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Abstract

In this work a new algorithm is derived for the onboard calibration of three-axis strapdown magnetometers. The proposed
calibration method is written in the sensor frame, and compensates for the combined effect of all linear time-invariant distortions,
namely soft iron, hard iron, sensor non-orthogonality, bias, among others. A Maximum Likelihood Estimator (MLE) is formulated
to iteratively find the optimal calibration parameters that best fit to the onboard sensor readings, without requiring external attitude
references. It is shown that the proposed calibration technique is equivalent to the estimation of a rotation, scaling and translation
transformation, and that the sensor alignment matrix is given by the solution of the orthogonal Procrustes problem. Good initial
conditions for the iterative algorithm are obtained by a suboptimal batch least squares computation. Simulation and experimental
results with low-cost sensors data are presented and discussed, supporting the application of the algorithm to autonomous vehicles
and other robotic platforms.
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I. INTRODUCTION

Magnetometers are a key aiding sensor for attitude estimation in low-cost, high performance navigation systems [1], [2], [3],

[4], with widespread application to autonomous air, ground and ocean vehicles. These inexpensive, low power sensors allow

for accurate attitude estimates by comparing the magnetic field vector observation in body frame coordinates with the vector

representation in Earth frame coordinates, available from geomagnetic charts and software [5]. In conjunction with vector

observations provided by other sensors such as star trackers or pendulums, the magnetometer triad yields complete 3-DOF

attitude estimation [3], [6].

The magnetic field reading distortions occur in the presence of ferromagnetic elements found in the vicinity of the sensor and

due to devices mounted in the vehicle’s structure. Other sources of disturbances are associated with technological limitations

in sensor manufacturing and installation. A comprehensive description of the magnetic compass theory can be found in [7].

Magnetometer calibration is an old problem in ship navigation and many calibration techniques have been presented in the

literature. The classic compass swinging calibration technique proposed in [8] is a heading calibration algorithm that computes

scalar parameters using a least squares algorithm. The major shortcoming of this approach is the necessity of an external

heading information [9], which is a strong requirement in many applications. A tutorial work using a similar but more sound

mathematical derivation is found in [7]. This book addresses the fundamentals of magnetic compass theory and presents a

methodology to calibrate the soft and hard iron parameters in heading and pitch, resorting only to the magnetic compass data.

However, the calibration algorithm is derived by means of successive approximations and is formulated in a deterministic

fashion that does not exploit the data of multiple compass readings.

In recent literature, advanced magnetometer calibration algorithms have been proposed to tackle distortions such as bias,

hard iron, soft iron and non-orthogonality directly in the sensor space, with no external attitude references and using optimality

criteria. The batch least squares calibration algorithm derived in [10], [9] accounts for non-orthogonality, scaling and bias errors.

A nonlinear, two-step estimator provides the initial conditions using a nonlinear change of variables to cast the calibration

in a pseudo-linear least squares form. The obtained estimate of the calibration parameters is then iteratively processed by a

linearized least squares batch algorithm.

The TWOSTEP batch method proposed in [11] is based on the observations of the differences between the actual and

the measured unit vector, denoted as scalar-checking. In the first step of the algorithm, the centering approximation derived

in [12] produces a good initial guess of the calibration parameters, by rewriting the calibration problem in a linear least

squares form. In a second step, a batch Gauss-Newton method is adopted to iteratively estimate the bias, scaling and non-

orthogonality parameters. In related work, [13] derives recursive algorithms for magnetometer calibration based on the centering

approximation and on nonlinear Kalman filtering techniques.
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Magnetic errors such as soft iron, hard iron, scaling, bias and non-orthogonality are modeled separately in [10]. Although

additional magnetic transformations can be modeled, it is known that some sensor errors are compensated by an equivalent

effect, e.g. the hard iron and sensor biases are grouped together in [9]. Therefore, the calibration procedure should address the

estimation of the joint effect of the sensor errors, as opposed to estimating each effect separately.

In this work, the magnetometer reading error model is discussed and cast in a error formulation which accounts for the

combined effect of all linear time-invariant magnetic transformations. A rigorous geometric formulation simplifies the problem

of compensating for the modeled and unmodeled magnetometer errors to that of the estimation of parameters lying on an

ellipsoid manifold. A complete methodology to calibrate the magnetometer is detailed, and a Maximum Likelihood Estimator

(MLE) allows for the formulation of the calibration problem as the optimization of the sensor readings likelihood.

The sensor calibration problem is naturally formulated in the sensor frame. The calibration parameters are estimated using

the magnetometer readings, and without resorting to external information or models about the magnetic field. In addition, a

closed form solution for the sensor alignment is also presented, based on the well known solution to the orthogonal Procrustes

problem [14].

The proposed calibration methodology is assessed both in simulation and using experimental data. Because the calibration

parameters are influenced by the magnetic characteristics of the payload, the geomagnetic profile of the terrain, and diverse

vehicle operating conditions, the online calibration of the magnetometers is analyzed. The calibration parameters are estimated

for magnetometer data collected in ring shaped sets, corresponding to yaw and pitch maneuvers that are feasible for most land,

air and ocean vehicles. Simulation and experimental results show that the algorithm performs a computationally fast calibration

with accurate parameter estimation. The accuracy of the estimates is validated by comparing the calibration results with those

obtained by the snapshot method previously proposed in [15] and by the TWOSTEP calibration algorithm [11].

