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Abstract

This paper addresses the problem of position and attitude estimation, based on landmark readings and velocity measurements.

A derivation of a nonlinear observer on SE(3) is presented, using a Lyapunov function conveniently expressed as a function of the

difference between the estimated and the measured landmark coordinates. The resulting feedback laws are explicit functions of the

landmark measurements and velocity readings, exploiting the sensor information directly in the observer. The proposed observer

yields almost global asymptotic stabilization of the position and attitude errors and exponential convergence in any closed ball

inside the region of attraction. Also, it is shown that the asymptotic convergence of the estimation error trajectories is shaped by

the landmark geometry and observer design parameters. The problem of non-ideal velocity readings is also considered, and the

observer is augmented to compensate for bias in the angular and linear velocity measurements. The resulting position, attitude,

and bias estimation errors are shown to converge exponentially fast to the desired equilibrium points, for bounded initial estimation

errors. Simulation results are presented to illustrate the stability and convergence properties of the observer.
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1. Introduction

Landmark based navigation is recognized as a promising

strategy for providing autonomous vehicles with accurate po-

sition and attitude information during critical operation stages

such as take-off, landing, or docking. Among a wide diver-

sity of suitable estimation techniques, nonlinear observers stand

out as an exciting approach often endowed with stability re-

sults [1], and formulated rigorously in non-Euclidean spaces.

Research on the problem of deriving a stabilizing law for sys-

tems evolving on manifolds, such as SO(3) and SE(3), can be

found in [2, 3, 4, 5, 6, 7, 8], where the topological limitations
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for achieving global stabilization on SO(3) provide important

guidelines for the design of observers. In particular, these lim-

itations call for the relaxation from global to almost global sta-

bility, as adopted in [9, 10], meaning that the region of attrac-

tion of the origin comprises all the state space except a nowhere

dense set of measure zero [11].

Nonlinear attitude and position observers, with application

to aerospace, terrestrial and oceanic vehicles, have been pro-

posed in recent literature. A seminal work on nonlinear attitude

observers can be found in [12], where the author proposes a

solution to estimate attitude in the Euler quaternion representa-

tion, using attitude and torque measurements. Subsequent work

has been devoted to nonlinear observers based on the attitude

and position kinematics [13, 14, 15, 16, 17], which can be im-

plemented on any robotic platform, irrespective of its dynam-

ics. Some methodologies for the design of kinematic observers

evolving on manifolds have been put forth in [7, 11, 18, 19].
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Another line of work has been directed at the design of nonlin-

ear observers that exploit information sources adopted in clas-

sical navigation problems [15, 16, 17, 20], and compensate for

non-ideal sensor readings that have long been considered in fil-

tering estimation techniques.

This work explores the circle of ideas found in [19] and [21],

that were proposed to address the problem of rigid-body sta-

bilization based on landmark measurements and ideal velocity

readings. In this paper, the problem of attitude and position esti-

mation on SE(3) is addressed and a nonlinear observer based on

landmark measurements and possibly biased velocity readings

is proposed. The observer is derived constructively using a con-

veniently defined Lyapunov function, defined by the landmark

estimation error. For ideal velocity readings, the obtained feed-

back law yields almost global asymptotic stability of the desired

equilibrium point on SE(3), and exponential convergence of the

attitude and position estimates in any closed ball inside the re-

gion of attraction.

The adopted derivation technique yields feedback laws that

are an explicit function of the sensor measurements. The direct

use of sensor readings in the feedback law provides for a geo-

metric insight on the observer properties. Namely, it shows that

the asymptotic behavior of the estimation errors can be shaped

by judicious landmark placement and design parameter tuning.

Also, it highlights the necessary landmark configuration for at-

titude and position estimation.

The problem of bias in the velocity readings is addressed by

extending the proposed observer to dynamically compensate for

these sensor non-idealities. Exponential stabilization of the po-

sition and attitude estimation errors is obtained, for worst-case

initial estimation errors. Recent results for parameterized lin-

ear time-varying systems [22] are adopted in the stability anal-

ysis of the system. Simulation results validate the proposed

observer, and illustrate the derived properties. A preliminary

version of this work has been presented in [23].

The paper is organized as follows. In Section 2, the position

and attitude estimation problem is introduced and the available

sensor information is detailed. The attitude and position ob-

server is derived in Section 3. A convenient landmark-based

Lyapunov function is defined, and the necessary and sufficient

landmark configuration for attitude estimation is discussed. Al-

most global stabilizing feedback laws are obtained for attitude

and position estimation. The resulting observer dynamics are

expressed as a function of the sensor readings, and it is shown

that the asymptotic convergence of the system trajectories is de-

termined by the landmark geometry, and by the design parame-

ters. The problem of unknown velocity sensor bias is studied in

Section 4. The observer dynamics are extended to dynamically

compensate for the bias in the linear and angular velocity mea-

surements, and stability results are derived. In Section 5, simu-

lation results illustrate the observer properties for time-varying

linear and angular velocities. Concluding remarks are presented

in Section 6.

Nomenclature

The notation adopted is fairly standard. Column vectors

and matrices are denoted respectively by lowercase and up-

percase boldface type, e.g. s and S. The transpose of a vec-

tor or matrix will be indicated by a prime, e.g. s′ and S′.

The set of n × m matrices with real entries is denoted by

M(n,m) and M(n) := M(n, n). The sets of orthogonal, spe-

cial orthogonal, symmetric, and skew-symmetric matrices are

denoted by O(n) := {U ∈ M(n) : U′U = I}, SO(n) := {R ∈

O(n) : det(R) = 1}, L(n) := {S ∈ M(n) : S = S′}, and

so(n) := {S ∈ M(n) : S = −S′}, respectively. The special

Euclidean group is given by the product space of SO(n) with

ℝn, SE(n) := SO(n) × ℝn [24]. The n-dimensional unit sphere

and ball are described by S(n) := {x ∈ ℝn+1 : x′x = 1} and

B(n) := {x ∈ ℝn : x′x ≤ 1}, respectively. The operator

(a)× : ℝ3 → so(3) yields the skew symmetric matrix defined

by the vector a ∈ ℝ3 such that (a)× b = a × b, b ∈ ℝ3. The

inverse of (·)× is denoted by (·)⊗, i.e. ((a)×)⊗ = a.

2. Problem formulation

Landmark based navigation, illustrated in Fig. 1, can be sum-

marized as the problem of determining attitude and position of a
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Figure 1: Landmark based navigation.

rigid body using landmark observations and velocity measure-

ments, given by sensors installed onboard the robotic platform.

The rigid body kinematics are described by

Ṙ = R (ω)× , ṗ = v − (ω)× p, (1)

where R is the shorthand notation for the rotation matrix L
BR

from body frame {B} to local frame {L} coordinates, ω and v

are the shorthands for Bω and Bv, the body angular and linear

velocities, respectively, expressed in {B}, p is the shorthand for
Bp, the position of the rigid body with respect to {L} expressed

in {B}, and ṗ denotes the time derivative of p, that is d Bp
dt .

The body angular and linear velocities are measured by a rate

gyro sensor triad and a Doppler sensor, respectively

ωr = ω + bω, vr = v + bv, (2)

where the nominal biases are unknown and constant, i.e. ḃω =

0, ḃv = 0. The landmark measurements, denoted as qi and

illustrated in Fig. 1, are obtained by on-board sensors that are

able to track terrain characteristics, such as CCD cameras or

ladars,

qi = R′Lxi − p, (3)

where Lxi represent the coordinates of landmark i in the local

frame {L}. The concatenation of (3) is expressed in matrix form

as Q = R′X − p1′n, where Q =
[
q1 . . . qn

]
, X =

[
Lx1 . . . Lxn

]
,

Q,X ∈ M(3, n).

