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Abstract—Lyapunov methods and density functions provide
dual characterizations of the solutions of a nonlinear dynamic
system. This work exploits the idea of combining both tech-
niques, to yield stability results that are valid for almost all the
solutions of the system. Based on the combination of Lyapunov
and density functions, analysis methods are proposed for the
derivation of almost input-to-state stability, and of almost global
stability in nonlinear systems. The techniques are illustrated for
an inertial attitude observer, where angular velocity readings
are corrupted by non-idealities.

I. INTRODUCTION

Global stability is usually a highly desirable property

in control and estimation algorithms. However, topological

obstacles arise due to the fact that a smooth vector field can

have a global attractor only if the state space is homeomor-

phic to R
n [5]. As a consequence, continuous state feedback

on smooth manifolds will always produce some trajectories

that do not converge to the origin [2], [9]. Due to the presence

of unstable manifolds, stability analysis using Lyapunov’s

second theorem is more complex.

New analysis tools have been brought forward by adopting

the milder notion of almost global stability [1], [12]. In

this framework, an equilibrium is ”almost globally stable”

if stability is satisfied for all initial states outside a set of

zero measure. A dual to the Lyapunov second method is

developed in [12], [13], based on density functions, that

represent the stationary density of a substance that flows

along the system trajectories [10], [11], [12]. Almost global

stability is obtained by verifying that, for a time-invariant

density function, particles are generated almost everywhere

and hence must flow to a sink, located at the origin.

A similar approach has been adopted for the analysis

of input-to-state stability (ISS), that has been extensively

developed in recent years, as presented in the comprehensive

survey [16]. The limitations to global stability on non-

Euclidean spaces, and the fact that global stability is a

necessary condition for ISS, motivate the relaxation to almost

ISS proposed in [1]. The notions of robust and weakly
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almost ISS are proposed, and stability results using density

functions are derived. More important, it is suggested that

a combination of Lyapunov methods with density function

results, may be the right technique for proving almost ISS

in general. Surprisingly enough, this enriching insight seems

to have gone unnoticed in the subsequent literature.

This work develops the idea of combining Lyapunov

and density functions, for the stability analysis of nonlinear

systems. Results are formulated for the analysis of almost

global asymptotic stability, and of almost ISS of the origin.

In the proposed analysis techniques, the Lyapunov func-

tion is adopted to characterize the system trajectories, how-

ever the resulting analysis is limited by the existence of

unstable manifolds. Density functions are used to resolve

for the regions where the Lyapunov method is inconclusive,

yielding sufficient conditions for instability of undesirable

equilibrium points, and for convergence of almost all solu-

tions to the region where stability is guaranteed by the Lya-

punov function. The techniques are illustrated for the error

dynamics of an attitude observer defined on SO(3), where
angular velocity readings are corrupted by non-idealities,

such as bounded measurement noise and unknown bias.

This work is organized as follows. Section II describes

the attitude observer, adopted to illustrate the combination of

Lyapunov and density function methods. The derivation of

almost ISS for nonlinear systems, using the combination of

Lyapunov and density functions, is discussed in Section III.

The approach is applied to demonstrate the stability of the

attitude observer in the presence of inertial sensor noise. A

new result for almost global stability of nonlinear systems

is presented in Section IV, and is illustrated for a nonlinear

system, motivated by the attitude observer dynamics subject

to inertial sensor bias. Concluding remarks and future work

are discussed in Section V.

NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted as M(n,m) and

M(n) := M(n, n). The set of special orthogonal matrices is

denoted as SO(n) := {R ∈ M(n) : R′
R = I,det(R) = 1}.

The nominal, the measured, and the estimated quantity s

are denoted by s̄, sr and ŝ, respectively, and ‖s‖ denotes

the Frobenius norm. The operator (s)× produces the skew

symmetric matrix defined by the vector s ∈ R
3 such that

(s)× b = s × b, b ∈ R
3, and (·)⊗ is the unskew operator

such that
(

(s)×
)

⊗ = s. The time dependence of the variables

will be omitted in general, but otherwise denoted for the sake

of clarity.



