructed in a bottom-up approach and shows the image distortion effect. Section 2.3 describes the

2-D image transformations from the most basic to the planar-homography and how it can be calculated.

Finally, section 2.4 explains the planar-homography decomposition method and how to choose the right

solution from the two given.

2.2 Pinhole Camera Model

In this section we define the most basic model used to describe how a camera acquires an image: the

pinhole camera model[11].

Perfect pinhole model. Image formation is modeled as a central projection of points in space into a plane

(see Figure 2.1). Consider a reference frame attached to the camera which we designate as camera frame.

This frame is defined in a way that the centre of projection, C, is the origin of an Euclidean coordinate

6

2.2 Pinhole Camera Model

system and the projection plane is orthogonal to the Z axis in Z = f . A point in space with coordinates

X = (X,Y, Z)T is mapped into the projection plane to a point x = (x, y)T that is defined as the intersection

of the line that contains X and C with the projection plane. Using the notion of similar triangles it is easy to

see that:

x = (x, y)T = (fX/Z, fY/Z)T (2.1)

which is the mapping from world to image coordinates.

(a) perspective view (b) side view

Figure 2.1: Pinhole camera model.

The centre of projection is called the camera centre. The projection plane e called the image plane. The

line from the camera centre perpendicular to the image plane is called the principal axis. The point where

the principal axis meets the image plane is designated as principal point.

Mapping from world to image plane using homogeneous coordinates In order to be able to simply

express the central projection as a linear mapping between the world and image points we use homoge-

neous coordinates. From now this is the notation that we will use: space and image points are represented

by their corresponding homogeneous vectors, X = (X,Y, Z, 1)T and x = (x, y, 1)T , respectively. So, (2.1)

may be written as  x
y
1

 =

 fX/Z
fY/Z

1

 =
1

Z

 f 0 0 0
0 f 0 0
0 0 1 0




X
Y
Z
1

 (2.2)

which can be written in a more compact manner as

x =
1

Z
PX (2.3)

which defines the camera matrix as

P = diag(f, f, 1)[I|0]. (2.4)

.

The perfect pinhole model just described is only valid when some strong assumptions hold true. In order

to be used to model real cameras some modifications have to be made. These modifications are described

next.

7

2. 3-D Structure from Images

Figure 2.2: Principal point offset

Principal point offset. In the expression (2.2) it is assumed that the origin of the coordinates is at the the

principal point. But, in practice, that may not be the case. So, a more general mapping (see Figure 2.2) can

be defined as:  x
y
1

 =

 fX/Z + px
fY/Z + py

1

 =
1

Z

 f 0 px 0
0 f py 0
0 0 1 0




X
Y
Z
1

 (2.5)

where (px, py)T are the coordinates of the principal point. We can define the matrix K as

K =

 f 0 px
0 f py
0 0 1

 (2.6)

which is called the camera calibration matrix and write (2.5) more concisely as

x =
1

Z
K[I|0]X. (2.7)

CCD cameras and finite projective camera. Until now we have assumed that that the image coordinates

are Euclidean coordinates having the same scale in both axial directions. But, particularly in CCD cameras,

that is not, generally, the case. If image coordinates are measured in pixels there is the possibility of

having unequal scale factors in each direction. So, if we define mx and my to be the number of pixels per

unit distance in the x and y directions, the transformation from world to pixel coordinates is obtained by

multiplying (2.5) on the left by an extra factor diag(mx,my, 1) and we redefine

K =

 αx 0 x0

0 αy y0

0 0 1

 (2.8)

where αx = fmx and αy = fmy are the focal length of the camera in the x and y direction respectively.

Using the same logic, x0 = mxpx and y0 = mypy are the principal point coordinates in terms of pixel

dimensions.

Although not so common, it is also possible that the x and y axis are not perpendicular. If that is the

case we can consider a more general form of the calibration matrix

K =

 αx s x0

0 αy y0

0 0 1

 (2.9)

8

2.3 Planar Homographies

where the extra parameter s is called the skew parameter.

Radial Distortion. Although, in the camera model described so far, the important property of projecting

3-D straight lines to 2-D straight lines on images holds, it is common that this is not the case in real cameras.

An effect, known as radial distortion, causes straight lines to become curved (Figure 2.3). This effect tends

to be stronger when the camera lens aperture is bigger.

Figure 2.3: Radially distorted image

In order to minimize or, ideally, eliminate this effect, and to define the pinhole camera model, a method

known as Camera Calibration has to be performed. The procedure executed to calibrate all the cameras

used along this project is explained in Appendix A.2.

2.3 Planar Homographies

Figure 2.4: 2D transformations

2.3.1 2D image transformations

Consider two images of an object that are captured by a camera from two different positions. The

image of the object is not the same in both images. Nevertheless, the two images may be related by a

9

2. 3-D Structure from Images

2D transformation [13], i.e., a transformation that occurs in the 2D plane (see Figure 2.4). A set of 2D

transformations is described next. It starts with the transformations with least degrees of freedom, that

preserve more objects properties, and incrementally evolves into the more general transformations.

Translation. A translation can be written as x′ = x+ t, being t = (t1, t2)T the translation vector. This

transformation can be rewritten in the matrix form as

x′ =

[
I t
0 1

]
x (2.10)

A translation preserves orientation, lengths, angles, parallelism and straight lines.

2D Euclidean transformation. A 2D Euclidean transformation is a combination of a rotation and a trans-

lation. That is why it is also known as translation + rotation transformation. It is modeled as

x′ =

[
R t
0 1

]
x (2.11)

where

R =

[
cos θ − sin θ
sin θ cos θ

]
(2.12)

is an orthogonal matrix RRT = I and |R| = 1. θ is the rotation angle. It preserves lengths, angles,

parallelism and straight lines.

Scaled Rotation. The scaled rotation or similarity transform also changes the scale. It is written as

x′ =

[
sR t
0 1

]
x (2.13)

It preserves angles, parallelism and straight lines.

Affine. In the affine transformation the matrix R can take any form. It is written as

x′ =

 a00 a01 a02

a10 a11 a12

0 0 1

x (2.14)

parallelism is no longer preserved.

Homography. This is the transformation with more interest to the study done in this report. It is also

known as projective or perspective transform. It has the form

x′ = Hx =

 h00 h01 h02

h10 h11 h12

h20 h21 h22

x (2.15)

10

2.3 Planar Homographies

The matrix H is homogeneous and, as so, is defined up to a scale factor. Two matrices that differ only by a

scale represent the same transformation. The individual coordinates are given by:

x′ =
h00x+ h01y + h02

h20x+ h21y + h22
x and y′ =

h10x+ h11y + h12

h20x+ h21y + h22
y. (2.16)

Homographies only preserve straight lines.

Table 2.1 resumes the 2D transformations and their properties.

Table 2.1: 2D transformations. The Preserves column is incremental from bottom to top, for example, affine transfor-
mation preserves parallelism and also straight lines

Transformation DOF Matrix Preserves

Translation 2
[
I t
0 1

]
orientation

Euclidean 3
[
R t
0 1

]
lenghts

Scaled 4
[
sR t
0 1

]
angles

Affine 6

 a00 a01 a02

a10 a11 a12

0 0 1

 parallelism

Homography 8

 h00 h01 h02

h10 h11 h12

h20 h21 h22

 straight lines

2.3.2 Planar Homography

Consider two images of points p on a 2D plane P in 3-D space (Figure 2.5). Assuming that the optical

centre of the camera never passes through the plane, it is possible to define a transformation that maps a

image x1 of a point p ∈ P into the second image x2 of the same point. To this transformation we will call

planar homography [12].

Definition: Epipolar constraint Consider two orthonormal reference frames with origins o1 and o2

located at the optical centres of the cameras that took the two different images of the same scene. For

simplicity, and without loss of generality, assume the world frame to be one of the cameras. If we call the

3-D coordinates relative to the camera frame of a point p, X1 ∈ R3 and X2 ∈ R3, then the following relation

holds

X2 = RX1 + t (2.17)

where R is a 3x3 rotation matrix and t is a 3x1 translation vector that relate the two reference frames. Now,

if x1 and x2 are the homogeneous coordinates of the two images of p and assuming that the camera is

calibrated, (2.17) can be rewritten as

λ2x2 = Rλ1x1 + t (2.18)

11

2. 3-D Structure from Images

Figure 2.5: Planar homography

because Xi = λixi, i = 1, 2. Defining the skew-symmetric matrix S(t) that is constructed from the transla-

tion vector t

S(t) =

 0 −t3 t2
t3 0 t1
−t2 t1 0

 , (2.19)

the depths λ1 and λ2 can be eliminated. Firstly by premultiplying both sides of (2.18) by S(t)

λ2S(t)x2 = S(t)Rλ1x1 (2.20)

which eliminates the translation vector because multiplying by S(t) is equivalent to apply the cross product,

so S(t)t = t× t = ∅. And secondly, since the vector S(t)x2 = t × x2 is perpendicular to the vector x2,

premultiplying (2.20) by xT2 and considering that λ1 > 0 leads to

xT2 S(t)Rx1 = 0 (2.21)

which finally eliminates the depths λ1 and λ2. The matrix

E
.
= S(t)R (2.22)

is called the essential matrix. Equation(2.21) is called the epipolar constraint or essential constraint.

�

As stated before, two images of the same point satisfy the epipolar constraint. However, if the points

belong to a 2D plane in the 3-D space further constraints apply.

Defining the unit normal vector of the plane P with respect to the first camera frame as n = [n1, n2, n3]T

and the distance from the plane P to the optical centre of the first camera as d > 0 the following relation

holds

ntX1 = n1X + n2Y + n3Z = d ⇔ 1

d
ntX1 = 1, ∀X1 ∈ P (2.23)

12

2.3 Planar Homographies

Applying equation (2.23) in equation (2.17) we get

X2 = RX1 + t = RX1 + t
1

d
ntX1 =

(
R+

1

d
tnt
)
X1. (2.24)

Defining the matrix

H =

(
R+

1

d
tnt
)

(2.25)

which represents the transformation from X1 to X2 leads to

X2 = HX1. (2.26)

Matrix H is called the planar homography matrix and, as it can be seen, depends on the motion parameters

(R, t) and the structure parameters (n, d). Because the translation vector is scaled by the distance d in the

term 1
dtn

t, it can only be expected to extract the direction. but not the module of the vector.

