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Abstract— This paper proposes an estimation algorithm for
the determination of attitude installation matrix for laser
detection and ranging systems (LADAR) mounted onboard
autonomous vehicles, without requiring any prior knowledge
on the terrain where the calibration mission is performed. The
use of autonomous vehicles equipped with LADAR systems to
conduct fully automatic surveys of terrain, infrastructur es, or
just to navigate safely in unknown environments, motivates
the research on increasingly precise LADAR data acquisition
and processing algorithms, for which the determination of the
correct installation matrix is critical. The proposed methods
rely on the minimization of the errors between several acquired
data sets, by comparing each measured data set and a surface
representation of the others. This error functional is minimized
resorting to optimization tools for Riemannian manifolds en-
abling direct estimation of the installation matrix on the group
of special orthogonal matrices SO(3). The proposed technique
is extensively tested using simulated LADAR data sets under
realistic acquisition conditions.

I. I NTRODUCTION

Laser Detection and Ranging (LADAR) systems tech-
nology is nowadays widely used by the robotics and the
remote sensing research communities. The development of
airborne laser ranging sensors started in the 1970s in North
America, mainly for topographic applications. Later, with
the development of affordable Inertial Navigation System
(INS) and Global Positioning System (GPS) units, other
applications captured the attention of the research commu-
nity, such as monitoring ice sheets [1] or measuring canopy
heights [2]. The robotics research community is nowadays
employing autonomous vehicles equipped with LADARs to
perform automatic acquisition and 3-D reconstruction of
terrain, buildings, large infrastructures or using this infor-
mation to safely navigate through unknown environments
[3], [4]. For all these applications the data accuracy is
essential. However, there are several sources of inaccuracy
that can lead to considerable nonlinear reconstruction errors,
for instance, an airborne LADAR acquiring terrain elevation
1 km above the ground, with 0.01 rad of roll mounting
bias will generate points with an error of 10 m, with a
planar terrain (otherwise nonlinear distortions will appear).
Thus, the calibration of these errors, specially the attitude
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installation bias, is fundamental to meet the desired accuracy
requirements.

In most applications the LADAR system is installed in a
platform equipped with an INS/GPS unit, which provides
position and attitude data that, together with the relative
distance measured by the LADAR, enables the reconstruc-
tion of the surrounding environment. Conversely to other
calibration procedures that require particular terrain features
and/or specific vehicle trajectories in order to calibrate a
subset of the parameters [5], in the proposed method the only
information required for LADAR calibration are clouds of
3-D points. Thus, there is no matching information between
points and also no previous knowledge on the terrain where
the calibration mission is performed. For instance, a standard
procedure in the literature for laser calibration would be to
fly over a known flat surface while performing pitch and roll
maneuvers, separately, which enables the calibration of only
these two parameters. Since there is no direct technique to
compare the measured data set with the corresponding real
points, one approach is to compare the measured data set
with a representation of the real surface [6]. This technique
is used in [7] with the linearization of the error model to
obtain a Gauss-Helmert model, which is used to estimate
the installation bias. In [8], this approach was generalized
using nonlinear and geometric optimization techniques, but
still shares the main difficulty for practical implementation:
a known calibration surface is needed to compare with the
acquired data. In the present work, no a priori knowledge
on any surface is required as the proposed method compares
directly at least two sets of acquired data. Nonetheless, there
should be enough information on the calibration surface and
vehicle trajectories to enable the full attitude installation bias
calibration. The comparison of each set of acquired data, or
cloud of points, is compared with a surface approximation of
all the remaining sets by measuring the minimum distance of
each point to the approximated surfaces. The intuition behind
this approach is that there should be only one installation
matrix that justifies all the acquired sets of data.