II. ATTITUDE OBSERVER

This section introduces the attitude observer, that is

adopted to illustrate the stability analysis techniques pro-

posed in the paper. The observer estimates the attitude of a

rigid body with respect to a fixed inertial frame, by merging

angular velocity measurements, with vectors observations

obtained in body coordinates. The detailed formulation of

the observer is presented in [17], and similar observers can

be found in [6] and [8].

The rigid body kinematics are described by

˙̄R = R̄ (ω̄)× ,

where R̄ is the rotation matrix from body frame to the

inertial frame coordinates, and ω̄ is the body angular velocity

expressed in body coordinates.

The body angular velocity is measured by a rate gyro

sensor triad, and the measurement model is

ωr = ω̄ + uω, (1)

where uω is a measurement disturbance.

The vector observations are a function of the rigid

body’s attitude. The vectors coordinates are known and

time-invariant in inertial frame, e.g. Earth’s magnetic and

gravitational fields, and measured in body coordinates by on-

board sensors such as magnetometers and pendulums, among

others. The vector readings are introduced in the observer by

means of a conveniently defined linear coordinate transfor-

mation [17], and the transformed vector measurements are

described by

Xr = R̄′I
X̄, (2)

where Xr :=
[

xr 1 . . . xr n

]

, I
X̄ :=

[

I
x̄1 . . . I

x̄n

]

,

Xr,
I
X̄ ∈ M(3, n), the leading superscript I denotes inertial

coordinates, i = 1..n is the vector index, and n is the

number of vector measuring sensors. In this work, the vector

transformation is defined such that I
X̄

I
X̄

′ = I, to shape

uniformly the directionality of the vector readings. Also, it

is assumed that there are at least two noncollinear I
x̄i, so

that all rotational degrees of freedom are observable, see [17]

for a detailed characterization of the observer.

The attitude kinematics of the observer are given by

˙̂R = R̂ (ω̂)× , (3)

where R̂ is the estimated attitude and ω̂ is the feedback

term. The attitude estimate dynamics (3) are stabilized by

exploiting the non-ideal angular velocity measurements (1)

and the vector observations (2) in the feedback term ω̂.

In this work, the combination of Lyapunov and density

functions is illustrated in the stability analysis of the attitude

observer for the cases where uω is i) an unmodeled, bounded

sensor disturbance, and ii) an unknown but constant sensor

bias.

III. STABILITY IN THE PRESENCE OF

UNMODELED INPUTS

This section discusses and formulates the combination of

Lyapunov and density function techniques for the analysis

of input-to-state stability, in the presence of unknown inputs.

The proposed method is illustrated by analyzing the stability

of the attitude observer, in the case where the inertial sensor

reading is corrupted by a bounded disturbance.

A. Almost ISS using Lyapunov and Density Functions

This section studies the input-to-state stability of systems

in the form

ẋ = f(x, u), (4)

where x ∈ M is the state, M is a smooth manifold, and f :
M × U → TM , is a locally Lipschitz manifold map which

satisfies f(x, u) ∈ TxM , for all x ∈ M and all u ∈ U ⊂ R
m.

The limitations to global stability on non-Euclidean spaces

motivate the relaxation of the classical notion of ISS [16] to

that proposed in [1]. Denoted as almost ISS, it allows for

each input u to destabilize a zero measure set of trajectories,

outside of which all trajectories converge to a neighborhood

of the origin.

Definition 1 (Almost ISS, [1]): The system (4) is almost

ISS with respect to the origin, denoted as 0M , if 0M is locally

asymptotically stable and

∀u ∈ U ∀a.a.x(t0) ∈ M lim sup
t→∞

|x(t)| ≤ γ(‖u‖∞), (5)

where γ is a class K function and |·| is the distance to the

origin.