Considering image coordinates we can write

λ1x1 = X1, λ2x2 = X2, X2 = HX1 (2.27)

and obtain

λ2x2 = Hλ1x1 ⇔ x2 ∼ Hx1 (2.28)

This last equation is known as planar homography mapping[12].

2.3.3 Calculation of the Planar Homography Matrix

Premultiplying both sides of equation (2.28) by the skew-symmetric matrix S(x2) ∈ R3×3 leads to

S(x2)Hx1 = 0 (2.29)

which is a linear equation in H. As so, the entries of H can be stacked as a vector of the form

Hs ≡ [H11, H21, H31, H12, H22, H32, H13, H23, H33]
T (2.30)

to rewrite equation (2.29) as

aTHs = 0 (2.31)

with a ≡ x1 ⊗ S(x2) ∈ R9×3 representing the Kronecker product (see appendix A.3). Because S(x2) is of

rank 2, also a is of rank 2. So, in order to determine uniquely (up to a scale factor) the homography matrix

it is necessary to know at least 4 pairs of images from points that lie on the same plane and that no three of

them are collinear. This way, defining χ ≡
[
a1,a2,a3,a4

]T ∈ R12×9 which is of rank 8, the following system

χHs = 0 (2.32)

can be solved using standard least-squares estimation, or any other equivalent method to determine H up

to a scale factor which has the form

HL ≡ λH = λ

(
R+

1

d
tnt
)
. (2.33)

13

2. 3-D Structure from Images

Random Sample Consensus Although, the first naive approach would be to apply a standard least-

squares estimation, this would probably lead to a bad estimation of the homography matrix. This would be

due to the fact that we will be working with images that contain noise, and it can exist points in one image

that are mismatched with the points on the other image, depending on the algorithm used to describe and

match the points (see Chapter 3).

A more reliable approach, and that is adopted, is to use Random Sample Consensus (RANSAC)

[14]. Basically, this algorithm assumes that in the set of matched points, there are inliers (points cor-

rectly matched), and outliers (points not matched correctly) that will lead to a bad estimation when using

standard least-squares estimation, because this method tries to fit optimally all the points. With RANSAC

a random subset of the points pairs e used as input and least-squares estimation is applied into these

hypothetical inliers. The homography estimated is then tested against the remaining points pairs, if a pair

fits well enough it is also considered an hypothetical inlier. The homography is considered reasonably good

if enough points pairs are considered as inliers. If so, the homography is reestimated using all the new

hypothetical inliers. Finally, this new homography reliability is evaluated by using the error of the inliers with

this homography. The procedure is repeated a fixed number of times. The homography that has a better

reliability is considered the true one.

�

Determined the homography that better describes the transformation from one image to the other, to

recover the original homography matrix, it is necessary to determine the scale factor λ

Determination of the homography scale factor Defining u = 1
dR

T t ∈ R3 we have

HT
LHL = λ2

(
I + unT + nuT + ‖u‖2nnT

)
(2.34)

Note that the vector u×n = S(u)n is orthogonal to u andn, is an eigenvector ofHT
LHL andHT

LHL(S(u)n) =

λ2(S(u)n). This implies that |λ| is a singular value of HL. Furthermore, defining v = ‖u‖n, w = u‖u‖ ∈ R3

and considering the matrix

Q = unT + nuT + ‖u‖2nnT = (w + v)(w + v)T − wwT (2.35)

it is possible to see that it has a positive, a negative and a zero eigenvalue, except when u ∼ n, Q will have

two repeated zero eigenvalues. Either way, λ2 is the second-largest eigenvalue of HT
LHL.

Normalization of the planar homography matrix So, if {σ1, σ2, σ3} are the singular values of HL the

normalized planar homography matrix is obtained using

H = ± HL

σ2(HL)
. (2.36)

The correct sign is determined knowing that the following condition has to be true

(xj2)THxj1 < 0, ∀j = 1, 2, ..., n. (2.37)

14

2.4 From Planar Homography to 3-D Displacement - Planar Homography Decomposition

because λj2x
j
2 = Hλj1x

j
1 and λj1, λ

j
2 > 0. This condition is known as the positive depth constraint.

2.4 From Planar Homography to 3-D Displacement - Planar Homog-
raphy Decomposition

The procedure to decompose the planar homography matrix into its elements R, 1
dt and n as explained

in [12] is described here.

Using the symmetric matrix HTH, it can be decomposed into the form

HTH = V ΣV T (2.38)

where V is an orthogonal matrix andΣ is the diagonal matrix that contains the three eigenvalues ofHTH,

Σ = sigma{σ2
1 , σ

2
2 , σ

2
3}. Because the matrix H is assumed to be already normalized σ2 = 1. Denominating

the three column vectors of V as [v1, v2, v3] leads to

HTHv1 = σ2
1v1, HTHv2 = σ2

2v2, HTHv3 = σ2
3v3. (2.39)

So, and because

HTH =

(
I +

1

d
tnT + n(

1

d
t)T + ‖1

d
t‖2nnT

)
, (2.40)

we can conclude that v2 is orthogonal both to n and t. Also, because H =
(
R+ 1

dtn
t
)
, the length of v2 is

preserved under the map of H, i.e. ‖Hv2‖2 = ‖Rv2‖2 = ‖v2‖2. Furthermore, the unit vectors defined as

u1 ≡
√

1− σ2
3v1 +

√
σ2

1 − 1v3√
σ2

1 − σ2
3

, u2 ≡
√

1− σ2
3v1 −

√
σ2

1 − 1v3√
σ2

1 − σ2
3

(2.41)

also have its lengths preserved under the map H. Because the vectors v2, u1 and u2 lengths are preserved

under the map H so any vectors of the subspaces

S1 = span{v2.u1}, S2 = span{v2.u2} (2.42)

will have its lengths preserved. Finally, notice that, if n is the normal to the subspace Si, i = 1, 2 then

Rv2 = Hv2, Rui = Hui, R(S(v2)ui) = S(Hv2)Hui. (2.43)

So, defining the matrices

U1 = [v2, u1,S(v2)u1] , W1 = [Hv2, Hu1,S(Hv2)Hu1] ,
U1 = [v2, u1,S(v2)u1] , W1 = [Hv2, Hu1,S(Hv2)Hu1] .

(2.44)

equations (2.43) can be rewritten as

RU1 = W1, RU2 = W2. (2.45)

This indicates that both subspaces, S1 and S2, can lead to a solution of the decomposition problem.

Besides the option of the two subspaces, there is also an ambiguity in the sign of the term 1
dt. So, this

15

2. 3-D Structure from Images

Table 2.2: The four possible solutions to the decomposition of the planar homography matrix

R1 = W1U
T
1 R3 = R1

Solution 1 n1 = S(v2)uT1 Solution 3 n3 = −n1
1
dt1 = (H −R1)n1

1
dt3 = − 1

dt1

R2 = W2U
T
2 R4 = R2

Solution 2 n2 = S(v2)uT2 Solution 4 n4 = −n2
1
dt2 = (H −R2)n2

1
dt4 = − 1

dt2

sums up to four possible solutions in the decomposition problem of the planar homography matrix into the

terms {R, 1
dt,n}. These solutions are summarized in Table 2.2.

The problem now, is to determine the correct solution. Since the camera only sees points that are

in front of it, two solutions can be eliminated by applying the positive depth constraint, i.e. by imposing

nT e3 = n3 > 0. This way, only two possible solution are left. Now, several techniques can be applied. For

example, a third image of the same plane or a second plane on the same images can be used [15]. Either

way, a new homography matrix will be available. After decomposing this second homography and getting

two new possible solutions, it is only a question of finding the common solution on the two sets of solutions.

16

3
Image Features

Contents
3.1 Introduction . 18
3.2 SURF - Speeded-Up Robust Features . 19
3.3 BRIEF - Binary Robust Independent Elementary Features 26

17

3. Image Features

3.1 Introduction

As seen in chapter 2, if a planar scene is being captured by a camera, it is necessary to have the

correspondence between the 2-D coordinates of points to extract the information about the camera pose

change between images. This chapter deals with the problem of automatically finding good points to track

and finding their correspondents across images.

Common requirements of the applications that require a visual tracking system are the system to be

robust and fast enough to be computed in real time. Although some systems work with optical flow, we

are only interested in feature-based visual tracking because optcal flow is prone to long-term drift, as the

motion estimates and therefore the errors are integrated over time, and is only feasible for smooth motion.

Although different, all feature-based approaches start with two essential steps: interest points detection

and features description.

Mainly, three types of points detectors can be found among the literature:

• Corner Detectors: Where one of the first low-level features used to image analysis. The most well

known approach is the Harris Corner Detector [16]. It uses the second-order moment image gradient

matrix to calculate a score that indicates if the current point should be considered a corner or not. This

method is also the basis for some other corner detector that were developed later. Other approaches,

for example, use the determinant of the Hessian matrix [17] or measure the change of direction in the

local gradient field [18]. Although there are some variants that are, normally corner detectors are not

scale invariant.

• Blob Detectors: These approaches try to find blobs instead of single corners using local extrema of

the responses of certain filters. One of the first used was the Laplacian of a Gaussian which was

shown to be scale invariant when applied to to multiple image scales [19]. Then, in order to develop a

faster detector, a filter based on differences of Gaussians was used [20]. Because they are separable,

they are faster to compute. In order to speed up even more the process, the authors of [21] proposed

the Fast Hessian detector which is based on approximations of the Hessian matrix at different scales

that are very efficient to compute.

• Affine-Invariant Detectors: These type of detectors are more recent. They aim to the detections

techniques that are invariant to affine changes. These detector are more robust and provide higher

repeatability to strong affine changes but are much more expensive to compute [20].

On the field of feature descriptors there are a few approaches that stand out. There are some earlier

ones such as [22], that use derivatives to achieve rotation invariance, or [23] that make use of derivatives of

Gaussians of different order. But, is the work of Lowe [20] that really stands out. Its Scale-Invariant Feature

Transform (SIFT) work is probably the most well-known and widely used descriptor. It is invariant to changes

in scale and rotation. To achieve that, it assigns a local reference frame in relation to a dominant scale and

rotation previously computed around the feature point, using local histograms on a square grid. Further

18

3.2 SURF - Speeded-Up Robust Features

refinements of Lowe’s work have been made, such as using PCA to reduce descriptor size and, therefore,

reducing the matching time [24]. Bay et al. [21] introduced Speeded-Up Robust Features (SURF) as a faster

alternative to SIFT. It uses similar SIFT approaches but makes use of integral images and approximations

of the expensive Gaussian filters using response box filters to speed up the computations. More recently,

Calonder et al. [1], developed the Binary Robust Independent Elementary Features (BRIEF), which uses

only binary strings as an efficient alternative for feature point description. It makes use of the Hamming

distance which is very efficient to compute when compared to the L2 norm usually used. Other approaches

such as [25] and [26] exist that use trained classifiers but they have the drawback of previously requiring a

training phase.