The estimation problem is formulated within the scope of
maximum likelihood (ML) theory [9], allowing the formula-
tion of the calibration problem as an optimization problem.
The real valued cost functional to be minimized is defined
by the summation of the errors between each measured
data set and the surface approximation of the other sets.
The optimization approach resorts to optimization tools on
Riemannian manifolds, enabling the use of Gradient and



Newton methods to directly estimate the installation matrix
on the group of special orthogonal matrices SO(3) [10],
[11]. This approach can also use a line search algorithm,
such as the the Wolfe rule to compute the step size [12],
nonetheless, there exists an exact computation of the step
size algorithm within SO(3), [13]. The proposed calibration
technique is tested using simulated data sets to assess its
performance and limitations. The paper is organized as
follows: Section II introduces the reconstruction error model,
a ML formulation is proposed, and the calibration problem
is written as a nonlinear optimization problem. Section III
introduces the Riemannian optimization tools used to solve
the problem. Simulation results and an in-depth discussion
of the algorithm presented in Section IV. Finally, in Section
V the main conclusions are offered and directions for further
work are outlined.

II. RECONSTRUCTIONERROR MODEL

In this section the reconstruction error model and the
calibration problem are introduced. This calibration problem
is formulated in such a way that the use of a known calibra-
tion surface is avoided, introducing the idea of comparing
different clouds of the same terrain with each other. In the
following three subsections, the point reconstruction, the
cloud-to-cloud comparison, and the calibration problem are
introduced.

A. Point Reconstruction

The point reconstruction model describes the transforma-
tion of the LADAR raw data, composed by a range measure-
ment and an incidence angle, into 3-D points. The following
coordinate frames are introduced:{I} as the inertial frame;
{ins} as INS/GPS frame;{l} as the LADAR frame, with
origin at the laser’s firing point andz-axis indicating the
zero scanning angle;{lb} as the laser beam frame, with
origin at the firing point,y-axis collinear with that of frame
{l} andz-axis oriented opposite to the direction of the laser
beam. These frames and the connections between them are
depicted in Fig. 1. Each measurementk is defined as the
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Fig. 1. Ladar coordinate frames

distance between the laser firing point and the laser hit point,
ρk, and by the angular position of the laser beam,αk, that
is, the angle from{l} to {lb}. Thus, it can easily be seen

that the expression that transforms the LADAR measurement
(ρk, αk) into the reconstructed 3-D pointpk, expressed in
the inertial frame, is given by

pk = Rinsk (RRl Rlb(αk) r(ρk) + b) + pinsk , (1)

whereRinsk is the platform attitude defined by the rotation
from {ins} to {I}, Rl is the known attitude mounting
bias defined by the rotation from{l} to {ins}, Rlb(αk)
is the rotation from{lb} to {l}, that defines the laser
beam rotation and is given byRlb(αk) = RY (αk), with
RY (.) standing for the rotation matrix about they axis,
r(ρk) =

[

0 0 −ρk
]′

, pinsk is the INS/GPS unit po-
sition expressed in{I}. The known position installation bias
b denotes the laser firing point described in{ins} and
matrix R is the rotation matrix that defines the unknown
attitude installation bias, which is an element of the group
of special orthogonal matrices SO(3). Note that the position
installation bias can be itself calibrated, however, it canbe
more accurately measured than the attitude installation bias.
Let M(n,R) = {A : n× n matrix with real entries} and the
group of orthogonal matrices be defined as O(n) = {U ∈
M(n,R) : U U ′ = In×n}, then the group of special ortogonal
matrices is SO(n) = {R ∈ O(n) : det(R) = 1}.

B. Cloud-to-Cloud Comparison

Assume there arenc > 1 clouds of points,Ci for i =
1, . . . , nc, resulting from different trajectories of the vehicle,
such that the intersection of the laser data boundaries of
each cloud projected into thexy-plane is nonempty. Each
cloud is a set ofnpi

laser measurement points,Ci = {pi
k}

for k = 1, . . . , npi
, which represent a nonlinearly distorted

sampling with noise of the real surfaceSreal, and can be
approximated by a piecewise surfaceSi, consisting in a
set of nplanesi planes. The fact that in this problem there
is no correspondence between the points of the different
clouds of points does not allow for a direct comparison.
The proposed solution consists of comparing each cloudCi
with a surface approximation of all the remaining clouds,
Sj for j = 1, . . . , nc and j 6= i. For that purpose, it is
assumed that the surface approximations can be represented
by an elevation map, of the formz = fS(x, y), and that a
piecewise surface defined by a set ofnplanesi can describe
this function with arbitrarily small error, asnplanesi →∞.

