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Abstract— A novel sensor-based filter for simultaneous local-
ization and mapping (SLAM), featuring globally asymptotically
stable error dynamics, is proposed in a companion paper,
with application to uninhabited aerial vehicles (UAVs). This
paper presents the second part of the algorithm, detailing a
computationally efficient and numerically robust method for
online inertial map and trajectory estimation based on the
estimates provided by the SLAM filter previously derived.
Central to the solution is the formulation of an optimization
problem, that of finding the translation and the rotation that
best explain the transformation between two sets of landmarks,
with known associations, for consecutive time instants. The
validation, performance, and consistency assessment of the
proposed SLAM algorithm is successfully performed with real
data, which was acquired by an instrumented quadrotor.

I. INTRODUCTION

Recently, the automatic inspection of critical infrastruc-
tures and buildings, such as bridges, electric power lines,
dams, and construction areas, has been acknowledged as a
challenging and promising application scenario for the use of
uninhabited aerial vehicles (UAVs). Near these structures, the
position measured by a global positioning system (GPS) can
degrade severely and the magnetic field is locally distorted,
precluding the use of magnetometers. The use of aided
navigation techniques, as proposed in this work using a
SLAM algorithm, aims at solving this problem without using
these, possibly compromised, sensing devices.

In the companion paper [1] a globally asymptotically
stable (GAS) sensor-based SLAM navigation filter is pro-
posed, with application to UAVs in GPS-denied environ-
ments, and considering acceleration and angular rate inertial
measurements, as well as ranging measurements provided
by a LASER scanning device and an altitude sensor. A
detailed survey and tutorial on SLAM techniques can be
found in [2], [3], and references therein. One of the most
successful strategies is to use the discrete-time EKF-SLAM
algorithm, considering the full state to be composed of the
vehicle pose and the location of all the map landmarks
described in the inertial frame, and estimated at each iteration
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based on the open-loop prediction and the matched landmark
observations. Conversely, the SLAM filter proposed in the
companion paper [1] represents all landmark positions in the
vehicle/sensor coordinate frame, making the positioning of
the vehicle in the map trivial (i.e. at the origin and aligned
with the sensor frame) and consequently, not included in the
state vector.

This paper proposes an algorithm to compute the optimal
transformation that enables the estimation of the inertial map
and vehicle trajectory using the sensor-based map provided
by the SLAM filter. This is achieved by estimating the trans-
lation and rotation between two instants, provided at least
two successful landmark associations between them. Thus,
with the knowledge of the vehicle pose at the initialization
instant, usually considered to be the inertial frame, it is
possible to incrementally map the sensor-based quantities
into the inertial frame. The problem of extracting the or-
thogonal transformation that maps one set of known points
into a second set of known points, with known associations
between them, can be rewritten by subtracting the centroid
of each point set, resulting in the problem of finding solely
the rotation matrix between the modified sets, as in [4], [5].
This is usually called the generalized orthogonal Procrustes
problem [6] and has a closed-form solution directly com-
puted in the space of the special orthogonal matrices, as
derived in [5]. The main contributions of this paper are: (i)
the formulation and closed-form solution for the problem
of obtaining the transformation from the sensor frame to
inertial frame; (ii) the formulation of the traditional body to
inertial transformation solution, based on state augmentation,
and comparison with the closed-form solution; and (iii) the
detailed presentation and discussion of the proposed SLAM
algorithm results, both in the body and inertial frames.

The paper is organized as follows. Section II presents a
brief description of the sensor-based filter derived in the
companion paper [1] and additional features that can be
easily incorporated in the filter design are discussed. An
example is provided with direction measurements associated
with each landmark. Section III introduces the problem
addressed in this paper and Section IV provides a closed-
form optimal solution. Experimental results are shown and
discussed in Section V and, finally, Section VI gives some
concluding remarks and directions for future work.

Throughout the paper the symbol 0n×m denotes an n×m
matrix of zeros, In an identity matrix with dimension n×n,
and diag(A1, . . . ,An) a block diagonal matrix. When the
dimensions are omitted the matrices are assumed of appro-
priate dimensions.
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II. BRIEF OVERVIEW

In this section the filter presented in the companion paper
[1], is briefly described. Moreover, it is also shown that
additional features can be easily incorporated in the filter
design, namely with an example where directions associated
with a landmark are considered.