Without loss of generality, the origin of the local frame is

defined at the landmarks centroid, as depicted in Fig. 1, bearing

n∑
i=1

Lxi = X1n = 0. (4)

The proposed observer reproduces the rigid body kinematics

(1), taking the form

˙̂
R = R̂ (ω̂)× , ˙̂p = v̂ − (ω̂)× p̂, (5)

where ω̂ and v̂ are the feedback terms constructed to compen-

sate for the attitude and position estimation errors.

The position and attitude errors are defined as p̃ := p̂−p and

R̃ := R̂R′, respectively. The Euler angle-axis parametrization

of the rotation error matrix R̃ is described by the rotation vector

φ ∈ S(2) and by the rotation angle ϕ ∈ [0 π], yielding the DCM

formulation [24], denoted by R̃ = rot(ϕ,φ) and given by

rot(ϕ,φ) = cos(ϕ)I + sin(ϕ) (φ)× + (1 − cos(ϕ))φφ′. (6)

In this work, the observer is designed and analyzed on the SE(3)

manifold. The Euler angle-axis parametrization is used solely

to characterize interesting properties of the estimation error tra-

jectories.

The attitude and position error dynamics are a function of the

linear and angular velocity estimates and given by

˙̃R = R̃ (R(ω̂ − ω))× , (7a)

˙̃p = (v̂ − v) − (ω)× p̃ + (p̂)× (ω̂ − ω). (7b)

The attitude and position feedback laws are obtained by defin-

ing ω̂ and v̂ as a function of the velocity readings (2) and land-

mark observations (3), so that the closed loop position and at-

titude estimation errors converge asymptotically to the origin,

i.e. R̃ → I, p̃→ 0 as t → ∞.

The attitude and position feedback laws are derived first for

the case of unbiased velocity measurements (bω = bv = 0),

and the case of biased linear and angular velocity measurements

(bω,bv unknown) is subsequently considered.

3. Observer synthesis with ideal velocity measurements

In this section, the attitude and position feedback laws are

derived for the case of ideal angular and linear velocity mea-

surements, where bω = bv = 0. The closed loop system

is demonstrated to have an almost GAS equilibrium point at

(R̃, p̃) = (I, 0), which is exponentially stable in any closed ball

inside the region of attraction.

Some relevant characteristics of the observer are pointed out.

It is shown that the position and attitude feedback laws can

be expressed as an explicit function of the sensor readings, al-

lowing for the observer implementation in practice. Also, the
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asymptotic behavior of the attitude observer trajectories is stud-

ied in the Euler angle-axis representation, characterizing the di-

rectionality of the observer estimates given the design feedback

law.

3.1. Landmark based Lyapunov function

The observer is derived resorting to Lyapunov’s stability the-

ory. To exploit the landmark readings information, vector and

position measurements are constructed from a linear combina-

tion of (3), producing respectively

Bu j =

n−1∑
i=1

ai j(qi+1 − qi), Bun = −
1
n

n∑
i=1

qi, (8)

where j = 1, . . . , n−1. The transformation (8) can be expressed

in matrix form as

BU = QDA, Bun = Qdp, (9)

where BU =
[

Bu1 . . . Bun−1

]
∈ M(3, n − 1), D =

[
01×n−1
In−1

]
−[

In−1
01×n−1

]
, D ∈ M(n, n − 1), dp = − 1

n 1n, and the linear trans-

formation A = [ai j] ∈ M(n − 1) is considered invertible by

construction.

Using the fact that 1′nD = 0, and that (4) implies Xdp = 0,

(9) can be rewritten as

BU = R′U, Bun = p,

where U = XDA. Consequently, BU and Bun can be recon-

structed using the observer estimates as follows

BÛ = R̂′U, Bûn = p̂, (10)

which can be partitioned in columns BÛ =
[

Bû1 . . . Bûn−1

]
,

and U =
[

Lu1 . . . Lun−1

]
.

The candidate Lyapunov function is defined by the estima-

tion error of the transformed vectors

V =
1
2

n∑
i=1

‖Bûi −
Bui‖

2, (11)

that can be described as a sum of distinct position and attitude

components.

Proposition 1. The Lyapunov function (11) can be written as

V = VR + Vp, where the distinct attitude and position compo-

nents are respectively given by

VR = tr
[
(I − R̃)UU′

]
=

1
4
‖I − R̃‖2φ′Pφ, (12a)

Vp =
1
2

p̃′p̃. (12b)

and P = tr(UU′)I − UU′.

Proof. The decoupling is obtained by defining the attitude and

position components as

VR =
1
2

n−1∑
i=1

‖Bûi −
Bui‖

2, Vp =
1
2
‖Bûn −

Bun‖
2. (13)

producing V = VR + Vp immediately from (11).

The attitude component is expressed as a function of the atti-

tude error by rewriting VR as

VR =
1
2
‖BÛ − BU‖2 =

1
2
‖(R̂′ − R′)U‖2

=
1
2
‖(I − R̃)U‖2 =

1
2

tr
[
(I − R̃)′UU′(I − R̃)

]
.

Using the trace properties presented in Appendix A, and the

DCM expansion (6) yields

VR = tr
[
(I − R̃)UU′

]
= tr

[
(1 − cos(ϕ))(I − φφ′)UU′

]
= (1 − cos(ϕ))φ′(tr(UU′)I − UU′)φ.

Using ‖I− R̃‖2 = 4(1− cos(ϕ)) and the definition of P produces

the desired result. The formulation of Vp is obtained directly by

noting that Bûn −
Bun = p̂ − p = p̃.

The time derivative of the Lyapunov function along the sys-

tem trajectories is presented in the following statement.

Lemma 2. The time derivatives of proposed Lyapunov func-

tions (12a) and (12b) are respectively given by

V̇R =
(
UU′R̃ − R̃′UU′

)′
⊗
R(ω̂ − ω) (14a)

V̇p = p̃′
(
(p̂)× (ω̂ − ω) + (v̂ − v)

)
. (14b)

Proof. Differentiating the Lyapunov function (12b) with re-

spect to time and using (7b) and p̃′ (ω)× p̃ = 0 yields (14b)

4



directly. Differentiating the Lyapunov function (12a) with re-

spect to time and using (7a) yields

V̇R = − tr( ˙̃RUU′) = − tr((R(ω̂ − ω))× UU′R̃).

Using the properties of the trace, presented in Appendix A, pro-

duces

V̇R = −
1
2

tr((R(ω̂ − ω))× (UU′R̃ − R̃′UU′))

=
(
UU′R̃ − R̃′UU′

)′
⊗
R(ω̂ − ω).

The decoupling property of the Lyapunov function allows for

the attitude and position estimation problems to be addressed

separately. The feedback law for the attitude kinematics (7a)

is derived using the Lyapunov function VR, while the feedback

law for the position kinematics (7b) relies on Vp.

3.2. Attitude feedback law

The attitude feedback law, derived in this section, exploits

angular velocity sensors and landmark measurements. While

velocity sensors allow for the propagation of attitude in time,

attitude with respect to a reference frame is observed only by

means of the landmark measurements. The geometric place-

ment of the landmarks is required to satisfy the following as-

sumption.

Assumption 1 (Landmark Configuration). The landmarks are

not all collinear, that is, rank(X) ≥ 2.

Assumption 1 specifies the necessary and sufficient landmark

configuration under which zero observation error is equivalent

to correct attitude estimation, i.e. ∀i=1..n−1‖
Bûi −

Bui‖ = 0 ⇔

R̃ = I. This is shown in the following proposition, using the fact

that the Lyapunov function VR expresses the estimation error of

the transformed landmarks.

Lemma 3. The Lyapunov function VR, expressed in (12a), has

a unique global minimum (at R̃ = I) if and only if Assumption 1

is verified.