To compare the points of cloudCi with the approximated
surface of cloudCj , Sj , each point is linked with the closest
plane of Sj along its normal vector. Considering the set
of planes that defineSj , let the plane associated with the
measurementk of Ci be defined by the plane equation
s
ij
k

′
pi
k +

4sijk = 0, wheresijk =
[

1sijk
2sijk

3sijk
]′
∈ R

3 is
the plane normal unitary vector and4sijk ∈ R.

C. Calibration Problem

The calibration of a LADAR system can be formulated as
the minimization of the error between each measured set of
reconstructed points,Ci, and the surface approximation of the
remaining clouds,Sj for j = 1, . . . , nc andj 6= i, subject to
the LADAR model constraint. The error between each point



pi
k and the associated plane of the control surface can be

defined aseijk = p
ij
0k
−pi

k wherepij
0k

= pi
k−s

ij
k Dij

k denotes

the point in the plane closest topi
k and Dij

k = s
ij
k

′
pi
k +

4sijk is the distance alongsijk betweenpi
k andp

ij
0k

. Hence,
after some algebraic manipulation, the measurement error
expression can be written as

e
ij
k (R) = Hij

k Rhi
k + c

ij
k , (2)

whereHij
k = ρik S

ij
k Ri

insk
, hi

k = −Rl Rlb(α
i
k) r(1), c

ij
k =

−Sij
k Ri

insk
bi − Sij

k pi
insk
− 4sijk s

ij
k and Sij

k = s
ij
k s

ij
k

′
.

Also, R ∈ SO(3) is the calibration parameter matrix to be
estimated and the known parameters areHij

k ∈ M(3,R)
and hi

k, c
ij
k ∈ R

3. In addition, the following assumption
characterizes the measurement error distribution.

Assumption 1 (Error distribution): The measurement er-
ror distribution is assumed to be Gaussian and defined by
p(eijk ) = N

(

0, (σij
k )2 I

)

.
The calibration problem can be formulated within the

scope of the ML estimation theory as that of maximizing
the reconstruction error probability function, i. e.

R∗ = argmin
R

f(R) , s. t. R ∈ SO(3), (3)

f(R) =

nc
∑

i=1

nc
∑

j=1
j 6=i

npi
∑

k=1

1

2 (σij
k )2

∥

∥

∥
e
ij
k (R)

∥

∥

∥

2

. (4)

This cost functional can be further simplified if the succes-
sive summations are mapped into only one, by computing all
the errors for each combination of cloud-to-cloud comparison
and, with a slight abuse of notation, defining the new cost
functional as

f(R) =
n
∑

i=1

1

2nσ2
i

‖ei(R)‖2 , (5)

where eachei(R) = HiRhi + ci andσi for i = 1, . . . , n
is obtained from the previous variableseijk (R) andσij

k , for
i, j = 1, . . . , nc, j 6= i and k = 1, . . . , npi

, using a simple
index map. In the functional of Eq. (5), the average of the
errors is considered in order to improve the numeric behavior
of the algorithm, since the total number of considered points
may vary from iteration to iteration. Note that resorting
to optimization techniques based on the Newton method,
instead of standard nonlinear least squares methods, allows
for a more efficient estimation algorithm, as the second order
derivative of the cost functional can be used.

III. O PTIMIZATION ON RIEMANNIAN MANIFOLDS

This section introduces the optimization methodology on
Riemannian manifolds. Since the rotation matrixR is an
element of the group of special orthogonal matrices SO(3),
which is an embedded submanifold ofM(3,R), the opti-
mization tools adopted in this section are based on simple
exercises of Riemannian Geometry theory and allow for
the minimization of the likelihood function directly on the
manifold of special orthogonal matrices SO(3). The concepts
of intrinsic gradient and Hessian derived for SO(3) produce

descent directions in the manifold and the cost functional is
minimized along geodesics in SO(3). For a comprehensive
introduction to the subject and for applications with orthog-
onality constraints the reader is referred to [10], [11].