A. Sensor-based Dynamics

Let {I} denote the local inertial frame, {H} the hori-
zontally projected body-fixed frame, hereafter referred to as
just the sensor frame, and I

HR(t) ∈ SO(2) the rotation matrix
from {H} to {I}. For the sake of simplicity, these frames and
their related variables are considered to be in 2-dimensional
(2-D) space, unless otherwise stated. Let also IpH(t) ∈ R2

denote the position of the origin of {H}, described in {I},
and v(t) ∈ R2 the velocity of the vehicle relative to {I},
expressed in {H}. The linear motion kinematics of the
vehicle are given by IṗH(t) =

I
HR(t)v(t), while the angular

motion kinematics satisfy I
HṘ(t) = I

HR(t)S r(t), where
r(t) ∈ R is the angular velocity of the vehicle expressed

in {H}, and S =

[
0 −1
1 0

]
is a skew-symmetric matrix.

Considering a LASER scanner mounted horizontally in the
vehicle, so that the measurements projected into {H} repre-
sent a horizontal profile of the environment, and an altitude
sensor, either a SONAR or a LASER range finder, the
complete 3-dimensional (3-D) position and a 2-dimensional
(2-D) map of the environment can be obtained using a SLAM
algorithm. The underlying standard assumption is that the
environment is fairly structured in altitude. Each detected
landmark can be represented by a 2-D position and, op-
tionally, one or two 2-D vectors representing directions, and
other constant parameters. A corner, even if only partially
visible, is a very informative landmark that can provide a
measure of position as well as one or two measures of
attitude, given by the direction of each wall. For this reason,
the landmark formulation, presented in the companion paper
[1], is further extended to include directions. Considering the
case of a single direction associated with a landmark, since
the extention to more directions is trivial, the position and
the direction associated with the i-th landmark expressed in
{H}, denoted by pi ∈ R2 and di ∈ R2, respectively, satisfy{

pi(t) =
I
HRT (t) (Ipi − IpH(t))

di(t) =
I
HRT (t) Idi

,

where Ipi ∈ R2 and Idi ∈ R2 denote the static inertial 2-D
position and direction associated with the landmark. In the
sensor-based framework, their kinematics can be written as{

ṗi(t) = − [rm(t)− br(t)] S pi(t)− v(t)

ḋi(t) = − [rm(t)− br(t)] S di(t)
,

where rm(t) denotes the angular velocity measurement and
br(t) the respective bias. In a SLAM state-space formulation,
the full stochastic state vector, here denoted as xF ∈ RnxF ,
can be decomposed into vehicle specific variables, xV ∈
Rnxv , and landmark variables, xM ∈ RnxM . In the proposed
formulation, the vehicle state vector is formed by the altitude

z(t) ∈ R, the linear velocity in {H}, v(t) ∈ R2, the
vertical velocity vz(t) ∈ R, and the bias of the angular
velocity measurement in {H}, br(t) ∈ R, yielding xV (t) =[
z(t) v(t) vz(t) br(t)

]T
. A further decomposition of

the landmark state-space into observed and unobserved
landmarks is considered, for the sake of clarity, such that
xM =

[
xTMO xTMU

]T
, where xMO = {mi} ∈ Rnxm , for

all i ∈ IO = {o1, . . . , ono}, and xMU = {mi} ∈ RnxMU ,
for all i ∈ IU . Note that the union of the sets of observed
and unobserved landmarks, IO and IU , respectively, yields
I = IO ∪ IU = {1, . . . , nM}. The landmark vector mi

can feature the position of the landmark and up to two
directions, e. g. to represent a corner landmark would yield
mi =

[
pTi d1i

d2i

]T
.