Taking into account the good results documented in the literature regarding SURF and BRIEF , these

are the main two approaches that are tested in the project and described on this section.

The remaining of this chapter is organized as follows. Section 3.2 describes the SURF algorithm as

proposed by [21] . Section 3.3 explains the main differences of BRIEF when compared to SURF.

3.2 SURF - Speeded-Up Robust Features

3.2.1 Integral Images

The definition of integral image, or summed area table, was first introduced in [27] with the objective

of making computer graphics textures tractable. In the current scope it will be useful to allow the fast

computation of box type convolution filters.

Integral images is in an algorithm to calculate very efficiently the sum of values in a rectangular subset

of an image. The integral image IΣ(x, y), with the same dimensions of the input image I, is constructed in

such a way that each entry represents the sum of all input image pixels within a rectangular region delimited

by the pixel at the coordinates (x, y) and the origin.

IΣ(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (3.1)

With this foundation, the calculation of the sum of the intensities over any rectangular area in very

efficient. For example, considering the rectangular area [ABCD] in Figure 3.1, the sum of intensities Σ will

be given by:

Σ = A− B− C + D (3.2)

Hence, the calculation time is constant for rectangular areas of any size and takes only one sum and two

differences.

3.2.2 Interest points detection

In the task of finding an object in an image, instead of searching for the object as a whole, it is usual to

search for objects interest points. This type of approach is chosen for several reasons, from which the main

19

3. Image Features

Figure 3.1: Using integral images, the calculation time of the sum of the pixels in the rectangular area delimited by
[ABCD] is independent of its size and takes only one sum and two differences

ones are the computational cost of searching in such a high-dimensional data as the one stored in images,

and the high level of redundancy incorporated, because pixels do not move independently and have a high

level of correlation. There are several methods to define and detect interest points, ranging from the ones

that consider corners as interest points to the ones that consider blobs instead. In this section the fast

Hessian detector [21] will be decribed. Like Figure 3.2 shows, it detects blob-like features. For more details

on others interest points detectors please refer to [28].

Figure 3.2: An example of the type of features that the Fast Hessian Detector detects

Fast Hessian Detector The fast Hessian detector detects blob-like features. It is based on the Hessian

Matrix, which at scale σ is defined as follows:

H(x, y, σ) =

[
δ2

δx2G(σ) ∗ I(x, y) δ
δx

δ
δyG(σ) ∗ I(x, y)

δ
δx

δ
δyG(σ) ∗ I(x, y) δ2

δy2G(σ) ∗ I(x, y)

]
, (3.3)

It is know that, in the continuous case, Gaussians are optimal for scale-space analysis [29, 30]. However,

all Hessian-based detectors have a downside in general: when working with discrete images, Gaussians

have to be discretized as well, as consequence there is a loss of repeatability under image rotations around

20

3.2 SURF - Speeded-Up Robust Features

odd multiples of π4 . Nevertheless, the Hessian matrix is chosen because the repeatability rate is still very

high in any rotation angle [21]. As discretized Gaussian filters are already non-ideal and the convolutions

are still very expensive, they are approximated by box filters (Figure 3.3). This way, when used together with

integral images, the computations can be performed in constant time. Although this is an even stronger ap-

proximation, the performance is comparable or even better than with the discretized and cropped Gaussian

[21].

(a) (b) (c)

Figure 3.3: Box filters approximating Gaussians second order derivatives

Once the approximated Hessian matrix using box filters is calculated it is necessary to determine how

’strong’ is the current point to classify it as of interest or not. For this purpose, the determinant of the exact

Hessian matrix is used as a score measure. Because only the approximated Hessian matrix is available,

an approximation for the determinant is also required:

det(Happrox) = Dxx(σ)Dyy(σ)− (wDxy(σ))2 ' det[H(x, y, σ)] (3.4)

where Dxx, Dyy and Dyy are the results of convolving the image with the filters in Figure 3.3. The factor w

takes the value 0.9 and is used to approximate more precisely det[H(x, y, σ)].

Scale Invariance The previous calculations are performed at different scales because interest points

may be compared between images where they are seen at different scales. The scale space is implemented

as an image pyramid. Without box filters, usually, image pyramid is built by repeatedly smooth the image

with a Gaussian and then sub-sample it in order to achieve a higher level of the pyramid. Fortunately,

with box filters and integral images, there is not the need to filter the image iteratively and sub-sample

it. Instead, it is the filter that is up-scaled and applied at exactly the same speed on the original image.

The filters represented in Figure 3.3 are the initial scale layer, which is referred as scale s = 1.2. The

higher levels of the pyramid are reached by gradually applying bigger filters. The scale space is divided into

octaves. Each octave is a series of filter response map obtained by convolving the same input image with a

filter of increasing size. Due to the discrete nature of box filters, for two successive levels, its size must be

increased by a minimum of two pixels in order to maintain the presence of the central pixel.

The first octave starts with the 9×9 filter and then filter with sizes 15×15, 21×21 and 27×27 are applied.

For each new octave, the filter size increase is doubled. So, in the second octave the size increase will be

of 12 and so on. This lead to the octaves represented in Figure 3.4. The last octave is only calculated if the

original image size is still larger than the corresponding filter sizes. Although, even more octaves can be

21

3. Image Features

analyzed, the number of interest points decays very quickly [21], so it is not worth the computational cost.

Figure 3.4: Graphical representation of the filter side lengths for four different octaves. The octaves overlap in order to
cover all possible scales seamless

Interest point classification In order to classify a point a of interest or not a non-maximum suppres-

sion in a 3 × 3 × 3 is applied in scale and image space (Figure 3.5). Each sample is compared to its 8

neighbors in the current image and the 18 neighbors of the “bigger” and “smaller” images in scale space. If

it has the biggest score (Hessian matrix determinant) of its neighbors then it is considered an interest point,

otherwise it is discarded.

Figure 3.5: Graphical representation of the 3× 3× 3 neighborhood

Once it is classified as an interest point, the location is refined to subpixel accuracy by fitting a parabola

to the sample point and its immediate neighbors [31].

3.2.3 Interest points descriptors

After the detection of the interest points, it is necessary to assign a description to each one in order to

identify and distinguish them from each other and to match them across images. Ideally, a good descriptor

will provide a description to every point that is unique but identical for all possible views of the same point.

22

3.2 SURF - Speeded-Up Robust Features

This ideal case is real hard to achieve, if not impossible. Nevertheless, local descriptors use information

about the texture of the interest points neighborhood to distinguish them as much as possible from each

other. Specifically, the SURF descriptor, described next, tends to perform very well in this task. The SURF

descriptor is constructed in three step which are now described.

Interest point orientation assignment To achieve rotation invariance, the first step is to assign an

orientation to the point so that, when it is seen from another perspective, it can be correctly matched. For

this purpose, and to take advantage of the use of integral images, Haar wavelet filters are used (Figure 3.6).

Being s the scale at which the interest point was detected, filters of size 4s are used and wavelet responses

in x and y directions with a sampling step of s are calculated around a circular neighborhood of radios 6s.

(a) x (b) y

Figure 3.6: Haar wavelet filters

The filter responses are weighted with a Gaussian of σ = 2s centred at the point and represented

in Cartesian coordinates system. Using a orientation sliding window of π
3 rad (Figure 3.7), the sum of all

responses within the window are calculated. The orientation of the window that has the greatest summed

value is the orientation that is assigned to the point.

Figure 3.7: Sliding window used to assign the orientation

Descriptor vector Although there are few variations, the standard SURF descriptor consists of a

vector with 64 entries. To build this vector, the first step is to construct a square region of size 20s, centered

23

3. Image Features

at the interest point and with the orientation selected in the previous step.

This region is split up into 4 × 4 square sub-regions. Using Haar wavelets filters with size 2s, the filter

responses at 5 × 5 equally spaced sample points are calculated in the x and y direction. Note that these

directions are defined in relation to the square region orientation. But instead of rotating the image itself,

the filter responses are calculated in the unrotated image and then interpolated.

After weighting the filter responses using a Gaussian with σ = 3.3 centred at the interest point, four

sums in each sub-region are calculated: the sums of dx and dy and, to have information about the polarity

of the intensity changes (Figure 3.8), the sums of |dx| and |dy|.

Figure 3.8: Descriptor entries of a sub-region.

3.2.4 Interest points matching

An interest point in one image, is considered to match another interest point in other image if they are

close enough in the nearest-neighbor sense. The most widely used algorithm for nearest-neighbor is the

kd-tree [32].

The kd-tree algorithm uses a binary tree in which every node is a k-dimensional point. Each non-leaf

node can be considered as a generator of a hyperplane that divides the space into two subspaces. To

define this hyperplane, one of the k-dimensions of the space is associated to the node and the hyperplane

is defined in such a way that it passes through the node and is perpendicular to the associated dimension’s

axis. Points to the left of the hyperplane belong to the the left subtree and points to right belong to the right

subtree. An example of a kd-tree for a 2-dimensional space is illustrated in Figure 3.9.

Figure 3.9: An example of a kd-tree

24

3.2 SURF - Speeded-Up Robust Features

The canonical method to add an element to the tree consists on selecting, from the group of points to

be inserted, the median one. Then, at each tree level, we cycle through the space dimensions used to

select the hyperplanes. We move down to the left subtree if the point coordinate of the selected dimension

is lower then the current node’s one, or to the right subtree otherwise, until we reach a leaf. This will lead to

a balanced tree. For example, the point (3,5) would be the right child of the node (5,4) on the tree of Figure

3.9.

Once the tree is constructed, one can find the nearest neighbor of a point by performing the following

steps:

1. Start at the root node and move down the tree recursively, in the same way as if the point was being

inserted.

2. Once on a leaf node, save it as the “current best“.

3. Now, go back the recursion of the tree, performing the following steps at each node:

(a) If the current node is closer than the “current best“, then it becomes the “current best”.

