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Abstract This paper describes a terrain avoidance
control methodology for autonomous rotorcraft
applied to low altitude flight. A simple nonlinear
model predictive control (NMPC) formulation is
used to adequately address the terrain avoidance
problem, which involves stabilizing a nonlinear
and highly coupled dynamic model of a helicopter,
while avoiding collisions with the terrain as well
as preventing input and state saturations. The
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physical input saturations are made intrinsic to the
model, such that the control is always admissible
and the MPC design is simplified. A comparison
of several optimization approaches is provided,
where the performance of the traditional gradi-
ent method with fixed step is compared with the
quasi-Newton method and a line search algorithm.
The simulation results show that the adopted
strategy achieves good performance even when
the desired path is on collision course with the
terrain.
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1 Introduction

This paper addresses the problem of low altitude
terrain avoidance flight control of autonomous
rotorcraft. Within the scope of Unmanned Aer-
ial Vehicles, autonomous rotorcraft have been
steadily growing as a major topic of research. They
have the potential to perform high precision tasks
in challenging and uncertain operation scenar-
ios as new sensor technology and increasingly
powerful computational systems are available.
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Missions like aerial surveillance, automatic in-
frastructure inspection (Fig. 1), or 3-D surface
mapping in unknown environments demand
highly adaptable autonomous vehicles that can
meet low altitude flight requirements, thus em-
phasizing the importance of terrain avoidance
strategies.

To address this problem model predictive con-
trol (MPC) techniques are adopted. The MPC
formulation amounts to solving at each sampling
instant a discrete finite horizon optimal control
problem, subject to input and state constraints,
which results in a sequence of optimal control
actions, and applying the first element of this se-
quence to the plant. When MPC techniques are
based on nonlinear models, non-quadratic cost-
functionals, and/or general nonlinear constraints,
they are referred to as nonlinear model predictive
control (NMPC). The basic concepts inherent to
MPC techniques can be traced back to the 60s,
when Zadeh and Whalen [36] recognized the con-
nections between minimum time optimal control
and linear programming, and Propoi [29] intro-
duced the moving horizon approach. Interestingly
enough, the first algorithms closely related to the
present form of MPC were developed and im-
plemented in the context of the process industry
during the 70s and 80s, such as model predictive
heuristic control [32], dynamic matrix control [7],
model algorithmic control [23] and internal model
control [10]. The main focus of the first MPC
techniques was the performance achieved in real
petro-chemical and process industry applications,

gaining popularity due to its natural ability to cope
with constraints, nonlinearities and uncertainties.
These methods did not ensure stability a priori
and required fine tuning of the design parameters,
using Monte Carlo simulations to attest for the
desired behavior of the overall closed loop system.
With few results during the 80s [3, 16], it was in
the 90s that the research community devoted con-
siderable effort to the stability analysis of MPC
techniques. The main approach was to change
the optimization problem, by adding a terminal
equality constraint, terminal constraint set, and/or
terminal cost functional, yielding a plethora of
slightly different methods. Such methods can be
found in [1, 25, 31] and also in [4, 8, 15, 21], where
the main focus is the suppression of the terminal
constraint. Some recent results focus on explicit
solutions of the optimization problem [2, 13] or
on numerical methods for fast online solution of
large scale NMPC problems [37]. As for MPC
applications, the vast majority is documented in
the process industry, where there is a strong eco-
nomic drive to push the systems toward their
limits of operation. The models used in this kind of
applications are inherently nonlinear, constrained
and with very large time constants, allowing for
the use of large sampling times [11, 30]. With the
availability of increasingly faster CPU capabilities
in the last decade, MPC techniques are being
considered for the control of faster systems. For
instance, the control of autonomous vehicles using
MPC, as documented in [17, 18, 33, 34], is progres-
sively revealing promising results. Further details

Fig. 1 Helicopter for
infrastructure inspection
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on the theoretical developments and applications
of MPC techniques can be found in [9, 11, 20, 22].

Related work using different control methodo-
logies in the context of terrain following for
autonomous helicopters, can be found in [28]. The
authors use gain-scheduling control techniques to
control and guide the vehicle, in such a way that
it is possible to incorporate preview information
to achieve terrain following. In [19], an MPC-
based nap-of-earth flight trajectory optimization
for a helicopter is designed, resorting to an input-
output mapping of control functions and resultant
system trajectories, while in [35], MPC obstacle
avoidance techniques are applied in the field of
autonomous ground vehicles.

In this paper a simple NMPC methodology
is proposed in order to simultaneously meet the
conflicting control objectives of trajectory track-
ing and terrain avoidance. Since in NMPC the
optimal control problem is solved on-line, it is
straightforward to add state saturation constraints
as a penalty function to the cost functional and the
vehicle dynamic model constraint can be readily
incorporated in the cost functional using Lagrange
multipliers. In an effort to simplify the optimiza-
tion algorithm, the input saturation is directly
incorporated in the nonlinear model instead of
being added as a constraint to the optimization
problem. To enforce the terrain avoidance, a vir-
tual repulsive field is defined around the heli-
copter such that any obstacle within its range is
weighted in the optimal control cost functional,
guiding the vehicle trajectory away from colli-
sions. The resulting unconstrained optimization
problem is then numerically solved using the
gradient and quasi-Newton methods to compute
the search direction and using the Wolfe condi-
tions for the line search algorithm to solve the
step size optimization subproblem [26]. The ve-
hicle model considered in this work is a heli-
copter nonlinear dynamic model, derived from
first-principles and specially suited for model-
scale helicopters [5, 6]. The control algorithm re-
lies on a simplified version of the referred model
to compute the sequence of state vectors given a
sequence of input vectors.