Proof. From (13), it is straightforward that VR ≥ 0. From (12a),

the zeros of VR are ϕ = 0 or φ ∈ N(P). To show that P > 0 if

and only if rank(X) ≥ 2, denote the singular value decomposi-

tion of U as U = UUSUV′U , where UU ∈ O(3), VU ∈ O(n), the

off-diagonal elements of SU ∈ M(3, n) are zero (∀i, jsi j = 0)

and the diagonal elements are the singular values of U, i.e.

sii = σi(U), i ∈ {1, 2, 3}. Then P = tr(UUU′U)I − UUU′U =

tr(S2
U)I − UUS2

UU′U = UU

 s2
22+s2

33 0 0
0 s2

11+s2
33 0

0 0 s2
11+s2

22

 U′U and hence

P > 0 if and only if s22, s33 , 0, i.e. rank(U) ≥ 2. Given

that A and
[
D 1n

]
are nonsingular, the equality rank(U) =

rank
([

U 03

])
= rank

X [
D 1n

]  A 0n−1

0′n−1 1


 = rank(X),

completes the proof.

Remark 1. It is instructive to analyze why a landmark config-

uration given by rank(X) = 1 is not sufficient to determine the

attitude of the rigid body. If all Lxi are collinear, then all Lui are

collinear and any R̃ = rot(ϕ, Lui/‖
Lui‖) satisfies Bûi = Bui, i.e.

the estimated and observed landmarks are identical for some

R̂ , R. This is related to the well known fact that a single

vector observation (such as the Earth’s magnetic field) yields

attitude information except for the rotation about the vector it-

self [25, 26].

Given the Lyapunov function derivatives along the system

trajectories (12a), consider the following feedback law,

ω̂ = ωr − kωsω, (15)

where the feedback term is given by

sω =R′
(
UU′R̃ − R̃′UU′

)
⊗
, (16)

and kω is a positive scalar. The attitude feedback yields the

autonomous attitude error dynamics

˙̃R = − kωR̃(UU′R̃ − R̃′UU′), (17)

and a negative semidefinite derivative for VR given by V̇R =

−kωs′ωsω ≤ 0. The set where V̇R = 0 is characterized in the

following lemma.
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Lemma 4. Under Assumption 1, the set of points where V̇R = 0

is given by

CVR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,φ ∈ eigvec(P))}.

Proof. The points where V̇R = 0 are given by sω = 0. Using

Lemma 14 presented in Appendix A, sω can be rewritten as sω =

Q′(ϕ,φ)Pφ. The points where sω = 0 satisfy Pφ ∈ N(Q′(ϕ,φ)),

which is equivalent to

sin(ϕ)Pφ − (1 − cos(ϕ)) (φ)× Pφ = 0.

For any x ∈ ℝ3, x and (φ)× x are noncollinear, and hence

Q′(ϕ,φ)Pφ = 0 if and only if ϕ = 0 or ϕ = π. For the

ϕ = π case, the equality (φ)× Pφ = 0 is verified if and

only if ∃αPφ = αφ. Consequently, V̇R = 0 if and only if

ϕ = 0 ∨ (ϕ = π ∧ φ ∈ eigvec(P)).

The open loop dynamics of the Euler angle-axis representa-

tion [27] are given by

ϕ̇ = φ′R(ω̂ − ω), φ̇ =
1
2

(
I −

sin(ϕ)
1 − cos(ϕ)

(φ)×

)
(φ)× R(ω̂ − ω).

Using (15), the closed loop dynamics can be written as

ϕ̇ = −kω sin(ϕ)φ′Pφ, (18a)

φ̇ = kω (φ)× (φ)× Pφ, (18b)

where the dynamics of φ are autonomous.

Evaluating the closed loop dynamics (18) for the points con-

tained in CVR shows that this set is invariant, which implies that

the origin cannot be GAS. The existence of equilibrium points

at ϕ = π illustrates the topological obstacles to global stabiliza-

tion when using continuous state feedback for systems defined

on manifolds. As discussed in [2, 5, 6], the region of attrac-

tion of a stable equilibrium point is homeomorphic to some Eu-

clidean vector space, which precludes global stabilization of the

origin on SO(3).

However, the notion of global asymptotic stability can be re-

laxed by adopting the definition of almost global asymptotic

stability (aGAS) [9], in the sense that any trajectory emanating

from outside a nowhere dense set of measure zero is attracted

to the origin. In the present case, the convergence to the ori-

gin R̃ = I for all initial conditions outside the set ϕ = π can

be established. Using the distance on SO(3) inherited by the

Euclidean norm, d(R1,R2) = ‖R1 − R2‖, the following theorem

shows that the origin is aGAS and that the trajectories converge

exponentially fast to the desired equilibrium point.

Theorem 5. The attitude error R̃ = I of the closed-loop system

(17) is aGAS and exponentially stable in any closed ball inside

the region of attraction, which is given by

RA = {R̃ ∈ SO(3) : ‖I − R̃‖2 < 8}

= {(ϕ,φ) ∈ Dφ : ϕ < π}.

where Dφ = [0 π]×S(2). For any R̃(t0) ∈ RA, the solution of the

system (17) satisfies

‖R̃(t) − I‖ ≤ ‖R̃(t0) − I‖e−
1
2 γR(t−t0), (19)

where γR =
kω
4 (8−‖R̃(t0)−I‖2)σ3(P) = kω(1+cos(ϕ(t0)))σ3(P).

Proof. Define the Lyapunov function

WR =
‖I − R̃‖2

8
=

1 − cos(ϕ)
2

. (20)

The time derivative of WR along the trajectories of the system

(17) is described by

ẆR = −kω
‖I − R̃‖2

8
(8 − ‖I − R̃‖2)

4
φ′Pφ.

Using P > 0, the set of points where ẆR = 0 is given by CW =

{R̃ ∈ SO(3) : R̃ = I ∨ ‖I − R̃‖2 = 8}. Since ẆR ≤ 0, the set

contained in a Lyapunov function surface Ωρ = {R̃ ∈ SO(3) :

WR ≤ ρ} is positively invariant [28]. Given that WR < 1 ⇔

‖I− R̃‖2 < 8, the Lyapunov function is strictly decreasing in Ωρ

for any ρ < 1, which implies that

‖I − R̃(t)‖2 < ‖I − R̃(t0)‖2. (21)

for all t > t0 and ‖I − R̃(t0)‖2 < 8. Rewriting the Lyapunov

function time derivative and using (21) yields

Ẇ(R̃(t)) = −kω
(8 − ‖I − R̃(t)‖2)

4
φ′PφW(R̃(t))⇒
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Ẇ(R̃(t)) ≤ −kω
(8 − ‖I − R̃(t0)‖2)

4
σ3(P)W(R̃(t)).

Applying the comparison lemma [28] and using (20) produces

(19), which characterizes the trajectories for the initial condi-

tions ‖I − R̃(t0)‖2 < 8, i.e. ϕ(t0) < π.

The closed loop dynamics (18) yield that ‖I − R̃(t0)‖2 = 8⇔

ϕ(t0) = π ⇒ ϕ̇ = 0 so the set CW \ {I}, which is nowhere dense

and has measure zero, defines the positively invariant boundary

of the region of attraction of R̃ = I.

3.3. Position feedback law

The position feedback law is obtained using the methodology

adopted for the attitude feedback law derivation. It is immediate

that Vp, expressed in (12b), is positive definite, and that Vp = 0

if and only if p̃ = 0. Given the time derivative of the Lyapunov

function (14b), the position feedback law for the system (7b) is

defined as

v̂ = v + ((ω)× − kvI)sv + kω (p̂)× sω, (22)

where the feedback term is

sv =p̃, (23)

and kv is a positive scalar. The position feedback law produces

a closed loop linear time-invariant system

˙̃p = − kvp̃,

whose origin is clearly globally exponentially stable.

For the sake of simplicity, the position was estimated with

respect to the landmarks’ centroid. Interestingly enough, Ap-

pendix B.1 describes how the observer can be formulated to

estimate directly the position with respect to the origin of a spe-

cific coordinate frame {E}, translated with respect to {L} as il-

lustrated in Fig. 1.