Considering the log-likelihood functionf : SO(3)→ R

given in (5), the optimization problem reduces to the one
defined in (3). The estimatêR of the optimal valueR∗ is
computed using the Gradient or the Newton methods gen-
eralized to manifolds. Given the current parameter estimate
Rk, at iterationk, these methods compute a descent direction
in the intrinsic tangent space,dk ∈ TRk

SO(3), and allow to
obtain the new estimateRk+1 by solving a minimization
subproblem along the geodesic of the manifold, i. e., a line
search. This algorithm is structured as Algorithm 1, where
γdk

(t) ∈ SO(3) is defined as the geodesic of the manifold
with initial conditionsγdk

(0) = Rk and γ̇dk
(0) = dk.

Algorithm 1: Generic minimization algorithm for the
LADAR calibration problem:

1) Initialize R0 and let k = 0;
2) Compute descent directiondk;
3) Compute the step size by solving the minimization

subproblemt∗k = argmint≥0 f (γdk
(t));

4) Compute next parameter estimate:Rk+1 = γdk
(t∗k);

5) Test if
∥

∥∇f |Rk+1

∥

∥ < ǫ: if true, let R̂ = Rk+1 be the
final estimated parameter and stop; if false, letk ←
k + 1 and go to step 2.

The accuracy of the estimate is determined by the constant
ǫ and the norm is determined using the metrics in the
parameter space SO(3). Hence, it is necessary to define
the metric for the rotation matrixR ∈ SO(3), which is
inherited from the canonical metric in the Euclidean space
M(3,R). While the tangent space of M(3,R) is identified
with TRM(3,R) ≃ M(3,R) and represented by the usual
gradient, the tangent space of SO(3) at pointR is identified
by TRSO(3)≃ RK(3) = {RK : K ∈ K(3)}, where K(n) =
{K ∈ M(n,R) : K = −K ′}. To define the canonical
metric in SO(3), let two tangent vectors{δ1, δ2} ∈ TRSO(3),
which are identified byδ1 ≃ RK1 and δ2 ≃ RK2, with
{K1,K2} ∈ K(3), then 〈δ1, δ2〉 = tr (δ′1 δ2), where tr(.)
stands for the trace of a matrix.

The following three sections address:a) the computation
of a descent direction, using both the gradient and the
Newton methods,b) the line search algorithm with Wolfe
conditions andc) the deterministic line search algorithm that
computes an exact step size.

A. Descent Direction

To improve the accuracy of the descent direction estimate,
generalizations for manifolds of the Gradient and the Newton
methods are adopted. While the former is easier to derive and
implement, the Newton method yields very fast convergence
near the minimum. The derivation of the gradient and the
Hessian of the log-likelihood function are described below
specifically for the SO(3) manifold.

1) Gradient Method: The log-likelihood function (5) can
be generalized to M(3,R) by defining the smooth function
f̂ : M(3,R) → R such thatf̂ |SO(3) = f . The tangent space



on M(3,R) is characterized as the direct sum of two tangent
spaces complementary to SO(3), that is

TRM(3,R) = TRSO(3)⊕ (TRSO(3))⊥ , (6)

where the operator⊕ stands for the direct sum of two sets
and(TRSO(3))⊥ is the orthogonal complement ofTRSO(3).
The smooth vector field defined by the extrinsic gradient
gradf̂ |R ∈ TRM(3,R) is decomposed as the sum of its
tangent and orthogonal components

gradf̂ |R =
(

gradf̂ |R
)⊤

+
(

gradf̂ |R
)⊥

(7)

and is identified with the usual gradient in M(3,R), that is

gradf̂ |R ≃ ∇f̂ |R :=
∂ f

∂R
:=

[

∂ f

∂rij

]

i,j∈{1,2,3}

. (8)

Hence, the intrinsic gradient∇f |R ∈ RK(3) is obtained
by the projection of the extrinsic gradient on the tangent
spaceTRSO(3), i.e.∇f |R = (∇f̂ |R)⊤. The projection of
the extrinsic gradient results from an optimization problem
with closed solution given by

∇f |R = R arg min
K∈K

∥

∥

∥
∇f̂ |R −RK

∥

∥

∥

2

= Rskew
(

R′∇f̂ |R
)

where skew(A) = 1/2 (A − A′) is the skew symmetric
component of A. The extrinsic gradient expression for the
considered cost functional is given by

∇f̂ |R =

n
∑

i=1

1

nσ2
i

H ′
i (HiRhi + ci)h

′
i . (9)

Thus, at each iterationk the intrinsic gradient direction used
in the optimization algorithm isdk = −∇f |R.