The key contribution of this work is the use
of simple and well established optimization tech-
niques to solve the terrain avoidance trajectory

tracking NMPC problem for a complex nonlinear
helicopter model. The comparison of the gradient
method with fixed step size and the quasi-Newton
method with line search provides evidence that
the later optimization approach is a simple yet
effective way to reduce the computation burden
inherent to NMPC techniques. Furthermore, the
intrinsic saturation described in this paper sim-
plifies the controller design by removing the need
to include input constraints in the optimization
problem.

The paper is organized as follows. Section 2
presents a brief summary of the helicopter dy-
namic model, including the intrinsic actuation
saturation functions, the discretization and the
time delay modeling. Section 3 formulates the
terrain avoidance NMPC problem, describing
the control problem, the optimization algorithm
and the saturation, terrain and model constraints.
Implementation issues and simulation results are
presented in Section 4. Section 5 summarizes the
main ideas of this paper and discusses directions
for future work. A preliminary version of these
results was presented at the 17th IFAC World
Congress and can be found in [14].

2 Helicopter Model

This section briefly describes the helicopter dy-
namic model, as well as the intrinsic input satu-
ration, the discretization and the time delay
modeling. A comprehensive coverage of heli-
copter flight dynamics can be found in [5, 27]
and [6].

Consider the helicopter modeled as a rigid body
driven by the resultant force and moment ap-
plied at the helicopter’s center of mass, which
include the contributions of the helicopter com-
ponents and gravitational force. Let

(
IpB, I

BR
) ∈

SE(3) � R
3 × SO(3) denote the configuration of

the body frame {B} (attached to the vehicle’s
center of mass) with respect to the inertial
frame {I}. Consider also the Euler angles vec-
tor λB = [

φB θB ψB
]′

, denoting the orientation
of {B} relative to {I} such that I

BR = R(λB),
where θB ∈ (−π

2 , π
2 ] and φB, ψB ∈ R. The linear

and angular body velocities are defined as vB and
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ωB, respectively, where vB = B
I R I ṗB ∈ R

3, ωB =
B
I R IωB and IωB is the angular velocity of {B}
relative to {I}. For the sake of simplicity, the
superscript of the position vector is dropped, so
that pB = IpB, and the time dependence of the
state and input variables is omitted.

Using this notation, the helicopter combined
dynamics and kinematics state equations can be
written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇B = −ωB × vB

+ 1
m

[
fh (vB, ωB, uB) + fg (φB, θB)

]

ω̇B = −I−1 (ωB × I ωB)+I−1 nh (vB, ωB, uB)

ṗB = R (λB) vB

λ̇B = Q (λB) ωB

.

(1)

In the above equations, m denotes the vehicle
mass, I is the tensor of inertia about the frame {B},
uB is the input vector, fh and nh are the external
force and moment vectors due to the helicopter
components, and fg stands for the gravitational
force vector, all expressed in body coordinates,
and Q is the transformation from angular rates to
Euler angle derivatives. The state vector is defined
as xB = [v′

B ω′
B p′

B λ′
B]′, noting that xB ∈ X ⊂ R

nx

with nx = 12. The input vector, uB ∈ U ⊂ R
nu with

nu = 4, is defined as uB = [
θc0 θc1c θc1s θc0t

]′
and

comprises the main rotor collective input θc0 , the
main rotor cyclic inputs θc1c and θc1s , and the tail
rotor collective input θc0t .

There are five main components on a helicopter
that contribute for the overall force and moment
vectors: main rotor, tail rotor, fuselage, horizontal
tail plane and vertical tail fin, respectively denoted
by the subscripts mr, tr, f us, tp and f n. Hence,
the force and moment vectors can be decomposed
as fh = fmr + ftr + f f us + ftp + f f n and nh = nmr +
ntr + n f us + ntp + n f n.

2.1 Main Rotor

As the primary source of lift, propulsion and
control, the main rotor dominates the helicopter
dynamic behavior. As a result of the aerodynamic
lift forces generated at the surface of its blades,
the main rotor is responsible for the helicopter’s

distinctive ability to operate in low-speed regimes,
which include hovering and vertical maneuvering.

To present the main rotor equations of motion,
two additional frames need to be introduced. The
first denotes the Hub/Wind frame, {hw}, which
has its origin at the hub, x-axis aligned with
the component of the helicopter linear velocity
relative to the fluid that is parallel to the hub
plane, and z-axis aligned with the hub shaft. The
second coordinate frame, {b}, is attached to the
blade, with the y-axis aligned with the blade chord
and describes rotation, flapping, and pitching
motions.

Most of the helicopter maneuvering capabilities
result from effectively controlling the main rotor
aerodynamic loads. This is achieved by means
of the swashplate—a mechanism responsible for
applying a different blade pitch angle θm at each
blade azimuth angle ψm, such that θm(ψm) = θc0 +
θ1c cos ψm + θ1s sin ψm. The collective command
θc0 is directly applied to the main rotor blades,
whereas the cyclics θ1c and θ1s result from com-
bining the cyclic commands θc1c and θc1s with the
flapping motion of the Bell-Hiller stabilizing bar,
also called flybar. This combined motion can be
described by the first order system

� Aθ̇ θ̇1 + �2 Aθ (μ) θ1

= �2 (
Bθ (μ) θ c1 + Bω ωB + Bλ(μ)λ

)
, (2)

considering that λ = [
μz − λ0 λ1c λ1s

]′
, θ1 =

[
θ1c θ1s

]′
, θ c1 = [

θc1c θc1s

]′
, ω = [

p̄ q̄
]′

, and defining
� = ψ̇m as the rotor speed. The variables μ

and μz are the normalized x and z-components
of the hub linear velocity and p̄ and q̄ are the
normalized x and y-components of the angular
velocity, all expressed in the frame {hw}. Detailed
expressions for the matrices Aθ̇ , Aθ (μ), Bθ (μ),
Bω, and Bλ(μ) can be found in [5]. Due to this
additional dynamic component, the state vector
becomes xB = [

v′
B ω′

B p′
B λ′

B θ ′
1

]′
and nx = 14.