3.4. Sensor based feedback law

In this section, it is shown that the position and attitude feed-

back laws, (15) and (22) respectively, can be expressed as an

explicit function of the velocity measurements (2), landmark

readings (3), and observer estimates.

Theorem 6. The attitude and position feedback laws are ex-

plicit functions of the sensor readings and state estimates, and

given by

ω̂ = ωr − kωsω, (24a)

v̂ = vr + ((ωr)× − kvI)sv + kω (p̂)× sω, (24b)

sω =

n∑
i=1

(R̂′XDAei) × (QDAei), (24c)

sv = p̂ +
1
n

n∑
i=1

qi. (24d)

Proof. The formulation of the feedback terms ω̂ and v̂ is ob-

tained directly from (2), (15), and (22). Using the landmark

measurement formulation (3) produces

sv = p̂ +
1
n

n∑
i=1

qi = p̂ +
1
n

n∑
i=1

(Lxi − p) = p̂ − p −
1
n

n∑
i=1

Lxi.

Applying the property (4) bears sv = p̃, as desired.

Using the properties of the skew and unskew operators, pre-

sented in Appendix A, yields

sω = R′
(
UU′R̃ − R̃′UU′

)
⊗

=
(
R′UU′R̂ − R̂′UU′R

)
⊗

=
(

BUBÛ′ − BÛBU′
)
⊗

=

 n∑
i=1

(
Bui

Bû′i −
Bûi

Bu′i
)
⊗

=

 n∑
i=1

(
Bûi ×

Bui

)
×


⊗

=

n∑
i=1

(
Bûi ×

Bui

)
.

Expanding Bui and Bûi using (9) and (10), respectively, pro-

duces Bui = BUei = QDAei, and Bûi = BÛei = R̂′XDAei,

which concludes the proof.

3.5. Directionality of the observer estimates

This section shows that the solutions of the system (17) are

influenced by the adopted landmark transformation and the as-

sociated matrix P. The trajectories of the observer estimates are

characterized using the Euler angle-axis parametrization.

Theorem 7. Consider the system (18), and let the singular val-

ues of P satisfy σ1(P) > σ2(P) > σ3(P). The attitude error

angle ϕ decreases monotonically in RA, and the asymptotic con-

vergence of the Euler axis is described by
limt→∞ φ(t) = sign(n′3φ(t0))n3, if n′3φ(t0) , 0

limt→∞ φ(t) ∈ {n1,n2}, if n′3φ(t0) = 0
,

7



where ni is the unit eigenvector of P associated with σi(P).

Proof. The Lyapunov function (20) is strictly decreasing,

which implies that the attitude error is monotonically decreas-

ing in the region of attraction RA. To analyze the convergence of

the rotation vector dynamics (18b), define the Lyapunov func-

tions

Vs = 1 + sn′3φ, V̇s = sn′3φ
(
φ′Pφ − σ3(P)

)
, (25)

in the domain S(2), where s ∈ {−1, 1}. From the Schwartz in-

equality, the Lyapunov function is positive definite and Vs =

0 ⇔ φ = −sn3. Assuming that the eigenvalue has multiplicity

1, the set of points where V̇s = 0 is given by CVs = {φ ∈ S(2) :

φ = ±n3 ∨ n′3φ = 0}. The Lyapunov time derivatives V̇s=−1 and

V̇s=1 are indefinite in the domain S(2). For each initial condition

φ(t0) choose s and 0 < β < 1 such that sn′3φ(t0) ≤ β − 1 < 0,

i.e. Vs(φ(t0)) ≤ β. The level sets Ωs
β = {φ ∈ S(2) : Vs(φ) ≤ β},

are positively invariant. The unique points where V̇s = 0 in Ωs
β,

given by φ = −sn3, are asymptotically stable.

To analyze the case n′3φ(t0) = 0, the property n′3φ = 0 ⇒

n′3φ̇ = 0 shows that the set defined by n′3φ = 0 is positively in-

variant, and hence φ(t) ∈ span(n1,n2) for all t. Using Lemma 4

implies that φ(t)→ {n1,n2} as t → ∞.

The asymptotic convergence for the specific case ∃i, jσi(P) =

σ j(P) can be obtained by following the same steps of the proof

of Theorem 7. In particular, if ∃σP = σI, then every point

φ(t) ∈ S(2) is stable.

Proposition 8. Let ∃i, jσi(P) = σ j(P). The asymptotic conver-

gence of the attitude error dynamics is characterized as follows.

• If σ1(P) = σ2(P) > σ3(P), then
limt→∞ φ(t) = sign(n′3φ(t0))n3, if n′3φ(t0) , 0

φ(t) = φ(t0) if n′3φ(t0) = 0
,(26)

• If σ1(P) > σ2(P) = σ3(P), then
limt→∞ φ(t) = span(n2,n3), if φ(t0) , ±n1

φ(t) = φ(t0), if φ(t0) = ±n1

(27)

• If σ1(P) = σ2(P) = σ3(P), then φ(t) = φ(t0).

Proof. The asymptotic convergence (26) results directly from

Theorem 7 and from n′3φ(t) = 0 ⇒ φ̇(t) = 0. The asymp-

totic convergence (27) is obtained using the Lyapunov functions

(25). The set of points where V̇s = 0 is given by CVs = {φ ∈

S(2) : φ ∈ span(n2,n3) ∨ n′3φ = 0}, and hence, by LaSalle’s

principle, φ → span(n2,n3) as t → ∞ if sn′3φ(t0) < 0, i.e.

n′3φ(t0) , 0. Using the Lyapunov functions Vs(φ) = 1 + sn′2φ,

and LaSalle’s principle, bears φ → span(n2,n3) as t → ∞ if

n′2φ(t0) , 0. Using the kinematics (18b), it is immediate that

span(n2,n3) and {−n1,n1} are positively invariant sets.

The results of Theorem 7 and Proposition 8 show that, for

almost all initial conditions, φ converges to the direction of the

smallest singular value of P. This characterization of the at-

titude error is of interest in navigation system design, allow-

ing the system designer to shape the fastest and slowest direc-

tions of estimation using the landmark coordinate transforma-

tion (8).

4. Observer synthesis with biased velocity readings

In this section, the observer architecture is extended to com-

pensate for the bias in the linear and angular velocity readings

(2), where bω and bv are unknown. The derived attitude and

position feedback laws bear coupled, non-autonomous position

and attitude error kinematics, and hence the stability of the re-

sulting observer is analyzed using a single Lyapunov function.

The proposed Lyapunov function (11) is augmented to ac-

count for the effect of the angular and linear velocity bias

Vb =
1
γϕ

VR +
1
γp

Vp +
γbω

2
‖b̃ω‖2 +

γbv

2
‖b̃v‖

2

=
γϕ

4
‖I − R̃‖2φ′Pφ +

γp

2
‖p̃‖2 +

γbω

2
‖b̃ω‖2 +

γbv

2
‖b̃v‖

2,(28)

where b̃ω = b̂ω − bω, b̃v = b̂v − bv are the bias compensation

errors, b̂ω, b̂v are the estimated biases, and γϕ, γp, γbω and γbv

are positive scalars.

Under Assumption 1 and given the result of Lemma 3,

the Lyapunov function Vb has an unique global minimum at

8



(p̃, R̃, b̃ω, b̃v) = (0, I, 0, 0). The feedback law for biased velocity

readings is designed by shaping P with uniform directionality,

using the transformation A.

Proposition 9. Let H := XD be full rank, there is a nonsingular

A ∈ M(n) such that UU′ = I.

Proof. Take the singular value decomposition of H =

UHSHV′H where UH ∈ O(3), VH ∈ O(n), SH =[
diag(s1, s2, s3) 03×(n−3)

]
∈ M(3, n), and s1 ≥ s2 ≥ s3 >

0 are the singular values of H. Any A given by A =

VH

diag(s−1
1 , s−1

2 , s−1
3 ) 03×(n−3)

0(n−3)×3 B

 V′A, where B ∈ M(n − 3) is

nonsingular and VA ∈ O(n), produces UU′ = HAA′H =

UHV′AVAU′H = I.

