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Abstract

This work proposes two aiding techniques to enhance the performance of inertial navigation systems

(INS), for precise maneuvering of Uninhabited Air Vehicles (UAVs). An embedded methodology to exploit

the vehicle dynamics (VD) in the navigation system is proposed, that integrates the vehicle information

directly in the Extended Kalman Filter state model. The embedded VD and the INS algorithm propagate

simultaneously the inertial states, allowing for the estimation of the INS errors by exploiting the information

enclosed in the vehicle dynamics. Attitude, velocity and inertial sensors bias estimates are enhanced by

the states predicted by the VD. The proposed technique reduces some of computational routines associated

with VD aiding, with an accuracy equivalent to that of the classical technique. A LASER range finder

sensor is also integrated in the navigation system to provide high precision distance-to-ground readings for

critical takeoff and landing maneuvers. Simulation results for the nonlinear dynamics of a Vario X-Treme

model-scale helicopter are presented and discussed. Attitude and position estimation results evidence that

the proposed techniques are a valuable navigation aiding solution for UAVs maneuvering in mission scenarios

with limited GPS availability and/or high accuracy requirements.

Key words: Inertial navigation, Extended Kalman filter, Vehicle dynamic model, Sensor fusion, Vertical

take off and landing

1. Introduction

The latest technological developments bring about Uninhabited Air Vehicles (UAVs) as versatile, mul-

tipurpose platforms able to perform a wide variety of missions. The vast scope of practical applications

ranges from coastal surveillance, bridge monitoring, traffic watch, to domestic security, and search and res-

cue missions in extreme environments. Among the existing air vehicles, model-scale helicopters step forward
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as a challenging platform with the ability to perform Vertical Takeoff and Landing (VTOL), featuring high

maneuverability and complex, fast open-loop unstable dynamics.

To satisfy time enduring mission requirements, these vehicles are usually equipped with ultra light weight,

low-cost navigation systems, designed for high performance and robustness. However, low-cost sensor units

are affected by non-idealities, such as bias and noise, that hinder the required accuracy, but can be tackled

by introducing additional data sources. This motivates the development of advanced filtering techniques

that exploit aiding measurements and the available information about the UAV.

Vehicle model aiding can be adopted in virtually any application where the vehicle dynamics are known.

It is of interest in indoor applications, urban scenarios, or hostile environments, where other aiding sensor

can be inoperative or subject to jamming or distortion. Vehicle dynamics are a software based solution

that provides information about the UAV motion, and is combined with the inertial navigation estimates

using filtering techniques. The integration of vehicle model with the inertial system kinematics allows for

the compensation of inertial estimation errors, bearing performance improvements on state variables that

are critical for precise maneuvering.

This paper discusses and proposes advanced aiding techniques for precise UAV position and attitude

estimation using low-cost sensors. The navigation system architecture is based on merging a high accuracy

inertial navigation system (INS) with the information obtained from the vehicle dynamics (VD), using an

Extended Kalman Filter (EKF). A new method to integrate the vehicle model in the navigation system

is proposed, based on using the vehicle dynamics to propagate the INS state estimates, exploiting the

redundancy of the VD and the INS algorithms. Whereas classical methods integrate a full state vehicle

simulator and require the estimation and compensation of the vehicle model errors, the new method integrates

the VD directly in the EKF to estimate exclusively the INS errors. The proposed VD aiding method allows for

the decoupling of the vehicle model differential equations, and selection of those describing the vehicle more

accurately. A LASER range finder sensor implementation for takeoff and landing operations is also detailed,

enhancing the vertical channel position and velocity estimates. The VD and LASER aiding techniques are

demonstrated for a Vario X-Treme helicopter dynamic model, and the accuracy enhancements for takeoff,

cruise and landing operations are evidenced in simulation.

The INS is a dead-reckoning algorithm that computes attitude, velocity and position based on the inertial

sensor readings. High precision INS algorithms that account for high frequency attitude, velocity and position

motions (denoted as coning, sculling and scrolling respectively) are developed in (Savage, 1998a,b; Ignagni,

1998). The inertial attitude, velocity and position estimates are affected by inertial sensor biases and

noise, and filtering techniques such as the EKF are adopted to dynamically compensate for non-ideal sensor

characteristics that otherwise yield unbounded INS errors. Theory and application related to the EKF

and INS algorithms can be found in (Brown and Hwang, 1997; Crassidis et al., 2007; Kinsey et al., 2006;
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Dissanayake and Sukkarieh, 2001; Koifman and Bar-Itzhack, 1999) and in references therein.

Classical GPS/INS navigation strategies comprising inertial sensor biases estimation are found to hold

only partial observability for a time-invariant configuration, as discussed in (Goshen-Meskin and Bar-Itzhack,

1992a,b). The observability of position, attitude, and sensor non-idealities can be enhanced by introducing

vehicle model information.

Simple motion constraints have been successfully implemented in the past for land vehicle applica-

tions, by introducing the concept of virtual observations, see (Bryson and Sukkarieh, 2004; Ma et al., 2003;

Dissanayake and Sukkarieh, 2001). Nonholonomic constraints of wheeled vehicles, namely the inability to

takeoff or perform lateral translation, are exploited in the navigation system by inputting zero valued virtual

measurements of the body frame y and z axes velocity. Also, vehicle dynamics bandwidth information and

frequency contents are successfully implemented to trace inertial motion and tackle bias misalignment errors

in (Vasconcelos et al., 2005).

Full state, complex aircraft dynamics have been adopted to enhance the observability of the naviga-

tion system in recent work presented in (Bryson and Sukkarieh, 2004; Koifman and Bar-Itzhack, 1999), and

experimental results for a model-aided inertial navigation system for underwater vehicles can be found in

(Hegrenaes et al., 2008). The navigation system structure is composed by a VD block that plays the role

of an extra INS unit. The vehicle dynamics are computed by a vehicle model simulator and the output is

compared to the INS state estimates. The EKF state model is augmented to dynamically estimate both the

INS and the VD errors, improving the overall navigation system accuracy.

A discussion about the impact of process model complexity on the improvement of the navigation system

performance is presented in (Julier and Durrant-Whyte, 2003). Simple vehicle models are shown to tackle

state uncertainty and it is evidenced that small improvements in the VD model are more relevant to the

performance enhancement than the choice of aiding sensor suites. A drawback in more complex dynamics lies

in the modeling errors, over-parametrization of the model, and poor observability of the vehicle states, which

bias and degrade the filter performance, and that must be compensated in the form of state model uncertainty

and/or using weak constraints. Although very complex models may contain unobservable modes, from the

navigation system viewpoint it may only be necessary that a valid combination of the states is observable

(Koifman and Bar-Itzhack, 1999).

The proposed navigation system architecture is presented in Fig. 1. The framework is composed by an

INS/EKF architecture. The INS is a multirate, high precision algorithm that computes attitude, velocity

and position using the data from the inertial sensors. These sensors readings are affected by non-ideal errors,

such as bias and noise, that degrade the INS estimates. The EKF compares the aiding sensor and vehicle

model information with the INS output, under the form of a measurement residual, and compensates for the

estimated inertial unit errors using a direct feedback configuration.
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(a) External Vehicle Dynamics
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(b) Internal Vehicle Dynamics

Figure 1: Navigation system block diagram

In the first architecture, shown in Fig. 1(a), the vehicle dynamics are computed by an external VD

simulator based on the available thrusters input information. The distinct nature of the error sources and

system dynamics allows the EKF to separate the INS errors from the VD errors and to perform their

mutual updating in the compensation routines. Recalling the fundamentals of filtering and sensor fusion,

the VD and INS ensemble is expected to yield better performance than any of the systems independently

(Koifman and Bar-Itzhack, 1999). The accuracy of the INS is increased at the cost of integrating the VD

model and states, augmenting the EKF states to compensate for the VD model errors, and using error

compensation routines in the external vehicle model.

In the second architecture, that is the main contribution of the present paper, the VD information is

merged in the EKF state model, as depicted in Fig. 1(b), using the INS states to compute the VD dynamics.

In this setup, the inertial state estimates are integrated by both the INS and the VD equations over a

sampling interval, and the VD algorithm output are described as a function of the INS errors. The distinct

VD and INS integration methods applied to the same inertial quantity enables the EKF to estimate and

compensate for the inertial errors.
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The proposed technique reduces some of the computations associated with the classical VD aiding, and

introduces some flexibility in the implementation of the vehicle model. The use of correction routines in

the vehicle simulator is not necessary, due to the embedding of the vehicle dynamics in the filter state

model. Because the INS states are used in the VD computations, vehicle model differential equations

are partially decoupled and it is possible to select only those dynamics that are more exact. Namely,

the attitude kinematics, computed both in the INS and vehicle simulator in the classical aiding technique

(Koifman and Bar-Itzhack, 1999), are computed only in the INS in the proposed aiding technique.