2) Newton Method: The Newton method uses the second
order properties of the log-likelihood function to compute
descent direction. Although this method is harder to compute
and requires more memory, the convergence rate is greater
near the optimal value than that of the gradient method.

Given two tangent vectors{X,Y } ∈ TRSO(3) and the
correspondent extension{X̂, Ŷ } ∈ TRM(3,R), the intrinsic
Hessian is given by compensating the external Hessian

Hessf (X,Y ) = Hesŝf
(

X̂, Ŷ
)

+ΠR (X,Y ) f̂ , (10)

where the second fundamental formΠR (X,Y ) : TRSO(3)×
TRSO(3) → (TRSO(3))⊥ is a differentiable local vector
field on M(3,R) normal to SO(3). The external Hessian is
identified by the usual second order derivative in Euclidean
spaces

Hesŝf
(

X̂, Ŷ
)

= vec(X)
′ ∇2f̂ |R vec(Y) , (11)

∇2f̂ |R =
∂2 f̂

∂vec(R) ∂vec(R)′
, (12)

where X̂ ≃ X ∈ M(3,R), Ŷ ≃ Y ∈ M(3,R) and
the vec(.) operator is the vectorization of a matrix. The
second fundamental form applied tôf yieldsΠR (X,Y ) f̂ =

−〈R symm(X ′ Y ),∇f̂ |R〉, where symm(A) = 1/2 (A+A′)
is the symmetric component ofA, and

∇2f̂ |R =

n
∑

i=1

1

nσ2
i

hi h
′
i ⊗H ′

i Hi , (13)

where⊗ is the Kronecker product operator. The Newton
method search direction is the unique tangent vectord ∈
TRSO(3) that satisfies Hessf (X,d) = −〈X,d〉 for all X ∈
TRSO(3). Let ε = {E1,E2, . . . ,Em} be an orthonormal
basis forTRSO(3), then the Newton direction coordinates
zi in the basisε, d =

∑m

i=1 ziEi, are computed by
solving the linear systemAhess z = bhess, whereAhess =
{Hessf (Ei,Ej)}, z = {zj} andbhess = −{〈Ei,∇f |R〉},
for i, j = 1, . . . ,m.

B. Line Search

A geodesic is defined as the curve in the manifold with
zero acceleration, and is fully characterized by its initial po-
sition and velocity conditions,γd(0) and γ̇d(0) respectively.
In the particular case of SO(3), the geodesicγd : J → SO(3)
is defined asγd(t) = ReR

′
d t, whereJ is an interval inR

andd ∈ RK(3) identifies the tangent vector.
The step size optimization subproblem of Algorithm 1 is

numerically solved using the Wolfe conditions [12], gen-
eralized to line search on geodesics. Consider the function
φ : R→ R defined asφ(t) = f (γd(t)) with derivative given
by φ̇(t) = ∇′f |γd(t) γ̇d(t) and let alsoµk = φ(0)+σ φ̇(0) tk
and µ0 = λ φ̇(0), where σ and λ are parameters of the
algorithm. The Wolfe rule classifies the step size according
to the sets

A =
{

tk > 0 : φ(tk) ≤ µk ∧ φ̇(tk) ≥ µ0

}

(14)

D = {tk > 0 : φ(tk) > µk} (15)

E =
{

tk > 0 : φ(tk) ≤ µk ∧ φ̇(tk) < µ0

}

(16)

that define the acceptable, the right unacceptable and the
left unacceptable step sizes, respectively. The line search
algorithm consists of finding an acceptable step size, i. e.,
an estimate of the optimal step size.