Remark 2. Given that rank(H) = rank(X), the condition

rank(X) = 2 of Assumption 1 does not satisfy directly the con-

ditions of Proposition 9. In that case, the observer equations

can be rewritten, by taking two linearly independent columns

of H, Lhi and Lh j, an constructing a full rank matrix, Ha =[
H Lhi ×

Lh j

]
. This procedure is discussed in detail in Ap-

pendix B.2.

Using the transformation A defined in Proposition 9, the Lya-

punov function expressed in (28) is given by

Vb =
γϕ

2
‖I − R̃‖2 +

γp

2
‖p̃‖2 +

γbω

2
‖b̃ω‖2 +

γbv

2
‖b̃v‖

2. (29)

The time derivative of the Lyapunov function results in

V̇b = γps′v
(
(p̂)× (ω̂ − ω) + (v̂ − v) − (ω)× p̃

)
+ γϕs′ω(ω̂ − ω) + γbω b̃′ω ˙̃bω + γbv b̃

′
v
˙̃bv, (30)

where sω and sv are given by (16) and (23), and by considering

the transformation A formulated in Proposition 9, that is

sω = R′
(
R̃ − R̃′

)
⊗
, sv = p̃. (31)

The feedback laws for the angular and linear velocities are

obtained by rewriting (24a) and (24b) respectively, with com-

pensation of the velocity sensors bias, producing

ω̂ = (ωr − b̂ω) − kωsω = (ω − b̃ω) − kωsω, (32a)

v̂ = vr − b̂v +
((
ωr − b̂ω

)
×
− kvI

)
sv − (p̂)× (ω̂ − (ωr − b̂ω))

= v − b̃v +
((
ω − b̃ω

)
×
− kvI

)
sv + kω (p̂)× sω. (32b)

Using the feedback terms ω̂ and v̂ in (30) yields

V̇b = −γpkv‖sv‖
2 − γϕkω‖sω‖2

+ (γp (p̂)× p̃ − γϕsω + γbω
˙̃bω)′b̃ω + (γbv

˙̃bv − γpsv)′b̃v.

The bias estimates satisfy ˙̂bω = ˙̃bω, ˙̂bv = ˙̃bv, and the bias feed-

back laws are defined as

˙̂bω =
1
γbω

(
γϕsω − γp (p̂)× sv

)
, ˙̂bv =

γp

γbv

sv,

producing the Lyapunov function time derivative V̇b =

−γpkvs′vsv − γϕkωs′ωsω, that is negative semi-definite.

The dynamics of the closed-loop estimation errors are de-

scribed by

˙̃p = − (p)× b̃ω − kvp̃ − b̃v,
˙̃R = −kωR̃(R̃ − R̃′) − R̃

(
Rb̃ω

)
×
,

(33a)

˙̃bω =
γϕ

γbω
R

(
R̃ − R̃′

)
⊗
−
γp

γbω
(p)× p̃, ˙̃bv =

γp

γbv

p̃. (33b)

The system (33) is nonautonomous, and the compensation of

rate gyro bias couples the attitude and position dynamics.

To analyze the stability of (33), define the state xb =

(p̃, R̃, b̃ω, b̃p) and the domain Db = ℝ3 × SO(3) × ℝ3 × ℝ3,

the set of points where V̇b = 0 is given by

CVb = {xb ∈ Db : (p̃, b̃ω, b̃p) = (0, 0, 0), R̃ ∈ CR},

CR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,φ ∈ S(2))}.

In the next proposition, the boundedness of the estimation er-

rors is shown and used to provide sufficient conditions for ex-

cluding convergence to the equilibrium points R̃ = rot(π,φ).

Lemma 10. The estimation errors (p̃, R̃, b̃ω, b̃p) are bounded.

For any initial condition such that

γbv‖b̃v(t0)‖2 + γp‖p̃(t0)‖2 + γbω‖b̃ω(t0)‖2

γϕ(8 − ‖I − R̃(t0)‖2)
< 1, (34)

the attitude error is bounded by ‖I − R̃(t)‖2 ≤ cmax < 8 for all

t ≥ t0 .
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Proof. Define the set Ωρ = {xb ∈ Db : Vb ≤ ρ}. The

Lyapunov function (29) is the weighted distance of the state

to the origin, so ∃α‖xb‖
2 ≤ αVb and the set Ωρ is compact.

The Lyapunov function decreases along the system trajectories,

V̇b ≤ 0, so any trajectory starting in Ωρ will remain in Ωρ and

satisfy Vb(xb(t)) ≤ Vb(xb(t0)). Consequently, ∀t≥t0‖xb(t)‖2 ≤

αVb(x(t0)) and the state is bounded.

The gain condition (34) is equivalent to Vb(xb(t0)) ≤ γϕ(4 −

ε) for some ε sufficiently small. Using Vb(xb(t)) ≤ Vb(xb(t0))

implies that γϕ‖I − R̃(t)‖2 ≤ 2Vb(xb(t0)) for all t ≥ t0, hence

choosing cmax = 8 − 2ε concludes the proof.

Remark 3. The formulation of Lemma 10 can be expressed

as a function of the rotation error ϕ, which is a scalar quantity

and hence provides for a more intuitive representation of the

bounds. The inequality (34) can be rewritten as

γbv‖b̃v(t0)‖2 + γp‖p̃(t0)‖2 + γbω‖b̃ω(t0)‖2

4γϕ(1 + cos(ϕ(t0)))
< 1,

and the bound ‖I − R̃(t)‖2 ≤ cmax < 8 is equivalent to ϕ(t) ≤

ϕmax < π, where ϕmax = arccos(1 − cmax
4 ).

Adopting the analysis tools for parameterized LTV systems

[22], the system (33), in the form ẋb = f (t, xb)xb, is rewritten as

ẋ? = A(λ, t)x?. In this formulation, the parameter λ ∈ Db × ℝ

is associated with the initial conditions of the nonlinear system

and the solutions of both systems are identical whenever the

initial conditions of both systems coincide, x?(t0) = x(t0), and

the parameter satisfies λ = (t0, x(t0)).

The results derived in [22] establish sufficient conditions for

exponential stability of the parameterized LTV system, uni-

formly in the parameter λ (λ-UGES). As discussed in [22], λ-

UGES of the parameterized LTV system implies that the origin

of the associated nonlinear system is exponentially stable, see

Appendix C for more details. These results are used to show

that the estimation errors in the bounded set (34) converge ex-

ponentially fast to the origin in the presence of biased velocity

measurements.

Theorem 11. Let γbv = γbω and assume that p, v, and ω are

bounded. For any initial condition that satisfies (34), the posi-

tion, attitude and bias estimation errors converge exponentially

fast to the stable equilibrium point (p̃, R̃, b̃ω, b̃v) = (0, I, 0, 0).

Proof. The stability of (33) is obtained by a change of coordi-

nates to the quaternion form. Let the attitude error vector be

given by q̃q =
(R̃−R̃′)⊗
‖(R̃−R̃′)⊗‖

‖I−R̃‖
2
√

2
, the closed loop kinematics are

described by

˙̃p = − (p)× b̃ω − kvp̃ − b̃v, ˙̃qq =
1
2

Q(q̃)(−Rb̃ω − 4kωq̃qq̃s),

(35a)

˙̃bω = 4
γϕ

γbω
R′Q′(q̃)q̃q −

γp

γbω
(p)× p̃, ˙̃bv =

γp

γbv

p̃, (35b)

where Q(q̃) := q̃sI +
(
q̃q

)
×
, q̃ =

[
q̃′q q̃s

]′
, q̃s = 1

2

√
1 + tr(R̃)

and ˙̃qs = 2kωq̃′qq̃qq̃s −
1
2 q′qb̃ω. The vector q̃ is the well known

Euler quaternion representation [24]. Using ‖q̃q‖
2 = 1

8 ‖R̃ − I‖2,

the Lyapunov function in quaternion coordinates is described

by Vb = 4γϕ‖q̃q‖
2 +

γp

2 ‖p̃‖
2 +

γbω
2 ‖b̃ω‖

2 +
γbv
2 ‖b̃v‖

2.