To the best of the authors’ knowledge, this work is an original rigorous derivation of a calibration algorithm using a

comprehensive model of the sensor readings in R
3, that clarifies and exploits the geometric locus of the magnetometer readings,

given by an ellipsoid manifold. Using this geometric insight, this paper presents an algorithm that consolidates the snapshot

calibration method presented in [15], and improves on the experimental results obtained therein. Also, it is shown that the

calibration and alignment procedures are distinct.

This paper is organized as follows. In Section II, a unified magnetometer error parametrization is derived and formulated. It is

shown that the calibration parameters describe an ellipsoid surface and that the calibration and alignment problems are distinct.

A MLE formulation is proposed to calculate the optimal generic calibration parameters and an algorithm to provide good initial

conditions is presented. Also, a closed form solution for the magnetometer alignment problem is obtained. Simulation and

experimental results obtained with a low-cost magnetometer triad are presented and discussed in Section III. Finally, Section IV

draws concluding remarks and comments on future work.

II. MAGNETOMETER CALIBRATION AND ALIGNMENT

In this section, an equivalent parametrization of the magnetometer errors is derived. The main sources of magnetic distortion

and bias are characterized, to yield a comprehensive structured model of the magnetometer readings. Using this detailed

parametrization as a motivation, the magnetometer calibration problem is recast, without loss of generality, into a unified

transformation parametrized by a rotation R, a scaling S, and an offset b. Consequently, it is shown that for all linear

transformations of the magnetic field, such as soft and hard iron, non-orthogonality, scaling factor and sensor bias, the

magnetometer readings will always lie on an ellipsoid manifold.

A Maximum Likelihood Estimator formulation is proposed to find the optimal calibration parameters which maximize the

likelihood of the sensor readings. The proposed calibration algorithm is derived in the sensor frame and does not require any

specific information about the magnetic field’s magnitude and body frame coordinates. This fact allows for magnetometer

calibration without external aiding references. Also, a closed form optimal algorithm to align the magnetometer and body

coordinate frames is obtained from the solution to the orthogonal Procrustes problem.

A. Magnetometer Errors Characterization

The magnetometer readings are distorted by the presence of ferromagnetic elements in the vicinity of the sensor, the

interference between the magnetic field and the vehicle structure, local permanently magnetized materials, and by sensor

technological limitations.

Hard Iron / Soft Iron: The hard iron bias, denoted as bHI , is the combined result of the permanent magnets inherent to the

vehicle’s structure, as well as other elements installed in the vehicle, and it is constant in the vehicle’s coordinate frame.

Soft iron effects are generated by the interaction of an external magnetic field with the ferromagnetic materials in the vicinity

of the sensor. The resulting magnetic field depends on the magnitude and direction of the applied magnetic field with respect

to the soft iron material, producing

hSI = CSI
B
EREh, (1)
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where CSI ∈ M(3) is the soft iron transformation matrix, E
BR is the rotation matrix from body to Earth coordinate frames,

B
ER := E

BR′, Eh is the Earth magnetic field, M(n,m) denotes the set of n×m matrices with real entries and M(n) := M(n, n).
As described in [7, chapter XI], the combined hard and soft iron effects are given by hSI+HI = hSI +bHI . The linearization

of the ferromagnetic effects (1) yields the well known heading error δψ model [7], [9] adopted in compass swinging calibration,

which ignores the harmonics above 2ψ. The formulation (1), adopted in this paper, yields a rigorous approach to the simultaneous

estimation of the hard and soft iron effects.

Non-orthogonality: The non-orthogonality of the sensors can be described as a transformation of vector space basis,

parametrized by

CNO =





1 0 0
sin(ρ) cos(ρ) 0

sin(φ) cos(λ) sin(λ) cos(φ) cos(λ)



 ,

where (ρ, φ, λ) are respectively the misalignment angles between the y-sensor and the y-axis, the z-sensor and the x-z plane,

and the z-sensor and the y-z plane, more details on the adopted model of magnetometer misalignment errors can be found in

[15].

Scaling and Bias: The null-shift or offset of the sensor readings is modeled as a constant vector bM ∈ R
3. The transduction

from the electrical output of the sensor to the measured quantity is formulated as a scaling matrix SM ∈ D+(3), where D(n)
denotes the set of n× n diagonal matrices with real entries and D+(n) = {S ∈ D(n) : S > 0}.

Wideband noise: The disturbing noise is assumed wideband compared with the bandwidth of the system, yielding uncorrelated

sensor sampled noise.

Alignment with the body frame: The formulation of the proposed algorithm in the sensor frame allows for sensor calibration

without determination of the alignment of the sensor with respect to a reference frame. An alignment procedure of the sensor

triad is proposed in this paper for the sake of completeness.

Other effects: Generic and more complex effects related to sensor-specific characteristics and to the magnetic distortion are

difficult to model accurately. The proposed calibration algorithm compensates for the combined influence of all linear time-

invariant transformations that distort the magnetic field, which are estimated in the form of an equivalent linear transformation.

B. Magnetometer Error Parametrization

This section formulates an equivalent error model of the magnetometer measurements. First, the estimation problem of the

non-ideal magnetic effects described in Section II-A is recast, without loss of generality, as the problem of estimating an affine

linear transformation. Second, it is shown that the linear transformation is equivalent to a single rotation, scaling and translation

transformation. In other words, to calibrate the magnetometer it is sufficient to estimate the center, orientation and radii of the

ellipsoid that best fit to the acquired data. Also, the derived sensor model is used to show that the magnetometer alignment

cannot be determined using only sensor frame information, which implies that the calibration and the alignment problem must

be addressed separately.