The derived vehicle aiding techniques are introduced and validated using a generic fully actuated rigid

body simulator for the sake of illustration, and extended to a model-scale Vario X-Treme helicopter model

simulator, to demonstrate its application to realistic setups. A preliminary version of this work has been

presented in (Vasconcelos et al., 2006), and the application of the proposed architecture for oceanic vehicles

has been suggested in (Morgado et al., 2007).

This paper is organized as follows. Section 2 describes the inertial navigation system and the Kalman

filtering algorithms adopted in this work. Section 3 presents the vehicle model aiding architectures. Two

alternative methods to introduce the vehicle information in the navigation system are detailed. The dynamics

of a fully actuated rigid body are described to illustrate the integration of the VD aiding techniques. Section 4

characterizes the LASER sensor and describes the integration of the sensor information in the navigation

system structure. Section 5 provides the implementation details. Namely, the state model of the EKF for

each aiding technique, the discretization process and the error correction routines are detailed. Simulation

results for the VD model and LASER range finder sensor are presented in Section 6. The classical VD

is validated using a standard UAV trajectory, and tested with the Vario X-Treme helicopter model. The

LASER aiding is demonstrated by simulating a landing maneuver where the distance to ground is unknown.

Concluding remarks are discussed in Section 7.

Nomenclature

Column vectors and matrices are denoted respectively by lowercase and uppercase boldface type, e.g. s

and S. The transpose of a vector or matrix will be indicated by a prime, and trailing subscripts {x, y, z}

denote the vector components, s = [sx sy sz]
′. Leading subscripts and superscripts identify the coordinate

system of a quantity, e.g. Es is represented in coordinate frame {E}, and E
BR is a rotation matrix that

transforms the vector representation Bs into Es by means of the linear operation Es = E
BRBs. Position,

velocity and acceleration are denoted respectively by p, v, and a, and the angular velocity of the vehicle

expressed in body coordinates is represented by ω. The measurement and the estimate of quantity s are

denoted by sr and ŝ, respectively. The estimation error is defined as δs = ŝ− s unless otherwise noted, and

‖s‖ denotes the Frobenius norm. Discrete time quantities are characterized by the time index k subscript.
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The (n× n) identity matrix is denoted by In, and (m× n) zeros and ones matrices are respectively denoted

by 0m×n and 1m×n, where the subscript is omitted whenever clear from the context.

2. Navigation System Structure

This section describes the adopted navigation system architecture, that comprises an high-accuracy,

multirate INS integration algorithm, combined with advanced error compensation techniques based on the

Kalman filtering, as illustrated in Fig. 1. The INS algorithm solves the kinematics differential equations

using the output of inertial sensors, which allows for the use of INS in any robotic platform regardless of

the available position and attitude references, and irrespective of the vehicle dynamics. However, the INS

position and attitude estimation errors will drift with time under the influence of accelerometer and rate gyro

non-idealities such as noise, scaling factors, sensor misalignment and bias calibration errors, among others.

The EKF dynamically estimates the INS errors, by merging available aiding information such as GPS

position measurements, attitude information contained in vector observations, and vehicle model dynamics,

as illustrated in Fig. 1. The INS errors are compensated by modeling the first order description of the INS

errors in state space form, comparing the aiding information with the INS estimates, and feeding back the

errors estimate to the INS (direct-feedback configuration).

This section presents the main characteristics of the INS and EKF algorithms adopted in this work. The

concept of multirate high accuracy inertial integration algorithm, the EKF state space formulation and the

error compensation routines are introduced. The navigation system is presented concisely and for the sake of

completeness, providing the necessary background for the LASER and the vehicle model aiding techniques,

for further details on the present architecture see (Vasconcelos et al., 2005) and references therein.

2.1. Inertial Navigation System

The INS performs attitude, velocity and position numerical integration from rate gyro and accelerometer

triads data, rigidly mounted on the vehicle structure (strapdown configuration). For highly maneuverable

vehicles, the INS numerical integration must properly address the fast dynamics of inertial sensors output,

to avoid estimation errors buildup. The INS algorithm adopted in this paper is found detailed on the

tutorial work presented in (Savage, 1998a,b). Angular position, linear velocity, and linear position high

frequency motions, referred to as coning, sculling, and scrolling respectively, are properly accounted for

using a multirate, recursive approach. In this framework, a high speed, low order algorithm computes

dynamic angular rate/acceleration effects at a small sampling interval, and its output is periodically fed to

a moderate-speed algorithm that computes attitude/velocity resorting to exact, closed-form equations.

The moderate-speed inertial algorithms attitude output is represented in rotation matrix form, and

velocity and position are expressed in Earth frame coordinates. Simulation environments and case study
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trajectories to tune the algorithm’s execution rates according to performance specifications are described in

(Savage, 1998a,b). A standard low-power consumption DSP based hardware architecture is found sufficient

to run the algorithm at the highest accuracy repetition rates. Therefore, for a low cost architecture, high

computational precision is obtained and the discrete-time integration errors are very small with respect to

the other INS error sources such as inertial sensor bias and noise.

2.2. Extended Kalman Filter

The inertial estimation errors are compensated for by merging the INS estimates with aiding information

in the EKF algorithm (Brown and Hwang, 1997). The EKF error equations, based on perturbational rigid

body kinematics, were brought to full detail in (Britting, 1971), and yield a first-order model of the INS

estimation errors and sensor non-idealities. The nominal rigid body kinematics are given by

ṗ = v, v̇ = RBa, Ṙ = R (ω)
×

, (1)

where R is the shorthand notation for E
BR, the Earth and body frames are respectively denoted by {E} and

{B}, and (s)
×

represents the skew symmetric matrix defined by the vector s ∈ R
3 such that (s)

×
r = s× r,

r ∈ R
3. The angular velocity and the acceleration of the body are measured respectively by the accelerometer

and rate gyro triads, corrupted by noise and bias as follows

ωr = ω + bω + nω − b̂ω, (2)

ar = Ba− Bg + ba + na − b̂a, (3)

where g represents Earth’s gravitational field, the sensor biases are denoted by ba and bω, and na ∼ N (0,Ξa),

nω ∼ N (0,Ξω) are Gaussian white noises. The inertial sensor biases are modeled as random walk processes,

ḃa = nba
, ḃω = nbω

,

where nba
∼ N (0,Ξba

), nbω
∼ N (0,Ξbω

) are Gaussian white noises.

The rigid body coordinates are estimated using the available inertial sensor information

˙̂p = v̂, ˙̂v = R̂ar + Eg,
˙̂
R = R̂ (ωr)× ,

˙̂
ba = 0,

˙̂
bω = 0. (4)

The position, velocity and bias estimation errors are defined by the difference of the estimated and nominal

quantities,

δp := p̂− p, δv := v̂ − v, δba := b̂a − ba, δbω := b̂ω − bω,

and the attitude error, denoted as δλ, is parametrized by an unconstrained rotation vector representation in

Earth coordinates, which can be assumed locally linear and non-singular, for details and equivalent attitude
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parametrizations, see (Markley, 2003; Pittelkau, 2003). Define the rotation error matrix as R(δλ) := R̂R′,

the attitude error rotation vector δλ is described by the first order approximation

R(δλ) � I3 + (δλ)
×
⇒ (δλ)

×
� R̂R′ − I3, (5)

that is valid for “small-angle” attitude errors (Britting, 1971).

Combining (1-4), the attitude, velocity, and position error kinematics are obtained by retaining the first-

order terms of Taylor’s series expansions or by using perturbation algebraic techniques (Britting, 1971),

producing

δṗ = δv, δv̇ = R̂(ar − aSF)−
(
R̂ar

)
×

δλ, δλ̇ = R(ωr − ω),

˙δba = −nba
, ˙δbω = −nbω

, (6)

where aSF = Ba − Bg is the specific force, defined as the nominal reading of an accelerometer. The terms

(ωr −ω) and (ar − aSF) represent the non-idealities of the accelerometer and rate gyro readings (2) and (3)

respectively, and are described by

(ωr − ω) = −δbω + nω, (ar − aSF) = −δba + na. (7)

Combining (6) and (7), the error state space model is

δṗ = δv, δv̇ = −R̂δba −
(
R̂ar

)
×

δλ + R̂na, δλ̇ = −R̂δbω + R̂nω,

˙δba = −nba
, ˙δbω = −nbω

. (8)

The Kalman filter adopted in this work is based on the concept of Multiplicative EKF. The adopted

attitude error parametrization is locally linear and hence can be integrated in the EKF estimation algorithm

without violating constraints such as those found in rotation matrices and quaternions. The EKF estimates

the INS error vector δx =
[
δp′ δv′ δλ′ δb′a δb′ω

]′
based on the aiding information. To preserves the

small error assumption underlying the linearized model (8), δx is fed back and stored in the global quantity

xINS = (p,v,R,ba,bω) of the INS, and reset in the filter, as illustrated in Fig. 1. The validity of this

process is demonstrated in (Markley, 2003), where it is also evidenced that the estimation error covariance

is unaffected when δx is incorporated in xINS.