As a result of the thrust force generated at the
surface of a rotating blade, the air is accelerated
downwards creating a flow field, usually called
induced downwash. This flow field can be decom-
posed in Fourier Series, yielding

λ(ψm) = λ0 + rm (λ1c cos ψm + λ1s sin ψm) , (3)
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where rm denotes the rotor radius integration
variable and the second and higher order terms
are neglected. As a consequence of the rotation
and pitching motions and their interaction with
the motion of the helicopter, the blades describe
flap and lag motions. These two blade motions
can be roughly characterized by pulling the tip of
the blade upwards and backwards, respectively.
In this work, the blades are assumed rigid and
linked to the hub through flap hinge springs with
stiffness kβ , the lag motion is neglected, and the
flap motion is approximated by the steady state
solution of the Fourier Series expansion without
second and higher order terms, resulting in

β = A−1
0 (μ) [B1(μ) θ + B2(μ)ω + B3(μ)λ] , (4)

where β = [
β0 β1c β1s

]′
, θ = [

θc0 θ1c θ1s
]′

, and the
matrices A0(μ), B1(μ), B2(μ), and B3(μ) are
defined in [5].

The forces and moments generated by the main
rotor are the sum of the contributions of each
blade expressed in the hub frame. The contribu-
tion of the main rotor to the total force acting on
the helicopter can be written as fmr = B

hw
R hwfmr,

with the expression for hwfmr given by

hwfmr � nb

2

⎡

⎣
−Y1s

−Y1c

2 Z0

⎤

⎦

+ nb

2

⎡

⎢⎢
⎢
⎢
⎣

−Z1c −Z0 − Z2c

2
− Z2s

2

Z1s
Z2s

2
Z0 − Z2c

2
0 0 0

⎤

⎥⎥
⎥
⎥
⎦

β ,

(5)

where nb is the number of blades. The terms
Y(.) and Z(.) are the components of the Fourier
Series decomposition of the aerodynamic force
generated at each blade. Similarly, the main rotor
contribution to the overall moment is computed
using nmr = B

hw
R hwnmr + Bpmr × fmr, where Bpmr

denotes the position of the main rotor relative to

the body frame, and the expression for hwnmr can
be written as

hwnmr � nb

⎡

⎣
0
0

N0

⎤

⎦

+nb

2

⎡

⎢
⎢
⎢⎢
⎣

−N1c −N0 − N2c

2
−kβ − N2s

2

N1s −kβ + N2s

2
N0 − N2c

2
0 0 0

⎤

⎥
⎥
⎥⎥
⎦

β ,

(6)

noting that the terms N(.) are the components of
the Fourier Series decomposition of the aerody-
namic yaw moment generated at each blade.

2.2 The Other Components

The tail rotor, placed at the tail boom in order to
counteract the moment generated by the rotation
of the main rotor, provides yaw control of the
helicopter. The same principles adopted for the
main rotor can be used to model the tail rotor,
further neglecting the blade flapping and pitching
motions, which have little significance for small
rotor diameters. The tail rotor contribution to the
total force can be approximated by

ftr = B
tr R trf � [

0 −nb t Z0t 0
]′

, (7)

where nb t is the number of blades of the tail rotor,
Z0t is the thrust force produced by each blade of
the tail rotor and B

tr R tr is the rotation from the tail
rotor frame {tr} to the body frame {B}. Similarly,
the moment expression is given by

ntr = [
0 −nb t N0t 0

]′ + Bptr × ftr , (8)

where N0t is the torque generated by each blade
of the tail rotor and Bptr denotes the position of
the tail rotor relative to the body frame.

Accurate modeling of the aerodynamic forces
and moments generated by the flow surrounding
the helicopter fuselage is a demanding task. In this
work these loads are modeled as functions of the
mean flow speed v f us, the incidence angle α f us and
the side-slip angle β f us. The horizontal tail plane
and vertical tail fin are modeled as normal wings,
whose aerodynamic force contributions can be
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approximated by functions of the angle of attack
and sideslip, respectively.

2.3 Intrinsic Input Saturation

Within the MPC literature, input saturation con-
straints are included in the optimization problem
to guarantee that the resulting control sequence is
always admissible. However, when using NMPC
these and other complex physical constraints can
be defined implicitly in the nonlinear model of
the plant, instead of explicitly in the optimization
problem. The rationale is to separate between
basic control saturations, corresponding to phys-
ical limitations of the platform or model, and
mission dependent control saturations, where the
former are made intrinsic to the nonlinear model
and the latter are defined as an additional con-
straint to the optimization problem. This pro-
cedure simplifies the optimization problem and
yields a self contained model of the plant that is
valid for any inputs.

The autonomous helicopter dynamic model de-
scribed in Eq. 1 can be written as

ẋB(t) = fB (xB(t), uB(t)) . (9)

Let the new input ūB be defined as a smoothly
saturated function of the regular input uB, so
that the dynamic equation is now given by ẋB =
fB (xB, ūB(uB)). In brief, considering that uB ∈ U ,
the procedure described below defines the new
saturated input vector as ūB ∈ R

nu , simplifying the
optimization problem formulation.

