
Sensor-based Simultaneous Localization and Mapping – Part I:
GAS Robocentric Filter

Bruno J. Guerreiro, Pedro Batista, Carlos Silvestre, and Paulo Oliveira

Abstract— This paper presents the design, analysis, and ex-
perimental validation of a sensor-based globally asymptotically
stable (GAS) filter for simultaneous localization and mapping
(SLAM) with application to uninhabited aerial vehicles (UAVs).
The SLAM problem is first formulated in a sensor-based
framework, without any type of vehicle pose information, and
modified in such a way that the underlying system structure
can be regarded as linear time varying for observability, filter
design, and convergence analysis purposes. Thus, a Kalman
filter follows naturally with GAS error dynamics that esti-
mates, in a robocentric coordinate frame, the positions of the
landmarks, the velocity of the vehicle, and the bias of the
angular velocity measurement. The online inertial map and
trajectory estimation is detailed in a companion paper and
follows from the estimation solution provided by the SLAM
filter herein presented. The performance and consistency of
the proposed method are successfully validated experimentally
in a structured real world environment using a quadrotor
instrumented platform.

I. INTRODUCTION

Reliable navigation and positioning of uninhabited aerial
vehicles (UAV) are fundamental for any autonomous mis-
sion, particularly in unknown environments where absolute
positioning systems are absent or unreliable. The motiva-
tion for this work arises from the usage of autonomous
rotorcraft for automatic inspection of critical infrastructures
and buildings, such as bridges, electric power lines, dams,
construction areas, etc. Near these structures, the ubiquitous
global positioning system (GPS) signal may be unreliable
or completely unavailable, whereas the electromagnetic in-
terference may degrade any magnetometer measurement to
the point of becoming unusable. Therefore, aided navigation
strategies have to be devised in such a way that these sensors
are made redundant.

This paper presents a globally asymptotically stable (GAS)
sensor-based filter for simultaneous localization and map-
ping (SLAM) with application to uninhabited aerial vehicles
(UAVs) in GPS-denied environments, using acceleration and
angular rate inertial measurements, a LASER scanning de-
vice and an altitude sensor. Over the past decades the re-
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search community has devoted tremendous effort in the field
of probabilistic SLAM. The seminal works that established
the statistical foundations for describing the relationships
between landmarks and their correlations include [1], and
[2]. For a detailed survey and tutorial on SLAM please refer
to [3], [4], and references therein, which include a significant
number of successful implementations of SLAM algorithms
in real world scenarios. A general proof of global conver-
gence for the extended Kalman filter (EKF), to the best of
the authors’ knowledge, is yet to be found. Nonetheless, there
are some notable EKF-based SLAM convergence results [5],
[6], which usually assume that the linearized system matrices
are evaluated at the ideal values of the state variables.
This linearization may lead to statistical inconsistency as it
was first pointed out in [7] and subsequently acknowledged
and discussed in [8] and [9]. In order to minimize the
inconsistency problems induced by the linearization, some
new algorithms have been proposed, such as the robocentric
map joining algorithm [10], where the filtering is made in
the sensor space, or the first-estimates Jacobian EKF [11].

The main contribution of this paper is the design, analysis,
and experimental validation of a novel sensor-based SLAM
filter for structured 3-dimensional (3-D) environments, 2-D
mapping and altitude, as part of an integrated SLAM al-
gorithm, that: (i) has globally asymptotically stable error
dynamics; (ii) allows for online simultaneous estimation of
the inertial frame map, position and motion of the vehicle,
as detailed in the companion paper [12]; (iii) resorts to
the linear and angular motion kinematics, which are exact;
(iv) can easily be generalized into full 3-D SLAM, if 3-D
landmarks are available; (v) builds on the well-established
linear time-varying (LTV) Kalman filtering theory; and (vi)
estimates explicitly the rate gyro bias, merging low band-
width landmark observations with high bandwidth rate gyro
measurements. The result of this filter is the solution of
the SLAM problem in the vehicle frame, where the vehicle
pose is deterministic, as it corresponds to that of the vehicle
frame, and the positions of the landmarks rotate and translate
according to the vehicle motion, in a similar fashion to what
happens in [10]. An essential feature of the filter design is the
modification of the nominal nonlinear sensor-based system
dynamics such that it can be regarded as LTV for observabil-
ity and convergence analysis purposes, even though it still
is intrinsically nonlinear. Nevertheless, it must be stressed
that the resulting system dynamics used in the design and
analysis of the Kalman filter are exact and no approximations
or linearizations are performed whatsoever. The proposed
solution builds on previous sensor-based navigation filters
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proposed by the authors in [13], [14], and [15].
The second part of the proposed SLAM algorithm, which