3. Vehicle Model Aiding

Classical GPS/INS architectures that compensate for inertial sensor biases are found to hold only par-

tial observability for time-invariant configurations (Goshen-Meskin and Bar-Itzhack, 1992a,b). The vehicle

model aiding steps forward as an inexpensive, software based solution to overcome the lack of observabil-

ity in the navigation system. Given the vehicle model inputs, the vehicle dynamics provide angular and
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linear velocities information, that can be merged with the INS estimates using the EKF algorithm. Ob-

servability of the inertial states is enhanced and although position is in general unobservable from the

vehicle dynamics (Bryson and Sukkarieh, 2004), the velocity accuracy improvements will reduce the drift of

the position estimation errors, as shown in the results presented in the literature (Hegrenaes et al., 2008;

Bar-Itzhack and Harman, 2003; Bryson and Sukkarieh, 2004).

This section presents the VD model and the architecture to integrate the VD information in the navigation

system, depicted in Fig. 1, is introduced and detailed. In particular, a new methodology to directly embed

the vehicle information in the EKF is presented.

The external VD structure, depicted in Fig. 1(a), follows from previous work found in (Koifman and Bar-Itzhack,

1999; Bryson and Sukkarieh, 2004), where the integration of the VD in the system is analogous to that

adopted for the INS. Vehicle state estimates are computed by a vehicle simulator block, using the thrusters

input information. The full state vehicle model algorithm computes attitude and velocity estimates that

are compared to the INS output, under the form of measurement residuals. Whereas the vehicle aiding

information is expected to help the INS, computational and modeling errors of the vehicle dynamics itself

must be addressed by the filter. Therefore, the EKF state model is also augmented to compensate for the

vehicle modeling errors.

The current work presents an alternative method to exploit the VD model by blending the vehicle

simulator equations directly in the EKF state model. Vehicle dynamics are integrated in the filter state

space, linearized about the inertial state estimates. The vehicle dynamics propagate the inertial estimates,

so the VD integration is a function of the INS errors. Therefore, the EKF algorithm internally solves the

VD equations and only outputs the INS error estimates, as shown in Fig. 1(b).

Without any loss of generality, the VD aiding technique proposed in this paper is illustrated using the

dynamics of a 6-DOF rigid body polyhedron with uniform mass density and fully actuated. The Vario X-

Treme helicopter dynamic model, detailed in Appendix A, is highly nonlinear and coupled, and is addressed

later to evidence that the VD aiding technique is valid for realistic robotic platforms.

3.1. Rigid Body Dynamics

The body coordinate frame origin, denoted pBorg, is located at the body’s center of mass and geometric

center. The axes of the body frame define a plane of symmetry for the mass distribution of the body, so the

resulting body inertia tensor, denoted IB , is described by the principal moments of inertia (Craig, 1989),

yielding

IB =
m

12

⎡
⎢⎢⎢⎣

h2 + l2 0 0

0 w2 + h2 0

0 0 l2 + w2

⎤
⎥⎥⎥⎦ ,
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where m is the body mass and (l, w, h) represent the polyhedron length, width and height, respectively. The

rigid body is subject to the thrusters force and momentum, denoted by fth and nth respectively, and to

viscous linear and angular damping, denoted by fd and nd respectively, yielding

Bfth =
∑

i

Bfi,
Bnth =

∑
i

Bpth i ×
Bfi,

Bfd = −Klin
Bv, Bnd = −Kangω,

where i = 1, . . . , 6 is the index of the thruster applying force fi to the body, Bpth i are the thrusters’

coordinates in body frame, and Klin and Kang are respectively the linear and the angular damping coefficients.

Applying the Newton and Euler equations to determine body’s translation and rotation with respect to

the inertial frame, the body dynamics are expressed by the nonlinear state space model

ω̇V :=fω(ωV ,nth) = −I−1
B

(
(ωV )

×
IBωV + KangωV

)
+ I−1

B nth, (9a)

Bv̇V :=fv(ωV , BvV , fth) = −M−1
T

(
(ωV )

×
MT

BvV + Klin
BvV

)
+ M−1

T fth +R′V
Eg, (9b)

ṘV :=fR(ωV ,RV ) = RV (ωV )
×

, (9c)

where the body and center of mass coordinate frames are defined with the same orientation and position, so

that the body frame attitude dynamics (9a) do not depend on the linear velocity. To avoid ambiguity in the

adopted notation, Bv̇ denotes d B
v

dt
, whereas B(dv

dt
) is denoted by B(v̇).

The simple rigid body dynamics (9) allow for physical intuition on the contribution of the vehicle model

to the inertial states errors compensation. The V subscript for the angular velocity and body linear velocity

(9) is adopted to emphasize that these quantities are computed using the vehicle dynamics, given that some

are also computed by the INS, using distinct integration algorithms and inputs.

3.2. External Vehicle Model Aiding

In the classical VD aiding, presented in Fig. 1(a), the vehicle dynamics are computed using a stan-

dalone vehicle simulator, included in the navigation system but external to the EKF/INS system. The EKF

state model is augmented to estimate and compensate for the VD block errors, using model specific error

compensation routines.

The VD block error dynamics are formulated using the technique adopted to describe the INS error

dynamics in Section 2.2. These are obtained by applying a perturbational analysis to the nominal dynamics

(9). Let x̂V = (ω̂V , Bv̂V , R̂V ) denote the states estimated by the vehicle model simulator, the vehicle model
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error dynamics are described by the first order terms of the Taylor series expansion

˙̂ωV = fω(ω̂V , n̂th) ⇒ ˙δωV ≈
∂fω

∂ω

∣∣∣∣
xV

δωV +
∂fω

∂nth

∣∣∣∣
xV

δnth, (10a)

B ˙̂vV = fv(ω̂V , Bv̂V , R̂V , f̂th) ⇒

δBv̇V ≈
∂fv

∂ωV

∣∣∣∣
xV

δωV +
∂fv

∂BvV

∣∣∣∣
xV

δBvV +
∂fv

∂δλ

∣∣∣∣
xV

δλV +
∂fv

∂fth

∣∣∣∣
xV

δfth, (10b)

˙̂
RV = fR(ω̂V , R̂V ) ⇒ ˙δλV = RV δωV , (10c)

where δωV = ω̂V −ω, δBvV = Bv̂V −
Bv, δnth = n̂th−nth, δfth = f̂th− fth, and the Jacobians are given by

∂fω

∂ω

∣∣∣∣
xV

= I−1
B

(
(IBωV )

×
− (ωV )

×
IB − I3 Kang

)
,

∂fω

∂nth

∣∣∣∣
xV

= I−1
B ,

∂fv

∂ω

∣∣∣∣
xV

= M−1
T

(
MT

BvV

)
×

,
∂fv

∂fth

∣∣∣∣
xV

= M−1
T , (11)

∂fv

∂Bv

∣∣∣∣
xV

= M−1
T

(
− (ωV )

×
MT − I3 Klin

)
,

∂fv

∂δλ

∣∣∣∣
xV

= R′V
(
Eg

)
×

,

The first order model (10) can also be obtained by perturbational analysis of the dynamics (9). The rotation

matrix dynamics (9c) are identical to the inertial rigid body kinematics expressed in (1), and consequently

do not yield new information to the system. However, the computation of RV is necessary for the vehicle

dynamics simulator (9), and the associated error dynamics (10c), which are identical to the INS attitude

error (6), must be compensated for.

The INS and VD state estimates are compared under the form of measurement residuals, obtained by

the perturbational method (Britting, 1971), and described by

zω := ω̂ − ω̂V = ω + δω − (ω + δωV ) = δω − δωV = −δbω − δωV + nω, (12a)

zu := R̂′v̂ − Bv̂V = R̂′v − (Bv + δBvV ) = (R̂′ −R′)v +R′δv − δBvV

= −R̂′ (λ)
×

v +R′δv − δBvV ≈ R
′δv +R′ (v)

×
δλ− δBvV ,

(12b)

zR := R̂R̂′V − I ≈
[
I + (δλ)

×

]
RR′

[
I− (δλV )

×

]
− I ≈ δλ− δλV . (12c)

The vehicle model equations (9) are computed by a variable-step Runge-Kutta differential equation solver,

using the thrusters force fth and momentum nth information. The vehicle state errors and covariances are

propagated by the EKF using the first order model (10) and assuming that the thrusters input is known

from the control system, δnth = δfth = 0. In experimental applications the inputs of the vehicle model may

not be accurately known, and δnth, δfth may be modeled as small stochastic uncertainties to increase the

navigation system robustness.

The INS and VD errors are estimated by processing the measurement residuals (12) in the EKF algorithm.