With the above introduction and considering that the linear
velocities are slowly time-varying, the complete system
dynamics in {H} can now be written as

ẋV (t) = AV xV (t)
ṁi(t) = AMVi

(mi(t))xV (t)+AMi
(t)mi(t)∀i∈I

yz(t) = Cz xV (t)
yMO(t) = xMO(t)

, (1)

where, considering landmarks with only one direction, it is
a matter of algebraic manipulation to obtain

AV =


0 01×2 −1 0

02×1 02×2 02×1 02×1
0 01×2 0 0
0 01×2 0 0

 ,

AMVi
(mi(t)) =

[
02×1 −I2 02×1 S pi(t)
02×1 02×2 02×1 S di(t)

]
,

where AMi
(t) = −rm(t)S2 and Cz =

[
1 01×(nxV −1)

]
,

denoting Sn as the block diagonal matrix formed using n
times the matrix S, in this case S2 = diag (S,S). The
extension to more than one direction associated with a
landmark is trivial, and therefore is omitted.

B. SLAM Filter

In a SLAM filter, the observed landmarks are a subset
of the state landmarks, whereas the unobserved landmarks
are integrated in open-loop. For filter design purposes, the
unobserved landmarks are not considered, leading to the
reduced state-space vector x =

[
xTV xTMO

]T ∈ Rnx

and output vector y =
[
yz yTMO

]T ∈ Rny . Thus, it is
straightforward to rewrite (1) as{

ẋ(t) = A(t)x(t)
y(t) = C x(t)

, (2)

where

A(t) =

[
Av 0nxv×nxm

AMV (t) AM(t)

]
,

AMV (t) =
[
AT
MVo1

(t) . . . AT
MVono

(t)
]T
,

AMVi
(t) = AMVi

(mim(t)) ∀i∈IO ,

AM(t) = diag
(
AMo1

(t), . . . ,AMono
(t)
)
, and
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C =

[
Cz 01×nxMO

0nxMO×nxV InxMO

]
.

As mentioned in the companion paper [1], the dynamic
system (1) is nonlinear. However, written in the form (2), it
can be regarded as a linear time-varying system for observer
design purposes, as the system matrix A(t) may be written
in such a way that it does not depend on the state, which
is estimated, but on the actual output, which is measured
and readily available. This approach has been successfully
employed by the authors, see e.g. [7].

The implementation of a SLAM filter for (1) follows
naturally with a discrete Kalman filter, as all the sensors
and the processing units are sample-based. Thus, using the
sample notation xk := x(tk), with tk = k Ts+t0, k ∈ N0 and
t0 as the initial time, the Euler discretization of the system
dynamics (2) with system disturbance, wk, and measurement
noise, nk+1, yields{

xk+1 = Fk xk + wk

yk+1 = Hk+1 xk+1 + nk+1

, (3)

where Fk = Inx + Ts Ak, Hk = Ck, wk ∈ Rnx and
nk ∈ Rny are zero-mean discrete white Gaussian noise,
with E[wk wT

l ] = Qk δk−l and E[nk nTl ] = Rk δk−l,
respectively, and δk denotes the Dirac delta function. The
resulting discrete Kalman filter equations for the above
system are standard [8], [9]. Nonetheless, system (3) does
not account for the unobserved landmarks xMU , which have
to be propagated in open-loop using a discrete version of the
equations defined in (1). Using the full system state vector
xF =

[
xT xTMU

]T
, the complete filter, described in the first

part of this work, [1], provides at each sampling instant the
estimated state x̂Fk|k and respective covariance matrix PFk|k

,
which can be decomposed as

PFk|k
=

[
PVk|k

PVMk|k

PT
VMk|k

PMk|k

]
,

where PMk|k
=
{

Pmimjk|k

}
for all i, j ∈ I. The next

section formulates the problem of finding the transformation
from the sensor-frame {H} to the inertial frame {I}, or
equivalently, finding the position and orientation of the
vehicle in {I}, given the filter estimates.

III. PROBLEM FORMULATION

The transformation from the reference frame {H} to the
reference frame {I}, at a given instant k, is defined by
the position and orientation of the vehicle in {I}, given by
IpHk ∈ R2 and I

HRk ∈ SO(2), respectively. The objective
of this section is to formulate the underlying optimization
problem to obtain these quantities, so that it is possible to
generate not only the inertial trajectory of the vehicle but
also the inertial positions of the landmarks.