Let xq := (p̃, q̃q, b̃ω, b̃v), xq ∈ Dq, and Dq := ℝ3×B(3)×ℝ3×

ℝ3, define the system (35) in the domain Dq = {x ∈ Dq : Vb ≤

γϕ(4 − εq)}, 0 < εq < 4. The set Dq corresponds to the interior

of the Lyapunov surface, so it is positively invariant and well

defined. The condition (34) implies that the initial condition is

contained in the setDq for εq small enough and, by Lemma 10,

the components of the attitude error quaternion are bounded by

‖q̃q‖
2 ≤

cmax
8 and ‖q̃s‖

2 ≥ 1 − cmax
8 , with cmax = 8 − 2εq.

Let x? := (p̃?, q̃q?, b̃ω?, b̃v?), Dq := ℝ3 × ℝ3 × ℝ3 × ℝ3,

γb := γbω = γbv , and define the parameterized LTV system

ẋ? =

A(t, λ) B′(t, λ)

−C(t, λ) 03×3

 x?, (36)

where λ ∈ ℝ≥0 ×Dq, the submatrices are described by

A(t, λ) =

−kvI 03×3

03×3 −2kωq̃s(t, λ)Q(q̃(t, λ))

 ,
B(t, λ) =

(p)× −
R′Q′(q̃(t,λ))

2

−I 03×3

 , C(t, λ) =
B(t, λ)
γb

γpI 0

0 8γϕI

 ,

and the quaternion q̃(t, λ) represents the solution of (35) with

initial condition λ = (t0, p̃(t0), q̃q(t0), b̃ω(t0), b̃v(t0)). By the
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boundedness of p, the matrices A(t, λ), B(t, λ) and C(t, λ) are

bounded, and the system is well defined [28]. If the param-

eterized LTV (36) is λ-UGES, then the nonlinear system (35)

is uniformly exponentially stable in the domain Dq, see Ap-

pendix C for details. The parameterized LTV system verifies

the assumptions of [22, Theorem 1]:

1) Given the boundedness of p, v and ω, ṗ is

bounded, and the elements of B(t, λ) and ∂B(t,λ)
∂t =[

(Bṗ)× − 1
2 Ṙ
′Q′(q̃(t,λ))+R′Q′( ˙̃q(t,λ))

03×3 03×3

]
, as well as the corresponding in-

duced Euclidean norm, are bounded for all λ ∈ ℝ≥0×Dq, t ≥ t0.

2) The positive definite matrices P(t, λ) =


γp

γb
I 0

0 8 γϕ
γb

I

 and

Q(t, λ) =

2kv
γp

γb
I 0

0 32q̃2
s(t, λ)kω

γϕ
γb

I

, satisfy P(t, λ)B′(t, λ) =

C′(t, λ), −Q(t, λ) = A′(t, λ)P(t, λ) + P(t, λ)A(t, λ) +

Ṗ(t, λ), min(CP)I ≤ P(t, λ) ≤ max(CP)I, min(CQ)I ≤

Q(t, λ) ≤ max(CQ)I, with CP = 1
γb
{γp, 8γϕ} and CQ =

1
γb
{32kωγϕ, 32kωγϕ(1 − cmax

8 ), 2kvγp}.

The system (36) is λ-UGES if and only if B(t, λ) is λ-

uniformly persistently exciting [22]. Algebraic manipulation

produces B(τ, λ)B′(τ, λ) =

[
1
4R
′Q′(q̃)Q(q̃)R−(p)2

× −(p)×
(p)× I

]
. For any

y ∈ ℝ3,

1
4

y′R′Q′(q̃)Q(q̃)Ry =
1
4

(
‖y‖2 − (y′R′q̃q)2

)
≥
‖y‖2

4

(
1 − ‖q̃q‖

2
)
≥ ‖y‖2cB,

where cB = 1
4

(
1 − cmax

8

)
. Therefore B(τ, λ)B′(τ, λ) ≥

B(τ), where B(τ) :=
[

cBI−(p)2
× −(p)×

(p)× I

]
. Simple but long algebraic

manipulations show that the eigenvalues of B(τ) are given by

α(B(τ)) ∈ { 12 (1 + cB + ‖p‖ ±
√

(1 + cB + ‖p‖)2 − 4cB), 1, cB},

which are positive and lower bounded by a positive constant

cB, independent of τ, if p is bounded, i.e. ∀ταmin(B(τ)) ≥ cB

where αmin(B(τ)) denotes the smallest eigenvalue of B(τ). Us-

ing the property B(τ) ≥ αmin(B(τ))I produces B(τ, λ)B′(τ, λ) ≥

αmin(B(τ))I ≥ cBI and persistency of excitation condition is sat-

isfied. Consequently, the parameterized LTV (36) is λ-UGES,

and the nonlinear system (35) is exponentially stable in the do-

mainDq.

The exponential convergence derived in Theorem 11 is lo-

cal in the sense that it is verified in the bounded region given

by (34), i.e., given γp, γϕ, γbω , and γbv , any initial estimation

error xb(t0) satisfying (34) converges exponentially fast to the

origin. Since the convergence region is known, the observer

design parameters can be used to guarantee exponential con-

vergence for worst-case initial estimation errors. The following

corollary establishes sufficient conditions such that the origin

is uniformly exponentially stable for bounded initial estimation

errors, which is a reasonable assumption for most applications.

Corollary 12. Assume that the initial estimation errors are

bounded

‖p̃(t0)‖ ≤ p̃0, ‖I − R̃(t0)‖2 ≤ c0 < 8, (37a)

‖b̃ω(t0)‖ ≤ b̃ω0, ‖b̃v(t0)‖ ≤ b̃v0, (37b)

for some p̃0, c0, b̃ω0, b̃v0, and let (γp, γϕ, γbω , γbv ) be such that

γbv b̃
2
v0 + γp

B p̃2
0 + γbω b̃2

ω0 < γϕ(8 − c0), and γbω = γbv are sat-

isfied. Then the equilibrium point xb = (0, I, 0, 0) is uniformly

exponentially stable in the set defined by (37).

Remark 4. The attitude inequality and the gain condition

in Corollary 12 can be rewritten as ϕ(t0) ≤ ϕ0 < π and

γbv b̃
2
v0 + γp

B p̃2
0 + γbω b̃2

ω0 < 4γϕ(1 + cos(ϕ0)), respectively. The

formulation in ϕ evidences that the stability property derived in

Corollary 12 is independent of the rotation error axis φ. This

enables the observer to operate on conditions where an upper

bound ϕ0 < π for the initial estimation error is known, irrespec-

tive of the directionality of the attitude error.

Uniform stability guarantees upper bounds for the conver-

gence rate in the set (37). Numerical convergence rate bounds

can be computed by applying [29, Theorem 1 and Remark 2],

however the obtained values are conservative. The conserva-

tiveness can be justified by the sufficiency of the adopted sta-

bility analysis tools based on parameterized LTVs, and by the

fact that the computation of bounds for the matrix exponential

is non-trivial in general [30].