The saturation functions are derived from a
basic function ā(a) = a

1+|a| , applying translation
and scaling operations both to the function and
its derivative, such that inside the bounds ā = a
and outside the bounds ā tends smoothly to the
maximum value amax or to the minimum value
amin. The generic saturation function used in this
work is defined as

ā(a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a , εmax ≤ a ≤ εmin

εmax + a − εmax

1 + a−εmax
ε

, a > εmax

εmin + a − εmin

1 − a−εmin
ε

, a < εmin

,

(10)

with εmax = amax − ε, εmin = amin + ε, where 0 <

ε < 1 is a constant, that defines the length of the
smooth transition. The derivative of this function
is defined as

d ā
da

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 , εmax ≤ a ≤ εmin
1

(
1 + a−εmax

ε

)2 , a > εmax

1
(
1 − a−εmin

ε

)2 , a < εmin

. (11)

For simplicity and with a slight abuse of notation,
the input vector uB is used hereafter to denote the
result of the smooth saturation, ūB.

2.4 Discretization and Delay Modeling

In the NMPC approach used in this paper it is
necessary to find a discrete representation of the
equations of motion of the vehicle. There are sev-
eral methods available, with different complexity
and integration errors, from which the simplest is
to use the forward Euler discretization, resulting
in the difference equation

xB((k + 1)Ts) = xB(kTs)

+TsfB (xB(kTs), uB(kTs)) , (12)

where Ts is the sampling interval. The previous
equation can be rewritten using a compact nota-
tion as

xBk+1 = fd
(
xBk , uBk

)
. (13)

The intensive computational requirements of
NMPC techniques discard the possibility of ne-
glecting the processing time in comparison with
the sampling interval. A fair assumption is to
consider that the time needed for the computation
of the control law is smaller than the sampling
interval. In recent literature, some new algorithms
are proposed to tackle this problem, such as the
advanced step algorithm described in [37]. For
simplicity, the classic approach is used in this
work, which considers that the delay between the
instant the state variables are measured and the
instant when new control action is applied coin-
cides with the sampling period Ts. The model is
augmented with an extra delay state yielding the
new state vector xk = [x′

Bk
x′

uk
]′, the input vector
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is defined as uk = uBk , and the model function can
be denoted as

f (xk, uk) =
[

fd
(
xBk , xuk

)

uBk

]
, (14)

resulting in the discrete-time model

xk+1 = f (xk, uk) . (15)

3 Model Predictive Control Problem

To address the two conflicting objectives of tra-
jectory tracking and terrain avoidance, the NMPC
problem is formulated as a discrete-time open-
loop optimal control problem with finite horizon,
subject to the discrete nonlinear dynamic model
equations, the saturation constraints, and the ter-
rain avoidance constraint.

Recalling Eq. 15, the vehicle dynamics can
be modeled as a discrete-time state-space equa-
tion with state xk ∈ X and input uk ∈ U , where
X ⊂ R

nx and U ⊂ R
nu denote the feasibility sets of

the state and control vectors, respectively. Let N
be the prediction horizon of the control problem,
Uk = {uk, . . . , uk+N−1} the sequence of control
inputs at iteration k, and Xk = {xk, . . . , xk+N} the
sequence of state vectors generated by that con-
trol sequence. Further note that the state se-
quence is a function of the initial state vector and
the control sequence, i. e. Xk = X(xk, Uk).

The saturation constraints of the state and
input sequences are defined by the conditions
Xk ∈ X N and Uk ∈ U N , considering the sets
X N = {Xk : xi ∈ X , ∀i=k,...,k+N} and U N = {Uk :
ui ∈ U, ∀i=k,...,k+N−1}. Using Eq. 15, the model con-
straint for an horizon of N steps ahead can be
written as

fM(Xk, Uk) =
⎡

⎢
⎣

f(xk, uk) − xk+1
...

f(xk+N−1, uk+N−1) − xk+N

⎤

⎥
⎦ = 0 .

(16)

The terrain constraint is denoted by

fT(Xk) =
⎡

⎢
⎣

FT(xk)
...

FT(xk+N)

⎤

⎥
⎦ = 0 , (17)

where FT(.) weights the distance between the ve-
hicle and the terrain such that, as discussed below,
FT(Xk) goes exponentially fast to zero when the
distance increases. Given these constraints, the
NMPC problem can be defined as

U∗
k = arg min

Uk

JN,k (18)

s.t. Xk ∈ X N , Uk ∈ U N (19)

fM(Xk, Uk) = 0 (20)

fT(Xk) = 0 (21)

where

JN,k = JN(Xk, Uk) = Fk+N +
k+N−1∑

i=k

Li , (22)

Fi = F(xi) = 1
2

(xi − x̄i)
′ P (xi − x̄i) , (23)

Li = L(xi, ui) = 1
2

[
(xi − x̄i)

′ Q (xi − x̄i)

+ (ui − ūi)
′ R (ui − ūi)

]
(24)

noting that x̄i for all i = k, . . . , k + N and ūi for
all i = k, . . . , k + N − 1 are the known reference
state and input vector sequences, respectively, and
P, Q, and R are symmetric positive definite matri-
ces to be defined in the simulation results section.
In brief, the NMPC objective is to find, at each
iteration k, the optimal control sequence U∗

k with
horizon N, such that the distance to the full-state
trajectory and the control effort are minimized
through the cost functional JN,k, without violating
the state and input constraints defined in Eq. 19
and keeping the vehicle within a safety distance
from the terrain.