is detailed in the companion paper [12], focus on the online
optimal transformation of the estimated sensor-based map
into the inertial frame, by estimating the translation and
rotation between any two consecutive instants, provided at
least two landmark associations.

The paper is organized as follows. Section II introduces
the sensor-based paradigm, the nominal system dynamics,
and the problem at hand. A constructive observability anal-
ysis is presented in Section III and Section IV details the
definition of the SLAM filter. Experimental results using an
instrumented quadrotor platform are shown and discussed
in Section V and, finally, in Section VI, some concluding
remarks and directions of future work are provided.

Throughout the paper the symbol 0n×m denotes an n×m
matrix of zeros, In an identity matrix with dimension n×n,
and diag(A1, . . . ,An) a block diagonal matrix. When the
dimensions are omitted the matrices are assumed of appro-
priate dimensions.

II. PROBLEM STATEMENT

A. Sensor-based framework

The traditional EKF-based SLAM filter represents the esti-
mated features and vehicle pose using an absolute reference
frame, usually denoted inertial frame, while the measure-
ments are obtained in body-fixed coordinates, i.e., in the
frame rigidly attached to the vehicle. The core concept of the
sensor-based SLAM approach that is presented in this paper
is to design the filter directly in the space of the sensors,
avoiding any representation of the attitude of the vehicle and
taking into account the original noise characteristics of each
sensor. Note also that, for control purposes, it is usually the
quantities in the robocentric frame that are required, with
the so-called sensor-based control paradigm, and that the
proposed filter readily estimates.

B. Definition of frames and sensor measurements

Let {I} denote the local inertial frame, {B} the body-
fixed frame, and I

BR(t) ∈ SO(3) the rotation matrix from
{B} to {I}. Let also IpB(t) ∈ R3 denote the position of
the origin of {B}, described in {I}, and vB(t) ∈ R3 the
velocity of the vehicle relative to {I}, expressed in {B}. The
linear motion kinematics of the vehicle is given by IṗB(t) =
I
BR(t)vB(t), while the angular motion kinematics satisfy
I
BṘ(t) = I

BR(t)S[ωB(t)], where ωB(t) ∈ R3 is the angular
velocity of the vehicle, expressed in {B}, and S[ωB(t)] is the
skew-symmetric matrix such that S[ωB(t)]d(t) is the cross
product ωB(t)×d(t), for some d(t) ∈ R3. Consider also the
ZYX-Euler angles which can be used to decompose the rota-
tion matrix I

BR(t) as I
BR(t) = Rz(ψ(t))Ry(θ(t))Rx(φ(t)),

where ψ(t), θ(t), and φ(t) denote the yaw, pitch, and roll
angles, respectively. Using standard filtering techniques (see
for instance [16] and references therein), the roll and pitch
angles can be obtained using only rate gyros and accelerom-
eter measurements, enabling the definition of an horizon-
tal body-fixed frame {H}, such that IpH(t) = IpB(t),

I
HR(t) = Rz(ψ(t)), and H

BR(t) = Ry(θ(t))Rx(φ(t)).
Using known transformations, the measurements provided
by laser scanning sensors can be transformed into {B}, and
using H

BR(t) they can be projected and seen as sensors in
{H}. Considering a LASER scanner mounted horizontally
in the vehicle, so that the measurements in {H} represent
a projected horizontal profile of the environment, and an
altitude sensor, either a sonar or a LASER range finder, the
complete 3-dimensional (3-D) position and a 2-dimensional
(2-D) map of the environment can be obtained using a
simultaneous localization and mapping (SLAM) algorithm.
The underlying standard assumption is that the environment
is fairly structured in the vertical direction.