Define the unit sphere and an ellipsoid as [16]

S(n) = {x ∈ R
n+1 : ‖x‖2 = 1}, L(n) = {x ∈ R

n+1 : ‖SR′x‖2 = 1},

where S ∈ D+(n+1) and R ∈ SO(n+1) describe the radii and orientation of the ellipsoid, respectively, and SO(n) = {R ∈
O(n) : det(R) = 1}, O(n) = {U ∈ M(n) : UU′ = In×n}. The three-axis magnetometer reading is given by the Earth’s

magnetic field Eh affected by the magnetic distortions and errors, yielding

hr i = SMCNO(CSI
B
ERi‖

Eh‖Eh̄i + bHI) + bM + nm i, (2)

where hr is the magnetometer reading in the (non-orthogonal) magnetometer coordinate frame, Eh̄i =
E
hi

‖Eh‖
is the unit vector

obtained by normalizing Ehi, nm ∈ R
3 is the Gaussian wideband noise, SM , CNO, CSI , bHI and bM are the magnetic

distortions described in Section II-A, and i = 1, . . . , n denotes the index of the reading. The model (2) assumes that ‖Eh‖ is

constant, which allows for an intuitive geometric analysis of the magnetometer calibration problem. Nonetheless, the derived

results will be subsequently extended for the more general case where the magnitude is diverse for each i.

Without loss of generality, the magnetometer reading can be described by

hr i = CBh̄i + b + nm i, (3)

where C = SMCNOCSI‖
Eh‖, b = SMCNObHI + bM , Bh̄i = B

ERi
Eh̄i,

Bh̄i ∈ S(2) is the normalized magnetic field in

body coordinate frame. In particular, C ∈ M(3) and b ∈ R
3 are unconstrained, so unmodeled linear time-invariant magnetic

errors and distortions are also taken into account. It is also clear that SM , CNO, CSI , bHI and bM are unobservable because

diverse solutions for these parameters can be computed given C and b.
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Fig. 1. Affine transformation of a two dimensional sphere.

Given that the points Bh̄i are contained in the sphere, straightforward application of the Singular Value Decomposition

(SVD) [16] shows that the magnetometer readings hr i lie on an ellipsoid manifold, as illustrated in the example of Fig. 1 and

summarized in the following theorem. The proof is presented for the sake of clarity.

Theorem 1 ([16]): Let c : R
n → R

n, c(x) = Cx be a linear transformation where C ∈ M(n) is full rank. Then c(x) is a

bijective transformation between the sphere and an ellipsoid in R
n, i.e. there is an ellipsoid L(n−1) such that the transformation

c|S : S(n− 1) → L(n− 1), c|S(x) = Cx is bijective.

Proof: Denote the SVD of C as C = UΣV′, where U,V ∈ O(n) and Σ ∈ D+(n). Define the matrices RL :=

UJ,SL := Σ,VL := VJ,J :=
[

det(U) 0

0 In−1×n−1

]

, which describe a modified SVD with at least one special orthogonal

matrix C = RLSLV′
L where RL ∈ SO(n), SL ∈ D+(n) and VL ∈ O(n). The transformation c(x) applied to the sphere is

given by

c|S(x) := RLSLy, (4)

where y := V′
Lx verifies ‖y‖2 = 1. Choosing the ellipsoid L(n− 1) = {x ∈ R

n : ‖S−1
L R′

Lx‖2 = 1} then c|S(x) ∈ L(n− 1).
The function (4) is injective because RLSL is invertible. To see that it is surjective, given any z ∈ L(n − 1), the point

y = S−1
L R′

Lz ∈ S(n− 1) satisfies c(y) = z.

Corollary 1: Let C ∈ M(n) be a full rank matrix and let the SVD of C be given by C = RLSLV′
L where RL ∈ SO(n),

SL ∈ D+(n) and VL ∈ O(n). The ellipsoid described by c|
S

is spanned by the bijective transformation l : S(n − 1) →
L(n− 1), l(x) = RLSLx.

Theorem 1 implies that the magnetic field readings hr i derived in (3) lie on the surface of an ellipsoid centered on b,

referred to as sensor ellipsoid. Corollary 1 states that the sensor ellipsoid centered at b is fully characterized the rotation RL

and scaling SL matrices. Consequently, the calibration process is equivalent to the estimation of the ellipsoid’s parameters b,

RL and SL.

Motivated by these results, and denoting the SVD of C as C = RLSLV′
L, the equivalent model for the magnetometer

readings (3) can be described by

hr i = RLSL
C h̄i + b + nm i. (5)

where C h̄i := V′
L

Bh̄i,
C h̄i ∈ S(2), and the matrix VL ∈ O(3) is a fixed orthogonal transformation between {B} and the

sensor frame {C}, and is referred to as alignment matrix. Although alignment matrices are commonly associated with SO(3),
the slight relaxation in the definition of alignment matrix is adopted for sake of generality, so that VL can model sensor setups

where rotation and reflection may occur. Nonetheless, the case where it is possible to guarantee that VL ∈ SO(3) will also

considered in the discussion of the alignment process.

The sensor model (5) evidences that C h̄i can be computed given the calibration parameters (RL, SL, b). However the

alignment matrix VL, which transforms C h̄i to Bh̄i, cannot be determined in the calibration process because Bh̄i is not

measured. Consequently, the calibration and alignment problems are distinct.

The sensor calibration and alignment algorithm is structured as follows. In the calibration step, the parameters RL, SL and

b are estimated, using a Maximum Likelihood Estimator formulated on M(3) × R
3. In the alignment step, the determination

of the orthogonal transformation VL is obtained from a closed form optimal algorithm using vector readings in {C} and {B}
frames.