(b) Now, check whether there could be any points on the other side of the splitting plane that are

closer to the search point than the “current best”. Conceptually, this is done by intersecting the

splitting hyperplane with a hypersphere around the search point that has a radius equal to the

current nearest distance. To do that and since the hyperplanes are all axis-aligned, simply check

if the difference between the splitting coordinate of the search point and current node is less than

the distance (overall coordinates) from the search point to the current best.

i. If the hypersphere crosses the plane, there could be nearer points on the other side of the

plane, so we must move down the other branch of the tree from the current node looking for

closer points, following the same recursive process as the entire search.

ii. If the hypersphere does not intersect the splitting plane, then continue walking up the tree,

and the entire branch on the other side of that node is eliminated.

4. Once this process is completed for the root node, then the search is complete.

Finding the nearest neighbor is an O(log N) operation in the case of randomly distributed points and

considering that the tree is balanced. This works well for exact nearest neighbor search in low-dimensional

data. Unfortunately, when the number of points is only slightly higher than the number of dimensions, the

algorithm is only slightly better than a linear search of all of the points.

Several modifications, like [33], have been made to this algorithm to improve its performance with the

trade-off of finding only the approximate nearest neighbor instead of the exact one.

For the current work we chose to use the FLANN library [34]. It is a C++ library for performing fast

approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms

25

3. Image Features

found to work best for nearest neighbor search and a system for automatically choosing the best algorithm

and optimum parameters depending on the dataset.

3.3 BRIEF - Binary Robust Independent Elementary Features

In this section, the main differences of BRIEF from SURF are described.

3.3.1 BRIEF descriptor

The BRIEF descriptor differs from the SURF descriptor in the sense that it directly computes binary

strings from image patches. Each bit is obtained by comparing intensities of pairs of points. Also, by

constructing the descriptor this way, it enables the possibility of using the Hamming distance to compare

strings. The use of this distance has the advantage of only requiring a bitwise XOR operation and a bit

count which can be performed much faster than other standard distance measures.

Patch smoothing Because BRIEF tests are performed in single pixel pairs, if they are performed in

the original patch without any form of preprocessing, the performance will be very sensitive to image noise.

To avoid this dependence, the image patch is previously smoothed with a Gaussian kernel. This way, the

descriptor stability and repeatability are increased. The tests performed in [1] show that using a Gaussian

kernel with variance of 2 leads to the best results, and this will be the value used.

Intensity test The test τ to determine each descriptor’s bit is defined as follows:

τ(p;x,y) :=

{
1 if p(x) < p(y)
0 otherwise , (3.5)

where p is the S × S image patch and p(x) is the smoothed pixel intensity at coordinates x = (u, v)T . So,

if the pixel intensity at x is lower than the one at y the correspondent bit will be 1, otherwise it will be 0.

Spatial arrangement of tests Defined the individual test, it is necessary to decide the patch positions

at which the tests will be performed. The authors of [1] tested several sampling geometries (Figure 3.10)

and found that the one that leads to the highest recognition rate is the one that samples the tests positions

from an isotropic Gaussian distribution, (X,Y) ∼ i.i.d. Gaussian(0, 1
25S

2). (Figure 3.10(b)). The locations

following this distribution are calculated on the initialization phase of the algorithm, from there, the locations

will be the same for every feature descriptor that is calculated.

Descriptor bitstring Finally, having the location pairs (x,y) defined, the nd-dimensional descriptor

string is defined as

fnd(p) :=
∑

1≤i≤nd

2i−1τ(p;xi,yi). (3.6)

26

3.3 BRIEF - Binary Robust Independent Elementary Features

(a) (b)

(c) (d) (e)

Figure 3.10: Different approaches to choosing the test locations. All except the righmost one are selected by random
sampling. Showing 128 tests in every image. Figures adapted from [1].

The authors of [1] performed several tests with nd = 128, 256 and 512. They conclude that, for image pairs

with short baseline, using nd = 256 yields near optimal results and that for all other cases nd = 512 perform

better.

3.3.2 Feature detector

Calonder et al., do not propose any special feature detector, any option available on the literature can

be used. The chosen one was FAST (Features from Accelerated Segment Test) [2].

FAST is based on the Accelerated Segment Test (AST). This test, which is simplified version of SUSAN

(Smallest Univalue Segment Assimilating Nucleus) [35], consists on defining a circle of radius r around

the candidate point (Figure 3.11). Then, if at least n contiguous pixels are all brighter or all darker than

the center pixel by at least t, the point is considered a feature. Specifically, FAST’s tests shown that better

results are achieved by using r = 3 (circunference of 16 pixels) and n = 9. The order by which the circle

pixels are tested can speed up considerably the overall performance. This order is chosen by building a

decision tree from the ID3 algorithm [36] applied to a training set of images. Contrasting to SURF’s Fast

Hessian Detector, that detects blob-like features, FAST detects corner-like features.

3.3.3 Scale and Rotation Invariance

On the original work from Calonder et al., BRIEF is not invariant to scale change or rotation. To achieve

that, a pyramidal approach was used. When the template image is being processed, several copies of

27

3. Image Features

Figure 3.11: Illustration of the test circle. The pixel at p is the center of a candidate corner. The arc indicated by the
dashed line passes through 12 contiguous pixels which are brighter than p by more than the t. Figure
adapted from [2].

the original image are generated by scaling it and rotating within a 360 degrees span. To each of these

generated imaged FAST and BRIEF algorithms are applied. This will lead to several descriptors of the

same features but rotated and scaled, thus, achieving scale and rotation invariance.

28

4
Developed Algorithm and System

Architecture

Contents
4.1 Introduction . 30
4.2 Developed Algorithm . 31
4.3 Gumstix Overo Fire . 33
4.4 Caspa VL Camera . 34
4.5 PUMA 560 Robotic Arm . 34
4.6 Overall Architecture . 38

29

4. Developed Algorithm and System Architecture

4.1 Introduction

In this chapter, the practical implementation of the work developed is addressed. It will be explained

how all the theoretical knowledge acquired is used to propose an algorithm that successfully estimates a

camera pose, the hardware where it was implemented and respective architecture.

Concerning the main algorithm developed, it is divided into two main parts. The first one, consists

in detecting the template plane present on a video stream. The two features detectors and descriptors

described before were implemented in order to do so. By doing this, it will be possible to compare them,

regarding computational efficiency, robustness and precision (see Chapter 5). The second main part of the

developed algorithm consists of using the coordinates of the frame already detected on the video stream

to estimate the pose of the camera that is acquiring it. This is done by calculating the homography matrix

that maps the coordinates of the template plane detected on the current frame into the coordinates of the

template plane on the reference frame. With this matrix, the homography decomposition method is applied

and two possible solutions, each one consisting of a translation vector and a rotation matrix, are calculated.

The true solution is chosen by, either using the IMU data of the vehicle where the camera is attached, or by

using a third image containing the reference plane too but captured at a different pose.

Apart from some conceptual tests performed on the Matlab software due to easiness of development,

all the code was written using the C++ language. Although being a low level language, it is much more

computationally efficient. Because, when working with images, great part of the calculations are performed

using matrices and C++ does not natively provide an API to easily use these data structures, the OpenCV

library [37] was also used. It is a computer vision library that is free for academic and professional use and

provides an API with several computer vision algorithm already implemented.

Regarding the hardware where the code will run, because one of the final objectives of the developed

algorithm is to be used on board of aerial vehicles, it was necessary to define a commitment between

cost, computation power and size. It is required that the hardware is lightweight enough, but at the same

time powerful enough to, hopefully, run the code at real time speed. Considering these requirements, the

hardware that seemed more appropriate was the Gumstix Overo Fire. It belongs to the COM (Computer

On Module) hardware class. Basically, it has an ARM Cortex-A8 CPU, RAM memory, storage memory and

networking capabilities, all on a single board with an approximate size of a gum stick. It runs the Linux OS,

and many expansion boards to extend the capabilities are available. For capturing video, firstly the e-cam50

camera module (see Appendix A.1) was considered, but due to better technical specifications the Caspa

VL was chosen.

Although, as already stated, the main objective is to use the developed application on board of aerial

vehicles, and a quadrotor is available at ISR labs. This was not the test bench used. Getting a quadrotor in

the air requires a team of several people, and this is not practical to perform every time there is the need test

some modifications on the code. Instead, a robotic arm was used. It is more practical to operate, requires

only a single person and is conceptually identical to estimate the pose of a quadrotor, or the pose of the

30

4.2 Developed Algorithm

camera attached to the arm’s end effector. The robotic arm available on the university facilities is the PUMA

500 model from Unimation with 6-DOF.

The remaining of this chapter is organized as follows. Section 4.2 contains a flowchart of the developed

algorithm and explain the order of the steps performed. Sections 4.3, 4.4 and 4.5 describes with more detail

all the hardware used. Finally, Section 4.6 shows all the hardware is connected, it provides a global view of

the testing setup architecture.

4.2 Developed Algorithm

The developed algorithm works as follows (see flowchart on Figure 4.1): the program starts acquiring

frames from the camera. When the camera is at the desired pose the user sends a command and the

template image is stored and learned by the chosen method (either SURF, BRIEF or TAG features are

extracted). Then the main loop starts. A new frame is acquired and the features are extracted. Now, the

features of the current frame are matched with the template frame features. Matched features coordinates

are undistorted using the camera calibration matrix and distortion coefficients. The homography matrix is

calculated using RANSAC and then decomposed into rotation matrix and translation vector. From the two

possible solutions, the correct one is chosen based, either on a previously second frame taken from the

same template or on the vehicle IMU. From the correct solution, the control command is calculated using

the chosen control law and fed into the vehicle actuators. This procedure is repeated until the user requests

the program to be stopped.

31

4. Developed Algorithm and System Architecture

Figure 4.1: Developed algorithm flowchart.

32

4.3 Gumstix Overo Fire

4.3 Gumstix Overo Fire

The Gumstix series computers are very small, general purpose computers for embedded systems ap-

plications shiped with Linux 2.6 operating system. The name “gumstix” is due to the fact that each one

of these computers are a COM (Computer On Module) with dimensions really close to a common stick of

gum. The model used in this particular work is the Gumstix Overo Fire COM (Figure 4.2). It consists of a

OMAP3530 processor from Texas Instruments (TI) based on ARM Cortex-A8 architecture with a working

frequency of 600Mhz a DSP. Also, it features a 256MB RAM unit, a 256MB flash drive and Bluetooth and

WiFi connectivity.