Consider that each detected landmark can be represented
by a 2-D position and some auxiliary characteristics de-
pending on the type of feature. For the sake of clarity, the
remainder of this paper considers only the 2-D position of
each landmark, and with a slight abuse of notation, all vectors
are in 2-D and all rotation matrices belong to SO(2), unless
otherwise stated. The position of the i-th landmark in {H} is
denoted by pi(t) ∈ R2 and satisfies

pi(t) =
I

HR
T (t) [Ipi − IpH(t)]

where Ipi ∈ R2 denotes the inertial 2-D position of the
landmark. In the sensor-based framework, the kinematics of
this landmark can be written as

ṗi(t) = − [rm(t)− br(t)] S pi(t)− v(t)

where S =

[
0 −1
1 0

]
∈ R2×2, rm(t) ∈ R is the z-component

of rate gyro measurements expressed in {H}, br(t) ∈ R is
the corresponding rate gyro bias, and v(t) ∈ R2 denotes the
velocity of the vehicle relative to the inertial frame, expressed
in {H}. Notice that, because the bias term is expressed in
{H}, it is not really constant. Instead, its derivative depends
on the roll, pitch, and respective angular velocities, which can
all be obtained using a complementary filter with globally
asymptotically stable based on the acceleration and rate gyro
readings, see [16] for details. In the remainder of the paper it
is considered, with no loss of generality for observer design
purposes, ḃr(t) = 0. In the final design the additional input
is naturally considered.

C. Problem Statement

In every SLAM state-space formulation, the full stochastic
state vector, here denoted as xF ∈ RnxF , can be decomposed
into vehicle specific variables, xV ∈ Rnxv , and landmark
variables, xM ∈ RnxM . In the proposed formulation, the
vehicle state vector is formed by the altitude z(t) ∈ R,
the linear velocity in {H}, v(t) ∈ R2, the vertical velocity
vz(t) ∈ R, and the bias of the angular velocity in {H},
br(t) ∈ R, yielding xV (t) =

[
z(t) v(t) vz(t) br(t)

]T
.

A further decomposition of the landmark state into observed
and unobserved landmarks is considered, for the sake of
clarity, such that xM =

[
xTMO xTMU

]T
, where xMO =

{pi} ∈ Rnxm , for all i ∈ IO, with IO = {o1, . . . , ono}, and
xMU = {pi} ∈ RnxMU , for all i ∈ IU . Note that the union of
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the sets of observed and unobserved landmarks, respectively,
IO and IU , yields I = IO ∪ IU = {1, . . . , nM}. With the
above introduction and considering that the linear velocities
are slowly time-varying, the complete system dynamics in
{H} can now be written as

ẋV (t) = AV xV (t)
ṗi(t) = AMVi

(pi(t))xV (t)+AMi
(t) pi(t) ∀i∈I

yz(t) = Cz xV (t)
yMO(t) = xMO(t)

, (1)

where it is a matter of algebraic manipulation to obtain

AV =


0 01×2 −1 0

02×1 02×2 02×1 02×1
0 01×2 0 0
0 01×2 0 0

 ,
AMVi

(pi(t)) =
[
02×1 − I2 02×1 S pi(t)

]
,

with AMi
(t) = −rm(t)S and Cz =

[
1 01×2 0 0

]
.

The problem considered in this paper is that of designing
a filter with globally asymptotically stable error dynamics
for the nominal nonlinear system (1), considering additive
system disturbances and sensor noise. Note that the position
of the vehicle and its orientation, as well as the position of
each landmark in frame {I}, can be computed online as a
solution of a classical optimization problem with closed-form
solution, as it is shown in the companion paper [12].

