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Abstract—This paper presents a nonlinear observer for
attitude estimation on SO(3) and studies the stability properties
of the system in the presence of nonideal inertial sensor
measurements. Exploiting vector observations and biased an-
gular velocity readings in the feedback law, almost global
asymptotic stability of the origin is obtained and exponential
convergence is guaranteed for an explicit region in the state
space. Sufficient conditions in the observer design are proposed
to yield exponential stability of the origin given worst-case
initial alignment errors. Stability of the observer in the presence
of angular measurement noise is obtained, and convergence to
a desired neighborhood of the origin, for any initial condition
in a known region, can be guaranteed by properly defining
the observer parameters. The properties of the observer are
illustrated in simulation for inertial sensor characteristics and
initial alignment errors commonly found in practical setups.

I. INTRODUCTION

Attitude estimation is a classical problem with a rich and

fascinating history still holding a forefront position as the

subject of intensive research [1]. Recent publications [2], [3],

[4] provide important guidelines for the design of attitude

observers, by pointing out topological issues that hinder

global stabilization on non-Euclidean spaces such as the

special orthogonal group SO(3).
Several nonlinear attitude observers and compensators

have been proposed in recent literature [5], [6], [7]. Attitude

observers based only on the rotation kinematics are of special

interest for applications using inertial sensors and attitude

aiding devices, such as rate gyros and vector readings,

respectively [8], [9], [10], [11].

The present work proposes a nonlinear attitude observer,

defined on SO(3), that yields an almost globally asymptot-

ically stable (aGAS) equilibrium point at the origin, and

exponential convergence of the estimation error within an

explicit region. The stability properties are obtained for the

case of biased angular velocity readings, and are a function

of the design parameters. These can be determined in order to

yield uniform exponential stability of the origin given worst-

case initial estimation errors. The observer stability is also

analyzed in the presence of noise in the angular velocity

measurements, providing ultimate bounds for the attitude
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estimation error. Sufficient conditions to drive the attitude

error to a desired neighborhood of the origin are given, which

can be adopted in practical applications to satisfy accuracy

specifications.

The observer extends the architecture proposed in [11],

and builds on the derivation method presented in [12], which

used a conveniently defined Lyapunov function to yield

an output feedback law that exploits the sensor readings

directly. The design parameters of the proposed observer are

used to define properties such as the region of exponential

convergence, the location of the unstable equilibria, and the

ultimate bounds in the presence of noise, and hence are of

interest in the implementation of the observer.

The paper is organized as follows. In Section II, the

attitude estimation problem is described. Section III intro-

duces the Lyapunov function used in the observer synthesis.

In Section IV, the attitude observer is proposed and the

stability properties in the presence of biased angular velocity

readings are derived. Almost global asymptotic stabilization

and exponential convergence of the estimation errors are

demonstrated. In Section V, the stability results for the

attitude observer with noise in the velocity measurements

are presented. In Section VI, simulation results illustrate

the stability properties of the observer. Section VII presents

concluding remarks and comments on future work.

NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted as M(n,m) and

M(n) := M(n, n). The sets of skew-symmetric, orthogonal,

and special orthogonal matrices are respectively denoted by

K(n) := {K ∈ M(n) : K = −K′}, O(n) := {U ∈ M(n) :
U′U = I}, SO(n) := {R ∈ O(n) : det(R) = 1}, and
the n-dimensional sphere and ball are described by S(n) :=
{x ∈ R

n+1 : x′x = 1} and B(n) := {x ∈ R
n : x′x ≤ 1},

respectively. The minimum and maximum singular values

of a matrix A ∈ M(n,m) are denoted by σmin(A) and

σmax(A), respectively.

II. PROBLEM FORMULATION

In this section, the concepts involved in the attitude esti-

mation problem are introduced. The rigid body kinematics

are described by

Ṙ = R(ω)×,

where R is the shorthand notation for the rotation matrix
L
BR from body frame {B} to local frame {L} coordinates,

ω is the body angular velocity expressed in {B}, and (a)×



is the skew symmetric matrix defined by the vector a ∈ R
3

such that (a)×b = a × b, b ∈ R
3.