In this work, a method to derive almost ISS is obtained by

combining the properties of Lyapunov and density functions.

The adopted methodology has been sketched in [1], where it

is motivated by means of examples, however it seems to have

been unnoticed in subsequent literature. This section provides

a contribution to the concept of combining Lyapunov and

density functions, by formulating the technique in explicit

mathematical statements, and characterizing the stability

result as the combination of two ISS properties, introduced

in the following.

Definition 2 (Local ISS): A system (4) is locally ISS with

respect to 0M , if 0M is locally asymptotically stable and

there exists r > 0 such that

∀u ∈ U ∀ |x(t0)| ≤ r lim sup
t→∞

|x(t)| ≤ γ1(‖u‖∞), (6)

where γ1 is a class K function.

Definition 3 (Weakly almost ISS, [1]): A system (4) is

weakly almost ISS with respect to 0M , if 0M is locally

asymptotically stable and

∀u ∈ U ∀a.a.x(t0) ∈ M lim inf
t→∞

|x(t)| ≤ γ2(‖u‖∞), (7)

where γ2 is a class K function.

Provided that these ISS properties are verified, the main

result of this section shows that almost ISS is attained.



(a) Local ISS using Lyapunov function analysis: solutions emanating below
the bound r converge to the region bounded by γ1(‖u‖∞).

(b) Weakly almost ISS using density function analysis: the lim inf property
of almost all solutions satisfies the bound γ2(‖u‖∞).

(c) Almost ISS using Lyapunov and density functions analysis: by the
lim inf property, almost all trajectories enter the region below the bound
r, and converge to the region bounded by γ1(‖u‖∞).

Fig. 1. Combination of Lyapunov and density functions for almost ISS of
the origin.

Lemma 1 (Almost ISS): Assume that the system (4) is

locally ISS and weakly almost ISS, then, for all u ∈ {u ∈
U : γ2(‖u‖∞) < r}, the system is almost ISS with γ = γ1.

Proof: Weakly almost ISS, expressed in (7), implies

that, by the continuity of the solutions of (4), almost every

solution satisfies |x(t)| ≤ γ2(‖u‖∞) < r for some t, thus

entering the region where the trajectories eventually satisfy

the lim sup condition expressed in (6), yielding (5).

Lemma 1 shows that almost ISS can be obtained by

combining local ISS with weakly almost ISS, for sufficiently

small inputs. The proposed ISS analysis technique is there-

fore based on i) Lyapunov methods to attain local ISS [4],

ii) density function techniques to yield weakly almost ISS

[1], and iii) Lemma 1 to derive almost ISS.

The stability analysis technique is illustrated in Fig. 1.

Lyapunov techniques yield local ISS based on ultimate

boundedness and/or ISS results [4]. As shown in Fig. 1(a),

Lyapunov methods find a region {x : γ1(‖u‖∞) < |x(t)| <

r} where the Lyapunov function V decreases along the

system trajectories (V̇ < 0), and drives the solutions to set

{x : |x(t)| < γ1(‖u‖∞)}, that is positively invariant.

However, the Lyapunov function analysis is inconclusive

with respect to {x : |x(t)| ≥ r}, and density functions

techniques are adopted to guarantee that almost all solutions

enter {x : |x(t)| < r} for some time instant. This is obtained

by finding a density function ρ such that div(ρf) > 0 in

the region {x : |x(t)| > γ2(‖u‖∞)}, which yields weakly

almost ISS by [1, Theorem 4]. Hence, the trajectories of the

system are endowed with the lim inf characteristic depicted

in Fig. 1(b), and enter the region {x : |x(t)| < r} in finite

time, as shown in Fig. 1(c), yielding almost ISS of the origin.