Without loss of generality, assume that the inertial frame
is coincident with the vehicle pose, at the algorithm initial-
ization instant k0, that is, IpHk0 = 02×1 and I

HRk0
= I2,

and, consequently, all landmarks and respective directions are
given by Ipik0 = Hpik0 and Idik0 = Hdik0 for all i ∈ Ik0 .

Further assume that the relations between time samples of
the inertial positions of the vehicle frame and the landmarks
satisfy {

IpHk = IpHk−1
+ IδpHk

Ipik = Ipik−1
,

, (4)

where IδpHk ∈ R2 represents the translation of the position
of the vehicle between the sampling time k − 1 and the
sampling time k. The rotation matrix satisfies

I

HRk =
I

HRk−1
I

HδRk, (5)

where I
HδRk ∈ SO(2) is the rotation matrix that represents

the change of orientation of the vehicle between the sampling
time k − 1 and the sampling time k. The idea is to express
the known landmark position in the sensor frame at a given
instant k as a function of the landmark position in the same
frame at the previous instant k − 1, which is also available,
and using (4) and (5) this can be written as

pik = I

HRT
k

[
Ipik −

IpHk
]

= I

HδR
T
k pik−1

− I

HδR
T
k

I

HRT
k−1

IδpHk . (6)

For the sake of simplicity of notation, let δRk := I
HδR

T
k

and δpk := −IHδRT
k
I
HRT

k−1
IδpHk . Then, (6) can simply be

stated as
pik = δRk pik−1

+ δpk .

Therefore, defining the error function

eik = pik − δRk pik−1
− δpk,

the transition transformation from instant k − 1 to k, de-
noted as the pair (δRk, δpk), can be found by solving the
optimization problem

(δR∗k, δp
∗
k) = arg min

δRk ∈ SO(2)
δpk ∈ R2

1

nδk

∑
i∈Iδk

eTik eik , (7)

where the set of the landmarks used to find this transforma-
tion is denoted as Iδk = {δ1, . . . , δnδk }, obtained from the
sensor-based filter proposed in the companion paper [1].

IV. INERTIAL MAP AND TRAJECTORY ESTIMATION

A. Closed-form solution
The optimization problem (7) defined in the previous

section has a closed-form, computationally efficient, and
numerically robust solution. In [5], the problem of computing
the translation, rotation and scaling parameters between two
clouds of 3-D points with known one-to-one point associa-
tions is solved, resorting to the singular value decomposition
SVD algorithm to find the rotation matrix component of
the solution. In the particular case discussed in this paper,
the two clouds of 2-D points are given by pik∀i∈Iδk and
pik−1

∀i∈Iδk , and it is assumed that there is no scaling
between them.

The idea behind the closed-form solution arising from this
type of problems is to find the centroids of each cloud of
points, given by

µk =
1

nδk

∑
i∈Iδk

pik and µk−1 =
1

nδk

∑
i∈Iδk

pik−1
,
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enabling the computation of the rotation matrix that best
explains the rotation between the two centered clouds of
points, which results from the SVD of the matrix

Σk,k−1 =
1

nδk

∑
i∈Iδk

(
pik − µk

) (
pik−1

− µk−1

)T
,

which is defined as svd (Σk,k−1) = Uk Dk VT
k . The rotation

matrix in SO(2) is then naturally found using the expression

δR∗k = Uk Sk VT
k ,

where the diagonal matrix Sk is defined as Sk =
diag(1, det(Uk) det(Vk)). With the optimal rotation matrix
found, the translation term is readily given by

δp∗k = µk − δR∗k µk−1 .

With the closed-form solution of the optimization problem
(7), it is trivial to compute the pose of the vehicle at each
instant based on the previous pose, which is simply obtained
from {

I
HRk =

I
HRk−1 δR

∗T
k ,

IpHk = IpHk−1
− I

HRk−1 δR
∗T
k δp∗k .

(8)

With (8), all the variables provided by the filter, expressed in
the sensor frame, can be transformed into the inertial frame.
Thus, the inertial estimates of the i-th landmark, considering
also one direction as part of the landmark, are given by{

Ipik = I
HRkpik +

IpHk ,
Idik = I

HRkdik .