The body angular velocity measurement, denoted by ωr, is

obtained by a rate gyro sensor triad. Vector observations are

a function of the rigid body’s orientation. On-board sensors

such as magnetometers, star trackers and pendulums, among

others, provide vector observations expressed in body frame

coordinates

hr i = Bhi := R′Lhi, (1)

where i = 1..n is the vector index, n is the number of vector

measuring sensors, and the vector representation in the local

coordinate frame {L}, denoted by Lhi, is known.

The proposed observer estimates the orientation of the

rigid body by computing the kinematics

˙̂
R = R̂(ω̂)×,

where R̂ is the estimated attitude and ω̂ is the feedback term

constructed to compensate for the attitude estimation error.

The attitude error is defined as R̃ := R̂′R, and the

Euler angle-axis parametrization of R̃ is described by the

rotation vector φ ∈ S(2) and by the rotation angle ϕ ∈
[

0 π
]

, yielding the DCM formulation [13], denoted by

R̃ = rot(ϕ,φ) := cos(ϕ)I+sin(ϕ)(φ)×+(1−cos(ϕ))φφ′.

The attitude error kinematics are a function of the angular

velocity estimates and given by
˙̃R = −R̃(R̃′ω̂ − ω)×.

The objective of the present work is to define an attitude

feedback law ω̂ as function of the velocity readings ωr

and vector observations (1), so that the closed loop attitude

observer has an asymptotically stable equilibrium point at the

origin (R̃ = I) with the largest region of attraction possible.

III. SYNTHESIS LYAPUNOV FUNCTION

The attitude feedback law is derived resorting to the

Lyapunov’s stability theory and to a conveniently defined

transformation of the vector observations, described in this

section. Define the linear combination of the sensed vectors
Lhi expressed in the local coordinate frame as

Luj :=

n
∑

i=1

aij
Lhi, j = 1..n. (2)

The vector transformation (2) is represented in matrix form

by UH = HAH , where UH =
[

Lu1 . . . Lun

]

, H =
[

Lh1 . . . Lhn

]

, UH ,H ∈ M(3, n) and AH = [aij ] ∈
M(n) is invertible by construction.

Let Bui = R′Lui and Bûi = R̂′Lui be the nominal and

the estimated representations of Luj in body frame coordi-

nates, respectively. The corresponding matrix representation

is BUH = R′UH , BÛH = R̂′UH , where BUH =
[

Bu1 . . . Bun

]

and BÛH =
[

Bû1 . . . Bûn

]

,
BUH , BÛH ∈ M(3, n).
The Lyapunov function is defined by the weighted estima-

tion error of the transformed vectors,

VH =
1

2

n
∑

i=1

(Bûi −
Bui)

′W(Bûi −
Bui)

=
1

2
tr

[

(I − R̃)W(I − R̃)′UHU′
H

]

, (3)

where W ∈ M(3) is a positive definite matrix, i.e. W > 0,
to be determined in the design of the observer.

The geometric configuration of the measured vectors is

required to satisfy the following assumption, which is nec-

essary and sufficient for attitude estimation, as discussed in

[11] and references therein.

Assumption 1: There are at least two linearly independent

vectors Lhi, that is, rank(H) ≥ 2.
Using Assumption 1, necessary and sufficient conditions

such that VH > 0 are obtained.

Lemma 1: The Lyapunov function VH has a unique global

minimum if and only if Assumption 1 is verified.

Proof: Since AH is invertible, Assumption 1 is equiva-

lent to the linear independence of at least two Lui. Given that

W > 0, then VH = 0 if and only if
∑n

i=1‖
Bui−

Bûi‖
2 = 0.

Using [12, Lemma 1], the latter condition has an unique

solution (R̃ = I) if and only if two Bui are linearly

independent, which concludes the proof.

The transformation AH considered in this work is de-

scribed in the following proposition.