C. Maximum Likelihood Estimation of an Ellipsoid

In this work, the calibration parameters expressed in (5) are computed using a Maximum Likelihood Estimator. This section

formulates the estimation of the ellipsoid parameters (RL, SL, b) as an optimization problem on the manifold Θ := SO(3)×
D+(3)×R

3. Although optimization tools on Riemannian manifolds are required to solve for the calibration parameters directly
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on Θ, see [17], [18] for a comprehensive introduction to the subject, an equivalent calibration can be performed on the Euclidean

space M(3) × R
3. The intermediate derivation of the MLE on the manifold Θ, presented in this section, provides geometric

insight on the cost functional, and evidences the assumptions underlying the derivation of MLE.

Assuming that the noise on the magnetometer readings is a zero mean Gaussian process with variance σ2
m i, the probability

density function (p.d.f.) of each hr i is also Gaussian

nm i ∼ N (0, σ2
m iI) ⇒ hr i ∼ N (RLSL

C h̄i + b, σ2
m iI).

The MLE finds the parameters that maximize the conditional p.d.f. of each sensor reading given the optimization parameters

[19]. The resulting minimization problem of the weighted log-likelihood function is described by

min
(RL,SL,b)∈Θ

C
h̄i∈S(2),i=1,...,n

n
∑

i=1

(

‖(hr i − b) −RLSL
C h̄i‖

σm i

)2

. (6)

The minimum of (6) is computed iteratively by gradient or Newton-like methods on manifolds [17], [18]. Note that solving the

minimization problem (6) implies estimating n auxiliary magnetic field vectors C h̄i, and the dimension of the search space is

(2n+ dim Θ) whereas the dimension of the calibration parameters space is dim Θ = dim SO(3) + dim D+(3) + dim R
3 = 9.

The minimization problem (6) finds the ellipsoid points (RLSL
C h̄i) that best fit the sensor readings (hr i −b). Intuitively,

the minimization problem can be rewritten to find the sphere points C h̄i that best fit to the pullback of the ellipsoid to the

sphere (S−1
L R′

L(hr i − b)), yielding

min
(RL,SL,b)∈Θ

C
h̄i∈S(2), i=1,..,n

n
∑

i=1

(

‖S−1
L R′

L(hr i − b) − C h̄i‖

σm i

)2

. (7)

The minimization problem (7) is suboptimal with respect to the unified error model (5), but can be rigorously derived using

a MLE formulation by assuming that the main sources of electromagnetic noise are external to the sensor, that is

hr i = SMCNO(CSI(
B
ERi‖

Eh‖Eh̄ + B
NRnm i) + bHI) + bM = CBh̄i + CB

NRnm i + b

= RLSL
C h̄i + RLSLV′

L
B
NRnm i + b, (8)

where B
NR rotates from the coordinate frame {N} where the magnetic noise is defined, to the body coordinate frame. Assuming

that nm i is a zero mean Gaussian process with variance σ2
m i, the p.d.f. of each hr i is also Gaussian

nm i ∼ N (0, σ2
m iI) ⇒ hr i ∼ N (RLSL

C h̄i + b, σ2
m iRLS2

LR
′
L).

Using the p.d.f. of the hr i, straightforward analytical derivations show that MLE formulation is given by (7).

As convincingly argued in [20], if the noise exists in the sensor frame (5), the ellipsoid obtained by (7) tends to fit best

the points with lower eccentricity. This effect can be balanced by defining appropriate curvature weights [20] σ2
m i, producing

results close to the optimal solution of (6). More important, the log-likelihood function (7) can be optimized by searching only

in the parameter space Θ.

Proposition 1: The solution (R∗
L,S

∗
L,b

∗) of (7) also minimizes

min
(RL,SL,b)∈Θ

n
∑

i=1

(

‖S−1
L R′

L(hr i − b)‖ − 1

σm i

)2

. (9)

Proof: Given (R∗
L,S

∗
L,b

∗), the optimal C h̄∗
i satisfies

C h̄∗
i = argmin

C h̄i∈S(2)

‖v∗
i − C h̄i‖

2, (10)

where v∗
i := S∗−1

L R∗
L
′(hr i − b∗). The minimization problem (10) corresponds to the projection of v∗

i on the unit sphere,

which has the closed form solution C h̄∗
i =

v
∗

i

‖v∗

i
‖ . Therefore, the minimization problem (7) can be written as

min
(RL,SL,b)∈Θ

n
∑

i=1

(

‖S−1
L RL

′(hr i − b) − vi

‖vi‖
‖

σm i

)2

,

where vi := S−1
L RL

′(hr i − b). Using simple algebraic manipulation produces the likelihood function (9).
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D. Magnetometer Calibration Algorithm

In this section, the MLE presented on Proposition 1 is recast as an optimization problem on an Euclidean space, which

allows for the use of optimization tools for unconstrained problems [21]. In the next proposition, the MLE is formulated on

M(3) × R
3.

Proposition 2: Let (T∗,b∗
T ) denote the solution of the unconstrained minimization problem

min
T∈M(3),bT ∈R3

n
∑

i=1

(

‖T(hr i − bT )‖ − 1

σm i

)2

, (11)

and take the SVD of T∗, given by T∗ = U∗
T S∗

T V∗
T
′, where UT ∈ O(3), ST ∈ D+(3), VT ∈ SO(3). The solution of (9) is

given by R∗
L = V∗

T , S
∗
L = S∗

T
−1, b∗ = b∗

T .