The constrained optimization problem pre-
sented above can be reformulated as an un-
constrained optimization problem and gradient
methods can be used to estimate the optimal
solution. While constraint 20 is eliminated us-
ing Lagrange multipliers, constraints 19 and 21
are incorporated in the cost functional resorting
to penalty methods. In the following subsections
each constraint function and respective inclusion
in the unconstrained optimization cost functional
are described.
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3.1 Terrain Avoidance Constraint

The terrain constraint function introduced in
Eq. 17 is designed so as to enable a collision free
trajectory, even if the reference trajectory goes
through the terrain. This constraint can be imple-
mented by defining a repulsive field around the
origin of the body frame {B}, obtained by weight-
ing exponentially the minimum distance between
the helicopter position p and the closest point
on the terrain, pm(p), which is a function of the
position of the helicopter. Consider the position
error between these two points to be defined as
p̃ = p − pm and let rS be the radius of a safety
sphere around the helicopter, such that if p̃′ p̃ > r2

S
then the vehicle is sufficiently distant from the
terrain. A function g(x) that gives a measure of
distance between the terrain and the safety sphere
can be defined as

g (x) = p̃′ p̃ − r2
S , (25)

such that g (x) = 0 when the terrain touches the
safety sphere. The terrain avoidance constraint
function can be written as

FT(x) = c e−g(x) , (26)

where c > 0 is a scalar weight selected such that,
when g(x) = 0 the respective value of the terrain
constraint, FT(x) = c, is adequate to drive the

vehicle away from the terrain in the foreseen oper-
ation scenarios. The zero value is forced whenever
the distance ‖p̃‖ is greater than a predefined outer
radius rO where the influence of the terrain is
negligible, that is FT = 0 if ‖p̃‖ > rO, thus avoid-
ing unnecessary computational burden. Note that
even if this procedure is not performed, the devia-
tion from the desired trajectory will be negligible,
since the terms Li of the cost function will always
be dominant when the vehicle is not close to the
terrain. The derivative of this terrain constraint is
computed using

∂ FT

∂x′ = −2 c p̃′ e−g(x),
∂ p̃
∂x′ (27)

and

∂ p̃
∂x′ =

[
03×3 03×3

∂ p̃
∂p′ 03×3

]′
, (28)

where the derivative ∂ p̃
∂p′ is computed numerically,

based on the available information of the terrain.
The values used throughout this work for the

constants described earlier are c = 1, r0 = 10m,
and rS = 5m. An example of a one-dimension ver-
sion of this function can be seen in Fig. 2. This type
of function has the advantage of being defined for
all x ∈ R

nx , while the ubiquitous infinity barrier
type of constraint functions, applied to this safety
sphere concept, may lead to problems during ini-

0 2−2 4−4 6−6 8−8 10−10
0

1

2

3

4

5

6

7

8
x 1010

x [m]

0 2−2 4−4 6−6 8−8 10−10

x [m]

F
T
(x

)

F
T
(x

)

FT(x)
Safety radius

(a) Global view

0

10

20

30

40

50

60

70

80

90

100

(b) Detail on safety sphere boundary

FT(x)
Safety radius

Fig. 2 One-dimensional function c e−g(x), with g(x) = x2 − 52 and c = 1



J Intell Robot Syst (2012) 68:69–85 77

tialization or when avoiding the terrain. For in-
stance, for takeoff maneuvers, the vehicle would
be initialized with the terrain inside the safety
sphere and the proposed terrain constraint alone
would drive its trajectory away from the terrain,
whereas the infinity barrier constraint is not co-
herently defined for such a situation and would
have the opposite effect of keeping the vehicle
close to the terrain.

3.2 State and Input Saturation Constraint

The saturation constraints defined in Eq. 19 are
included in the optimization problem to comple-
ment the intrinsic input saturation described in
Section 2.3, enabling the definition of mission
specific bounds for the state and input vectors. If
there is no special requirement in terms of actu-
ation there is no need to have input saturations
in the optimization problem, since the physical
constraints will be always satisfied through the
intrinsic saturations. On the other hand, a mission
where the payload includes sensitive equipment
may require all actuation signals to be further con-
strained into a smaller actuation set, thus avoiding
large acceleration maneuvers.

These constraints can be incorporated in the
cost functional as a penalty function, FR (x, u),
which is zero-valued for x ∈ X and u ∈ U , and
behaves as a quadratic function outside these sets.
Assuming that the feasibility sets for state and
input vectors are given by X = {

x ∈ R
nx : x( j)

min ≤
x( j) ≤ x( j)

max ∀ j=1,...,nx

}
and U = {

u ∈ R
nu : u(l)

min ≤
u(l) ≤ u(l)

max ∀l=1,...,nu

}
, respectively, the penalty

function can be defined as

FR(x, u) =
nx∑

j=1

fR(x( j)) +
nu∑

l=1

fR(u(l)) , (29)

where

fR(a) = 1
2

h2(|a − acenter| − arange)wa , (30)

wa is a positive scalar weight, acenter = (amax +
amin)/2, arange = amax − acenter, and

h(a) =
{

a , if a > 0
0 , otherwise

. (31)

The derivative of this constraint is computed
analytically using the derivative of the generic
function fR(a), given by

d fR(a)

da
= sign(a − acenter)

× h(|a − acenter| − arange)wa . (32)

3.3 Unconstrained Optimization Problem

The unconstrained optimization control problem
can be defined as

U∗
k = arg min

Uk

J̄N,k (33)

s.t. fM(Xk, Uk) = 0 (34)

where the terrain and saturation constraints are
incorporated in the new cost functional by using