Proposition 2: Under Assumption 1 there is a nonsingular

AH ∈ M(n) such that UHU′
H = I.

Proof: If rankH = 3, the derivation of AH can be

found in [11, Proposition 3]. If rankH = 2, the conditions of
Proposition 2 can be satisfied by formulating an augmented

attitude observer, for more details see [11, Appendix A].

Using the transformation AH defined in Proposition 2, the

Lyapunov function (3) is expressed by

VH = tr
[

(I − R̃)W
]

=
1

4
‖I − R̃‖2φ′Pφ (4)

where P = tr(W)I − W, P ∈ M(3). In this work, the

convergence properties of the observer are studied given the

directionality of P, that is an observer design parameter.

IV. OBSERVER SYNTHESIS AND STABILITY

ANALYSIS

This section derives an observer for attitude estimation, in

the presence of biased velocity measurements. The angular

velocity reading is given by

ωr = ω + bω.

The proposed synthesis Lyapunov function is augmented

with a bias compensation error term

V = VH +
γb

2
‖b̃ω‖

2, (5)

where b̃ω = b̂ω − bω is the bias compensation error. The

time derivative of the Lyapunov function along the system

trajectories is given by

V̇ = V̇H + γbb̃ω
˙̃
bω, V̇H = −s′R(ω̂ − R̃ω),



where sR = (R̃W − WR̃′)⊗ and (·)⊗ is the unskew

operator such that ((w)×)⊗ = w, w ∈ R
3. The feedback

law for the angular velocity is defined as

ω̂ = R̃(ωr − b̂ω) + kωsR = R̃(ω − b̃ω) + kωsR, (6)

so as to obtain a negative semi-definite derivative for the

Lyapunov function. The resulting expression for the time

derivative of the Lyapunov function is described by V̇ =

−kωs′RsR + b̃′
ω(γb

˙̃
bω + R̃′sR). The nominal bias is con-

sidered constant, ḃω = 0, hence
˙̂
bω =

˙̃
bω , and the bias

feedback law is defined as

˙̂
bω = −kbω

sR, (7)

and γb = k−1
bω

where kbω
is a positive scalar. The closed loop

kinematics are given by

˙̃R = kωR̃(R̃′W − WR̃) + R̃(b̃ω)×, (8a)

˙̃
bω = kbω

(R̃′W − WR̃)⊗, (8b)

and the time derivative of the Lyapunov function is described

by V̇ = −kωs′RsR ≤ 0. The set of points where V̇ = 0 are

characterized in the following result.

Lemma 3 ([12]): Under Assumption 1, the set of points

where V̇ = 0 is given by

CR = {(R̃, b̃ω) ∈ SO(3) × R
3 : R̃ = I∨

R̃ = rot(π,φ ∈ eigvec(P))}.

The multiple equilibrium points contained in the set CR

illustrate the topological obstacles to continuous state feed-

back on manifolds, discussed in [2], [4], [14]. However,

CR is of zero measure and it is possible to show that, for

almost all initial conditions, the solutions of the system (8)

are attracted to the origin. For the case of unbiased velocity

measurements, aGAS and exponential stability of R̃ = I are

obtained.

Theorem 4 ([12]): Consider the system (8a) with b̃ω =
0. The attitude error R̃ = I is exponentially stable with

region of attraction given by RA = {R̃ ∈ SO(3) : R̃ =
rot(ϕ,φ),φ ∈ S(2), |ϕ| < π}. For any initial condition in

the region of attraction, the trajectories satisfy

‖R̃(t) − I‖ ≤ ‖R̃(t0) − I‖e−kω(1+cos(ϕ(t0)))σmin(P)(t−t0).

For biased angular velocity measurements, the stability of

the observer (8) is derived by showing i) exponential stability

of the origin given bounded initial estimation errors, and

ii) aGAS of the origin. The combination of these properties

yields that the origin is aGAS, with exponential convergence

of the trajectories in a known region.

A. Exponential Stability

The exponential stability of the origin is obtained by

formulating sufficient conditions that exclude the set of

points R̃ = rot(π,φ).