Similar to the storage technique used for the INS error compensation, described in Section 2.2, the estimated

VD errors δxV =
[
δω′V δBv′V δλ′V

]′
are transferred to the external VD block and used to update the
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state xV = (ωV , BvV ,RV ). This method preserves the small error conditions of the first order model (9),

however it requires the implementation of error compensation routines in the vehicle model.

3.3. Internal Vehicle Model Aiding

The vehicle model aiding enhances the accuracy of the navigation system by providing specific information

about the robotic platform, e.g. its linear and angular velocity dynamics, (9a) and (9b) respectively. In the

classical technique described in the last section, the attitude kinematics (9c) are computed simultaneously

in the INS and in the self-contained vehicle simulator, and vehicle model errors compensation routines must

be implemented, as illustrated in Fig. 1. The necessity of these auxiliary computational routines motivates

an alternative vehicle model integration method.

The embedded VD aiding concept is based on combining vehicle states such as ωV , BvV and RV , with

the corresponding INS estimates, respectively ω̂, R̂′v̂ and R̂, by propagating the inertial quantities using

the vehicle dynamics. The VD results are described as a function of the INS errors, enabling the EKF to

estimate and compensate for the inertial errors. Consequently, error estimation and compensation routines

are only performed in the INS, reducing the computational cost associated to VD aiding techniques.

With a slight abuse of notation, let x̂ = (ω̂, v̂, R̂, b̂a, b̂ω) denote the INS state estimates. In the internal

VD methodology, nominal vehicle dynamics (9) are linearized about the INS state estimates. Using the first

order terms of the Taylor series expansion yields

ω̇ =fω(ω,nth) ≈ fω(ω̂, n̂th) +
∂fω

∂ω

∣∣∣∣
x̂

(ω − ω̂) +
∂fω

∂nth

∣∣∣∣
x̂

(nth − n̂th),

Bv̇ =fv(ω, Bv,R, fth) ≈ fv(ω̂, Bv̂, R̂, f̂th) +
∂fv

∂ω

∣∣∣∣
x̂

(ω − ω̂)

+
∂fv

∂Bv

∣∣∣∣
x̂

(Bv − Bv̂) +
∂fv

∂δλ

∣∣∣∣
x̂

δλ +
∂fv

∂fth

∣∣∣∣
x̂

(fth − f̂th).

The INS estimate error is defined as the difference between the nominal state and the INS estimate. There-

fore, the nominal angular and linear velocities are expressed as a function of the INS states and estimation

errors by

ω̇ ≈ fω(ω̂, n̂th)−
∂fω

∂ω

∣∣∣∣
x̂

δω −
∂fω

∂nth

∣∣∣∣
x̂

δnth

= fω(ω̂, n̂th) +
∂fω

∂ω

∣∣∣∣
x̂

δbω −
∂fω

∂ω

∣∣∣∣
x̂

nω −
∂fω

∂nth

∣∣∣∣
x̂

δnth, (13a)

Bv̇ ≈ fv(ω̂, Bv̂, R̂, f̂th)−
∂fv

∂ω

∣∣∣∣
x̂

δω −
∂fv

∂Bv

∣∣∣∣
x̂

δBv −
∂fv

∂δλ

∣∣∣∣
x̂

δλ

−
∂fv

∂nth

∣∣∣∣
x̂

δnth −
∂fv

∂fth

∣∣∣∣
x̂

δfth

= fv(ω̂, Bv̂, R̂, f̂th)−
∂fv

∂Bv

∣∣∣∣
x̂

R′δv −

(
∂fv

∂δλ

∣∣∣∣
x̂

+
∂fv

∂v

∣∣∣∣
x̂

R′ (v)
×

)
δλ

12



+
∂fv

∂ω

∣∣∣∣
x̂

δbω −
∂fv

∂ω

∣∣∣∣
x̂

nω −
∂fv

∂nth

∣∣∣∣
x̂

δnth −
∂fv

∂fth

∣∣∣∣
x̂

δfth, (13b)

where body linear velocity error δBv is rewritten as a function of the INS state errors δBv := R̂′v̂−R′v ≈

R′ (v)
×

δλ +R′δv.

The first order model (13) describes the nominal angular and linear dynamics as the result of solving

the vehicle dynamics fω(ω̂, n̂th) and fv(ω̂, Bv̂, R̂, f̂th) using the INS states. Interestingly enough, the vehicle

dynamics functions applied to the inertial estimates do not yield the INS state estimate derivatives, ˙̂ω �=

fω(ω̂, n̂th), B ˙̂v �= fv(ω̂, Bv̂, R̂, f̂th), which is a clear consequence of the distinct, compatible models enclosed

in the VD and INS computations. The error dynamics (13) are a function of the Jacobians computed for

the classical method (11), and hence the first order analytical results needed to integrate the vehicle model

in the EKF state model are the same for both architectures.

The navigation system observations are drawn directly from the INS inertial estimates

zω := ω̂ = ω − δbω + nω, (14a)

zu := R̂′v̂ = R′
(
I− (δλ)

×

)
v +R′δv ≈ Bv +R′δv +R′ (v)

×
δλ. (14b)

The alternative method allows for the selection of a subset of the vehicle model differential equations,

namely the model dynamics that are more accurate and whose parameters are less uncertain. For example,

the navigation system can be aided by using VD linear velocity dynamics (9b) without computing the angular

velocity dynamics (9a) if these are inaccurate.

While the classical VD technique replicated the attitude kinematics as presented in (10c), the proposed

VD aiding technique integrates (9a-9b) using the INS attitude estimate R̂, yielding a smaller number of

states in the system and estimates in the filter. This reduces the computational resources required for the

integration of vehicle dynamics in the navigation system. Also, error compensation routines for the vehicle

model are not necessary in this technique because the vehicle dynamics are integrated in the filter state

model.

4. LASER Aiding

In this section, the LASER range finder aiding sensor is described and the corresponding filter observation

equation is introduced. The LASER reads the distance L from the vehicle to the ground, along the z axis of

the {M} coordinate frame, as depicted in Fig. 2. By processing this information in the filter architecture, an

estimate of the vehicle’s distance to the ground can be obtained with high accuracy, as required for landing

and takeoff operations of an air vehicle. Other changeling applications for the LASER sensor are the relative

positioning of the vehicle with respect to a structure. Without loss of generality, the sensor is assumed to be

mounted along the z axis of the frame {M}, whose relative orientation to the body frame is described by the

13
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Figure 2: LASER Range Finder Reading

known installation rotation matrix B
MR, for calibration methods see (Guerreiro et al., 2008) and references

therein.

In the current work, the landing area terrain is assumed to be locally planar, such as an heliport or a

landing lane. The Earth’s surface height hS , given by the distance from the Earth frame origin to the Earth

surface, is modeled as approximately constant

ḣS = nhS
, (15)

where nhS
∼ N (0,ΞhS

) is a Gaussian white noise whose variance reflects the uncertainty on the ground’s

flatness. As depicted in Fig. 2, the z axis Earth coordinate of the vehicle is given by

pz = −(hS + hV ), (16)

where hV ≥ 0 is the vehicle’s height, that is, the distance from Body frame origin to the Earth surface.

Using elementary trigonometric relations yields

cos(θ) =
hV

L
=

∣∣Mh′V ez

∣∣
|Eh′V ez|

,

where EhV =
[
0 0 −hV

]′
is the vehicle’s height in Earth coordinates, ez =

[
0 0 1

]′
is the unitary z

axis vector and Mh′V ez corresponds to the projection of hV on the z axis of the {M} frame. Applying the

14



coordinate transform MhV = B
MR′R′EhV and developing the terms in the previous equation, the LASER

range is described by

L =

⎧⎪⎨
⎪⎩

hV

e′zR
B
M

Rez
, if e′zR

B
MRez > 0

not defined, if e′zR
B
MRez ≤ 0

, (17)

that is not defined for the cases where the LASER is pointing upwards. The LASER range finder sensor

measures the actual range L corrupted by the sensor noise

Lr = L + δL, (18)

where δL = nL is modeled as a zero-mean, Gaussian white noise with variance ΞL.

The LASER sensor is used primarily to perform landing maneuvers, providing high accuracy estimates

of the vehicle distance to the ground along the {M} coordinate frame z axis. The measurement residual is

computed by

zL := p̂z −
(
−ĥV

)
, (19)

where the height estimate from the LASER reading is given by rearranging the terms in (17) and using the

INS estimates in the unknown terms, producing

ĥV = e′zR̂
B
MRezLr. (20)

The vehicle’s and Earth’s surface heights, hS and hV respectively, are filtered apart by modeling the hS

dynamics (15) in the EKF, measuring hV from the LASER reading as in (20), and feeding the measurement

residual (19) to the EKF.