J̄N,k = J̄N(Xk, Uk) = F̄k+N +
k+N−1∑

i=k

L̄i , (35)

F̄i = F̄(xi) = Fi + FR(xi, 0) + FT(xi) , (36)

L̄i = L̄(xi, ui) = Li + FR(xi, ui) + FT(xi) , (37)

and the model constraint 34 is solved by the
elimination method using Lagrange multipliers.
Introducing the Lagrange multiplier sequence
k = {λk+1, . . . , λk+N} and the Hamiltonian Hi =
H (xi, ui) = L̄i + λ′

i+1 f (xi, ui), the cost functional
can be rewritten as

J̄N,k = F̄k+N − λ′
k+N xk+N

+
k+N−1∑

i=k+1

[
Hi − λ′

i xi
] + Hk. (38)

For a fixed initial state xk, the first order condition
of optimality yields

∂ J̄N,k

∂xi
= ∂ Hi

∂xi
− λ′

i = 0 , ∀i=k+1,...,k+N−1 , (39)

∂ J̄N,k

∂xk+N
= ∂ F̄k+N

∂xk+N
− λ′

k+N = 0 , (40)

∂ J̄N,k

∂ i
= ∂ Hi

∂ui
= 0 , ∀i=k,...,k+N−1 , (41)
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where ∂ Hi
∂ui

= ∂ L̄i
∂ui

+ λ′
i+1

∂ fi
∂ui

and ∂ Hi
∂xi

= ∂ L̄i
∂xi

+
λ′

i+1
∂ fi
∂xi

. The lagrange multipliers are defined as

λ′
k+N = ∂ F̄k+N

∂xk+N
and λ′

i = ∂ Hi

∂xi
, ∀i=k+1,...,k+N−1,

(42)

so that the first order conditions of optimality
reduce to Eq. 41.

An iterative algorithm based on the first order
gradient method can be applied to estimate U∗

k,
updating the control sequence at each iteration
according to

Uk ← Uk + s �k , (43)

where the step size is denoted by s and the search
direction by �k. The optimization algorithm can
be summarized as follows.

Algorithm 1 Minimization algorithm for the
NMPC unconstrained problem.
1. Initialize Xk, Uk;
2. Compute {λi}, i = k + N, . . . , k;

3. Compute
{

∂ Hi

∂ui

}
, i = k, . . . , k + N − 1;

4. Compute the search direction �k ;
5. Compute the step size s;
6. Compute the new Uk using Eq. 43 and the

new Xk = {xi} using xi+1 = f (xi, ui), for i =
k + 1, . . . , k + N;

7. Test stop conditions: if false go to step (2),
if true let Ûk = Uk be the final estimate, ap-
ply first input vector ûk to system and set
the next initial solution to Uk ← {ûk+1, . . . ,

ûk+N−1, ûk+N−1}.

The search direction is denoted by the sequence
�k = {δk, . . . , δk+N−1} and can be obtained using
either the gradient or the quasi-Newton methods,
given respectively by

δi = −∂ Hi

∂ui
and δi = −Di

∂ Hi

∂ui
, (44)

where the matrices Di are estimates for the in-
verse second-order derivatives ∂2 Hi

∂ui∂ui
, computed as

in [26].
The line search optimization subproblem, used

to estimate the optimal step size s∗, is numerically

solved using the Wolfe rule. This approach guar-
antees a decrease of the cost functional, as the well
known Armijo rule does, and ensures reasonable
progress by ruling out unacceptably short steps
[26]. Consider the step size optimization subprob-
lem defined as

s∗ = arg min
s≥0

φ(s) , (45)

where the cost functional is φ(s) = J̄+
N,k =

J̄N
(
X+

k , U+
k

)
, with U+

k = Uk + s �k, X+
k =

X(xk, Uk + s �k), and the first order condition of
optimality is given by

d φ(s)
ds

= d J̄+
N,k

ds
= 0 . (46)

The superscript (.)+ denotes the result of up-
dating a variable using the step size s. Not-
ing that J̄N−i,k+i = L̄k+i + J̄N−i−1,k+i+1 for all i =
0, . . . , N − 1, the derivative

d J̄+
N,k

ds can be defined
using

d J̄+
N−i,k+i

ds
= ∂ L̄+

k+i

∂xk+i
ηk+i + ∂ L̄+

k+i

∂uk+i
δk+i

+d J̄+
N−i−1,k+i+1

ds
, (47)

d J̄+
0,k+N

ds
= ∂ F̄+

k+N

∂xk+N
ηk+N , (48)

ηk+i = d x+
k+i

ds
= ∂ f+k+i−1

∂xk+i−1
ηk+i−1

+ ∂ f+k+i−1

∂uk+i−1
δk+i−1 , (49)

Let also μ1 = φ(0) + σ1
d φ(0)

ds s and μ0 = σ0
d φ(0)

ds ,
where σ1 and σ0 are parameters of the search
algorithm. The Wolfe conditions classify a step
size according to the sets

A =
{

s > 0 : φ(s) ≤ μ1 ∧ d φ(s)
ds

≥ μ0

}

D = {s > 0 : φ(s) > μ1}

E =
{

s > 0 : φ(s) ≤ μ1 ∧ d φ(s)
ds

< μ0

}
, (50)

that define the acceptable, the right unacceptable,
and the left unacceptable step sizes, respectively.
By using a basic search algorithm an acceptable
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step size is obtained, yielding an estimate of the
optimal step size.