C. Deterministic Line Search

Taking advantage of the periodicity of the objective func-
tion, the exact optimal solution for line search problem
can be found by simply determining the roots of a fourth
order polynomial, as detailed in [14], for a similar cost
functional. Given a search directiond, computed using
either the Gradient or the Newton methods, the line search
optimization subproblem is defined byt∗ = argmint≥0 φ(t),
whereφ(t) = f (γd(t)). To tackle a more general type of
optimization problem let the cost functional be written as

φ(t) =

n
∑

i=1

1

2 σ2
i

tr
(

M ′
i e

−Ω t R′ NiReΩ t Mi

+2W ′
i ReΩ t Mi + Ci

)

(17)

whereMi = hi, Ni = H ′
i Hi, Wi = c′i Hi, Ci = c′i ci and

Ω = 1
‖ω‖ [ω×] with [ω×] = R′ d. The skew-symmetric ma-

trix [a×] stands for the cross product operator for vectora. In



Fig. 2. Sreal, trajectories and laser beams

this wayΩ has unit length allowing the usage of Rodrigues’
formula eΩ t = I + Ω sin t + Ω2 (1 − cos t). Substituting
this formula into (17) and simplifying, it can be seen that
φ(t) = k1+k2 sin t+k3 cos t+k4 sin 2 t+k5 cos 2 t, where
kj , j = 1, . . . , 5 are constant scalars. To find the optimal
value for the step size the first order condition of optimality,
that is d φ(t)

dt
= 0, yields k2 cos t− k3 sin t+ 2 k4 cos 2 t−

2 k5 sin 2 t = 0 and the optimization subproblem is now
to find the values oft ∈ [0, 2 π) for which the previous
condition is satisfied.

The first step is to make a trigonometric half-angle sub-
stitution, i. e.,x = tan t

2 , reducing the first order condition
of optimality to a fourth order polynomial inx, x4+b3 x

3+
b2 x

2 + b1 x + b0 = 0, wherebi, i = 0, . . . , 3 are constant
scalars. After finding the roots of this quartic polynomial,
which is a standard procedure [14], the optimal value oft is
the real root for which the cost functional is minimal.

IV. SIMULATION RESULTS

To assess the performance of the proposed algorithms, a
low resolution digital elevation map, for the sake of clarity,
is used to define the simulated real surfaceSreal. This can
be seen in the example of the calibration setup shown in
Fig. 2, where there are two different platform trajectories
(in magenta and yellow) and the respective acquired points.
In Fig. 3, the two surfaces obtained from the two clouds
of laser measured data are shown, considering an erroneous
installation matrix. Considering the presented optimization
methods and line search algorithms, two different configura-
tions are tested: 1) Riemannian optimization with Wolfe rule
and 2) Riemannian optimization using exact step size. These
methods are hereafter compared to highlight the advantages
and disadvantages of each of them. In both methods, the
computation of the search direction is performed using
the Newton’s method. An error distance that is defined in
SO(3) is used to compare the solutions of the different
configurations. LetR∗, R̂ ∈ SO(3) be the optimal and the
estimated rotation matrices, respectively, and let alsoR̃ =
R̂′ R∗ ∈ SO(3) be the error matrix, thus, the performance of
each method is evaluated by defining the distance fromR̃ to
I as‖R̃‖SO(3) = arccos(12 (tr(R̂

′ R∗)− 1)).
The objective of the simulations presented hereafter is to

(a) Before Calibration

(b) After Calibration

Fig. 3. Calibration example (35 × 35 aproximations grid):S1, S2,
trajectories and laser beams

analyse the properties of the calibration algorithm as wellas
to demonstrate that there is a relation between the number
of planes considered for the surface approximation and the
solution precision that can be achieved by the optimization
method, considering the same number of laser measured
points. The surface approximation algorithm is based on
a xy-plane uniform sampling grid for each cloud of laser
points, and evaluates the bestz-coordinate value based on the
surrounding laser points. A set of planes is then generated
in order to be used by the calibration method in each
iteration. To stablish the relation between the number of
planes and the solution accuracy, two surface approximation
grids are considered: i) a20 × 20 grid and ii) 35 × 35
grid. The simulation experience consisted of 100 Monte
Carlo runs for case i) and 14 Monte Carlo runs for case
ii), with random initial conditions computed using a uniform
distribution between−20 and20 degrees for each component
of the ZYX Euler angle vectorx0 yielding the rotation matrix
R0 = R(x0). The optimal value for all the trials is defined
by the rotation matrix,R∗ = R(x∗), obtained from the ZYX
Euler anglesx∗ =