Figure 4.2: Gumstix Overo Fire COM board

To provide the COM basic communication interfaces and expand its functionalities small expansion

boards exist that are attached to the main COM board. The model chosen was the Tobi expansion board

(Figures 4.3 and 4.4). It supports numerous interfaces such as 10/100baseT Ethernet, DVI-D (HDMI), USB

OTG mini-AB, USB host standard A, Stereo audio in/out, USB Serial Console among others.

All these flexible features and processing capacities make the Gumstix Overo Fire a powerful and ver-

satile COM very suitable for our project.

Figure 4.3: Tobi expansion board

33

4. Developed Algorithm and System Architecture

Figure 4.4: Gumstix Overo Fire attached to the Tobi expansion board

4.4 Caspa VL Camera

To integrate imaging capacities with the Gumstix Overo Fire, a Caspa VL Camera module is connected

to it (Figure 4.5). It consists of an ultra-compact camera which weights only 22.9 g. It can capture images

with up to 720 × 480 pixels of resolution with a framerate of 60 fps. Due to its technical features and to the

fact that it is an affordable and lightweight hardware, it was chosen to be used in this project.

Figure 4.5: The Caspa VL camera module

The mechanical support that hold the Overo Fire together with the Caspa VL Camera is hand made and

it is shown in Figure 4.6. This module provides the protection and robustness needed to easily attach and

detach the Gumstix to a vehicle.

This set will, from now on, be called the Gumstix-and-Camera module (G-C module).

4.5 PUMA 560 Robotic Arm

After simulating the algorithms behavior, it is necessary to test them with real data in a real context.

Performing these tests with real data directly on the Quadrotor could be very dangerous, as any malfunction

could lead to damages or even total loss of the UAV. A more controlled and secure environment consists

of assembling the Gumstix-and-Camera module on a robotic arm for tests purpose. With this platform, it

is possible to test all the algorithms, to analyze their performance, improve them and correct any errors

34

4.5 PUMA 560 Robotic Arm

Figure 4.6: The Gumstix-and-Camera module

without jeopardizing the hardware.

The robotic arm available for tests on ISR lab is the PUMA (Programmable Universal Machine for As-

sembly) 560 robot (Figure 4.7). It is a chain of links and joints creating a 6-DOF (degrees of freedom)

robotic arm with a DC servomotor controlling each joint. Encoders at each motor allow to acquire reads of

each joint’s position. It is similar to a human torso, shoulder, arm, and wrist and has 86 cm reaching and

2.5 Kg payload capacity. Table 4.1 shows each joint limits.

(a) (b)

Figure 4.7: The Puma 500 Robotic Arm. The end-effector was disassembled and in its place, the Gumstix-and-Camera
module, was attached.

Connected to the robotic arm is the Mark III Controller computer (Figure 4.8) which is the master com-

35

4. Developed Algorithm and System Architecture

Table 4.1: Joint limits

Joint Limit
Joint 1 320◦

Joint 2 250◦

Joint 3 270◦

Joint 4 280◦

Joint 5 200◦

Joint 6 532◦

ponent of the electric system and the arm controller. All signals to and from the robot pass through this

computer. It supports the VAL programming language to perform real-time calculation to control the position

of the robot. It also has status indicators and controls to power and command the arm in the front panel

(Figure 4.9).

Originally, this was the only mean of controlling the robot. Currently, in order to make the system more

easily modifiable and easy to integrate with other programs and algorithms, a common PC running Linux

OS is connected to the controller computer using a serial port. This enables and facilitates the integration

with programs written in C or C++, for example, as it is the case in this project.

Figure 4.8: The controller computer.

When working with PUMA it was possible to understand that its operation conditions are not ideal any-

more. Maybe due to the fact that it is a 15 years old robotic arm and no regular maintenance has been

made. For example, when a single joint is ordered to move the entire arm “shakes” a bit. Also, if the end

effector is ordered to go to a specific position, and then joints readings are requested, the reported position

has an error in the order of centimeters.

36

4.5 PUMA 560 Robotic Arm

Figure 4.9: The controller computer front panel.

37

4. Developed Algorithm and System Architecture

4.6 Overall Architecture

The architecture of the test bench created is illustrated in Figure 4.10. As already stated, the controller

computer is only used as interface to the robotic arm. Is the PUMA PC that does the calculations regarding

the inverse kinematics (conversion from the desired arm pose in the Cartesian Space to the individual joints

desired positions). This PC receives the desired positions from the main laptop. By its turn, the main laptop

is connected to the G-C module. Two options exist, the main laptop can do all the calculations for estimating

the camera pose and the G-C module is only used as a simple network camera that sends the captured

images over the network, or, all the calculations are performed on the G-C modules and the main laptop

only operates as an interface. Either way, after each frame is processed, the mail laptop send the desired

next position to the PUMA PC that, by its turn, order the PUMA arm to move.

Figure 4.10: Gumstix Overo Fire attached to the Tobi expansion board

38

5
Experimental Results

Contents
5.1 Introduction . 40
5.2 Simulation . 40
5.3 Real Videos tests . 48
5.4 Real Videos with Camera Attached to PUMA tests . 52
5.5 Closed Loop Control tests . 54

39

5. Experimental Results

5.1 Introduction

To demonstrate the capabilities of the system developed, several tests were performed using the test

bench described in Chapter 4. First, synthetic videos that simulate what a real camera would see when

it moves around with a plane always inside the FOV were generated. These videos are useful to show

that all the calculations are correct since the exact ground truth data is available. Next, videos trying to

replicate the synthetic ones, were captured using a real camera. This time, no ground truth data is available.

These videos were used, essentially to test the behavior and robustness of the two features extractors and

descriptors, SURF and BRIEF. The third test set consists of videos captured using the Caspa VL attached to

the PUMA arm end-effector. While the videos were being captured, a log containing the readings of the arm

joints positions was saved. Although not exact, this will be used as a form of ground truth for comparison

purposes. The final test shows that closing the loop using the control law chosen, it is possible to make the

arm end effector converge to the pose at which the template image was taken.

Considering computation times, table 5.1 presents the time needed to process one frame of 752 × 480

pixels resolution either by using SURF or BRIEF on a Dual Core at 2.2GHz PC and on the Gumstix. SURF

requires much more time than BRIEF. On PC real-time speed is achieved, but on Gumstix, even when

choosing brief, only an average of 3-4 fps.

Table 5.1: Computation times

Algorithm PC Gumstix
SURF 256 ms 5 s
BRIEF 27 ms 330 ms

Regarding SURF, 85% of processing time is spent calculating the features descriptors, thus represent-

ing the bottleneck. Almost all the operations on this task are floating point, which are not very efficiently

performed on the Gumstix CPU.

5.2 Simulation

5.2.1 Synthetic Dataset

We want to simulate what a real camera sees if it travels along a certain trajectory. By defining the

signals of rotation and translation over time, we can calculate the respective homography that describes the

transformations suffered by the image seen by the camera.

So, to build the dataset we need to generate a movie that shows what a real camera would capture. We

start by defining the “real camera”, i.e., defining the camera calibration matrix:

K =

 547.09 0 330.11
0 547.77 250.60
0 0 1

 (5.1)

40

5.2 Simulation

Any matrix could be chosen, but we decided to use one similar to a true calibration matrix of a webcam

available in the lab. Next, a template image is chosen. Then, starting from this image, the homographies that

correspond to the rotations and translations chosen are calculated using equation 2.25. To each of these

homographies the following transformation is applied to take into account that the image is uncalibrated:

T = KHK−1. (5.2)

These consecutive perspective transformations are applied to the template image. And, this way, the

movie frames are generated.

The purpose of these movies is to test the correctness and the robustness of the solution given by the

algorithm developed. Which is possible because the true exact ground truth is available (actually is chosen)

and can be used to calculate the error of the solution found by the algorithm developed.

The actual dataset is composed of 10 movies, 5 different trajectories each applied to two different

template images. The template images are the ones in Figure 5.1.

(a) Scene 1 (b) Scene 2

Figure 5.1: The two scenes used to generate the synthetic datasets.

The the purpose of five different trajectories is to evaluate the behavior of the algorithm under various

conditions. These are represented in Figure 5.3 and described next:

• Pure Rotation dataset: The camera is rotated along its y axis.

• Scale Change dataset: The camera is moved along its z axis without rotating. This causes the

template on the image to get consecutively small. To test the scale invariance of the descriptors.

• Pure Rotation Z dataset: The camera is rotated along its z axis. To test rotation invariance of the

descriptors.

• Perspective Distortion dataset: Starting perpendicular to the object, the camera moves down in an

arc resulting in strong perspective distortion

41

5. Experimental Results

• Unconstrained dataset: Different types of movements, with the constrain of the template remaining

in the FOV.

It worth to mention that because the axis-angle representation was chosen, to avoid the degenerate case,

none of the trajectories contain a pose where there is no rotation. For example, in the Scale Change dataset

there is a constante rotation along the z axis of 10 degrees.

Some examples of the movie frames are shown in Figure 5.2.

Figure 5.2: Some examples of dataset frames.

5.2.2 Results Analysis

In order to evaluate the precision of the algorithm, some performance indexes had the be defined.

Considering the translation vector error, and taking into account that, by construction, the scale factor is

always unknown, we can only evaluate the correctness of the direction. So the angle between the true

and calculated translation vector was used as the error measurement. For the rotation, the axis-angle

representation was chosen. The error between the true and the calculated rotation angle, as well as the

angle between the true and the calculated rotation axis, are used as error measurements.

The three graphics for each of the five trajectories are represented in Figures 5.4, 5.5 and 5.6. The

results were pretty similar for both template images so, the errors represented are the average of both

templates errors. Both SURF and BRIEF descriptors were tested. If the plots are not continuous and there

are points missing it means that the algorithm failed to detect the template in the correspondent frame.

Regarding the Pure Rotation dataset on Figures 5.10(a), 5.10(c) and 5.4(e) it can be seen that the

translation error is relatively small, between 1 and 7 degrees for both BRIEF and SURF. The rotation axis

error is higher when the angle of rotation tends do zero. But, at the same time, because the rotation angle

itself tends to zero along with the rotation angle error, this becomes negligible.