4 Simulation Results

The terrain avoidance NMPC algorithm pre-
sented in this work is designed to provide the
unmanned rotorcraft with low altitude flight capa-
bilities even in operation scenarios where the pre-
defined trajectory collides with the terrain. In this
section the performance of the proposed method
is evaluated in simulation.

Since the problem of terrain acquisition and
representation is not the main focus of this paper,
it is assumed that the terrain is represented by
an elevation function and that this information
enters the control algorithm in the computation
of the helicopter-terrain distance. In the results
presented hereafter, the helicopter model de-
scribed in Section 2 is parameterized for the Vario
X-treme model scale helicopter and used to close
the simulation loop [5]. A simplified, yet highly
nonlinear, version of this model is used in the con-
trol algorithm. Full analytical expressions for the
first order derivatives of this model were obtained
in order to efficiently compute the actuation at
each sampling time. Simulations were carried
out in Matlab�/Simulink� with C mex-functions,
using an Intel� Core™2 T9550 at 2.66GHz with
3GB of RAM running Ubuntu 10.10 operative
system.

The simulation results presented in this section
are two-fold. Firstly, a terrain avoidance simula-
tion is presented to demonstrate the capabilities
of the algorithms in collision avoidance situations
and to compare the performance of each opti-
mization algorithm. Secondly, a shorter simula-
tion is presented to illustrate particular aspects of
this NMPC, such as the natural previewing ability
of MPC strategies or the activation of intrinsic
saturations and saturation constraints included in
the optimization problem.

4.1 Terrain Avoidance Results

The terrain used in the first simulation resembles
a winding water stream and the reference trajec-
tory comprises three sections: (1) hovering flight

at the initial position; (2) forward flight trajec-
tory with constant speed ‖v‖ = 2 ms−1; and (3)
hovering flight at the final position. The sample
time is Ts = 0.02 s and the horizon is N = 50
sample times, or equivalently 1 s. This horizon
is sufficiently large to allow for the algorithm to
predict impacts with the terrain and change the
helicopter trajectory to avoid it. The precision
of the solution is determined by the algorithm
stop condition given by ‖∇Uk J̄N,k‖/‖∇Uk J̄(0)

N,k‖ <

10−3, where J̄(0)

N,k is the initial value of the cost
functional. Noting that the final state vector is
defined as xk = [

v′
Bk

ω′
Bk

p′
Bk

λ′
Bk

θ ′
1k

u′
Bk−1

]′
, the

cost functional matrices used in the simulation
results are

R = diag(150, 300, 300, 150) , (51)

Q = diag(I3, 3 I2, 10, 5 I3, I2, 10, I2, R) , (52)

and the P matrix is computed as the steady-
state solution of the discrete-time algebraic
Riccati equation using matrices Q and R, for the
helicopter model linearized around hover. The
operator diag(.) stands for the block diagonal ma-
trix formed by the arguments, and In is the n × n
identity matrix.

The simulation results presented in Figs. 3
and 4, feature the time evolution of the position,
Euler angles, linear velocity, actuation and the
3-D trajectory described by the helicopter. These
results include the values for each of the three op-
timization algorithms: gradient method with fixed
step (Grad-FS), gradient method with line search
(Grad-LS); and quasi-Newton method with line
search (qNewton-LS). For the Grad-FS algorithm,
the value s = 10−6 was chosen for the step size
so that the algorithm converges at each instant
of the desired simulation with a good rate of
convergence. Since the optimization problem and
the termination tolerance are the same for each
of these algorithms, the performance in terms of
minimization of the cost function should be the
same, apart from numerical issues. Note that the
cost function minimization includes several terms:
trajectory following, terrain avoidance, control
effort, and saturations. It can be seen in the sim-
ulation plots that all the variables of the three
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Fig. 3 Trajectory
tracking with terrain
avoidance
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Fig. 4 Trajectory
tracking with terrain
avoidance

10 20 30 40 50 60 70 80 90 100 110

0.05

0.055

0.06

θ c 0 [r
ad

]

10 20 30 40 50 60 70 80 90 100 110

5

10

15

x 10

θ c 1c

 [r
ad

]

10 20 30 40 50 60 70 80 90 100 110

0

5
x 10

θ c 1s

 [r
ad

]

10 20 30 40 50 60 70 80 90 100 110

0.07

0.075

0.08

Time[s]

θ c 0t

 [r
ad

]
reference

0

20

40

60

80

100

0
20

40
60

80
100

10

20

30

40

X

reference

MPC

0

20

40

60

80

100

0
20

40
60

X

reference

MPC

reference

MPC



82 J Intell Robot Syst (2012) 68:69–85

Table 1 Iterations and
computation times

Method avg(nit) avg(tCPU ) max(tCPU )

Gradient with Fixed Step (Grad-FS) 1129.9 41.4 s 84.5 s
Gradient with Line Search (Grad-LS) 136.3 12.5 s 46.3 s
Quasi-Newton with Line Search (qNewton-LS) 20.6 4.6 s 23.4 s

algorithms are overlapping, which indicate that
they have identical minimization performance.

The improvements introduced by the different
methods are presented in Tables 1 and 2, re-
garding the average computation time avg(tCPU ),
the maximum computation time max(tCPU ), and
the average number of iterations avg(nit). For in-
stance, the reduction percentage of the average
CPU time from algorithm A to B is computed
using

ReductionA→B(tCPU )

= 100
avg(tA

CPU ) − avg(tB
CPU )

avg(tA
CPU )

% .