Proof: Using the equality ‖VLS−1
L R′

L(hr i − b)‖ = ‖S−1
L R′

L(hr i − b)‖ for any VL ∈ O(3), and the fact that, by the

SVD, T := VLS−1
L R′

L is a generic element of M(3), produces the desired results.

By Proposition 2, the parameters of the sensor model (5) are obtained by solving (11) and decomposing the resulting T∗.

Although (11) could be derived using (3) and the results of Section II-C expressed on M(3)×R
3, the intermediate derivations

(7) and (9) were formulated on Θ to show that (i) the sensor readings lie on an ellipsoid manifold parametrized by RL, SL

and b (ii) the alignment matrix, represented by VL (or U∗
T ) cannot be determined in the calibration process, given that there

are no body referenced measurements, (iii) the optimization problem (7) can be solved by searching only in the space of the

calibration parameters, using the formulation (9) derived for the sensor model given by (8).

A good initial guess of the calibration parameters is produced by the least squares estimator proposed in [15]. The locus of

measurements described by

‖Eh‖2 = ‖C−1(hr − b)‖2,

is expanded and, by defining a nonlinear change of variables, it is rewritten as pseudo-linear least squares estimation problem

H(hr)f(b, s) = b(hr), (12)

where the matrix H(hr) ∈ M(n, 9) and the vector b(hr) ∈ R
n are nonlinear functions of the vector readings and the vector

of unknowns f(b, s) ∈ R
6 is a nonlinear function of the calibration parameters. The closed form solution to the least squares

problem (12) is found to yield a good first guess of the calibration parameters [15].

The calibration algorithm proposed in this work is summarized in the following. In the formulation of the calibration

method, the kth estimate of the calibration parameters (T,b) is denoted as (Tk,bk), and is concatenated in the vector

xk = [vec′(Tk) b′
k]′ ∈ R

12, where vec is the column stacking operator [22]. The log-likelihood function defined in (11) is

denoted by f(x) :=
∑n

i=1

(

‖T(hr i−b)‖−1
σm i

)2

.

Step 1. (Least Squares Estimator [15]) Compute the solution p to the least squares problem






h2
r1 x hr1 xhr1 y hr1 xhr1 z h2

r1 y hr1 yhr1 z hr1 x hr1 y hr1 z 1
...

...
...

...
...

...
...

...
...

h2
rn x hrn xhrn y hrn xhrn z h2

rn y hrn yhrn z hrn x hrn y hrn z 1






p =







h2
r1 z

...

h2
rn z






(13)

where p ∈ R
9, and hri x, hri y , and hri z denote the x, y, and z components of hr i, respectively. The initial

estimates of the calibration parameters, T0 and b0, are given by

T0 =





1
a

0 0
− 1

a
tan ρ − 1

b
sec(ρ) 0

1
a

(tan ρ tanλ secφ− tanφ) − 1
b
sec(ρ) tan(λ) sec(φ) 1

c
sec(λ) sec(φ)



 , b0 =
1

2α1





β1

β2

β3



 ,

where the parameters (a, b, c), (ρ, θ, φ) and (β1, β2, β3) are functions of p, and can be obtained using equations

(18) and (19) presented in Appendix A.

Step 2. (Maximum Likelihood Estimator) Set k = 0. Compute
[

vec(Tk+1)
bk+1

]

=

[

vec(Tk)
bk

]

−
(

∇2f |xk

)−1
∇f |xk

, (14)

using the algebraic formulation of the gradient and Hessian matrices (20) and (21), presented in Appendix A.

Increment k and repeat (14) until a stop condition is satisfied, e.g. ‖∇f |xk
‖ < εstop for a desired εstop.

Step 3. The calibration parameters of the magnetometer model (3) are given by C = T−1
k , b = bk. The ellipsoid parameters

RL and SL are given by the SVD C = RLSLV′
L.

Given the calibration parameters (RL,SL,b), the representation of the Earth magnetic field in the calibration frame {C} is

obtained by algebraic manipulation of (5), resulting in

Chi = ‖Eh‖S−1
L R′

L(hr i − b). (15)
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where the fact that Chi = ‖Eh‖C h̄i was used.

In the proposed calibration algorithm, the cost functional (11) is minimized using Newton’s descent method [21], which

yields very fast convergence near the minimum. The explicit formulations of ∇2f |xk
and ∇f |xk

, presented in Appendix A,

allow for the implementation of the Newton method without numerically approximating the Hessian and gradient matrices.

For properties and variations of this method, the reader is referred to [21] and references therein.

As an alternative to the adopted least squares estimator, the algorithm proposed in [23] can produce an initial ellipsoid

guess based on the difference-of-squares error criterion using a semidefinite programming (SDP) formulation. However, the

SDP algorithm is computationally feasible only for no more than a few hundred samples, whereas the least squares estimator

(13) allows for efficient processing of the several thousands of points contained in the calibration data, which are required in

practice.