Lemma 5: The attitude and bias estimation errors, R̃ and

b̃ω respectively, are bounded. For any initial condition such

that

kbω
>

‖b̃ω(t0)‖
2

2(2σmin(P) − (1 − cos(ϕ(t0)))σmax(P))
, (9a)

(1 − cos(ϕ(t0))) < 2
σmin(P)

σmax(P)
, (9b)

the attitude error is bounded by ϕ(t) ≤ ϕmax < π for all

t ≥ t0 .

Proof: Let x := (R̃, b̃ω), define the set Ωρ = {x ∈
SO(3)×R

3 : V ≤ ρ}, and the weighted distance of the state

to the origin d0(x) = 1
4‖I − R̃‖2σmin(P) + 1

2kbω

‖b̃ω‖
2.

The Lyapunov function is lower bounded by V ≥ d0(x),
so the set Ωρ is contained in the compact set defined by

d0(x) ≤ ρ and thus is compact. The Lyapunov function

verifies V̇ ≤ 0 in Ωρ, so Ωρ is positively invariant. Con-

sequently, ∀t≥t0d0(x(t)) ≤ V (x(t)) ≤ V (x(t0)) and the

state is bounded for all t ≥ t0.
The conditions (9) imply that there exists cmax such

that V (x(t0)) ≤ cmax < 2σmin(P). Define ϕmax such

that cmax = σmin(P)(1 − cos(ϕmax)). The invariance of

Ωρ yields V (x(t)) ≤ V (x(t0)) and, using 1
4‖I − R̃‖2 =

(1 − cos(ϕ)), produces (1−cos(ϕ(t)))φ′Pφ ≤ σmin(P)(1−
cos(ϕmax)), implying (1−cos(ϕ(t))) ≤ (1−cos(ϕmax)) for
all t > t0, which shows that ϕ(t) ≤ ϕmax for all t ≥ t0.

By Lemma 5, the equilibrium point (R̃, b̃ω) = (I,0)
is stable. Exponential stability is obtained in the following

theorem.

Theorem 6: For any initial condition given by (9b), let

the feedback gain satisfy (9a). Then the attitude and bias

estimation errors converge exponentially fast to the stable

equilibrium point (R̃, b̃ω) = (I,0).

Proof: Let the attitude error vector be given by q̃q =
sin(ϕ

2 )φ, the closed loop attitude and bias compensation

errors kinematics are described by

˙̃qq = −kωQ(q̃)Q′(q̃)Pq̃q +
1

2
Q(q̃)b̃ω, (10a)

˙̃
bω = −2kbω

Q′(q̃)Pq̃q, (10b)

where Q(q̃) = q̃sI + (q̃q)×, q̃s = cos(ϕ
2 ), ˙̃qs =

kω q̃sq̃
′
qPq̃q−

1
2q

′
qb̃ω , and q̃ =

[

q̃′
q q̃s

]′
is the Euler quater-

nion representation [13]. Using ‖q̃q‖
2 = 1

8‖R̃ − I‖2, the

Lyapunov function (5) in quaternion coordinates is described

by V = 2q̃′
qPq̃q + 1

2kbω

‖b̃ω‖
2.

Define the system (10) in the domain Dq = {(q̃q, b̃ω) ∈
B(3) × R

3 : V ≤ 2σmin(P)(1 − εq)}, 0 < εq < 1. The set

Dq is given by the interior of the Lyapunov surface, so it is

positively invariant and well defined. The feedback gain (9a)

implies that any initial condition satisfying (9b) is in the set

Dq for εq small enough.