To model of the measurement residual (19) in the EKF, the INS position estimate is expressed as a

function of the vehicle and Earth’s surface heights, given by

p̂z = pz + δpz = −hS − hV + e′zδp. (21)

Expanding the INS attitude estimate R̂ with the attitude error δλ approximation (5) and neglecting second

order terms yields the ĥV description

ĥV = e′zR̂
B
MRezLr ≈ e′z

[
I3 + (δλ)

×

]
RB

MRezLr

≈ e′zR
B
MRez(L + δL)− Lre

′

z

(
RB

MRez

)
×

δλ

= hV + e′zR
B
MRezδL− Lre

′

z

(
RB

MRez

)
×

δλ, (22)

Combining (18-22), the measurement residual is described as a function of the EKF state variables as

zL = e′zδp− Lre
′

z

(
RB

MRez

)
×

δλ− hS + e′zR
B
MReznL. (23)
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In practical applications, the landing and takeoff locations have different terrain height hS . After the

takeoff and during flight operations, the LASER sensor is switched off to prevent erroneous readings due

to the terrain height fluctuations and to the interference of obstacles located between the vehicle and the

ground. When the landing maneuver starts, the LASER is switched on to estimate the new hS . A method

to estimate hS using the filter uncertainty is discussed in Section 5 and validated in Section 6.

5. Implementation

This section details the state space model of the EKF, that integrates the INS with the vehicle model

and LASER aiding techniques. The state variables and measurement residuals of the aiding techniques

described previously are formulated in the state model space. The differences between the external and

internal vehicle model aiding techniques are evidenced, and the discretization of the continuous state space

model is presented for the purpose of implementation.

The standard continuous-time state space model is described by

ẋC = FC (xC)xC + GC (xC) nxC
+ uC , zC = HC (xC) xC + nzC

, (24)

where xC is the state vector, FC is the state dynamics matrix, nxC
is the state noise transformed by matrix

GC , uC is the system input vector, and z is the state measurement, corrupted by the noise vector nzC
.

The state and measurement noises are assumed zero-mean, Gaussian white noises with covariance matrices

denoted by QC and RC , respectively.

The state dynamics and measurement residuals (24) of the EKF are determined by the choice of aiding

techniques, and obtained by the concatenation of the state and measurement models of each aiding source.

The systems derived in Section 2 and Section 3 are detailed next.

5.1. INS/EKF state model

The state model dynamics for the INS errors are obtained directly from (6). Let xINS = (p,v,R,ar,ωr)

denote the INS quantities, the state model dynamics of the EKF describing the INS errors are given by

δ̇x = FI(xINS)δx + GI(xINS)nINS, (25)

where

δx =
[
δp′ δv′ δλ′ δb′a δb′ω

]′
, nINS =

[
n′p n′a n′ω n′ba

n′bω

]′
,

FI(xINS) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I3 0 0 0

0 0 − (Rar)× −R 0

0 0 0 0 −R

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, GI(xINS) = blkdiag (I3,R,R,−I3,−I3) ,
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where blkdiag(...) represents a block diagonal matrix, np ∼ N (0,Ξp) is a auxiliary Gaussian white noise

associated to the position error estimate and the state noise covariance matrix is given by

QINS = blkdiag(Ξp,Ξa,Ξω,Ξba
,Ξbω

).

The measurement model for the proposed VD and LASER aiding techniques are described in the ensuing,

however additional information sources are considered. A GPS receiver and a magnetometer are integrated

in the system using the measurement residuals

zGPS := p̂− pGPS ≈ δp− nGPS, zm := Em− R̂mr ≈
(
Em

)
×

δλ−Rnm, (26)

where pGPS is the position measured by the GPS unit, mr is the magnetometer reading, Em represents the

Earth’s magnetic field in Earth coordinates, and nGPS ∼ N (0,ΞGPS), nm ∼ N (0,Ξm) are Gaussian white

noises. For further details on the derivation of the measurement residuals (26), the reader is referred to

(Britting, 1971; Markley, 2003).

5.2. Vehicle Model Aiding

The EKF state space model, formulated using (24), is obtained by concatenating the state space model

(25) that describes the INS estimation errors, with the state model and measurements of the vehicle model

aiding techniques described in Sections 3.2 and 3.3. With a slight abuse of notation, the EKF state model (24)

is defined for the external and embedded vehicle model dynamics using the same state xC and measurement

zC .

5.2.1. External Vehicle Model Aiding

In the external vehicle model aiding technique, the vehicle dynamics are computed by a self-contained

VD simulator, and the INS and the VD states are distinct. As a mean to estimate and compensate for

the INS errors, the EKF state model is augmented with the VD error dynamics (10), and the measurement

residuals (12) are a linear combination of the INS and the VD errors. The classical VD aiding methodology

requires specific computational routines to estimate and compensate for the estimation errors of the VD

simulator.

The continuous-time error state space model for the navigation system with external VD aiding is obtained

directly from the EKF/INS state model (25) augmented by the VD error dynamics (10), yielding

xC :=
[
δx′ δx′V

]′
, nxC

:=
[
n′INS n′xV

]′
, uC = 0,

FC(xINS,xV ) =

⎡
⎣FI(xINS) 015×9

09×15 FV (xV )

⎤
⎦ , GC(xINS) =

⎡
⎣GI(xINS) 015×9

09×15 GV

⎤
⎦ ,
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with the vehicle states, noises and model submatrices given by

δxV :=
[
δω′V δBv′V δλ′V

]′
, nxV

:=
[
n′

ωV
n′

vV
n′

λV

]′
,

FV (xV ) =

⎡
⎢⎢⎢⎣

∂fω

∂ω
0 0

∂fv

∂ω

∂fv

∂Bv

∂fv

∂λ

RV 0 0

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
xV

, GV =

⎡
⎢⎢⎢⎣
I 0 0

0 I 0

0 0 I

⎤
⎥⎥⎥⎦ ,

where nωV
, nvV

, and nλV
are auxiliary zero-mean, Gaussian white noises with covariances ΞωV

, ΞvV
, and

ΞλV
respectively, that characterize the vehicle modeling errors.

The measurement residuals (12) are a function of the INS and VD errors, given in the state space form

by

zC :=
[
z′ω z′u z′

R

]′
, nzV

:=
[
n′ω + n′

zω
n′

zu
n′

zR

]′
,

HC(xINS) =

⎡
⎢⎢⎢⎣
0 0 0 0 −I −I 0 0

0 R′ R′ (v)
×

0 0 0 −I 0

0 0 I 0 0 0 0 −I

⎤
⎥⎥⎥⎦ ,

where nzω
, nzU

, and nzR are a auxiliary zero-mean Gaussian white noises associated to the δzV observation,

with covariances Ξzω
, ΞzU

, and ΞzR respectively. The vehicle states and measurements noise covariance

matrices are

QC = blkdiag(QINS,ΞωV
,ΞuV

,ΞRV
), RC = blkdiag(Ξzω

+ Ξω,Ξzu
,ΞzR),

where the auxiliary white noise variances account for the effects of neglecting second order terms and un-

modeled uncertainties in the measurement residual derivation.

The observation zω is disturbed by rate gyro noise, so a state and measurement noise correlation matrix

is introduced in the Kalman filter equations

CC =

⎡
⎣0 0 Ξω 0 0 03×9

06×15 06×9

⎤
⎦
′

,

for details on the definition and derivation see (Brown and Hwang, 1997) and references therein.

5.2.2. Embedded Vehicle Model Aiding

In the embedded vehicle model aiding technique, the EKF state model is augmented with the VD error

dynamics (13), which are propagated using the INS estimates, and updated by the Kalman filter algorithm.

The measurements are obtained from the INS inertial estimates, given the residuals (12). The continuous-
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time state space model is given by

xC :=
[
δx′ x′V

]′
, nxC

:=
[
n′INS n′xV

]′
, uC =

[
fω(ω,Nth)′ fv(ω, Bv,R,Fth)′

]′
,

FC(xINS) =

⎡
⎣FI(xINS) 015×6

FV (xINS) 06×6

⎤
⎦ , GC(xINS) =

⎡
⎣GI(xINS) 09×6

GV (xINS) I6

⎤
⎦ ,

where

xV =
[
ω′ Bv′

]′
, nxV

=
[
n′ωV

n′BvV

]′
,

FV (xINS) =

⎡
⎣0 0 0 0 ∂fω

∂ω
,

0 − ∂fv

∂Bv
R′ −

(
∂fv

∂δλ
+ ∂fv

∂Bv
R′ (v)

×

)
0 ∂fv

∂ω

⎤
⎦
∣∣∣∣∣∣
x̂

,

GV (xINS) =

⎡
⎣0 0 −∂fω

∂ω
0 0

0 0 −∂fv

∂ω
0 0

⎤
⎦
∣∣∣∣∣∣
x̂

,

where nωV
and nBvV

are auxiliary zero-mean, Gaussian white noises with covariances ΞωV
and ΞBvV

that

characterize the vehicle modeling errors. The xV state variable is propagated using the INS estimates as

expressed in (13), and the EKF state matrices depend only on the INS quantities xINS, as expected from

the derivation of the technique presented in Section 3.3.