III. OBSERVABILITY ANALYSIS

In this section the observability of the nonlinear system (1)
is analyzed. In a SLAM filter the observed/visible landmarks
are a subset of the state landmarks, and the unobserved/non-
visible landmarks are integrated in open-loop. The main
focus of this section is to prove that this formulation of
the SLAM problem, where the unobserved landmarks are
not considered for observability purposes, is observable. In
addition, the analysis is constructive in the sense that a
Kalman filter can be readily applied, identifying the non-
linear system with a particular linear time-varying system,
yielding globally asymptotically stable error dynamics, as
successfully applied in the past by the authors [14].

Discarding the unobserved landmarks, the reduced state
vector is x(t) =

[
xTV (t) xTMO(t)

]T ∈ Rnx , while the
output vector is y(t) =

[
yz(t) yTMO(t)

]T ∈ Rny . Thus,
it is straightforward to rewrite (1) as{

ẋ(t) = A(t)x(t)
y(t) = Cx(t)

, (2)

where

A(t) =

[
Av 0nxv×nxm

AMV (t) AM(t)

]
∈ R(nxv+nxm )×(nxv+nxm ),

AMV (t) =
[
AT
MVo1

(t) . . . AT
MVono

(t)
]T
∈ Rnxm×nxv ,

AMVi
(t) = AMVi

(pim(t)) ∀i∈IO ,

AM(t) = diag
(
AMo1

(t), . . . ,AMono
(t)
)
∈ Rnxm×nxm ,

and

C =

[
Cz 01×nxm

0nxm×nxv Inxm

]
∈ R(1+nxm )×(nxv+nxm ),

where the subscript m denotes a measured variable. Notice
that the dynamic system (2) can be regarded as a LTV
system, even though it still is, in fact, a nonlinear system.
This is so because the system matrix A(t) depends on the
system output, i.e., A(t) = A (t, y(t)). However, this is
not a problem for observability analysis and observer design
purposes, as the output y(t) is available and can simply be
considered as a known function of t, see [14, Lemma 1].

The following theorem establishes a sufficient condition
for observability of the nonlinear system (2).

Theorem 1: Let T := [t0, tf ]. If there exists a time instant
ti ∈ T such that there exist at least two observed landmarks
for t = ti or, equivalently, there exist two landmarks
po1m (ti) and po2m (ti) such that, po1m (ti) 6= po2m (ti),
then the system (2) is observable on T in the sense that, given
the system output, the initial condition is uniquely defined.

Proof: Using Lemma [14, Lemma 1], the nonlinear
system (2) is observable on T if the observability Gramian
associated with the pair (A(t),C(t)) on T is invertible. The
proof follows by establishing that this is the case. In order
to simplify the analysis, let Rm(t) ∈ SO(2) be a rotation
matrix such that Ṙm(t) = rm(t)Rm(t)S and consider
the Lyapunov state transformation [17] z(t) = T(t)x(t),
which preserves observability properties, where T(t) =
diag

(
Inxv , Rm(t), . . . , Rm(t)

)
. It is a simple matter of

computation to show that the new system dynamics are given
by {

ż(t) =AAA(t)z(t)
y(t) = CCC(t)z(t) ,

where

AAA(t) =
[

Av 0nxv×nxm
AAAMV (t) 0nxm×nxm

]
∈ R(nxv+nxm )×(nxv+nxm ),

AAAMV (t) =
[
AAATMV1(t) . . . AAA

T
MVnno

(t)
]T ∈ Rnxm×nxv ,

AAAMVi(t) =
[
02×1 − Rm(t) 02×1 Rm(t)S pim(t)

]
,

and

CCC(t) =
[

Cz 01×nxm
0nxm×nxv diag

(
RTm(t), . . . , RTm(t)

)] ,
CCC(t) ∈ R(1+nxm )×(nxv+nxm ). The transition matrix associ-
ated with AAA(t) is given by

φ (t, t0) =

[
φv (t, t0) 0
φmv (t, t0) I

]
,

where

φv (t, t0) =


1 0 − (t− t0) 0
0 I 0 0
0 0 1 0
0 0 0 1

 ∈ Rnxv×nxv
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and

φmv (t, t0) =
0 −

∫ t
t0

Rm(σ)dσ 0
∫ t
t0

Rm(σ)Spo1m (σ)dσ
...