Define the parameterized linear time-varying system
[

˙̃qq⋆

˙̃
bω⋆

]

=

[

A(t, λ) B′(t, λ)
−C(t, λ) 03×3

] [

q̃q⋆

b̃ω⋆

]

, (11)



where (q̃q⋆, b̃ω⋆) ∈ R
3 × R

3, λ ∈ R≥0 × Dq. The

matrices A(t, λ) := kωQ(q̃(t, λ))Q′(q̃(t, λ))P, B(t, λ) :=
1
2Q

′(q̃(t, λ)) and C(t, λ) := 2kbω
Q′(q̃(t, λ))P are bounded,

so the system is well defined. The quaternion q̃(t, λ) rep-

resents the solution of (10) with initial condition λ =
(t0, q̃q(t0), b̃ω(t0)). If the parameterized LTV system (11)

is λ-UGES, then the nonlinear system (10) is uniformly

exponentially stable in the domainDq, see [15] for discussion

and details. The parameterized LTV system verifies the

assumptions of [15, Theorem 1]:

i) The elements of B(t, λ) and ∂B(t,λ)
∂t

= 1
2Q

′( ˙̃q(t, λ)) are
upper bounded, for all λ ∈ R≥0 ×Dq, t ≥ t0.
ii) The positive definite matrices P (t, λ) = 4kbω

P

and Q(t, λ) = 8kbω
kωPQ(q̃(t, λ))Q′(q̃(t, λ))P satisfy

P (t, λ)B′(t, λ) = C′(t, λ) , pmI ≤ P (t, λ) ≤ pMI,

−Q(t, λ) = A′(t, λ)P (t, λ) + P (t, λ)A(t, λ) + Ṗ (t, λ),
qmI ≤ Q(t, λ) ≤ qMI, with pm = 4kbω

σmin(P), pM =
4kbω

σmax(P), qm = 8kωkbω
cos2(ϕmax

2 )σ2
min(P) and qM =

8kωkbω
σ2

max(P).
The system (11) is λ-UGES if and only if B(t, λ) is λ-

uniformly persistently exciting (λ-uPE) [15]. For any unitary

norm vector y, 4y′B(τ, λ)B′(τ, λ)y = y′(I − q̃qq̃
′
q)y ≥

1 − ‖q̃q‖
2 = ‖q̃s‖

2 ≥ cos2
(

ϕmax

2

)

which satisfies the

persistency of excitation condition. Consequently, the param-

eterized LTV (11) is λ-UGES, and the nonlinear system (10)

is exponentially stable in the domain Dq. Using ‖q̃q‖
2 =

1
8‖R̃ − I‖2 yields exponential stability of the nonlinear

system (8).

B. Almost Global Asymptotic Stability

The trajectories of the attitude observer converge exponen-

tially fast for any initial condition in a region characterized

by (9). In this section, the convergence of the trajectories

of the system emanating from anywhere in the domain is

studied.

By Lemma 3, the equilibrium points of the system (8) are

contained in CR. By substitution in (8), the largest invariant

set in CR is given by

IR = {R̃, b̃ω ∈ SO(3) × R
3 : (R̃, b̃ω) = (I,0)∨

(R̃, b̃ω) = (rot(π, eigvec(P)),0)}.

The next theorem shows that, among all the equilibrium

points in IR, only the origin is stable, which guarantees

aGAS of the origin and, using Theorem 6, exponential

convergence within a explicit region in the state space.

Theorem 7: Define W such that the eigenvalues of P

are distinct. Under Assumption 1, the equilibrium point

(R̃, b̃ω) = (I,0) of the system (8) is aGAS. Furthermore,

every system solution emanating from the region of attrac-

tion of (R̃, b̃ω) = (I,0) converges exponentially fast for

t ≥ te ≥ t0, where te is the time instant that verifies

V (R̃(te), b̃(te)) ≤ 2σmin(P).

Proof: By LaSalle’s invariance principle, the trajecto-

ries of the system converge to the set IR. The equilibrium

points contained in IR are characterized using a local analy-

sis, based on the local parametrization adopted in [6, Section

5], given by the first order terms of the DCM formulation

R̃ ≈ R̃∗(I + (η)×), b̃ω ≈ b̃∗
ω + δb, (12)

where η, δb ∈ R
3, R̃∗ = rot(π,φ∗

i ), φ
∗
i ∈ eigvec(P), b̃∗

ω =
0 and i = 1, 2, 3 is the index of the equilibrium point. Apply-

ing (12) in the system (8) and neglecting second order terms

produces

[

η̇
˙δb

]

=

[

kω(R̃∗W − tr(R̃∗W)I) I

kbω
(R̃∗W − tr(R̃∗W)I) 0

] [

η
δb

]

.