The measurement state model (14) is described in the state space form by

z :=
[
z′ω z′u

]′
, nzV

:=
[
n′ω + n′

zω
n′

zu

]′
,

HC(xINS) =

⎡
⎣0 0 0 0 −I I 0

0 R′ R′ (v)
×

0 0 0 I

⎤
⎦ ,

and nzω
∼ N (0,Ξzω

) and nzu
∼ N (0,Ξzu

) are auxiliary zero-mean Gaussian white noises associated with

the measurement. The vehicle states and measurements noise covariance and covariance correlation matrices

are

QC = blkdiag(QINS,ΞωV
,ΞuV

),RC = blkdiag(Ξzω
+ Ξω,Ξzu

),

CC =

⎡
⎣0 0 Ξω 0 0 03×6

03×15 03×6

⎤
⎦
′

.

5.3. LASER Aiding

The LASER sensor is integrated with the INS by defining the variables and matrices of the EKF state

model (24) as

xC :=
[
δx′ hS

]′
, nxC

:=
[
n′INS nhS

]′
, uC = 0,

FC(xINS) =

⎡
⎣FI(xINS) 015×1

01×15 0

⎤
⎦ , GC(xINS) =

⎡
⎣GI(xINS) 09×1

01×9 1

⎤
⎦ .
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The measurement model is obtained from (23) and given by

zC := zL, nzC
:= nzL

,

HC(xINS) =
[
e′z 01×3 −e′z

(
RB

MRez

)
×

01×3 01×3 −1
]
,

where

QC = blkdiag(QINS,ΞhS
), RC = (e′zR

B
MRez)

2ΞL, CC = 0.

The LASER sensor is adopted for takeoff and landing maneuvers and to determine the relative position

to structures. Previous to the LASER’s activation, the estimation covariance of hS is defined large enough to

account for the uncertainty in the terrain height. When the LASER sensor is activated, the EKF recursively

estimates the terrain height hS based on the sensor measurements, and the uncertainty on the terrain’s

height converges asymptotically to a steady state value, that depends on the sensor’s accuracy.

When the LASER is switched off, the uncertainty on the terrain height hS will grow at a rate defined by

the noise covariance ΞhS
. Techniques to avoid numerical problems in the EKF covariance matrices should

be adopted, namely square root filtering (Brown and Hwang, 1997) or by setting ΞhS
= 0 if the uncertainty

reaches a prespecified upper bound.

5.4. State Model Discretization

The discrete-time state space model

xk+1 = Φkxk + wk, zk = Hkxk + vk,

is obtained using the zero order hold discretization technique (Brown and Hwang, 1997), and is given by

Φk = eFkT , Hk = HC |t=tk
,

and the discrete-time noise covariance matrices are described by

Qk � [GkQCG′

k]T, Rk �
RCk

T
,

Ck =
1

T

∫ tk

tk−1

Φ(tk+1, θ)GC(τ)CC(τ)dτ ≈ (I +
FkT

2
+

F2
kT 2

6
)GkCCk,

where T is the sampling period, Fk = FC |t=tk
, Gk = GC |t=tk

, RCk = RC |t=tk
, CCk = CC |t=tk

and

Φk = Φ(tk+1, tk) denotes the state transition matrix.

5.5. Error Compensation Routines

In the current direct feedback configuration, the EKF error estimates are compensated in the INS

moderate-speed algorithm, using

p+
k = p−k − δp̂k, v+

k = v−k − δv̂k, R+
k = R′(δλ̂k)R−k ,

b+
a k = ba k − δb̂a k, b+

ω k = b−ω k − δb̂ω k, (27)
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where matrix R′(δλ̂k) is implemented using power series expansion of trigonometric terms up to an arbitrary

accuracy (Savage, 1998a). The EKF error estimates are reset after being applied to compensate the INS

states, that updates the linearization point and keeps filter perturbational dynamics valid under the first

order assumptions.

Similar to the INS error compensation routines (27), the estimated VD errors are fed back to the external

vehicle simulator, as shown in Fig. 1(a), using the following error compensation routines

ω+
V k = ω−V k − δω̂V k, Bv+

V k = Bv−V k − δBv̂V k, R+
V k = R′V k(δλ̂V )R−V k. (28)

By construction, the internal VD technique propagates the vehicle dynamics using the EKF state space.

The estimation error compensation is automatically performed by the EKF in the state update step, and

vehicle model error compensation routines are not necessary in this technique.

6. Simulation Results

This section presents the simulations results that validate and illustrate the properties of the proposed

aiding techniques. The integration of the VD and LASER range finder information in the navigation system

is studied using three simulation setups. The first simulation compares the estimation results of the VD

aided navigation system with those of a classical GPS/INS architecture, for a 6-DOF rigid body describing

a trimming trajectory. Bias and velocity estimation enhancements are discussed, and the internal VD aiding

technique is validated with respect to the classical VD aided navigation system.

In the second simulation, the application of the VD aiding for highly nonlinear, realistic vehicle models

is demonstrated for a model-scale Vario X-Treme helicopter. The proposed embedded VD aiding technique

is adopted, and simulation results are presented for a takeoff and turning trajectory. The estimation results

are depicted for GPS based and VD aided navigation architectures, and the estimated error covariance is

shown to evidence the accuracy improvements.

The third simulation emphasizes the role of the LASER range finder sensor for critical maneuvers.

The vehicle describes a hovering maneuver, and has to acquire the distance to ground for precise landing.

Accuracy improvements obtained with the LASER range finder sensor integrated on a GPS/INS configuration

are evidenced. Dynamic estimation of distance to ground is performed, and position and velocity vertical

channel accuracy enhancements are shown.

The INS high speed algorithm is set to run at 100 Hz and the normal speed algorithm is synchronized

with the EKF, both executed at 50Hz. The LASER sensor operates at 10Hz and the GPS provides position

measurements at the nominal frequency of 1Hz. The characteristics of the sensors non-idealities are presented

in Table 1.
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Table 1: Sensor Non-idealities

Sensor Bias Noise Variance

Rate Gyro 0.05 ◦/s (0.02 ◦/s)
2

Accelerometer 10 mg (0.6 mg)2

LASER - (10−2 m)2

Magnetometer - (1 mG)2

GPS - 10 m2

Table 2: Rigid Body Characteristics

Property Nominal Value

Mass m = 10 Kg

Length, Width, Height (l, w, h) = (1.00, 0.75, 0.25) m

Rear Thrusters Bpth 1,2 = (−0.50,±0.30, 0) m

Side Thrusters Bpth 3,4 = (0,−0.375,±0.10) m

Bottom Thrusters Bpth 5,6 = (±0.40, 0,−0.125) m

Damping Coefficients Kang = 4, Klin = 2

6.1. Vehicle Model Aiding

The VD aiding technique is validated using the 6-DOF rigid body model described in Section 3.1, with the

parameters detailed in Table 2. The external VD, embedded VD and a classical GPS/INS architecture results

are obtained for the rigid body model subject to constant linear and centripetal acceleration, describing

the upwards trimming trajectory shown in Fig. 3. The bias estimation and compensation is analyzed by

considering a 30% bias calibration error in each channel of the accelerometer and rate gyro sensors.

The linear and angular velocity information provided by the vehicle model clearly endows the filter to

compensate for the inertial sensor biases, as shown in Figure 4. Velocity estimation results are enhanced,

and bias calibration errors are promptly tackled by the VD aided navigation system, yielding smaller bias

estimation error. Although position and attitude information is not directly provided for by the vehicle

model, attitude estimates are more accurate with VD aiding, as shown in Table 3, due to the smaller

velocity and bias estimation errors.

The integration of the VD model with other aiding sensors is demonstrated by including a magnetometer

in the navigation system, using the measurement residual (26). The use of a magnetometer is motivated

by the poor yaw estimation evidenced in Table 3, which is justified by analyzing the correlation of the

attitude and velocity errors in (6). The term in (6) that correlates velocity and attitude errors satisfies
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Figure 3: Rigid body trimming trajectory

Table 3: Attitude estimation error (Rigid body, Magnetometer off)

RMS Error

Aiding information Yaw (◦) Pitch (◦) Roll (◦)

GPS 1.73 0.14 0.13

Ext. VD 0.11 2.47× 10−2 3.73× 10−2

Int. VD 0.15 2.33× 10−2 3.83× 10−2

(Rar)× ez ≈ 0 for the trimming trajectory of Figure 3, where the vehicle rotates only about the z axis.

Position observations that aid velocity estimation do not yield any update on δλz, which shows that the yaw

angle is hard to determine using only GPS measurements for the described trajectory.