In the Scale Change data set (Figures 5.10(b), 5.10(d) and 5.4(f)), both BRIEF and SURF remain more

or less precise until the template is reduced by a scale factor of 0.4. The translation error oscillates between

1 and 7 degrees and, once again, the rotation axis error is negligible. From a scale factor of 0.4 and beyond,

BRIEF fails to detect the template and the SURF estimation becomes more unstable, although still reliable.

42

5.2 Simulation

Considering the Pure Rotation Z dataset (Figures 5.5(a), 5.5(c) and 5.5(e)), BRIEF and SURF are both

very invariant to rotations, with translation error between 0 and 4 degrees and rotation error almost always

zero. Still, SURF performed slightly better around rotation angles of 90 degrees.

The Perspective Distortion dataset in Figures 5.5(b), 5.5(d) and 5.5(f) shows that with angles greater

than 50 degrees the estimations became unreliable. For angles between 0 and 50 degrees, translation

errors are no greater than 13 degrees, rotation axis errors are almost always lower than 15 degrees, just

like the rotation angle error. SURF estimation are little more accurate.

Finally, the Unconstrained data set (Figures 5.6(a), 5.6(b) and 5.6(c)) it is used just to see how the

estimations performance on a trajectory that mixes some of the former conditions. The errors are almost

always low, except around frame 40 where a mix of strong scale change with perspective distortion is used.

Because in this case the SURF estimation is still accurate, we can conclude that was scale change that

caused BRIEF to fail.

43

5. Experimental Results

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

xy

z

(a) Pure Rotation dataset

−1

0

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

xy

z

(b) Scale Change dataset

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

xy

z

(c) Pure Rotation Z dataset

−1

0

1

−1

−0.5

0

0.5

1

1.5

−1

−0.5

0

0.5

1

x
y

z

(d) Perspective Distortion dataset

−1

0

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

xy

z

(e) Unconstrained dataset

Figure 5.3: The datasets trajectories used to perform the tests.

44

5.2 Simulation

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Pure Rotation Dataset − translation error

SURF
BRIEF

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Scale factor

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Scale Change Dataset − translation error

SURF
BRIEF

(b)

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Pure Rotation Dataset − rotation axis error

SURF
BRIEF

(c)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Scale factor

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Scale Change Dataset − rotation axis error

SURF
BRIEF

(d)

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Rotation angle (deg)

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Pure Rotation Dataset − rotation angle error

SURF
BRIEF

(e)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

Scale factor

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Scale Change Dataset − rotation angle error

SURF
BRIEF

(f)

Figure 5.4: Error of pose detection under several different conditions.

45

5. Experimental Results

−180 −160 −140 −120 −100 −80 −60 −40 −20 0
0

0.5

1

1.5

2

2.5

3

3.5

4

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Pure Rotation Z Dataset − translation error

SURF
BRIEF

(a)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Perspective Distortion Dataset − translation error

SURF
BRIEF

(b)

−180 −160 −140 −120 −100 −80 −60 −40 −20 0
0

20

40

60

80

100

120

140

160

180

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Pure Rotation Z Dataset − rotation axis error

SURF
BRIEF

(c)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Rotation angle (deg)

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Perspective Distortion Dataset − rotation axis error

SURF
BRIEF

(d)

−180 −160 −140 −120 −100 −80 −60 −40 −20 0
0

2

4

6

8

10

12

14

Rotation angle (deg)

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Pure Rotation Z Dataset − rotation angle error

SURF
BRIEF

(e)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Rotation angle (deg)

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Perspective Distortion Dataset − rotation angle error

SURF
BRIEF

(f)

Figure 5.5: Error of pose detection under several different conditions.

46

5.2 Simulation

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Frame

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

tr
an

sl
at

io
n

ve
ct

or
 (

de
g)

Unconstrained Dataset − translation error

SURF
BRIEF

(a)

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Frame

A
ng

le
 b

et
w

ee
n

tr
ue

 a
nd

 c
al

cu
la

te
d

ro
ta

tio
n

ax
is

 (
de

g)

Unconstrained Dataset − rotation axis error

SURF
BRIEF

(b)

0 20 40 60 80 100 120
0

50

100

150

Frame

R
ot

at
io

n
an

gl
e

er
ro

r
(d

eg
)

Unconstrained Dataset − rotation angle error

SURF
BRIEF

(c)

Figure 5.6: Error of pose detection under several different conditions.

47

5. Experimental Results

5.3 Real Videos tests

5.3.1 Real Dataset

In these tests, the videos were captured with a Logitech HD Pro Webcam C910 at 640x480 pixels

resolution. This camera has little to no radial distortion and was calibrated using the method described in

Appendix A.2 The purpose of this data set is to confirm with real data what we have seen with the synthetic

videos of the previous experiment: that the algorithm developed can detect a template in a movie, calculate

the homography that maps the present frame to the template one and determine the camera pose.

With this objective in mind, the template used was the one shown in Figure 5.7.

Figure 5.7: The image template.

To capture the movies, the camera was hand-held. Nevertheless, there was a special effort to try to

make smooth trajectories and to replicate the same type of conditions present on the synthetic dataset, so

the results could be comparable. As so, this real data set contain five movies, each one with a different

type of trajectory, just like before: Pure Rotation, Scale Change, Pure Rotation Z, Perspective Distortion

and Unconstrained. Some example of the frames captured are shown in Figure 5.8.

Figure 5.8: Some examples of dataset frames.

5.3.2 Results Analysis

In this experiment there is no ground truth data, i.e., the real trajectory traveled by the camera is un-

known. Nevertheless, we have seen in the previous experiment that, if the template is well detected on

48

5.3 Real Videos tests

the movie frames, the camera pose is correctly calculated. So, in this experiment, we will focus on the

robustness of the SURF and BRIEF algorithms on detecting the template frame.

To this purpose, a few characteristics of the detectors were considered important: the smoothness of

the pose solution, the number of features in the current frame that are matched with the features on the

template frame and, from these, the number of the correctly matched features .

The number of features matched together with the number of the ones correctly matched can be an

indicator of how reliable a pose estimation is. And, since all the trajectories traveled by the camera were

smooth, if there are abrupt “jumps” on the pose estimation, we can conclude that at these points, the

estimations are wrong or unreliable.

To evaluate the smoothness of the estimation, both translation and rotation vectors could be used, but

we opted by only show here the translation vector, as the information obtained by the rotation vector is

redundant (i.e., when the template is wrongly detected both rotation and translation estimations will be

unreliable). The number of features matched is the number of features matched returned by SURF or

BRIEF. Finally, because there is no ground truth between frames and it would be humanly impossible

to do this manually in practical time, a matched feature is considered an outlier if it is excluded by the

RANSAC algorithm when the homography is being estimated. That is, consider a current frame feature.

Its coordinates are mapped to the template frame coordinates using the homography calculated. If the

distance between the coordinates of the matched feature pair is greater than the RANSAC threshold, then

this pair is considered an outlier.

In this section only the results that correspond to two datasets are shown. These were considered to

be the ones that provide most information about the algorithms. The total of the results can be seen on

Appendix A.4.

Discussion Figure 5.9 refers to the Scale Change dataset. Here, it can be seen that just like on

previous experiment, SURF is more robust to scale change. BRIEF’s number of inliers features decay

rapidly around frame 40, and from frame 75 the detection fails. SURF never lost the template and, on the

furthest position, it still correctly detects and matches around 15 features which returns a sufficiently reliable

estimation. Note that the SURF’s estimation of the z coordinate remain smooth.

Figure 5.10 shows the results from the Perspective Distortion dataset. Once again, BRIEF fails to detect

the template sooner than SURF. When the number of inliers detected by SURF drops to a value below of

more or less 12 the estimation is not reliable anymore as it can be seen by the interchange of estimation

fails and sudden bumps since frame 90.

From these results it was possible to see that the algorithms behavior with real data is consistent with the

behavior with synthetic data. It is also worth noticing that SURF always tends to detect an higher number of

features, and the inlier ratio also tends do be higher. As so, SURF tends to produce more reliable estimation.

This comes with a cost of computation time as SURF is much more time consuming than BRIEF.

49

5. Experimental Results

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Scale Change dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180
Scale Change dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Scale Change dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180
Scale Change dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure 5.9: Coordinates and number of features along the Scale Change dataset frames.

50

5.3 Real Videos tests

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Perspective Distortion dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 50 100 150
0

20

40

60

80

100

120
Perspective Distortion dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

2
Perspective Distortion dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 50 100 150
0

10

20

30

40

50

60

70

80
Perspective Distortion dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure 5.10: Coordinates and number of features along the Perspective Distortion dataset frames.

51

5. Experimental Results

5.4 Real Videos with Camera Attached to PUMA tests

5.4.1 Dataset

This, is an intermediate test between the previous one, and the next one where a control law will be used

to drive the camera into the desired reference pose. Here, the Caspa VL camera was used, attached to the

PUMA arm. While the video captured by the camera was being acquired, the joints readings from the arm

encoders were also being saved into a log file. This test, serves mostly, to see if the pose estimation were

in agreement with the PUMA readings. Figure 5.11 shows the template frame along with some example

frames taken from the video captured.

(a) Template frame (b) Example frame (c) Other example frame

Figure 5.11: Template frame and some examples of dataset frames.

5.4.2 Results Analysis

With the video captured and the log file containing the PUMA readings, it is possible determine the

trajectory traveled by the camera according to each of the data. However, some approximations have to

be taken into account. First, the fact that the robotic arm has more than fifteen years and without any

maintenance, led to the deterioration of the encoders and joints actuators, as so, the readings are not very

accurate. Second, because there is no scale information, the scale factor was chosen by a trial and error

approach, until the form of the trajectory estimated, matched the trajectory from the PUMA readings the

best possible. This is, definitely, not a good scientific approach, but it served the purpose of confirming that

the trajectory estimated has, at least, the “form” of the true trajectory. The result is shown in Figure 5.12.

52

5.4 Real Videos with Camera Attached to PUMA tests

−0.5
0

0.5 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

yx

z

PUMA trajectory readings

Estimated trajectory

Figure 5.12: The trajectory traveled by the camera according to PUMA readings and the developed algorithm estima-
tion.

53

5. Experimental Results

5.5 Closed Loop Control tests

In order to fully demonstrate that the proposed solution allows the correct pose determination of a

camera, a feedback control law was used to close the loop and drive the camera to the desired pose.

In this section, the control law used is described, some implementation considerations and modifications

explained and the final results are presented.