The feedback laws can be expressed in terms of the landmark

and velocity readings, (3) and (2) respectively.
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Theorem 13. The attitude and position feedback laws are ex-

plicit functions of the sensor readings and states estimates, and

given by

ω̂ = ωr − b̂ω − kωsω, (38a)

v̂ = vr − b̂v +
((
ωr − b̂ω

)
×
− kvI

)
sv + kω (p̂)× sω, (38b)

sω =

n∑
i=1

(R̂′XDAei) × (QDAei), (38c)

sv = p̂ +
1
n

n∑
i=1

qi. (38d)

Proof. The expressions (38a) and (38b) are directly obtained

from (32). The feedback term sω expressed in (31) is pro-

duced by taking (16) with the transformation A defined in

Proposition 9. Consequently, sω can be written in the form

sω = R′
(
UU′R̃ − R̃′UU′

)
⊗
, and following the proof of Theo-

rem 6 produces sω =
∑n

i=1(R̂′XDAei) × (QDAei), where A is

defined such that UU′ = I. The feedback term sv is obtained

from Theorem 6.

5. Simulations

In this section, the proposed attitude and position observer

properties are illustrated in simulation. A rigid body oscillat-

ing trajectory is considered, to analyze the stabilization of the

position and attitude errors, the exponential convergence of the

estimates, and the directionality brought about by the landmark

configuration. Simulation results are presented for the cases of

ideal and of biased velocity readings, studied in Section 3 and

Section 4, respectively.

5.1. Ideal velocity readings

The landmarks are placed on the xy plane

Lx1 =
1
5


−4

−3

0

 m, Lx2 =
1
5


2

−3

0

 m, Lx3 =
1
5


2

6

0

 m, (39)

which satisfies the non-collinearity condition expressed in As-

sumption 1. The landmark coordinate transformation (9) is de-

fined by A = I, and the matrix P defined in Proposition 1 and

Figure 2: Error of the position estimate with respect to local and to Earth frames

(ideal velocity readings, ϕ(t0) = 1
3π rad, φ(t0) = 1√

3
13).

(a)

Non-

uniform

P,

σi(P) ∈

{4.68, 3.24, 1.44}.

(b)

Uni-

form

P,

P =

I.

Figure 3: Attitude estimation error and exponential convergence bounds for

diverse landmark coordinate transformations (ideal velocity readings, φ(t0) =

1√
3

1′).

its singular values and eigenvectors are given by

P =


3.24 0 0

0 1.44 0

0 0 4.68

 ,
σ1(P) = 4.68, n1 =

[
0 0 1

]
,

σ2(P) = 3.24, n2 =

[
1 0 0

]
,

σ3(P) = 1.44, n3 =

[
0 1 0

]
.

The feedback gains are given by kv = kω = 1, and the rigid body

trajectory is computed using oscillatory angular and linear rates

of 1 Hz, and ideal velocity measurements.

The position estimation error p̃ decreases exponentially fast

to the origin, as illustrated in Fig. 2. The attitude error, shown

in Fig. 3 for two different initial conditions, converges exponen-

tially fast to the equilibrium point R̃ = I, and is below the ex-

ponential bound (19). The convergence rate of the exponential

bound is defined by the smallest singular value of P, and pro-

vides for a worst-case convergence bound that is more conser-

vative when σ1(P) � σ3(P), and tighter when the directionality

of P is more uniform. This is evidenced in Fig. 3(b), where the

convergence of the attitude error for a landmark transformation

such that P = I is shown. The actual convergence rate to the

origin is slower for larger initial estimation error ϕ(t0), due to

the stickiness effect [9] in the proximity of the anti-stable mani-

fold defined by ϕ = π. A convincing discussion and illustration

of the influence of anti-stable manifolds in the trajectories of

nonlinear systems can be found in [8, 31].

The Euler axis trajectories in the hemisphere n′3φ ≥ 0, de-
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Figure 4: Euler axis trajectories on S(2).

picted in Fig. 4, illustrate the directionality of the attitude error

discussed in Section 3.5. As derived in Theorem 7, the trajecto-

ries of the Euler axis converge to the direction associated with

the smallest singular value of P, that is φ(t) → n3 as t → ∞

for n′3φ > 0. Fig. 4 also shows that the boundary n′3φ = 0 is

an invariant set of measure zero, and that the trajectories near

n′3φ = 0 converge slower to n3, due to the stickiness effect of

the set defined by n′3φ = 0.

5.2. Biased velocity readings

The attitude and position observer with biased velocity read-

ings is analyzed using the planar landmark configuration (39).

The landmark coordinate transformation A is designed so that

UU′ = I, using the constructive method presented in the proof

of Proposition 9 and in Appendix B.2.

The values of γp, γϕ and γb are computed to satisfy the con-

dition of Corollary 12 for large bounds on the initial estimation

errors, given by

p̃0 = 2
√

3 m, ϕ0 =
π

2
rad,

b̃ω0 = 5

√
3π

180
rad/s, b̃v0 =

√
3 × 10−1 m/s. (40)

The adopted values are given by γϕ = 1, γp = 1
4 , and

multiple values of γb are used to study the convergence of

the observer, namely γb ∈ {0.19, 1.89} that bear ( γϕ
γb
,
γp

γb
) ∈

{(0.53, 0.13), (5.29, 1.32)}.

The initial attitude and position of the rigid body are R = I,

p =

[
1 1 1

]′
m, and the initial estimation errors are given

by

p̃(t0) =


−2

2

2

 m, ϕ(t0) =
72π
180

rad, φ(t0) =
1
√

3


1

1

1

 ,

b̃ω(t0) =
5π
180


1

−1

1

 rad/s, b̃v(t0) = 10−1


1

1

−1

 m/s,

(a)

Po-

si-

tion.

(b)

At-

ti-

tude.

Figure 5: Attitude and position estimation errors (biased velocity readings).

(a)

An-

gu-

lar

ve-

loc-

ity

bias.

(b)

Lin-

ear

ve-

loc-

ity

bias.

Figure 6: Bias estimation error.

that are within the bounds (40). The rigid body trajectory

is computed using oscillatory angular and linear velocities of

1 Hz.

The results for the case where both angular and linear veloc-

ity readings are biased, are presented in Figs. 5 and 6 . The

convergence of the estimation error to the origin is faster for

larger feedback gains. As expected, the compensation of bias

is obtained at the cost of slower convergence of the attitude and

position estimates, as evidenced by comparing Figs. 2 and 3

with Figs. 5(a) and 5(b) .

Larger gains introduce faster convergence, yet higher peaks

in the bias estimates are also obtained. These can be justified by

analyzing the level sets of the Lyapunov function Vb ≤ c, that

are positively invariant and contain points with small attitude

and position error ‖I−R̃‖ ≈ 0, ‖p̃‖ ≈ 0, but with large bias error

‖b̃ω‖2 + ‖b̃v‖
2 ≈ 2c

γb
.

The Lyapunov function convergence is shown in Fig. 7,

where the logarithmic scale is adopted to demonstrate expo-

nentially fast convergence to the origin. Given that Vb provides

for an upper bound for the estimation error (p̃, R̃, b̃ω, b̃v), Fig. 7

shows that, in spite of the peak values attained for (b̃ω, b̃v),

Figure 7: Exponential convergence of Vb (biased velocity readings).
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the norm of the estimation error converges exponentially fast to

(0, I, 0, 0).

6. Conclusions

A nonlinear observer for position and attitude estimation on

SE(3) was proposed, using landmark measurements and non-

ideal velocity readings. A Lyapunov function, conveniently de-

fined by the landmark measurement error, was adopted to derive

the position and attitude feedback laws. This approach provided

for an insight on the necessary and sufficient landmark configu-

ration for position and attitude estimation, and produced an out-

put feedback architecture, expressed as a function of the sensor

readings and state estimates.

The case of ideal velocity readings allowed for the decou-

pling of the position and attitude systems, and almost global

asymptotic stability of the origin together with exponential con-

vergence of the trajectories in any closed ball inside the region

of attraction were obtained. The asymptotic behavior of the tra-

jectories was also characterized, showing that the attitude error

converges to the axis of the smallest eigenvalue of a matrix de-

fined by the landmark geometry. The stability results were ex-

tended for the case of biased linear velocity readings, where the

position and attitude systems were coupled by the presence of

rate gyro bias. Using recently results for parameterized LTVs,

exponential stabilization of the origin for bounded initial esti-

mation errors was shown.