Remark 1: The estimation uncertainty of the transforma-
tion is not presented in this paper and it will be addressed
in future work. The aim will be, under some realistic
assumptions, to find approximate estimates for the covariance
matrices of the inertial-based trajectory and map, provided
the uncertainty estimates of the transformation resulting from
the solution of (7).

B. Alternative Approach

In a similar fashion to the approach presented in [10], an
alternative approach is to include the inertial frame in the
sensor-based SLAM filter by augmenting the state with its
position and orientation, which will always be unobservable.
In the SLAM formulation presented in this work the inclu-
sion of the position is trivial and can be seen as a point
landmark, denoted here by p0k

. As for the orientation, the
state can be augmented to include an angle representing
the relative orientation of the inertial frame in the sensor
frame, ψ0k

. The values used for initialization at instant k0

are p0k0
= 02×1 and ψ0k0

= 0, noting that the motion
kinematics of the angle approach, which was not introduced
before, is given by ψ̇0(t) = −rm(t) + br(t). Thus, one
can trivially obtain the rotation matrix by using I

HRk =
Rψ0k

, which denotes the 2-D rotation of an angle ψ0k
, and

afterwards the position of the sensor-frame described in the
inertial frame as IpHk = −IHRk p0k0

.

V. EXPERIMENTAL RESULTS

This section describes the experimental setup and presents
the results for the proposed overall sensor-based SLAM
algorithm. While the results presented in the first part of
this work, [1], focused on the filter convergence properties,
in this section the consistency of the algorithm, the ability
to close a 60 meter loop, and the inertial map and trajectory
estimation results are discussed.

An instrumented quadrotor was hand-driven along a path
of about 60 meters in an indoor environment with a loop,
as shown in Fig. 1, at an average speed of 0.4 m/s. The
trajectory described by the vehicle starts near the middle and
circulates counter clockwise until some of the first landmaks
detected are once again visible (at the lower right corner).
This custom quadrotor UAV, property of ISR, is equipped
with a MEMSENS nanoIMU, a Maxbotix XL SONAR for
altitude measurements, and a Hokuyo UTM-30LX LASER
scanning device that provides horizontal profiles of the
surroundings. The disturbance covariance matrix, assumed
Gaussian, for the vehicle dependent state variables is defined
as QV = Ts diag

(
σ2
z , σ

2
v I3, σ

2
br

)
, with σz = 0.04 m, σv =

0.02 m/s, σbr = 5.7×10−5 deg/s, and the landmark position
disturbance covariance matrix is given by Qpi

= Ts σ
2
p I2,

σp = 0.07 m. The altitude measurement is also considered to
be zero-mean Gaussian distributed noise with variance Rz =
σ2
z , σz = 0.03 m, and the landmark position measurement

noise is given as a function of ρim and αim , which are
the correspondent range-bearing coordinates of the detected
landmark pim , and also function of the angular and range
standard deviation values, σα = 3.75 deg, σρ1 = 0.15 m,
and σρ2 = 0.25 m, which can be defined as

Rpim
= σ2

ρim
Mαim

+ σ2

α

dMαim

dα

assuming a small angle approximation such that Mα =
Rα diag(1, 0)RT

α , where Rα is the 2-D rotation matrix
obtained from α. Also, the range measurement noise of
the LASER sensor depends on the distance to the detected
target, being defined as σρim = σρ1 if ρim ≤ 10 m and
as σρim = σρ2 if ρim > 10 m. Note that the above implicit
linearization is just a way to properly approximate the sensor
noise and does not influence any of the filter properties.