Let the eigenvalues of W and P be denoted by αW l and

αP l, l = 1, 2, 3, respectively, with αW 1 > αW 2 > αW 3

and αP 1 > αP 2 > αP 3. From the definition of P, the

eigenvectors of P and W are equal and the eigenvalue i
satisfies αP i = αW k + αW j , where i, k and j are distinct.

Using R̃∗ = −I+2φ∗
i φ

∗
i
′
, the spectral decomposition W =

∑3
l=1 αW lφ

∗
l φ

∗
l
′
, and defining U =

[

φ∗
i φ∗

j φ∗
k

]

∈

O(3), produces R̃∗W− tr(R̃∗W)I = 2φ∗
i φ

∗
i
′
αW i −W−

(αWj + αWk − αW i) = UΛU′ where Λ = diag(αW j +
αW k, αW k − αW i, αW j − αW i). The linearized system

can be rewritten as

[

η̇
˙δb

]

=

[

kωUΛU′ I

kbω
UΛU′ 0

] [

η
δb

]

. The

eigenvalues of
[

kωΛ I

kbω
Λ 0

]

and
[

kωUΛU
′

I

kbω
UΛU

′
0

]

are equal and

given by αl = 1
2 (kω[Λ]ll +

√

k2
ω[Λ]2ll + 4kbω

[Λ]ll), αl+3 =
1
2 (kω[Λ]ll −

√

k2
ω[Λ]2ll + 4kbω

[Λ]ll), where l = 1, 2, 3, and
[Λ]ll denotes lth diagonal element of Λ. The real part of

α1 is always positive, the real parts of α4, α5 and α6 are

always negative, and the real parts of α2 and α3 are always

nonzero. Therefore, the equilibrium points are hyperbolic

and unstable. By the Stable-Unstable Manifold theorem and

the Hartman-Grobman theorem [6], [16], the stable manifold

of (R̃∗, b̃∗
ω) = (rot(π, eigvec(P)),0) has zero measure in

SO(3) × R
3 and the complement of the stable manifold is

open and dense. Consequently, almost all initial conditions

in SO(3) × R
3 converge to the stable equilibrium point

(R̃, b̃ω) = (I,0). Exponential convergence is obtained by

using aGAS to show that the solutions of (8) enter the

positively invariant set V ≤ 2σmin(P) for some te ≥ t0,
where exponential stability is guaranteed by Theorem 6.

Interestingly enough, in most practical application it is

possible to guarantee upper bounds for the initial estimation

errors. In that case, exponential stability of the origin for all

valid initial conditions follows directly from Theorem 6.

Corollary 8: Assume that the initial estimation errors are

bounded according to

ϕ(t0) ≤ ϕ0 max, ‖b̃ω(t0)‖ ≤ b0 max, (13)

where (1−cos(ϕ0 max)) < 2σmax(P)
σmin(P) , and select kbω

such that

kbω
> b2

0 max(4σmin(P) − 2(1 − cos(ϕ0 max))σmax(P)))−1.

Then the origin (R̃, b̃ω) = (I,0) is uniformly exponentially

stable in the set defined by (13).

C. Output Feedback Configuration

This section describes how the attitude observer can be

implemented using directly the sensor measurements and

state estimates.



Proposition 9: The feedback laws (6) and (7) are explicit

functions of the sensor readings and state estimates

ω̂ = fR(Hr, R̂)(ωr − b̂ω) + kωsR,
˙̂
bω = kbω

sR,

sR = (fR(Hr, R̂)W − Wf ′
R(Hr, R̂))⊗,

where fR(Hr, R̂) := R̂′HAHA′
HH′

r and Hr :=
[

hr 1 · · · hr n

]

.