Note that the calibrated measurement (15) is obtained assuming that the magnitude of Earth’s magnetic field ‖Eh‖ is constant

for the collected set of magnetometer measurements (2). This allows for an optimization problem (11) and a computation of
C h̄i that are independent of ‖Eh‖. In case ‖Eh‖ is known to fluctuate, namely due to collecting measurements at different

geographic locations, the measurement model (3) can be written as

hr i

‖Ehi‖
= CBh̄i +

b

‖Ehi‖
+

nm i

‖Ehi‖
,

where C is now defined as C = SMCNOCSI . Applying this measurement model directly in the result of Proposition 2, the log-

likelihood function expressed in (11) is given by
∑n

i=1
1

σ2

m i
‖Ehi‖−2

(

‖T( hr i

‖Ehi‖
− bT

‖Ehi‖
)‖ − 1

)2

, producing the optimization

problem

min
T∈M(3),bT ∈R3

n
∑

i=1

(

‖T(hr i − bT )‖ − ‖Ehi‖

σ2
m i

)2

,

where ‖Ehi‖ is available from geomagnetic charts [5], and the weights σm i can be inflated to compensate for modeling errors

in ‖Ehi‖. Given the solution (T,bT ) of the modified maximum likelihood problem, the calibrated measurements are given

by Chi = S−1
L R′

L(hr i − b).

E. Magnetometer Alignment

The representation of Bhi in the body frame is necessary in attitude determination algorithms [6]. Although the alignment

and calibration procedures are independent, the magnetometer alignment algorithm is detailed for the sake of completeness.

The magnetometer alignment with respect to a reference frame is represented by the orthogonal matrix VL ∈ O(3) contained
in the unified transformation C, see Corollary 1. Given that Chi := V′

L
Bhi,

Chi ∈ S(2), the matrix VL is computed using the
Chi observations given by the calibrated sensor reading (15), and the Bhi measurements obtained from external information

sources, such as heading reference units or external localization systems.

As illustrated in Fig. 2, two vector readings are sufficient to characterize a rigid rotation VL ∈ SO(3), or a rotation with

reflection VL ∈ (O(3) \ SO(3)), but the determination of an orthogonal transformation VL ∈ O(3) requires at least three

linearly independent vectors readings. The well known results for the orthogonal Procrustes problem [14] are adopted to

determine VL ∈ O(3).
Theorem 2 (Orthogonal Procrustes Problem): Take two sets of vector readings in {C} and {B} coordinate frames, concate-

nated in the form CX =
[

Ch1 . . . Chn

]

and BX =
[

Bh1 . . . Bhn

]

where n ≥ 3. Assume that BXCX′ is nonsingular,

and denote the corresponding SVD as BXCX′ = UΣV′, where U,V ∈ O(3), Σ ∈ D+(3). The optimal orthogonal matrix

V∗
L ∈ O(3) that minimizes the transformation from {B} to {C} coordinates frames in least squares sense

min
VL∈O(3)

n
∑

i=1

‖Chi − V′
L

Bhi‖
2, (16)

is unique and given by V′
L
∗

= VU′.

In applications where it can be guaranteed that VL is a rotation matrix, i.e. V ∈ SO(3), the solution to the Procrustes problem

(16) is also the solution to the standard Wahba’s problem [24], given by V′
L
∗

= V
[

1 0 0
0 1 0
0 0 det(V) det(U)

]

U′.

Using (15), the calibrated and aligned magnetic field vector reading is given by

Bhi = VL
Chi,

where Chi is the calibrated sensor measurement.

III. ALGORITHM IMPLEMENTATION AND RESULTS

In this section, the proposed calibration algorithm is validated using simulated and experimental data from a triad of low-cost

magnetometers.



8

Fig. 2. Alignment estimation ambiguity with two vector readings.

(a) Ring shaped data. (b) Arch shaped data.

Fig. 3. Ellipsoid fitting (simulation data).

A. Simulation Results

The calibration algorithm was first analyzed using simulated data. The reference calibration parameters from (2) are

SM = diag(1.2, 0.8, 1.3),





ψ

θ

φ



 =





2.0 π
180

1.0 π
180

1.5 π
180



 rad, bHI =





−1.2
0.2
−0.8



 G, bM =





1.5
0.4
2.7



 G, CSI =





0.58 −0.73 0.36
1.32 0.46 −0.12
−0.26 0.44 0.53



 ,

and the magnetometer noise, described in the sensor space, is a zero mean Gaussian noise with standard deviation σm = 5mG.

The likelihood function f is normalized by the number of samples n and the stop condition of the minimization algorithm

is ‖∇f |xk
‖ < εstop = 10−3. To benchmark the convergence rate and the optimization results of the Newton iterations (14), a

gradient descent method is also studied. In this algorithm, the iterations are given by xk+1 = xk −αk∇f |xk
, and the stepsize

αk is determined using the Armijo rule [21].

In a strapdown sensor architecture, the swinging of the magnetometer triad is constrained by the vehicle’s maneuverability

and, consequently, only some sections of the ellipsoid can be traced. The magnetic field readings are obtained for two specific

cases, illustrated in Fig. 3. In the first case, a ring shaped uniform set of points is obtained for unconstrained Yaw and a Pitch

sweep interval of θ ∈ [−20, 20] ◦. Note that the constraint in the Pitch angle can be found in most terrestrial vehicles. In the

second case, the ellipsoid’s curvature information is reduced by constraining the Yaw to ψ ∈ [−90, 90] ◦.
The results of 20 Monte Carlo simulations using 104 magnetometer readings are presented in Tables I and II and depicted

in Fig. 3. Given the large likelihood cost of the noncalibrated data, denoted by f(x−1), the initial condition draws the cost

function into the vicinity of the optimum, and the iterations yield a 20% improvement over the initial guess.

The Newton algorithm converges faster than the gradient algorithm, exploiting the second order information of the Hessian,

as illustrated in Fig. 4 and Fig. 5. Although the Hessian computations are more complex, the Newton method takes only 5 s
to converge to in a Matlab 7.3 implementation running on a standard computer with a Pentium Celeron 1.6 Ghz processor.