B. Stability of the Nonlinear Observer in the Presence of

Inertial Sensor Noise

The combination of Lyapunov techniques is illustrated for

the nonlinear observer described in Section II, in the presence

of bounded time-varying disturbances in the angular velocity

measurements. The considered set of valid disturbances uω

in (1) is described by U = {u ∈ R
3 : ‖u‖∞ ≤ umax}, and

the observer kinematics are given by

˙̂R = R̂ (ω̂)× , ω̂ = R̂′I
X̄X

′
rωr − kω

n
∑

i=1

(R̂′I
x̄i) × xr i,

where kω ∈ R
+ is the feedback gain, for more details and

a motivation see [17]. Defining the attitude estimation error

as R := R̂′R̄, the closed loop error kinematics are given by

Ṙ = −kωR(R−R′) −R (uω)× . (8)

Although the origin of the unforced system is almost

globally asymptotically stable (GAS) [17], it can be shown

that the origin of the system (8) is not ISS, namely by taking

uω as the destabilizing feedback law for a R(t0) sufficiently
close to the unstable equilibrium points of the unforced

system. In this counterexample, uω destabilizes only a given

R(t0), and hence almost ISS is not precluded.

Almost ISS of the system (8) is obtained using the stability

analysis technique proposed in Section III-A and depicted in

Fig. 1. The following proposition shows that the system is

locally ISS, using Lyapunov stability theory.

Theorem 2: Let kω > umax

2 , then for any initial condition

R(t0) ∈ {R ∈ SO(3) : ‖I −R‖2 < r(‖uω‖∞)}, (9a)

where r(u) = 4
(

1 +
√

1 − u2

4k2
ω

)

, there exists T , indepen-

dent of t0, such that the trajectory of the system (8) satisfies

R(t) ∈ {R ∈ SO(3) : ‖I −R‖2 < γ1(‖uω‖∞)}, (9b)

for all t ≥ t0 + T , where γ1(u) = 4
(

1 −
√

1 − u2

4k2
ω

)

.

Proof: The proof is based on the derivation of bounded-

ness for nonlinear systems presented in [4, Theorem 4.18],

using Lyapunov methods. The time derivative of the Lya-

punov function V = ‖I−R‖2

2 along the system trajectories



is given by V̇ = −kω
‖I−R2‖2

2 + tr
(

R−R′

2 (uω)×

)

, and

algebraic manipulation produces

V̇ ≤ −kω‖I −R2‖
(

1

2
‖I −R2‖ − ‖uω‖

kω

√
2

)

,

where 2 tr(I − R2) = ‖I − R2‖2 = ‖R − R′‖2 was used.

It is immediate that 1
2‖I − R2‖ >

‖uω‖∞

kω

√
2

⇒ V̇ < 0.

Using ‖I − R2‖2 = 1
2

(

8 − ‖I −R‖2
)

‖I − R‖2 produces
1
2‖I −R2‖ >

‖uω‖∞

kω

√
2

⇔ R ∈ {Ω̄t − Ωt}, where Ωt = {R :

V (R) ≤ 1
2γ1(‖uω‖∞)}, Ω̄t = {R : V (R) ≤ 1

2r(‖uω‖∞)}.
Consequently, R ∈ {Ω̄t − Ωt} ⇒ V̇ < 0 and the set Ω̄t

is a positively invariant set. The trajectories of the system

starting in Ω̄t enter Ωt in finite time, see [4, Section 4.8]

for a motivation of the level sets involved, and any solution

starting in Ωt will remain in the set since V̇ < 0 in the

corresponding boundary. The initial conditions given by (9a)

satisfy R(t0) ∈ Ω̄t; any R ∈ Ωt satisfies (9b), which

concludes the proof. The gain condition kω > umax

2 is

required so that {Ω̄t − Ωt} 6= ∅.
The results stated in Theorem 2 guarantee that any tra-

jectory emanating from the region (9a) converges to the

bounded region (9b), whose boundaries are a function of

the noise to gain ratio
‖uω‖∞

kω
. Following the proposed

technique, a density function is adopted to show that almost

all trajectories of the system (8) satisfy a lim inf condition.