Proof: Using BÛH
BU′

H = R̂′UHU′
HR = R̃ yields

sR = (BÛH
BU′

HW−WBUH
BÛ′

H)⊗. Applying ÛH :=
R̂′HAH , Hr = R′H and HrAH = BUH produces the

desired results.

V. OBSERVER STABILITY WITH RATE GYRO

NOISE

In this section, the stability of the attitude observer in the

presence of bounded time-varying disturbances in the rate

gyro measurements is studied. Although the origin of the

unforced system is aGAS, generic exogenous disturbances

may drive the trajectories of system to the unstable equilib-

rium points. Sufficient conditions for ultimate boundedness

of the attitude estimate in the presence of noise in the inertial

sensor are provided.

The rate gyro sensor measurements are described by

ωr = ω + nω,

where nω is the sensor noise, bounded by nmax ≥ ‖nω‖.
Using the feedback law ω̂ = R̃ωr + kωsR, the closed loop

kinematics of the attitude error are given by

˙̃R = kωR̃(R̃′W − WR̃) − R̃(nω)×, (14)

which are well defined on SO(3) in spite of the presence of

the rate gyro sensor disturbance. The stability of the observer

in the presence of inertial sensor noise is presented next.

Theorem 10: Choose ϕmin ∈
(

0 π
2

)

, let kω satisfy

kω >
nmax

sin(ϕmin)σmin(P)
, (15)

and let W be such that (1 − cos(ϕmax)) ≥ σmax(P)
σmin(P) (1 −

cos(ϕmin)) is verified, where ϕmax = π − ϕmin. Then for

any initial condition such that

‖I − R̃(t0)‖
2 < 4

σmin(P)

σmax(P)
(1 − cos(ϕmax)), (16)

there exists T such that the trajectory of the system (14)

satisfies

‖I − R̃(t)‖2 ≤ 4
σmax(P)

σmin(P)
(1 − cos(ϕmin)), (17)

for all t ≥ t0 + T .

Proof: The proof is based on the derivation of

boundedness properties for nonlinear systems presented

in [17, Theorem 4.18]. Using the Lyapunov function VH

defined in (4) yields V̇H = −kω‖sR‖2 − s′RR̃nω ≤
−‖sR‖(kω‖sR‖−nmax). Using the algebraic manipulations

adopted in [12] produces ‖sR‖ = ‖Q′
s(ϕ,φ)Pφ‖ ≥

σmin(Q′
s(ϕ,φ))σmin(P) ≥ sin(ϕ)σmin(P), where

Qs(ϕ,φ) = sin(ϕ)I + (1 − cos(ϕ))(φ)×. The gain

condition (15) produces

V̇H < −‖sR‖nmax

(

‖sR‖

sin(ϕmin)σmin(P)
− 1

)

= −‖sR‖nmax

(

sin(ϕ)

sin(ϕmin)
− 1

)

,

and ϕ ∈
[

ϕmin ϕmax

]

⇒ V̇H < 0. Let µ := ‖I −
Rmin‖

2, Rmin := rot(ϕmin,φ) and r := ‖I − Rmax‖
2,

Rmax := rot(ϕmax,φ), where φ is arbitrary, then ‖I −
R̃‖2 ∈

[

µ r
]

⇒ V̇H < 0, which characterizes a compact

set in SO(3) where the Lyapunov function decreases along

the system trajectories.