Defining the distance between the estimated and the actual parameter as se := ‖S∗ − S‖, be := ‖b∗ − b‖, and θe :=

arccos
(

tr(R∗R′)−1
2

)

, Tables I and II show that the arch shaped data set contains sufficient eccentricity information to estimate
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TABLE I
CALIBRATION RESULTS (GRADIENT METHOD).

f(x−1) f(x0) f(x∗) Iterations θe [rad] se be [G]

Ring shaped data 3.28× 10−1 1.17× 10−4 9.64× 10−5 2246 1.74× 10−3 7.61× 10−3 3.54× 10−4

Arch shaped data 4.36× 10−1 1.18× 10−4 9.62× 10−5 1932 1.46× 10−2 1.65× 10−2 1.74× 10−2

TABLE II
CALIBRATION RESULTS (NEWTON METHOD).

f(x−1) f(x0) f(x∗) Iterations θe [rad] se be [G]

Ring shaped data 3.28× 10−1 1.18× 10−4 9.64× 10−5 37.0 1.74× 10−3 7.61× 10−3 3.54× 10−4

Arch shaped data 4.37× 10−1 1.18× 10−4 9.62× 10−5 37.2 1.46× 10−2 1.65× 10−2 1.75× 10−2
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Gradient Method

(a) Newton (vs gradient) method.
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(b) Gradient method iterations.

Fig. 4. Convergence of the log-likelihood function (arch shaped data).

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

iteration

||
∇

 f
| x

 k
||

 

 

Newton Method

Gradient Method

(a) Newton (vs gradient) method.

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

10
1

10
2

iteration

||
∇

 f
| x

 k
||

(b) Gradient method iterations.

Fig. 5. Convergence of the log-likelihood gradient (arch shaped data).



10

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR(||Eh ||2 /σ2m )

d(
x∗

,x
)2

Simulated SNR

Experimental SNR

Fig. 6. Estimation error vs. signal-to-noise ratio (100 MC, ring shaped data).

the equivalent magnetometer errors quantities R, s and b. Although the noise is formulated in the sensor frame, the suboptimal

formulation (9) yields accurate results with uniform likelihood weights σ2
m i, as depicted in Fig. 3. For platforms with limited

maneuverability, the proposed optimization algorithm identifies the calibration parameters with good accuracy. As expected,

reducing the information about the ellipsoid curvature slightly degrades the sensor calibration errors.

To validate the quality of the estimated parameters, an implementation of the TWOSTEP algorithm [11] was used to process

the magnetometer measurements, yielding (θe, se,be) = (2.23 × 10−3 rad, 5.08 × 10−3, 4.41 × 10−4 G) and (θe, se,be) =
(1.12×10−2 rad, 1.65×10−2, 1.42×10−2 G) for the ring and arch shaped data, respectively. The results presented in Table II

are similar to those obtained with the TWOSTEP algorithm, which validates the accuracy of the proposed calibration algorithm.

These results also suggest that the magnetometer calibration methodologies presented in [11], [13], [15], and in this work can

contribute to other fields of research where ellipsoid estimation is of interest, such as computer graphics, vision, statistics,

pattern recognition, among others, for a representative list see [20], [23] and references therein.

The influence of the noise power in the estimation error is illustrated in Fig. 6, where the magnetic field magnitude in the San

Francisco Bay area is adopted, ‖Eh‖ = 0.5G, and the distance in the parameter space is given by d(x∗,x)2 := θ2e + s2
e + b2

e.

B. Experimental Results

The algorithm proposed in this work was used to estimate the calibration parameters for a set of 6 × 104 points obtained

from an actual magnetometer triad. The magnetometer was a Honeywell HMC1042L 2-axis magnetometer and a Honeywell

HMC1041Z for the third (Z) axis, sampled with a TI MSC12xx microcontroller with a 24bit Delta Sigma converter, at 100Hz,

see [10] for details.

A gimbal system was maneuvered to collect (i) a set of sensor readings spanning the ellipsoid surface, Fig. 7(a), (ii) only

four ellipsoid sections, Fig. 7(b). The calibration algorithm converged to a minimum within 60 Newton method iterations,

taking less than 40 s and yielding f(x∗) = 2.51 × 10−6 for the ellipsoid surface data set and f(x∗) = 2.67 × 10−6 for the

ellipsoid sections data set. Although the second data set included less data points, the results were similar because the collected

data were sufficient to characterize the ellipsoid’s eccentricity and rotation, as depicted in Fig. 7(b).

Given the calibration parameters, the sensor noise is characterized by rewriting (5) as nm i = hr − (R∗
LS∗

L
C h̄∗

i +b∗) where
C h̄∗

i is given in the proof of Proposition 1. The obtained experimental standard deviation of the sensor noise is σm = 0.65mG,

which evidences that the signal-to-noise ratio of a typical low-cost magnetometer is better than that assumed in the simulations

of Section III-A, as depicted in Fig. 6.

The calibrated magnetometer data are compared to the raw data in Fig. 8. The calibrated readings are near to the unit circle

locus, which validates the proposed unified error formulation of Theorem 1 and shows that the combined effect of the magnetic

distortions is successfully compensated for.

IV. CONCLUSIONS

A new estimation algorithm was derived and successfully validated for the onboard calibration of three-axis strapdown

magnetometers. After a detailed characterization on the disturbances corrupting the magnetometer readings, an equivalent

error parametrization was derived. The magnetometer calibration was shown to be equivalent to the estimation of an ellipsoid

manifold. The parameter optimization problem was formulated resorting to a Maximum Likelihood Estimator, and an opti-

mization algorithm was derived using the gradient and Newton descent methods. A closed form solution for the magnetometer

alignment was obtained from the solution to the orthogonal Procrustes problem. The performance of the proposed methodology
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(a) Ellipsoid surface data. (b) Ellipsoid sections data.