Using the magnetometer improves estimation results of the GPS based and VD aided navigation systems,

as seen by comparing Fig. 4 with Fig. 5, and Table 3 with Table 4. Position and velocity estimation errors are

presented in Tables 5, and 6 respectively. The estimation errors obtained with the VD aiding are smaller that

those obtained with the GPS aiding, independently of using the magnetometer. Improving the velocity and

bias estimation errors using the vehicle model information also reduces the attitude and position estimation

errors.

The performance of the embedded and the external VD architectures are similar, which validates the

proposed aiding technique. Both architectures use the same vehicle model, and hence the aiding information

introduced in the filter is the same, and the estimation results are thus similar. However, the computational

savings and flexibility associated with the proposed VD aiding technique are obtained without affecting the

navigation system accuracy, which supports the embedded VD approach.
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Figure 4: Estimation errors of the GPS and the VD aided navigation systems (Rigid body, Magnetometer off)

Table 4: Attitude estimation error (Rigid Body, Magnetometer on)

RMS Error

Aiding information Yaw (◦) Pitch (◦) Roll (◦)

GPS 1.35× 10−2 8.96× 10−2 8.02× 10−2

Ext. VD 1.22× 10−2 1.69× 10−2 1.75× 10−2

Int. VD 1.22× 10−2 1.81× 10−2 1.80× 10−2
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Figure 5: Estimation errors of the GPS and the VD aided navigation systems (Rigid body, Magnetometer on)

Table 5: Position estimation error (Rigid body, Magnetometer on)

RMS Error

Aiding information px (m) py (m) pz (m)

GPS 0.95 1.17 1.07

Ext. VD 4.00× 10−2 0.10 1.88× 10−2

Int. VD 5.06× 10−2 9.87× 10−2 1.84× 10−2
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Table 6: Velocity estimation error (Rigid body, Magnetometer on)

RMS Error

Aiding information vx (m/s) vy (m/s) vz (m/s)

GPS 0.10 0.19 0.10

Ext. VD 2.08× 10−3 7.57× 10−3 4.32× 10−4

Int. VD 2.06× 10−3 7.61× 10−3 4.49× 10−4

Figure 6: Vario X-treme model-scale helicopter

6.2. Vario X-Treme Helicopter

The 6-DOF rigid body was adopted to illustrate and validate the proposed aiding technique due to its

simplicity, but it does not qualify as a realistic air vehicle. In this section, simulation results are presented for

the Vario X-Treme helicopter, depicted in Fig. 6. This autonomous vehicle features a six degrees of freedom

rigid body dynamic model driven by external forces and moments that encompass the main rotor and tail

rotor effects, including the first order blade pitching dynamics with Bell-Hiller mechanism and the steady-

state blade flapping dynamics. The model dynamics, derived from first-principles in (Cunha and Silvestre,

2003; Guerreiro, 2005), are summarized in Appendix A. The considered model, although simplified, is highly

nonlinear and coupled, and is adopted to take a step towards the implementation of the internal VD aiding

technique in field applications.

The simulated takeoff trajectory, depicted in Fig. 7, consists of an ascending turn, followed by a straight

upwards path. A 30% bias calibration error is assumed and the magnetometer is used to compensate for the

yaw observability.

Although the Vario X-treme model is highly nonlinear, the combination of the internal VD aiding with

the linear extended Kalman filtering yields accurate attitude, velocity, and position estimates, as presented

in Tables 7, 8, and 9 respectively. The helicopter model aiding enhances the INS estimates, as shown in the

position results of Fig. 8 and in the bias and velocity errors illustrated in Fig. 9. The filter estimated error

covariance is, in general, consistent with the estimation errors.

The position results in Fig. 9 and Table 9 show that the VD aiding technique effectively enhances the tra-

26



Figure 7: Vario X-treme simulated trajectory

Table 7: Attitude estimation error (Vario X-treme helicopter)

RMS error

Aiding information Yaw (◦) Pitch (◦) Roll (◦)

GPS 1.26× 10−2 9.15× 10−2 7.95× 10−2

Vario X-Treme Model 1.27× 10−2 2.10× 10−2 1.31× 10−2

Table 8: Velocity estimation error (Vario X-treme helicopter)

RMS error

Aiding information vx (m/s) vy (m/s) vz (m/s)

GPS 0.13 0.26 0.20

Vario X-Treme Model 2.65× 10−2 9.62× 10−3 3.75× 10−3

Table 9: Position estimation error (Vario X-treme helicopter)

RMS error

Aiding information px (m) py (m) pz (m)

GPS 1.15 1.46 1.55

Vario X-Treme Model 0.23 5.71× 10−2 0.20
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Figure 8: Vario X-treme VD vs GPS aiding estimation errors (solid line) and estimated error standard deviation (dashed line)
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Figure 9: Trajectory estimation for the Vario X-treme

jectory estimation to a submetric accuracy. As discussed in (Julier and Durrant-Whyte, 2003; Koifman and Bar-Itzhack,

1999), the VD aiding results must be addressed with care. Vehicle modeling errors, model simplification

assumptions or unmodeled time-varying parameters, perturbations and dynamics, such as vehicle load and

wind gusts, may severely affect the navigation system performance if not correctly accounted for in the filter.

The tuning of the noise covariance matrices, the estimation of additional states and parameters and the

use of more accurate vehicle model dynamics, among other techniques (Julier and Durrant-Whyte, 2003),

are adopted to allow for the use of VD in real navigation systems. Nonetheless, side effects such as the poor

observability of the augmented states, the over-parametrization of the vehicle model or even the inability to

obtain a vehicle model which yields information on the real vehicle dynamics may occur. The use of the full

VD model in filtering is a time-consuming process, requiring navigation systems engineering expertise for

complex vehicles.

Encouraging experimental results with the HUGIN 4500 underwater vehicle have been recently reported

in (Hegrenaes et al., 2008). Also, exploiting simple vehicle motion constraints yields noticeable accuracy

improvements in the experimental results presented in (Dissanayake and Sukkarieh, 2001) for a land vehicle.

These practical results evidence that either full, or simplified, vehicle models can effectively enhance the

estimation results of GPS/INS architectures. The integration of the vehicle dynamics in the navigation

system is a valuable aiding technique, especially suited for the cases of GPS outage or jamming and when

other external sensors are not available or provide poor observability of the vehicle states.

6.3. LASER Aiding

The LASER range sensor implementation is analyzed for a landing operation of an air vehicle equipped

with a standard GPS/INS unit. The vehicle hovers the landing zone, as illustrated in Fig. 2, and activates the

LASER at t = 20 s to acquire an accurate distance-to-ground estimate. The terrain height is hS = 4 m, the
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LASER is oriented along the z axis of the body frame, that is B
MR = I, and the sensor noise is characterized

in Table 1.

The estimation results depicted in Fig. 10 show that the LASER sensor brings about accurate position

and velocity estimates in the z axis, whereas using solely the GPS sensor yields high uncertainty on the

position estimate, which may render landing unfeasible. The velocity and distance to ground estimation

errors, illustrated in Figs.10(b) and 10(d) respectively, are reduced almost instantly when the LASER is

activated. The same decrease is verified in the position estimation error, shown in 10(a), however the terrain

height hS is known with an uncertainty of 0.1m, as depicted in Fig. 10(c). If the uncertainty about the

terrain height is larger, then the position estimate error will converge slower to smaller values, as illustrated

in Fig. 11 for an initial hS uncertainty of 1m.

This behavior is justified by noting that hS is reconstructed using (15), (16), and accurate LASER range

measurements that bring about precise hV estimates. If little is known about hS , then (16) implies that the

uncertainty of hS and of pz are identical, and the filter can reduce the uncertainty only by using the model

(15), that is a low frequency process, and hence ĥS and p̂z will converge slowly in time. This behavior is

illustrated in Figs. 11(a) and 11(c). Conversely, if hS is known accurately, then (16) implies that pz can be

inferred accurately, as shown in Figs. 10(a) and 10(c).

As expected, the velocity and distance to ground estimate enhancements are independent of the available

terrain height information, as seen by comparing Figs. 10(b) and 10(d) with Figs. 11(b) and 11(d), respec-

tively. These results show that the LASER range finder is critical for landing the robotic platform without

risking the robotic platform, by allowing for accurate distance-to-ground and vehicle velocity estimates. Po-

sition and ground height estimation is also enhanced in the medium term, by combining LASER and GPS

measurements.

7. Conclusion

A new embedded methodology to integrate the vehicle dynamics in the navigation system was proposed.

The internal VD system accuracy was shown to be equivalent to the classical external vehicle model architec-

ture, but with smaller computational cost and with a flexible choice of vehicle model differential equations.

The application of the proposed technique to a highly nonlinear Vario X-Treme helicopter model validated

the approach.