The Lyapunov function satisfies α1(‖I − R̃‖2) ≤ VH ≤

α2(‖I − R̃‖
2
) where α1(x) = 1

4σmin(P)x, α2(x) =
1
4σmax(P)x. Define the sets Ωt,µ = {R̃ ∈ SO(3) : VH ≤

α2(µ)}, Ωt,r = {R̃ ∈ SO(3) : VH ≤ α1(r)}, and Ct,µ,r =
{Ωt,r−Ωt,µ} which is nonempty by construction of W. Any

point R̃ ∈ Ct,µ,r satisfies ‖I− R̃‖2 ∈
[

µ r
]

, as shown by

using

VH ≤ α1(r) ⇒ α1(‖I − R̃‖2) ≤ α1(r) ⇒ ‖I − R̃‖2 ≤ r,

VH ≥ α2(µ) ⇒ α2(‖I − R̃‖2) ≥ α1(r) ⇒ ‖I − R̃‖2 ≥ µ,

and hence R̃ ∈ Ct,µ,r ⇒ V̇H < 0. Because V̇H is strictly

negative in Ct,µ,r, any solution starting in Ct,µ,r will reach

Ωt,µ in finite time and any solution starting in Ωt,µ will

remain in the set since V̇H < 0 in the corresponding

boundary, see [17, Section 4.8] for a motivation of the level

sets involved. The initial conditions given by (16) satisfy

R̃(t0) ∈ Ωt,r; any R̃ ∈ Ωt,µ satisfies (17), which concludes

the proof.

The conditions of Theorem 10 are of interest in practical

applications, since they allow for worst-case attitude errors

to be driven to a desired neighborhood of the origin, by

appropriate choice of kω and W.

VI. SIMULATIONS

In this section, simulation results for the proposed at-

titude observer are presented. The directions of the vec-

tor measurements are given by Lh1 =
[

1 0 0
]′

and
Lh2 =

[

0 0 1
]′
, which are a simplified representation of

vectors sensed in frame {B} by a magnetic compass and a

pendulum, respectively, and satisfy the conditions expressed

in Proposition 2.

The attitude observer stability in the presence of rate gyro

bias is studied first. The observer parameters are given by

kω = 1, kbω
∈ {10−1, 1}, W =

[

1.1 0 0
0 1 0
0 0 0.9

]

, ϕ(t0) =
3π
4 rad, bω = 10π

180 1 rad/s, b̂ω(t0) = 0 rad/s, where the initial

conditions are realistic for most practical applications. The

rigid body trajectory is computed using oscillatory angular

rates of 1Hz. The attitude and bias estimation results are

depicted in Fig. 1, where kbω exp = 0.21 is the minimum

feedback gain (9a) that guarantees exponential convergence.

The trajectories convergences faster for higher gain kbω
, as

expected. The peak of the bias estimate for large kbω
is
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Fig. 1. Observer stability with bias in the rate gyro measurements.
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Fig. 2. Observer stability with noise in the rate gyro measurements.

justified by the level set V ≤ c of the Lyapunov function

(5) with γb = k−1
bω

containing the points satisfying ‖b̃ω‖
2 ≈

2kbω
c, ‖I − R̃‖2 ≈ 0.

The stability properties of the attitude observer in the

presence of rate gyro noise are illustrated by considering low

cost device readings, corrupted by the disturbance depicted in

Fig. 2(a) and bounded by ‖nω‖ < nmax = 1.75×10−2 rad/s.

The observer parameters are designed to guarantee ϕmin =
π

180 rad and are given by kω = kω min + 10−4, W = I,

ϕmax = 179π
180 rad, where kω min = 1 + 10−4 is the minimum

gain that verifies (15). The simulation results for ϕ(t0) =
π
3 rad and ϕ(t0) = 9π

10 rad are depicted in Figure 2(b) using

a logarithmic scale in the attitude error axis. For both initial

conditions, the attitude error converges in finite time to the

region given by (17), as desired.

VII. CONCLUSIONS

A nonlinear observer for attitude estimation on SO(3) was
derived. Almost global asymptotic stability and exponential

convergence of the attitude estimates in the presence of

biased rate gyro readings were demonstrated. Boundedness

of the attitude estimation error in the presence of rate gyro

noise was shown. The stability and convergence results were

formulated in terms of the design parameters, which can

be determined to satisfy accuracy specifications in practical

applications. Simulations results illustrated the stability of

the observer. Future work will address the stability analysis

for the case where both angular rate noise and bias are

present, and exploiting the observer design parameters to

tackle sensor noise in practical setups.
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