Theorem 3: The system (8) is weakly almost ISS with

respect to I. Namely, the solutions verify

∀uω ∈ U ∀a.a.R(t0) ∈ SO(3)

lim inf
t→∞

‖I −R(t)‖2 < γ2(‖uω‖∞),

where γ2(u) =
8( u

kω
)
2

1+( u

kω
)
2 .

Proof: The result is obtained by satisfying the

conditions of [1, Theorem 4], with the density function

ρ(R) = 1
tr2(I−R) . From the local ISS property obtained

in Theorem 2, it is immediate that R = I is a lo-

cally stable equilibrium point for uω = 0. The function

f := vec
(

kR(R′ −R) −R (uω)×
)

is locally Lipschitz

over SO(3) and C1 over SO(3) \ {I}. The density function

ρ(R) is of class C1 over SO(3) \ {I} and, given that SO(3)
is compact, verifies

∫

SO(3)\U
ρ(R)dR < +∞, for all open

neighborhoods U of 0M .

The divergence is given by

div(ρf) =
kω

tr3(I −R)

(

‖I −R‖2 +
2

kω

(R−R′)
′
⊗ uω

)

,

where div(ρf) = ρdiv(f) +∇(ρ)′f , div(f) = −2kω tr(R)
and ∇(ρ) = 2 tr(I − R)−3 vec(I), for more details on the

computations of divergence and integrals in SO(3) see [3].

To attain the “density propagation inequality” [1, Theorem

4], given by

∀u ∈ U ∀x ∈ M |x| ≥ γ2(|u|) ⇒ div(ρf) ≥ Q(x), (10)

with Q(x) > 0 for almost all x ∈ M , the sufficient condition

‖I −R‖2 +
2

kω

(R−R′)
′
⊗ uω ≥ ξ, ξ > 0,
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Fig. 2. Simulation results of the attitude observer, illustrating almost ISS.
Convergence for ‖I − R(t0)‖2 ≤ r(umax) is guaranteed by Lyapunov
methods; convergence for ‖I − R(t0)‖2 > r(umax) is guaranteed by
combining Lyapunov and density functions.

is analyzed, such that (10) is verified with Q(R) =
kω

tr3(I−R)ξ > 0 for almost all R ∈ SO(3). The inequality

is satisfied if ‖I −R‖2 > 4‖uω‖
kω

∥

∥

∥

∥

(

R−R′

2

)

⊗

∥

∥

∥

∥

⇔

‖I − R‖2 >
8‖uω

kω
‖2

1+‖uω

kω
‖2 = γ2(‖uω‖). Since γ2(u) is a class

K function (γ2(0) = 0 and
d γ2(u)

du
> 0), the inequality

(10) is verified with ‖I − R‖2 > γ2(‖uω‖) ⇒ div(ρf) ≥
kω

tr3(I−R)ξ for some ξ > 0, producing the desired result.

As expressed in Lemma 1, the weakly almost ISS obtained

in Theorem 3 is used to guarantee that the solutions enter the

local ISS set derived in Theorem 2, producing almost ISS.

Theorem 4: Let kω > umax√
3
. Then, the trajectories of the

system (8) satisfy

∀uω ∈ U ∀a.a.R(t0) ∈ SO(3)

lim sup
t→∞

‖I −R(t)‖2 < γ(‖uω‖∞),

where γ(u) = γ1(u) = 4
(

1 −
√

1 − u2

4k2
ω

)

, i.e. the attitude

observer is almost ISS with respect to I.

Proof: The system (8) is locally ISS and weakly

almost ISS, by Theorems 2 and 3, respectively. The con-

dition γ2(‖uω‖∞) < r(‖uω‖∞) formulated in Lemma 1 is

equivalent to
2( ‖uω‖∞

kω
)
2

1+( ‖uω‖∞
kω

)
2 < 1 +

√

1 −
(

‖uω‖∞

2kω

)2

, that is

satisfied for
‖uω‖∞

kω
<

√
3, which yields almost ISS.