Simulation results illustrated the convergence properties of

the observer for diverse feedback gains and initial conditions.

The theoretical exponential convergence bounds were shown to

be close to the real estimation error. Trajectories emanating

from initial conditions near the anti-stable manifolds showed

smaller convergence rate, as expected from the continuity of

the solutions of dynamical systems. In the case of biased linear

and angular velocity readings, exponential convergence to the

origin, for initial conditions in a bounded region, was shown.

The effects of time-varying velocities in the solutions of the

nonautonomous error dynamics was negligible. The trade-off

between convergence rate and the peak values of the estimates

was justified using the level sets of the Lyapunov function. Fu-

ture work will focus on improving the convergence rate bounds

in the presence of biased velocity measurements, and on the

exact discrete time implementation of the algorithm.
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A. Auxiliary results

This section contains elementary results from linear algebra

that are adopted in this work.

Let A,B ∈ M(n,m) and denote the matrix columns by ai,bi ∈

ℝn, respectively. Let R ∈ SO(n), K ∈ so(n), K3 ∈ so(3), S ∈

L(n) and {u, v} ∈ ℝ3, then
n∑

i=1

a′ibi = tr(AB′),
n∑

i=1

aib′i = AB′, tr(AB′) = tr(B′A),

tr(KS) = 0, tr(KA) = tr
(
K

A − A′

2

)
, R (K3)⊗ =

(
RK3R

′)
⊗ ,

u′v = −
1
2

tr((u)× (v)×), (u)× (v)× = vu′ − v′uI.

Lemma 14. Let S ∈ L(3), R = rot(ϕ,φ) ∈ SO(3), then(
SR − R′S

)
⊗ = Q′(ϕ,φ)(tr(S)I − S)φ,

where Q(ϕ,φ) = sin(ϕ)I + (1 − cos(ϕ)) (φ)×.

Proof. Using R = I + Q(ϕ,φ) (φ)×, φ′Q(ϕ,φ) = φ′ sin(ϕ), and

the properties of the trace, bears that, for any a ∈ ℝ3,(
SR − R′S′

)′
⊗ a = − tr((a)× SR)

= − tr((a)× SQ(ϕ,φ) (φ)×) = − tr((aφ′ − φ′aI)SQ(ϕ,φ))

= −φ′SQ(ϕ,φ)a + tr(S)φ′ sin(ϕ)a = −φ′SQ(ϕ,φ)a

+ tr(S)φ′Q(ϕ,φ)a = φ′(tr(S)I − S)Q(ϕ,φ)a

that concludes the proof.
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B. Extensions of the landmark based nonlinear observer

This section discusses some specific configurations of the

landmark based nonlinear observer. The problem of estimat-

ing directly the position of the rigid body with respect to Earth

frame is discussed, and the formulation of the landmark trans-

formation for three landmark measurements is described.

B.1. Position estimation in Earth coordinate frame

This section discusses how the observer formulation can be

modified to estimate position with respect to the origin of a de-

sired coordinate frame {E}. As illustrated in Fig. 1, the position

with respect to {E} is described by pE = p + R′EtL, where EtL

represents the coordinates of the origin of {L} with respect to

{E}, expressed in {E}, and frames {L} and {E} have the same

orientation by definition, R = E
BR = L

BR. Note that an estimate

p̂E can be constructed using p̂ and R̂, bearing exponentially fast

convergence of the error p̃E . However, p̃E = 0 does not ver-

ify the exponential stability property as defined in the literature

[28].

The kinematics of p̂E and p̃E are given by

˙̂pE = v̂ − (ω̂)× p̂E , (41a)

˙̃pE = (v̂ − v) − (ω)× p̃E + (p̂E)× (ω̂ − ω), (41b)

and the landmark coordinates measured in body frame can be

written as a function of pE , producing

qi = R′ExE i − pE , (42)

where ExE i = Lxi + EtL are the coordinates of landmark i in

frame {E}. The structure of the position kinematics (41) and of

the landmark readings (42), is identical to the structure of the

position kinematics (5), (7) and landmark readings (3) consid-

ered in the observer derivation. Using this similarity, an expo-

nential stable position observer for pE is obtained. The observer

is derived for any frame {E} that satisfies the following condi-

tion.

Assumption 2. The landmark coordinates ExE i are linearly

dependent, i.e. there exist scalars αi, not all zero, such that∑n
i=1 αi

ExE i = 0.

Note that frame {L} verifies Assumption 2 by construction.

The adopted feedback law is obtained by rewriting (24b) as

v̂ = vr + ((ωr)× − kvI)svE + kω (p̂)× sω, svE = p̂E −Qrdα,

where dα =

[
α1 . . . αn

]′
is defined in Assumption 2 and

can be seen as the generalization of dp = − 1
n 1n. Analytical

manipulation yields that pE = Qrdα producing the closed loop

position error kinematics ˙̃pE = −kvp̃E . The origin p̃E = 0 is

exponentially stable, as desired.

B.2. Landmark coordinate transformation with minimal set of

landmarks

Assumption 1 establishes that rank(X) ≥ 2, however

rank(H) = rank(X) and the coordinate transformation described

in Proposition 9 requires H = XD to be full rank. This section

shows that, in case rank(X) = 2, it is possible to augment matrix

H to produce Ha such that rank(Ha) = 3. Taking two linearly

independent columns of H, Lhi and Lh j, the augmented matrix

is given by Ha =

[
H Lhi ×

Lh j

]
, which is full rank. Defining

UXa := HaAXa, by the steps of the proof of Proposition 9 there

is AXa ∈ M(n+1) nonsingular such that UXaU′Xa = I, as desired.

The cross product is commutable with rotation transforma-

tions, (R′Lhi) × (R′Lh j) = R′(Lhi ×
Lh j), so the representation

of the augmented matrices in body coordinates is simply given

by BUXa = R′UXa, BÛXa = R̂′UXa, UXa = HaAXa. Therefore,

the modified observer is obtained by replacing U and H by UXa

and Ha, respectively, and the derived observer properties are

obtained by simple change of variables.

C. Uniform exponential stability of parameterized time-

varying systems

The following result from [22] establishes that if the param-

eterized nonlinear system is exponentially stable uniformly in

λ, then uniform exponential stability (independent of the initial

conditions) of the associated nonlinear system can be inferred.

This result is presented here for the sake of clarity.

Lemma 15 (λ-UGES and UES [22]). Consider
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i) the nonautonomous system ẏ = f (t, y) where f : ℝ≥0 ×

Dy → ℝn is piecewise continuous in t and locally Lips-

chitz in y uniformly in t, and Dy ⊂ ℝn is a domain that

contains the origin,

ii) the parameterized nonautonomous system ẋ = fλ(t, λ, x),

where fλ : ℝ≥0 × Dp × ℝn → ℝn is continuous, locally

Lipschitz uniformly in t and λ, Dp = ℝ≥0 × Dλ and Dλ ⊂

ℝn is a closed not necessarily compact set.

Let Dy ⊂ Dλ and assume that x(t) = 0 is λ-UGES,

i.e. there exist ke and γe > 0 such that, for all t ≥ t0,

λ ∈ Dp and x0 ∈ ℝn, the solution of the system verifies

‖x(t, λ, t0, x0)‖ ≤ ke‖x0‖e−γe(t−t0). If the solution of both systems

coincide, y(t, y0, t0) = x(t, λ, x0, t0), for λ = (t0, y0) and x0 = y0,

then y(t) = 0 is exponentially stable inDy.

Proof. Let x0 = y0 and λ = (t0, y0), then x(t, λ, t0, x0) =

y(t, t0, y0) and by change of variables, the solution satisfies

‖y(t, t0, y0)‖ ≤ ke‖y0‖e−γe(t−t0), and uniform exponential stabil-

ity of y(t) = 0 inDy is immediate.
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