From this data it is evident that using the line
search algorithm and the quasi-Newton method
is more advantageous than using the traditional
gradient method with a fixed step. According to
these results, the control algorithm solution com-
bines the two conflicting objectives of trajectory
tracking and effective terrain avoidance, redirect-
ing the vehicle to avoid the terrain while keeping
the shortest possible distance with respect to the
reference trajectory. Notwithstanding these im-
provements in computation times, the algorithms
are not yet prepared for a real-time implementa-
tion that is compatible with the high sample rate
nature of the envisioned platform (50 Hz). For
this reason, future work will focus on implemen-
tation efficiency, further simplification of the heli-
copter model used within the MPC algorithm and
redefinition of the terrain representation. With
the steadily increasing computational power, new
generation processors and algorithm refinements

will make these algorithms usable in the near
future.

The presented terrain avoidance methodology
is meant to be the core of a larger system, which
would include a supervisor and a reference tra-
jectory planner. Since this optimal control strat-
egy with terrain avoidance can lead to terrain
local minima, the global system should detect that
the vehicle is approaching a local minimum and
redesign the reference trajectory to redirect the
vehicle to a different path.

4.2 Saturation Results

The second simulation results intend to shed some
light on particular aspects of this NMPC im-
plementation, which are not clear in a normal
operation scenario such as that of the previous
simulation results. The simulation is performed
in the same conditions as the previous one, but
the trajectory is changed to feature an abrupt
change in the attitude of the vehicle: (1) hov-
ering flight at the initial position facing north;
(2) forward flight trajectory with constant speed
‖v‖ = 4 m s−1 facing west. The simulation data
comprises three different runs with: no satura-
tions (NoSat); intrinsic saturations in the inputs
(IntrSat); and optimization problem saturation
constraints (OPSat), in both the input and
state variables. The input saturation limits,
used for both the IntrSat and the OPSat,
are umin = [

0.0 −0.1 −0.015 0.0
]′

rad and umax =
[
0.065 0.1 0.015 0.3

]′
rad. For the state saturation

used in OPSat, all variables will remain within
the bounds, except for the yaw rate, for which

Table 2 Relative improvements in number of iterations and CPU time between the algorithms

avg(nit) (%) avg(tCPU ) (%) max(tCPU ) (%)

Reduction from Grad-FS to Grad-LS 87.9 69.7 45.3
Reduction from Grad-LS to qNewton-LS 84.9 63.0 49.4
Reduction from Grad-FS to qNewton-LS 98.2 88.8 72.3
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Fig. 5 Saturation test
with: (i) no saturations
(NoSat), (ii) intrinsic
saturations in the inputs
(IntrSat), and (iii)
optimization problem
saturation constraints
(OPSat)
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the absolute value is saturated at 0.4 rad s−1. The
bounds considered for this simulation results are
more restrictive than the real bounds used in the
terrain avoidance simulation in order to show the
behavior of the saturation strategies. It can be
observed in Fig. 5, that both saturation strategies,
IntrSat and OPSat, are effectively keeping the
main rotor collective and lateral cyclic controls
within the bounds. Moreover, the state saturation
in the optimization problem is also constraining
the yaw rate absolute value below 0.4 rad s−1. It
can also be seen that the control algorithm starts
changing the control effort N steps ahead of the
change in the reference trajectory, demonstrating
the preview ability of this NMPC strategy.

As discussed above, the objective of having
intrinsic saturations is to make sure that the physi-
cal limitations of the platform and the numerical
limitations of the model are always taken into
account in the form of input saturations within
the model function, even if there are no saturation
constraints in the optimization problem.

5 Conclusions

Motivated by the use of autonomous rotorcraft
in low altitude flight applications, this paper pre-
sented a simple NMPC-based strategy for terrain
avoidance and motion control of helicopters. In
addition to imposing state and input saturation
constraints, the proposed solution enforces terrain
avoidance by defining a repulsive field around
the helicopter that grows exponentially fast as the
distance between the vehicle and the closest point
on the terrain decreases.

In contrast to the standard approach in NMPC
literature, the actuation constraints were incorpo-
rated into the model so that every control action
provided by the control algorithm is always valid
and the controller design is simplified. The con-
strained optimization problem was reformulated
as an unconstrained optimization problem using
penalty methods to accommodate the saturation
and terrain constraints, and Lagrange multipli-
ers to eliminate the helicopter dynamic model
constraint. The optimization problem was solved
using an iterative algorithm that relies on the
gradient and quasi-Newton methods to find the

search direction and on the Wolfe conditions to
find an estimate of the optimal step size. The
simulation results were obtained using a simplified
nonlinear helicopter model in the MPC algorithm
and the full model as the real plant, showing that
the presented methodology can achieve effective
terrain avoidance while steering the vehicle along
a reference trajectory. Moreover, it is shown that
resorting to the quasi-Newton method with line
search drastically reduced the number of itera-
tions and CPU time relatively to the standard
gradient method with fixed-step.

Similarly to most NMPC strategies used in high
sampling rate platforms, the proposed methodol-
ogy faces the challenge of real time implemen-
tation. Nevertheless, the constant technological
advancements in terms of processing capability
will enable the use of refined versions of these
algorithms in the near future. In terms of CPU
time consumption, the most critical tasks involve
the helicopter model computations and the algo-
rithm to determine the closest point on the ter-
rain (which with modern sensors, like LADARs
or time-of-flight cameras, can be obtained with
negligible processing). Therefore, future work will
focus on implementation efficiency, simplification
of the helicopter model and also the simplification
of the closest point computation. Furthermore,
future algorithms shall be compared with other
existing obstacle avoidance methods [12], using a
standard set of benchmarks such as in [24].
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