Trimming trajectory simulation results showed that the bias calibration errors were quickly compensated

and that bias estimates were enhanced. The linear and angular velocity were improved with respect to

the classical GPS/INS configuration. Position and attitude errors, although not observable by the VD

model, remained bounded. The LASER range finder sensor provided high precision distance-to-ground

estimates for takeoff and landing maneuvers. The proposed VD aiding techniques steps forward as a valuable
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Figure 10: LASER aiding estimation errors (solid line) and estimated error standard deviation (dashed line)

software based technique for navigation systems, suitable for performing critical maneuvers and positioning

in scenarios where other sources of aiding information are limited.
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A. Helicopter Model Summary

This Section briefly describes the nonlinear Vario X-Treme helicopter model presented in (Cunha and Silvestre,

2003), deduced from first principles, and simplified under the assumptions described in (Guerreiro, 2005).
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Figure 11: LASER aiding estimation errors (solid line) and estimated error standard deviation (dashed line)

As the complete model, the simplified model considers a six degrees of freedom rigid body dynamics driven

by the external forces and moments generated by the several components of helicopter, however, the contri-

butions of the fuselage, horizontal tailplane and vertical tail fin are considered to be negligible. This model

also considers simplified versions of the first order dynamics for the main rotor blade pitch motion with

Bell-Hiller mechanism, the steady state dynamics for the main rotor blade flap dynamics and the blade lag

dynamics are neglected.

The motion of the helicopter is described using the rigid body equations of motion

ω̇ = I−1
B (n (ω,u,uhc)− ω × IB ω) ,

u̇ = −ω × u +
1

m
f (ω,u,uhc) +R′ Eg,

Ṙ = R (ω)
×

,

where m is the vehicle mass, IB is the tensor of inertia about the Center of Mass coordinate frame, denoted

by {G}, uhc is the helicopter command vector and f and n are the vectors of external forces and moments,
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respectively, along the same frame. The input vector uhc =
[
θc0

θc1c
θc1s

θc0t

]′
comprises the blade pitch

angle commands for the main rotor collective θc0
, main rotor longitudinal cyclic θc1c

, main rotor lateral cyclic

θc1s
and the tail rotor collective θc0t

. To model the non symmetric shape of the rotor blades, θc0
and θc0t

swashplate inputs are corrected in the helicopter model using the variables θ0 = θc0
+α0 and θ0t

= θc0t
+α0t

,

where α0 and α0t
are the lift curve slope offsets for the main and tail rotor blades, respectively.

As noted before, for smooth low velocity maneuvers, the effects of the fuselage, horizontal tailplane and

vertical fin on the overall dynamics are negligible. For this reason, the total force and moment vectors are

modeled accounting only for the two most dominant components of a helicopter, the main rotor and the tail

rotor, yielding

f = fmr + ftr, n = nmr + ntr,

where the subscripts mr and tr stand, respectively, for the main rotor and tail rotor components.

The main rotor is the primary source of lift, required to sustain the helicopter, and generates other forces

and moments that allow for the control of position, orientation and velocity of the helicopter. The main

forces and moments are described by

fmr :=

⎡
⎢⎢⎢⎣

Xmr

Ymr

Zmr

⎤
⎥⎥⎥⎦ = −s1

⎡
⎢⎢⎢⎣

a0

(
1
2

θ1s λ0 + μ λ0 θ0

)
+ δ0 μ

a0

(
1
2

θ1c λ0

)
a0

(
2
3

θ0 − λ0

)

⎤
⎥⎥⎥⎦ ,

nmr =

⎡
⎢⎢⎢⎣

−kβ β1s

−kβ β1c

1
2

s2 δ0 + s2 a0

(
2
3

θ0 λ0 − λ2
0

)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ymr hR

−Xmr hR + Zmr xcm

−Ymr xcm

⎤
⎥⎥⎥⎦ ,

where s1 and s2 are the main rotor’s force and moment normalizing constants, a0 is the lift curve slope, δ0

is the profile drag coefficient, kβ is the center-spring rotor stiffness, and xcm and hR determine the position

of the main rotor hub aft and above the center of mass, respectively. The remaining undefined variables are

defined hereafter.

In helicopters equipped with the Bell-Hiller mechanism (Cunha and Silvestre, 2003), the cyclic blade

pitch angles result from the combination of the commands introduced by the swashplate and the flybar

flapping motion. The simplified first order blade pitch dynamics of the main rotor are described by

θ̇1c = Cθ1
θ1c + Cθ3

θc1c
, θ̇1s = Cθ1

θ1s + Cθ3
θc1s

+ Cθ8
μ λ0,

with the coefficients given by

Cθ1
= −

Ω γf

4
[(γf

8

)2
+ 4

] , Cθ3
=

Ω (c4 + c1) γf

4c2

[(γf

8

)2
+ 4

] , Cθ8
= −

η2 Ω γf

2c2

[(γf

8

)2
+ 4

] ,
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where μ stands for the normalized forward velocity at the main rotor, λ0 is the normalized collective down-

wash induced by main rotor, Ω is the main rotor angular speed, γf is the flybar lock number, and c1, c2 and

c4 are flybar pitching parameters.

The main rotor blade flapping motion is described by the blade flap angle vector β =
[
β0 β1c β1s

]
,

where β0 denotes the collective mode, and β1c and β1s represent the longitudinal and lateral cyclic modes,

respectively. The blade flapping dynamics of the main rotor can be approximated by the simplified steady-

state solution given by

β0 = Cβ1
θ0,

β1c = Cβ3
μ θ0 + Cβ4

θ1c − Cβ5
θ1s + Cβ6

ωx + Cβ7
ωy+Cβ8

μ λ0 − Cβ4
λ1c,

β1s = Cβ9
μ θ0 + Cβ5

θ1c + Cβ4
θ1s + Cβ7

ωx − Cβ6
ωy+Cβ10

μ λ0 − Cβ5
λ1c,

with the state coefficients

Cβ1
=

γ
8

γ
8
Sβ + 1

, Cβ3
= −

8
3

S2
β + 1

, Cβ4
=

Sβ

S2
β + 1

,

Cβ5
=

1

S2
β + 1

, Cβ6
=

16

Ω γ

Sβ

S2
β + 1

, Cβ7
=

16

Ω γ

1

S2
β + 1

,

Cβ8
=

2

S2
β + 1

, Cβ9
=

8
3

Sβ

S2
β + 1

, Cβ10
= −

2Sβ

S2
β + 1

,

where Sβ is the blade stiffness number, Rm is the main rotor radius and γ is the lock number.

The tail rotor, placed at the tail boom in order to counteract the moment generated by the rotation

of the main rotor, provides yaw control of the helicopter. Following the same principles used for the main

rotor and neglecting blade pitch, flap and lag dynamics, the simplified expressions for the tail rotor force

and torque are given by

ftr :=

⎡
⎢⎢⎢⎣

Xtr

Ytr

Ztr

⎤
⎥⎥⎥⎦ = s1t

a0t

⎡
⎢⎢⎢⎣

0

2
3

θ0t
− λ0t

0

⎤
⎥⎥⎥⎦ ,

ntr =

⎡
⎢⎢⎢⎣

Ytr htr

− 1
2

s2t
δ0t
− s2t

a0t

(
2
3

θ0t
λ0t

− λ2
0t

)
−Ytr (xcm + ltr)

⎤
⎥⎥⎥⎦ ,

where λ0t
is the collective induced downwash of the tail rotor, s1t

and s2t
are the tail rotor’s force and moment

normalizing constants, a0t
is the tail rotor lift curve slope, δ0t

is the tail rotor profile drag coefficient, ltr is

the distance from the tail rotor hub to the fuselage reference point and htr is the height of tail rotor hub

above the fuselage reference point.

The induced downwash results from the thrust force generated at the surface of the rotating blades,

that accelerates the air downwards creating a flowfield. By decomposing the downwash in Fourier series
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and neglecting the second and higher order terms, results in the collective, longitudinal and lateral cyclic

components, respectively, λ0, λ1c and λ1s. The collective induced downwash at the main and tail rotors are

given by

λ0 = −
a0 s

16
+

√(a0 s

16

)2

+
a0 s

12
θ0,

λ0t
= −

a0t
st

16
+

√(a0t
st

16

)2

+
a0t

st

12
θ0t

,

where s and st are the solidity constants of the main and tail rotors, respectively. Finally, the main rotor

longitudinal cyclic induced downwash and the forward normalized velocity are described by

λ1c =

⎧⎪⎪⎨
⎪⎪⎩

0, if μ = 0 (vertical flight)

λ0

(√
1 +

(
λ0

μ

)2

−
∣∣∣λ0

μ

∣∣∣
)

, otherwise
,

μ =
ux − hRωy

ΩRm

,

whereas the main rotor lateral cyclic downwash is neglected λ1s = 0, as well as both tail rotor cyclic downwash

components.
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