In sensor-based SLAM, the localization is trivial, as the
vehicle is at the origin and aligned with the body frame. As
for the mapping, the proposed algorithm provides at each
instant a map of the environment with consistent uncertainty
estimates. These results are presented in Fig. 1, with a
detailed view of the last part of the trajectory shown in Fig.
1(b). It can be seen that in this sensor-based framework,
as there is no vehicle localization uncertainty, the unob-
served landmarks uncertainty increases, which allows for a
consistent map estimation, and eventually to close the loop.
The uncertainty of the older landmarks at the right bottom
corner of the map, which are deliberately left as duplicates of
the new landmarks being detected, would enable the proper
association and loop closing procedure for the global sensor-
based map. Note that the proposed algorithm provides also
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Fig. 1. Map and trajectory in {H} frame, featuring the landmark position
and 95% confidence bounds, depicted in light blue, and the trajectory of
the vehicle, in magenta. The duplicate landmarks, that could be used for
loop closure are also depicted in magenta, whereas the current laser profile
is depicted in gray and the visibility polygon in yellow.

consistent estimates of the linear motion of the vehicle,
shown in Fig. 2, along with the remaining vehicle related
variables, without resorting to any odometry sensor, which
are not available for aerial vehicles.

Another measure of consistency of the SLAM algorithm
when ground truth data is not available, is the maximum nor-
malized innovation squared (NIS) value at each time instant,
considering all the landmark associations. This maximum
value can be compared, for instance, with the 95% threshold
as presented in Fig. 3, that is,

NISik = νik S−1ik νik ≤ χ
2
nm,95%

, (9)

where nm = dim(mi) is the dimension of the landmark
position vector. It can be seen that this maximum value
seldom approaches the threshold and it is mostly concen-
trated below χ2

nm,5%
, which might indicate some degree of

conservativeness. In Fig. 4, the evolution of the number of
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Fig. 2. Vehicle state time evolution.
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Fig. 3. NIS association maximum (solid red) and χ2
nm,95%

threshold
(dashed-dotted black).

landmarks is provided, and it can be observed that a basic
landmark management is done to avoid spurious landmarks
due to bad detection.

As there is no vehicle trajectory in this sensor-based
SLAM formulation but rather landmark trajectories, the
inertial transformations computed in the previous sections are
necessary to recover the trajectory of the vehicle as well as
the inertial version of the landmark map. As it can be seen in
Fig. 1, the trajectory of the vehicle is included for completion
of the sensor-based results, by transforming the obtained
inertial trajectory into frame {H}. The inertial map and
trajectory computed using both methods, (a) optimization
based closed-form solution and (b) state augmentation with
open-loop integration, described in Section IV are presented
in Fig. 5, whereas the heading of the vehicle is shown in Fig.
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this figure the number of observed landmarks at each iteration is presented
in detail.
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Fig. 5. Map and trajectory in {I} frame. The trajectory and map computed
using the augmented state approach is represented in dashed dark blue, while
the optimization problem approach is shown in light solid blue.

6. It can be seen that both transformations provide coherent
results and, notably, that the effects of the magnetic distor-
tions in indoors environments can be devastating, as shown
in the latter figure. Note that the heading solution provided
by an attitude filter, which uses the IMU magnetometer, is
utterly wrong.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents two strategies for the online inertial
map and trajectory estimation designed for the sensor-based
globally asymptotically stable SLAM filter introduced in
the companion paper [1], as well as an indepth analysis of
the experimental SLAM results, both in sensor and inertial
frames. Conversely to traditional EKF-SLAM algorithms,
the proposed SLAM filter avoids depending on the attitude
and position representation of the vehicle, yielding globally
asymptoticaly stable error dynamics. With the online inertial
map and trajectory estimation strategy proposed in this
paper the vehicle attitude, position, velocity, and landmark
map can be obtained in each filter iteration, with a small
computational overhead. The performance and consistency
of the proposed SLAM filter and the inertial map and
trajectory transformation are evaluated in a structured real
world environment. The algorithm produces a consistent map
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Fig. 6. Heading of the vehicle relative to frame I. The heading computed
using the augmented state approach is represented in dashed dark blue,
while the optimization problem approach is shown in light solid blue. The
red line represents the magnetometer-based heading obtained by an external
attitude algorithm.

estimation that can be used to close a 60 meter long loop
right in the sensor-based map, while still providing very good
estimates of the inertial map and trajectory.

Future work includes the computation of the uncertainty
estimates related to the transformation from the sensor frame
to the inertial frame, allowing a fair comparison between the
two strategies presented in the paper.
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