5.5.1 Vision-Based control for rigid body stabilization and implementation on the
PUMA 500 robotic arm

The following is a summary of Cunha et al. [38] to describe the control law used. Here the notation is a

little different from the rest of the thesis in order to be in agreement with the original work.

Considering a fully-actuated rigid-body, with an attached coordinate frame {B}, and an inertial frame

{F} attached to the feature plane, let (p,R) = (BpF ,
B
F R) represent, respectively, the translation and

rotation of the {F} with respect to the body frame. The equation that describes the motion of the body over

time can be written as:

ṗ = −v − S(ω)p (5.3)

Ṙ = −S(ω)R (5.4)

where v and ω ∈ R3 are the linear and angular velocities, respectively. If the rigid-body desired pose

is represented by (p∗,R∗) which are considered constant over time, we can introduce the following error

variables

pe = p− p∗, Re = RR∗T (5.5)

and write the corresponding state equations

ṗe = −v − S(ω)(pe + p∗) (5.6)

Ṙe = S(ω)Re (5.7)

Denoting the current and desired calibrated coordinates of the image features by y and y∗, respectively,

and by α the homography matrix scale factor (see Chapter 2), the control law developed can be written as

v =

{
k1(αy − y∗) until ||αy − y∗|| < γ
k2(αy − y∗)− ẑ∗S(ω)αy afterwards (5.8)

ω =

{
k3S(y∗)αy until ||αy − y∗|| < γ
k4S
−1(ReM −MRT

e) afterwards (5.9)

with the update law for the estimate of the desired depth ẑ∗ given by

˙̂z∗ =

{
0 until ||αy − y∗|| < γ
kzy

∗S(ω)αy afterwards (5.10)

54

5.5 Closed Loop Control tests

where γ, k1, k2, k3, k4 and kz are positive scalars. ẑ∗, is a estimator for the desired depth. This control

law relies on an adaptive scheme and can be divided in two sequential objectives. First, it will drive the

translation vector p to an arbitrarily small neighborhood of p∗. Then, it will ensure the convergence of

(p,R) to (p∗,R∗) using a controller that enforces feature visibility by guaranteeing that the camera not only

points towards the features, but also remains in front of them.

As stated on the original work, the described control law guarantees that the desired equilibrium point

is an almost global attractor.

For the implementation on the PUMA robotic arm, a few considerations had to be made due to some

PUMA limitations. The control law had to be discretized because the arm can only receive inputs in position

and not in velocity.

Denoting the inertial arm frame by {A}, the position and orientation of the body frame {B}, with respect

to {A}, can be written as
ApB =A pF −AF RRTp, (5.11)

A
BR =A

F RR
T (5.12)

respectively, where (ApF ,
A
BR) denotes the pose of {F} expressed in {A}. Using (5.3) and (5.4), the

kinematics for ApB and A
BR can be written as

AṗB = A
BRv (5.13)

A
BṘ = A

BRS(ω) (5.14)

Using the Euler method, the solution of (5.13) can be approximated by

ApB(k + 1) =A pB(k)−∆t(ABR(k)v(k)), (5.15)

where ∆t is the sampling time. The zero-order hold discretization of (5.14) is given by

A
BR(k + 1) =A

B R(k) rot(∆tω(k)) (5.16)

Also, the true current pose of the camera had to be estimated by reading the PUMA joints encoders to know

the current transformation from the arm frame to the camera frame. This was due to the fact that PUMA

accepts position inputs expressed in the arm frame {A} instead of in the feature frame {F}.

5.5.2 Results Analysis

The results are presented next. Figure 5.13 shows the template frame used, the image seen at the start

pose, and the image seen at the final pose to where the PUMA end effector converged. As it can be seen,

the image captured at the final pose is very similar to the reference template frame.

The evaluation over time of the error measure ||αy−y∗|| used on the control law is shown in Figure 5.14.

Overall, the error tends to zero but, there are moments where its norm increases. This is caused by the

55

5. Experimental Results

way that the controller outputs are sent to the PUMA arm. As already stated, the controller is discretized.

At each sample time, the controller outputs are calculated considering the sample rate and the PUMA

actuators are activated to move the arm to next position according to the controller outputs. The trajectory

that the arm travels between two sample positions is not externally controlled and depends on the internal

joints controllers. So, the temporary increases on the error norm were predictable. If the arm could accept

commands in linear and angular velocities, the control law could be used on its original version and it is

expectable that the error norm curve thus becomes monotonically decreasing. It is also important to note

that the final error is not zero. At the final pose, controller outputs were still being calculated and sent to

PUMA, but the end-effector was not moving. This is caused by the low precision commands accepted by

the PUMA arm. Nevertheless, according to the actuators readings, the translation error norm between the

desired and the achieved pose is only 1.9 cm.

(a) Template frame (b) Image at start pose (c) Achieved image at final pose

Figure 5.13: Template frame and some examples of dataset frames.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Error evolution

Frames

E
rr

or
 m

ea
su

re

Figure 5.14: Error norm evolution over time

56

6
Conclusions

Contents
6.1 Conclusions . 58
6.2 Future Work . 58

57

6. Conclusions

6.1 Conclusions

A solution to the problem of taking a rigid-body into a desired pose was developed. This solution only

requires a image of planar scene acquired at the desired pose and a video stream captured by a camera

on board of the vehicle containing the planar scene inside the FOV. Real-time performance was achieved

when using a regular PC. Using the lightweight Gumstix-and-Camera hardware module an average of 3-4

fps are possible.

To achieve the described solution, a complete research was performed comprising several topics that

are compiled together on the first chapters of this thesis. Concepts from computer vision such as the

Camera Pinhole Model, image transformations like planar homographies and methods for the extraction of

3-D information from the planar homograhy matrix were learned. Also, it is explained how to calculate the

homography that relates two images if features correspondence between images is available. To solve the

problem of finding correspondence between image features, several algorithms were studied.

These algorithm are designed as image features extraction and description algorithms and mainly two

were studied and implemented: SURF and BRIEF. From the tests performed, it was possible to conclude

that both can be used to detect the reference planar scene on a video stream. Nevertheless, both have

its own advantages and disadvantages. In general, SURF is more robust in extreme situations, like strong

image scale changes or perspective distortion. Besides that, there are conditions where BRIEF totally fails

detecting the scene and SURF estimation is not robust. But, at least SURF provides a estimate, which,

if a control feedback law is used, can be sufficient to take the rigid-body into a pose where robustness is

recovered. On the other hand, BRIEF wins with the incredible speed at which the required computations are

performed. Plus, the fact that BRIEF fails sooner than SURF may not be a problem, since if the feedback

control law is working properly the rigid-body pose error will probably not be very big and BRIEF will always

succeed on detecting the reference scene. That is why, when considering applications requiring real time

performance, BRIEF is chosen over SURF.

A test bench for testing the developed algorithm was built, consisting of synthetically generated video

and true video captured from a PUMA robotic arm with the G-C module attached to its end effector. After

long years of inactivity, the PUMA robotic arm was reanimated and its existence given a purpose. This

allowed to verify the correctness of the algorithm, its performance and robustness. With this test bench

it was possible to confirm that, when using an appropriate control law, the pose error tends to zero, thus

demonstrating the correctness of the algorithm.

6.2 Future Work

Much more could have been done if time restrictions were inexistent.

The frame rate of the algorithm running on the G-C module can be improved if the integrated DSP is

used to compute the Hamming distance, required for matching the BRIEF descriptors. Also, if Moore’s law

58

6.2 Future Work

remains valid, new and more powerful Gumstix’s like COMs will be available.

Further testing the algorithm with a real vehicle, like the quadrotor available at the ISR labs, would be

interesting by not discretizing the control law and using its original version.

Regarding, the features detection. A different technique was studied, where circular TAG’s (Figure 6.1)

are used instead of the regular features extractors and descriptors algorithms. This has the drawback

of requiring the scene to contain a TAG but, under the scope of the AIRTICI project this may not be an

issue. On the other hand, this has the advantage of not being as computationally intensive as SURF or

BRIEF algorithms. The TAG detection algorithm originally developed by Reverse Engineering company

personell was studied and adapted to calculate homographies between images. Unfortunately, due to time

restrictions, it was not integrated on the main developed algorithm.

Figure 6.1: An example of a circular TAG.

59

6. Conclusions

60

Bibliography

[1] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,”

ECCV’10, 2010.

[2] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” European

Conference on Computer Vision, 2006.

[3] Airtici: Advanced interactive robotic tools for the inspection of critical infrastructures. [Online].

Available: http://welcome.isr.ist.utl.pt/project/index.asp?accao=showproject&id project=131

[4] E. Altüg, J. Ostrowski, and R. Mahony, “Control of a quadrotor helicopter using visual feedback,”

Robotics and Automation, 2002.

[5] E. Altüg, J. Ostrowski, and C. Taylor, “Quadrotor control using dual camera visual feedback,” Robotics

and Automation, 2003.

[6] M. Earl and R. D’Andrea, “Real-time attitude estimation techniques applied to a four rotor helicopter,”

Robotics and Automation, 2003.

[7] H. Romero, R. Benosman, and R. Lozano, “Stabilization and location of a four rotor helicopter applying

vision,” American Control Conference, 2006.

[8] I. F. Mondragón, P. Campoy, C. Martı́nez, and M. A. Olivares-Mendez, “3d pose estimation based on

planar object tracking for uavs control,” IEEE International Conference on Robotics and Automation,

2010.

[9] C. Martı́nez, I. F. Mondragón, M. A. Olivares-Méndez, and P. Campoy, “On-board and ground visual

pose estimation techniques for uav control,” Intelligence Robotics Systems, 2011.

[10] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and L. Eck, “Image-based vi-

sual servo control of the translation kinematics of a quadrotor aerial vehicle,” IEEE Transactions on

Robotics, 2009.

[11] R. Hartley and A. Zisserman, Multiple View Geometry in computer vision. Cambridge University

Press, 2003.

[12] Y. Ma, S. Soatto, J. Kosecká, and S. Sastry, An Invitation to 3-D Vision. Springer, 2004.

61

http://welcome.isr.ist.utl.pt/project/index.asp?accao=showproject&id_project=131

Bibliography

[13] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2010.

[14] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with appli-

cations to image analysis and automated cartography,” American Control Conference, 1981.

[15] O. Faugeras and F. Lustman, “Motion and structure from motion in a piecewise planar environment,”

International Journal of Pattern Recognition and Artificial Intelligence, 1988.