Simulation results of the observer estimation error are

depicted in Fig. 2. The exponential convergence for

γ1(umax) < ‖I −R(t)‖2 < r(umax) is justified by the fact

that V̇ < −αV in that region, for some α ∈ R
+.

IV. LOCAL STABILITY ANALYSIS USING

DENSITY FUNCTIONS

This section derives new results for local stability analysis

of equilibrium points other than the origin, using density

functions. By combining the proposed stability results with

LaSalle’s invariance principle, a new tool for global stability

analysis of the origin is obtained. The proposed technique

is illustrated for the case of a simple attitude observer with

biased inertial measurements.



A. Stability using Density Functions and LaSalle’s Invari-

ance Principle

The proposed stability analysis results are derived for

autonomous nonlinear systems of the form

ẋ = f(x), (11)

where f : R
n → R

n is smooth, and the associated flow

φt : R
n → R

n is defined by φt(x0) = x(t, x0), where
x(t, x0) denotes the solution of the system at time t with

initial condition x0. In the remainder of this work, it is

assumed that φt is well defined [15, Chapter 7].

Assumption 1: The flow φt is unique, continuous, and

exists for all t.

To formulate the stability results in the presence of

multiple equilibrium points, some concepts and results are

introduced, for more details the reader is referred to [15].

The values at time t and at the time interval t ∈ [τ0, τ ]
of the trajectories starting in the set A, are respectively

denoted by φt(A) = {x : x = φt(x0), x0 ∈ A} and

φ[τ0,τ ](A) = {φt(A) : t ∈ [τ0, τ ]}. The local inset of xu

is the set of all initial conditions inside a neighborhood U

of xu that converge to xu without leaving U , i.e. ZU (xu) =
{x ∈ U : ∀ǫ∃T∀t>T |φt(x) − xu| < ǫ and ∀t>0φt(x) ∈ U}.
The global inset of xu, denoted as W(xu), is defined by

taking ZU (xu) with U = R
n.

The following theorem is a new result in density function

methodologies, and provides sufficient conditions to show

that an equilibrium point is not stable, given a suitable

density function. This property is of interest to exclude the

stability of equilibrium points other than the origin.

Theorem 5: Let xu ∈ R
n, and suppose there exists a non-

negative ρ ∈ C1(Rn \ {0}, R), integrable in a neighborhood

U of xu, and with div(ρf) > 0 in U . Then, the global inset

of xu has zero measure.

Proof: First, it is shown that the local inset, denoted

as ZU with a slight abuse of notation, has zero mea-

sure. By Lemma 9 presented in Appendix A, the local

inset ZU is measurable. Using [12, Lemma A.1] with

D = U produces 0 ≥
∫

φt(ZU )
ρ(x)dx −

∫

ZU

ρ(z)dz =
∫ t

0

∫

φτ (ZU )
[div(ρf)] (x)dxdτ . Since div(ρf) > 0 in U ,

then φt(ZU ) ⊂ ZU ⊂ U has zero measure. The flow φt

is a diffeomorphism and hence ZU has zero measure [7].

The forward propagation of ZU is ZU itself, i.e. ZU =
φ[0,∞)(ZU ). Therefore, φ[0,∞)(ZU ) has zero measure, and

by Lemma 10 of Appendix A, the set φ(−∞,∞)(ZU ) has

zero measure. The global inset of xu can be expressed as

W(xu) = φ(−∞,∞)(ZU ) and therefore has zero measure.

The combination of Theorem 5 with LaSalle’s invariance

principle can be used to provide almost GAS of the origin.

The technique is based on using LaSalle’s invariance princi-

ple to show that the trajectories approach a candidate set M

[4]; and then using the div(ρf) > 0 property for M \ {0},
to show that the set of trajectories converging to M \ {0} is

of zero measure, and hence that the origin is almost GAS.