Fig. 7. Ellipsoid fitting (real data).

0 1 2 3 4 5

x 10
4

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

C
o
m

p
e
n
s
a
te

d
 S

e
n
s
o
r 

R
e
a
d
in

g

Sample Index

 

 

Normalized Reading h
r
/E(||h

r
||)

Calibrated Reading SR(h
r
−b)/||

E
h||

(a) Ellipsoid surface data.

0 5000 10000 15000
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

C
o

m
p

e
n

s
a

te
d

 S
e

n
s
o

r 
R

e
a

d
in

g

Sample Index

 

 

Normalized Reading h
r
/E(||h

r
||)

Calibrated Reading SR(h
r
−b)/||

E
h||

(b) Ellipsoid sections data.

Fig. 8. Magnetometer data fitting.

was assessed both in simulation and with experimental data from low-cost sensors. Results show that the proposed calibration

algorithm can be adopted for a wide variety of autonomous vehicles with maneuverability constraints and in situations that

require periodic onboard sensor calibration.

Given the equivalence between magnetometer calibration and ellipsoid estimation evidenced in Section II, the algorithms

proposed in [11], [13], [15], and in this work may provide new contributions to other research areas such as computer graphics,

vision, statistics, pattern recognition, where ellipsoid estimation is of paramount importance [23], [20]. Future work will exploit

this circle of ideas, and the adaptation of the proposed algorithm to the 2D (heading only) case, for marine and land applications.

APPENDIX A

AUXILIARY RESULTS

This section presents auxiliary results adopted in the computations of the proposed calibration algorithm.

A. Least squares estimation of the calibration parameters

The initialization of the calibration algorithm presented in Section II-D is based on the magnetometer calibration algorithm

proposed in [15]. The initial guess of the calibration parameters is obtained by solving the least squares estimation problem

expressed in (13), and applying a nonlinear transformation to the solution p that yields the calibration parameters (C,b). In
this section, the nonlinear transformation from p to (C,b) is detailed. Denote the components of the solution of the least

squares problem as p =
[

A B C D E G H I J
]′
, the calibration matrix and bias vector are given by

C =
1

‖Eh‖





a 0 0
b sin(ρ) b cos(ρ) 0

c sin(φ) cos(λ) c sin(λ) c cos(φ) cos(λ)



 , b =
1

2α1





β1

β2

β3



 , (17)
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where the scaling and the misalignment parameters are described by

a =
1

2α1

(

−
(

4D + E2
)

α2

)
1

2 , b =
1

2α1

(

−
(

4A+ C2
)

α2

)
1

2 , c =
1

2α1

((

4DA−B2
)

α2

)
1

2 ,

tan ρ = −
1

2
(2B + EC) (α1)

− 1

2 , tanφ = (BE − 2CD) (α1)
− 1

2 , tanλ = E
(

−α1α
−1
3

)
1

2 ,

(18)

and the auxiliary variables are defined as

β1 = 2BH +BEI − 2CDI − 4DG+ ECH − E2G,

β2 = −2AEI + 4AH −BCI − 2BG+ C2H − CEG,

β3 = 4DIA− 2DGC + EGB − IB2 − 2EHA+ CBH,

α1 = −B2 +DC2 + 4DA+AE2 −BEC,

α2 = 4AE2J − E2G2 − 4BECJ + 2ECHG+ 2BEIG− 4EHAI − 4DICG− C2H2

+ 4DAI2 + 2CBHI − 4DG2 + 4DC2J + 4BHG− 4AH2 −B2I2 − 4B2J + 16DAJ,

α3 = E4A− CBE3 + E2C2D − 2B2E2 + 8DAE2 − 4DB2 + 16D2A.

(19)

B. Likelihood Function Derivatives

The calibration algorithm proposed in Section II-D enhances the estimates given by (17), using optimization tools to solve

a Maximum Likelihood Estimation problem. This section presents the algebraic expressions for the gradient and Hessian of

the likelihood function (11), used in descent optimization methods. Let ui := hr i − b, the gradient of the likelihood function

f(T,b) :=

n
∑

i=1

(

‖T(hr i − b)‖ − 1

σm i

)2

,

is denoted by ∇f |x =
[

∇f |T ∇f |b
]

, and described by the submatrices

∇f |T =

n
∑

i=1

2cT
σ2

m i

ui ⊗ Tui, ∇f |b =

n
∑

i=1

−2cT
σ2

m i

T′Tui, (20)

where cT := 1 − ‖Tui‖
−1

and ⊗ denotes the Kronecker product [22]. The Hessian ∇2f |x =
[

HT,T HT,b

H
′

T,b Hb,b

]

is given by the

following submatrices

HT,T =

n
∑

i=1

2

σ2
m i

[

(uiu
′
i) ⊗ (Tuiu

′
iT

′)

‖Tui‖3
+ cT [(uiu

′
i) ⊗ I3×3]

]

,

HT,b =

n
∑

i=1

−2

σ2
m i

[

(ui ⊗ Tui)u
′
iT

′T

‖Tui‖3
+ cT (ui ⊗ T + I3×3 ⊗ Tui)

]

, (21)

Hb,b =

n
∑

i=1

2

σ2
m i

[

T′Tuiu
′
iT

′T

‖Tui‖3
+ cT T′T

]

.
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