[

0.10 0.05 −0.04
]′

. The stopping
criterion used was‖∇f |R‖

‖∇f |R0
‖ < 10−6. All the simulations were

performed using Matlab on an Intel Pentium Core 2 Duo
processor at 2.66 GHz.

Table I presents the statistical indicators of the simulation



TABLE I

SUMMARY OF RESULTS.

Surface Approximation Grid
20 × 20 35 × 35 Method

Average Computation 0.673 2.252 1
Time [hour] 0.672 2.176 2

Average Number of 16.1 10.23 1
Iterations 15.4 9.538 2

Average Distance to 0.011847 0.006634 1
Optimal [rad] 0.011282 0.006583 2

Maximum Distance to 0.013803 0.008293 1
Optimal [rad] 0.013803 0.008292 2

Number of runs 100 14

described above: the average computation time, the number
of iterations, the average and maximum distances in SO(3)
to the optimal solution. From these indicators, no obvious
difference can be observed in the computational time and
iteration number, when comparing the two methods. Never-
theless, it seams that method 2, which uses the exact step
computation, achieves better values in these two indicators.
With respect to the average and maximum distance to the
optimal solution, the differences between the two methods
is almost negligeble, yet, method 2 achieves the best values
in every indicator for both the20 × 20 and the35 × 35
approximation grids. The main conclusion emerging from
this simulation results is that there is an obvious relation
between the accuracy of the obtained solutions and the
surface approximation used in the methods, noting that
increasing the surface approximation grid from20× 20 to a
35× 35 grid, decreased the distance to the optimal solution
by 44.0% in the case of method 1 and by 41.7% in the case
of method 2. Similar decreasing factors were obtained for
the maximum distance to the optimal solution. Moreover,
the accuracy obtained using the35 × 35 approximation
grid, less than 0.0067 radians, indicates that the proposed
calibration method can achieve good accuracy calibration of
the laser instalation matrix, specially if more accurate surface
approximations are considered.

The comparison between the approach presented in [8]
and the new method presented here is unfair and difficult,
since the former consideres a known calibration surface in
order to compare the acquired data and the noise conditions
are different. Nonetheless, it can be observed that the average
distance to the optimal solution of the new method is always
below those of the method presented in [8] when noise is
considered, which achieves the values 0.019 rad and 0.016
rad for algorithms 1) and 2), respectively.

V. CONCLUSIONS

This paper addresses the problem of automatic LADAR
calibration by proposing numerical optimization methods,
that estimate the mounting bias rotation matrixR ∈ SO(3).
This id achieved by minimizing the distances between several
clouds of acquired laser points, without any knowledge of
the terrain. The optimization methods are based on a the
generalization of the Newton method to SO(3), estimating
the mounting bias rotation matrix, and both the Wolfe rule

and a deterministic method are used for the computation of
the step size. These methods and compared and analyzed in
simulation.

The main contribution of this work is to suppress the use
of a control surface, which represents the true terrain and
to which all measured points are compared in the literature.
Instead, the proposed method compares each cloud of points
with a surface approximation of the remaining clouds. The
performance and limitations of the calibration method was
extensively tested in Matlab and the results indicate that the
proposed algorithm is able to find good estimates for the
laser calibration problem. Additionally, the accuracy of these
estimates is shown to increase with the number of planes
used to describe surface approximation of each cloud of laser
measured points.

One future direction of research is to consider nonuniform
surface approximations in order to decrease the compu-
tational time, as the same approximation error might be
achieved with less planes. Further work is also needed in
order to include other sources of reconstruction errors, like
the time delay between laser acquisition and the INS/GPS
data or the range measurement error.
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