Lemma 6: Consider the system (11). Let V : R
n → R

be a continuously differentiable function such that the level

sets {x : V (x) ≤ c} are bounded and V̇ (x) ≤ 0. Let M be

the largest invariant set in {x : V̇ (x) = 0}. Suppose that M

is a countable union of isolated points, and that there is a

density function that satisfies the conditions of Theorem 5

for all xU ∈ M \{0}. Then the origin of (11) is almost GAS.

Proof: The conditions on V (x) satisfy LaSalle’s

invariance principle [4], [15], and hence guarantee

that the trajectories approach M as t → ∞, i.e.

∀x0∀ε∃T>0∀t>T infy∈M‖φt(x0)−y‖ < ε. By the continuity

of φt(x), choosing ε < minx,y∈M‖x − y‖ shows that each

solution of (11) must converge to an isolated point xu ∈ M .

By Theorem 5, the condition div(ρf) > 0 for a neighbor-

hood U of every xu ∈ M \ {0} guarantees that the global

inset of xu has zero measure. The set of initial conditions

that converge to M \ {0}, given by ∪xu∈M\{0}W(xu), is a
countable union of zero measured sets and hence has zero

measure. Consequently, almost all solutions converge to the

origin, and hence the origin is almost GAS.

Remark 1: The results of Theorem 5 provide an alterna-

tive approach to the stability analysis based on Hartman-

Grobman theorem [15]. Also, the derived stability result is

also valid for non-hyperbolic equilibria. Future work will

evaluate the contribution of Theorem 5 in this topic.

Remark 2: Lemma 6 is valid when the invariant set is a

countable union of isolated points. The extension for more

generic sets, based on generalizing the results adopted in the

proof of Theorem 5, will be addressed in future work.

B. Stability of the Nonlinear Observer in the Presence of

Biased Inertial Readings

In this section, the proposed stability analysis is illustrated

for the attitude observer, in a case where the disturbance in

(1) is a constant bias, i.e. u̇ω = 0. The observer kinematics

are augmented to estimate the bias, and are given by
˙̂R =

R̂ (ω̂)×,
˙̂
bω = kbω

sω, where ω̂ = R̂′I
X̄X

′
r

(

ωr − b̂ω

)

−
kωsω , sω =

∑n
i=1(R̂′I

x̄i)×xr i, kω, kbω
∈ R

+ are feedback

gains, and b̂ω is the rate gyro bias estimate, for more details

on the adopted observer see [17]. The closed loop error

kinematics are given by

Ṙ = R
[

kω(R′ −R) + (bω)×
]

, ḃω = kbω
(R′ −R)⊗ ,(12)

where bω = b̂ω − uω is the bias estimation error. The

stability analysis technique is illustrated for the case where

initial bias and attitude estimation errors exist along the

z-axis, i.e. b(t0) =
[

0 0 b0

]′
, b0 ∈ R, and R(t0) =

exp(θ0 (λ0)×), θ0 ∈ R, λ0 =
[

0 0 1
]′
. In this case,

the trajectories of (12) satisfy R(t) = exp(θ(t) (λ0)×),

b(t) =
[

0 0 b(t)
]′
, and the dynamics can be reduced to

θ̇ = − sin(θ) + b, ḃ = − sin(θ), (13)

with initial conditions θ(t0) = θ0, b(t0) = b0.

As discussed in Section IV-A, the stability of the system

(13) is first analyzed using LaSalle’s invariance principle to

derive an invariant set M .

Proposition 7: The trajectories of the system (13) ap-

proach M = {(θ, b) : θ = πk, k ∈ Z, b = 0} as t → ∞.



Fig. 3. Phase portrait of the reduced order attitude observer. Using the
density function property div(ρf) > 0 in a neighborhood of the equilibrium
points (θ, b) = (π + 2πk, 0), k ∈ Z, shows that these are unstable.

Proof: The result is obtained by considering the Lya-

punov function V = 2(1− cos(θ)) + b2. The time derivative

is given by V̇ = −2 sin2(θ) and the result is immediate from

LaSalle’s invariance principle.