[16] C. Harris and M. Stephens, “A combined corner and edge detector,” Proceedings of the 4th ALVEY

vision conference, p. 147 151, 1988.

[17] P. R. Beaudet, “Rotationally invariant image operators,” International joint conference on pattern

recognition, 1978.

[18] L. Kitchen and A. Rosenfeld, “Gray-level corner detection,” Pattern Recognition Letters, pp. 95 – 102,

1982.

[19] T. Lindeberg, “Scale-space theory: A basic tool for analysing structures at different scales,” Journal of

Applied Statistics, pp. 224 – 270, 1994.

[20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of

Computer Vision, pp. 91 – 110, 2004.

[21] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features surf,” Computer Vision and

Image Understanding, 2008.

[22] C. Schmid and R. Mohr, “Local greyvalue invariants for image retrieval,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1997.

[23] W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1991.

[24] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2005.

[25] M. Özuysal, P. Fua, and V. Lepetit, “Fast keypoint recognition in ten lines of code,” IEEE conference on

computer vision and pattern recognition, 2007.

[26] S. Taylor, E. Rosten, and T. Drummond, “Robust feature mathing in 2.3us,” IEEE conference on

computer vision and pattern recognition, 2009.

[27] F. C. Crow, “Summed-area tables for texture mapping,” Proceedings of the 11th annual conference on

Computer graphics and interactive techniques, p. 207 212, 1984.

[28] S. Gauglitz, T. Höllerer, and M. Turk, “Evaluation of interest point detectors and feature descriptors for

visual tracking,” International Journal of Computer Vision, 2011.

62

Bibliography

[29] J. J. koenderink, “The structure of images,” Biological Cybernetics, 1984.

[30] T. lindeberg, “Scale-space for discrete signals,” PAMI, 1990.

[31] M. Brown and D. lowe, “Invariant features from interest point groups,” BMVC, 2002.

[32] J. H. Freidman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic

expected time,” ACM Trans. Math. Softw., 1977.

[33] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor matching,” CVPR, 2008.

[34] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration,”

International Conference on Computer Vision Theory and Applications (VISAPP’09), 2009.

[35] S. M. Smith and J. M. Brady, “Susan - a new approach to low level image processing,” International

Journal of Computer Vision, 1997.

[36] J. R. Quinlan, “Induction of decision trees,” Machine Learning, 1986.

[37] Opencv: Open source computer vision. [Online]. Available: http://http://opencv.willowgarage.com/

[38] R. Cunha, C. Silvestre, J. Hespanha, and A. P. Aguiar, “Vision-based control for rigid body stabilization,”

Automatica, 2011.

[39] J.-Y. Bouguet. (2010, July) Camera calibration toolbox for matlab. [Online]. Available: http:

//www.vision.caltech.edu/bouguetj/calib doc/

63

http://http://opencv.willowgarage.com/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

Bibliography

64

A
Appendix

A-1

A. Appendix

A.1 Steps aiming the practical implementation

During the course of this work, several implementation issues had to be resolved.

The OpenCV library is very complete and well designed. Nevertheless, some familiarization time with

the coding style and functionalities was needed. It was necessary to get used with the Gumstix board. It

is not a very common type of hardware, and developing code to run on it, is not the same as developing

code to run on a common computer. Particularly, it was necessary to learn how to use different toolchains

and to study the operative system options available. At first, a considerable amount of time was spent on

learning the OpenEmbedded building framework. But a more lightweight and minimalistic Linux OS version

was needed, so, one was developed with the essential help of André Oliveira. There was also the need to

port some libraries, and debugging code is much more difficult.

Considering the camera modules, the first one chosen was the e-CAM50 from e-con Systems (Figure

A.1). Time was spent trying to resolve some issues relative to the driver interface integration with the

OpenCV library. Plus, when in comparison with the Caspa VL camera module, the technical specifications

are weaker: 30 FPS at 640x480 resolution versus 60 FPS at 720x480 resolution. So, this option was left

behind, and the Caspa VL adopted.

Figure A.1: The e-cam50 camera module.

Also, it was also necessary to understand the PUMA kinematics and software source code in order to

modify it and add the functionality of receiving commands over the network.

Apart, from these principal issues mentioned, a few more existed. Nevertheless, it was expectable, as

this was a more practical focused thesis.

A-2

A.2 Camera Calibration

A.2 Camera Calibration

The image in Figure A.4(a) shows that the lens mounted on the Caspa VL Camera module suffers from

the effect of radial distortion. In order to reduce or, ideally completely eliminate this effect, the camera was

calibrated. To this purpose, images of a planar checkerboard were acquired. The chosen method was the

one from Jean-Yves Bouguet available online in the form of a MatLab toolbox [39]. This method uses as

input the 3-D coordinates of the checkerboard corners and their 2-D point projections on the several images

acquired. The checkerboard must be seen from as much different perspectives as possible and cover as

much as possible all the field of view (FOV) of the camera. Some of these images are shown in Figure A.2.

Figure A.2: Some examples of the calibration images used.

The 3-D coordinates are defined by considering a 3-D reference frame attached to the checkerboard.

The origin is one of its corers, and the x-y plane coincides with the checkerboard plane. Knowing the

dimensions of each square, and the number of squares, the 3-D coordinates of all the corners can be can

be easily obtained. For the 2-D coordinates, the images acquired have to be processed. After the the four

external corners are manually located by the user, the rest of the corners are automatically detected using

corners detectors algorithms.

Having all the necessary coordinates defined, the main calibration step is performed using non linear

optimization. This step minimizes the total re-projection error in the least square sense over all the calibra-

tion parameters. The non linear optimization algorithm used is the iterative gradient descent with an explicit

computation of the Jacobian matrix.

The toolbox has many features and gives a good intuition about the calibration process. For example,

after the calibration, it is possible to see a graphic (Figure A.3) with the estimated checkerboard poses when

the images were taken.

This method estimates the coefficients for both tangential and radial distortion, as well as the linear

projective intrinsic parameters for a distortion free equivalent camera. In other words, the output of the

A-3

A. Appendix

Figure A.3: Some examples of the calibration images used.

method is the camera calibration matrix together with the image distortion coefficients. An example of

radially distorted image and its corrected version is illustrated in Figure A.4.

(a) (b)

Figure A.4: Radially distorted image (a) compared to the undistorted image (b).

A-4

A.3 The Kronecker Product

A.3 The Kronecker Product

If A is an m-by-n matrix and B is a p-by-q matrix then, the Kronecker product A ⊗ B, is the mp-by-nq

block matrix

A⊗B =

 a11B ... a1nB
: ::: :

am1B ... amnB

 . (A.1)

A-5

A. Appendix

A.4 Real videos experiments graphics

0 5 10 15 20 25 30 35 40
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Pan dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 5 10 15 20 25 30 35 40
20

30

40

50

60

70

80

90
Pan dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Pan dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60
Pan dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure A.5: Coordinates and number of features along the Pure Rotation dataset frames.

A-6

A.4 Real videos experiments graphics

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Scale Change dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180
Scale Change dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Scale Change dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180
Scale Change dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure A.6: Coordinates and number of features along the Scale Change dataset frames.

A-7

A. Appendix

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Rotation Z dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 50 100 150
20

30

40

50

60

70

80

90

100

110

120
Rotation Z dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Rotation Z dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 50 100 150
10

20

30

40

50

60

70

80

90
Rotation Z dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure A.7: Coordinates and number of features along the Pure Rotation Z dataset frames.

A-8

A.4 Real videos experiments graphics

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Perspective Distortion dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 50 100 150
0

20

40

60

80

100

120
Perspective Distortion dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

2
Perspective Distortion dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 50 100 150
0

10

20

30

40

50

60

70

80
Perspective Distortion dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure A.8: Coordinates and number of features along the Perspective Distortion dataset frames.

A-9

A. Appendix

0 50 100 150 200 250 300 350 400
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Unconstrained dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
z

(a) SURF

0 50 100 150 200 250 300 350 400
0

50

100

150
Unconstrained dataset − Features

Frames

Features matched
Inliers features

(b) SURF

0 50 100 150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Unconstrained dataset − Translation

Frames

C
oo

rd
in

at
es

x
y
x

(c) BRIEF

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180
Unconstrained dataset − Features

Frames

Features matched
Inliers features

(d) BRIEF

Figure A.9: Coordinates and number of features along the Unconstrained dataset frames.

A-10

	Titlepage
	Abstract
	Abstract
	Resumo
	Resumo
	Acknowledgments
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Context, Motivation and objectives
	1.2 Problem Description
	1.3 Proposed Solution
	1.4 Related Work
	1.5 Main Contributions
	1.6 Thesis Outline

	2 3-D Structure from Images
	2.1 Introduction
	2.2 Pinhole Camera Model
	2.3 Planar Homographies
	2.3.1 2D image transformations
	2.3.2 Planar Homography
	2.3.3 Calculation of the Planar Homography Matrix

	2.4 From Planar Homography to 3-D Displacement - Planar Homography Decomposition

	3 Image Features
	3.1 Introduction
	3.2 SURF - Speeded-Up Robust Features
	3.2.1 Integral Images
	3.2.2 Interest points detection
	3.2.3 Interest points descriptors
	3.2.4 Interest points matching

	3.3 BRIEF - Binary Robust Independent Elementary Features
	3.3.1 BRIEF descriptor
	3.3.2 Feature detector
	3.3.3 Scale and Rotation Invariance

	4 Developed Algorithm and System Architecture
	4.1 Introduction
	4.2 Developed Algorithm
	4.3 Gumstix Overo Fire
	4.4 Caspa VL Camera
	4.5 PUMA 560 Robotic Arm
	4.6 Overall Architecture

	5 Experimental Results
	5.1 Introduction
	5.2 Simulation
	5.2.1 Synthetic Dataset
	5.2.2 Results Analysis

	5.3 Real Videos tests
	5.3.1 Real Dataset
	5.3.2 Results Analysis

	5.4 Real Videos with Camera Attached to PUMA tests
	5.4.1 Dataset
	5.4.2 Results Analysis

	5.5 Closed Loop Control tests
	5.5.1 Vision-Based control for rigid body stabilization and implementation on the PUMA 500 robotic arm
	5.5.2 Results Analysis

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	Appendix A Appendix
	A.1 Steps aiming the practical implementation
	A.2 Camera Calibration
	A.3 The Kronecker Product
	A.4 Real videos experiments graphics