The phase portrait of the system, depicted in Fig. 3,

suggests that the equilibrium points in the set E = {(θ, b) :
θ = 2πk + π, k ∈ Z, b = 0} ⊂ M are unstable. Using

the technique summarized in Lemma 6, the instability of E

is shown using a density function that satisfies Theorem 5,

yielding that almost all trajectories approach M \ E =
{(θ, b) : θ = 2πk, k ∈ Z, b = 0} as t → ∞.

Proposition 8: Almost all trajectories of the system (13)

approach the set {(θ, b) : θ = 2πk, k ∈ Z, b = 0} as t → ∞.

Proof: To exclude the points in the set E, the density

function ρ = 1
2(1−cos(θ))+b2

is adopted. The divergence is

div(ρf) = 2(1−cos(θ))−cos(θ)b2

(2(1−cos(θ))+b2)2 , so there is a neighborhood

of every point in E where ρ is integrable and div(ρf) > 0.
By Theorem 5, the set of initial conditions converging to

each point in E has zero measure. The set E is a countable

union of points, and hence the set of initial conditions that

approach E has zero measure. Consequently, almost all the

trajectories approach M \ E.

V. CONCLUSIONS

This work addressed the combination of Lyapunov and

density functions, for stability analysis of nonlinear systems.

Almost ISS of the origin was formulated as the combination

of local ISS and weakly almost ISS, that can be derived using

Lyapunov and density functions, respectively. For the case

of autonomous systems, it was shown that global stability of

the origin can be obtained by combining LaSalle’s invariance

principle, with a density function that excludes the stability

of undesirable equilibrium points. The proposed stability

analysis techniques were illustrated for an attitude observer

with non-ideal angular velocity readings. Future work will

address the topics discussed in Remarks 1 and 2.

APPENDIX

A. Set Measure Results

This section presents auxiliary results adopted in the paper.

Lemma 9: The local inset of an equilibrium point is

measurable under Assumption 1.

Proof: The set ZU can be written as the intersection of

a “stability” and a “convergence” sets, given by ZU = S ∩C
where S = {x ∈ U : φt(x) ∈ U for all t ≥ 0} and C =
{x ∈ U : ∀ǫ∃T∀t>T ‖φt(x) − xu‖ < ǫ}. The set S can be

described by S =
⋂

k∈N0
Sk where Sk = {x ∈ U : φt(x) ∈

U for t ∈
[

kT kT + T
]

}. By the continuous dependence

of φt(x) on the initial conditions [15], and on t, for each

x ∈ Sk there exists δ sufficiently small, such that ‖x− y‖ <

δ ⇒ φt(y) ∈ U for the compact interval t ∈
[

kT kT + T
]

.

Consequently, the set Sk is open, thus measurable, and the

set S is measurable. The set C can be described by C =
⋂

n∈N

⋃

k∈N0
Cn,k, where Cn,k = {x ∈ U : ∃T∀t≥T ‖φt(x)−

xu‖ < 1
n
for all t ≥ k}. The set Cn,k is measurable, by the

same arguments used for the measurability of S, and C is a

countable union and intersection of measurable sets and is

measurable, which concludes the proof.

Lemma 10: Under Assumption 1, the set φ[τ0,τ ](A) has

zero measure if and only if φ(−∞,∞)(A) has zero measure.

Proof: (⇐) Immediate from φ[τ0,τ ](A) ⊂
φ(−∞,∞)(A). (⇒) f is smooth, then φt is a diffeomorphism

for each t [15], and φt(φ[τ0,τ ](A)) has zero measure

[7]. Let tk = (τ − τ0)k, k ∈ Z, for autonomous

systems φt(φ[τ0,τ ](A)) = φ[τ0+t,τ+t](A) and hence

φ(−∞,∞)(A) =
⋃

k∈Z
φ[τ0+tk,τ+tk](A) is a countable union

of zero measure sets, and thus has zero measure [14].
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