...
...

...
0 −

∫ t
t0

Rm(σ)dσ 0
∫ t
t0

Rm(σ)Sponom (σ)dσ

 .
If W (t0, tf ) denotes the observability Gramian associ-
ated with the pair (AAA(t),CCC(t)) on [t0, tf ] and c =[
c1 cT2 c3 c4 cT5 . . . cT4+no

]T
, it is a simple matter of com-

putation to show that

cTW (t0, t0 + δ) c=

∫ t0+δ

t0

‖f (τ)‖2dτ,

where

f (τ) :=
c1 − c3 (τ − t0)

c5 −
∫ τ
t0

Rm(σ)c2dσ +
∫ τ
t0

Rm(σ)Spo1m (σ)c4dσ

...
c4+no −

∫ τ
t0

Rm(σ)c2dσ +
∫ τ
t0

Rm(σ)Sponom (σ)c4dσ

 .
The first derivative of f (τ) is given by

d

dτ
f (τ) :=


−c3

Rm(τ)(−c2 + Spo1m (τ)c4)
...

Rm(τ)(−c2 + Sponom (τ)c4)

 ,
where, for the limit points t0 and tf , with a slight abuse
of notation, this derivative is considered to be, respectively,
the right and left derivatives of f . Suppose now that the
observability Gramian W (t0, tf ) is not invertible. Then,
there exists a unit vector c such that

cTW (t0, t0 + t) c = 0 (3)

for all t ∈ T , which in turn implies that f (τ) = 0 and
d
dτ f (τ) = 0 for all t ∈ T . In particular, for t = t0, this
immediately implies that c1 = 0, c3 = 0, and c5 = . . . =
c4+no = 0. With that in mind, it is trivial to see that, under
the conditions of the theorem, the only solution of d

dτ f (τ) =
0 is c2 = 0 and c4 = 0. But this contradicts the existence
of a unit vector c such that (3) holds for all t ∈ T . As such,
the observability Gramian W (t0, tf ) is invertible and, from
[14, Lemma 1], the nonlinear system (2) is observable.

Following the same approach of [14], the design of a
filter with globally asymptotically stable error dynamics
follows naturally with a Kalman filter, provided that the
pair (A(t),C(t)) is uniformly completely observable. The
following theorem addresses this issue.

Theorem 2: The pair (A(t),C(t)) is uniformly com-
pletely observable if there exists δ > 0 such that, for all
Tδ = [t, t+ δ], with t ≥ t0, there exists ti ∈ Tδ for which
there exist at least two observable landmarks, po1m (ti) and
po2m (ti) satisfying po1m (ti) 6= po2m (ti).

Proof: The proof follows similar steps to the proof of
Theorem 1 but considering uniform bounds for all t ≥ t0
and intervals [t, t+ δ]. It is omitted due to the lack of space.

The reader is referred to [15] for a proof that follows similar
steps, with slightly different system dynamics.

Remark 1: It is important to stress that Theorem 1 and
Theorem 2 provide only sufficient conditions. In fact, the
nonlinear system (2) is observable in certain conditions even
if a single landmark is available, if a certain persistent
excitation condition is met, in line with what can be found
in [15] for single vector observations. This more theoretical
aspect of the problem will be addressed in future work.

IV. SLAM FILTER DESIGN

The design of the proposed sensor-based SLAM filter is
presented in this section. In standard SLAM algorithms based
on the Kalman filter, the vehicle position and orientation,
as well as the position of any unobserved landmark, are
propagated in open-loop, whereas in the proposed solution,
only the unobserved landmarks are propagated in open-loop.
It was shown in the previous section that the LTV system (2)
is uniformly completely observable, under the conditions of
Theorem 2. This is an important result that leads naturally
to the design of a Kalman filter with globally asymptotically
stable error dynamics. Without loss of generality and for
simplicity of notation, let Ts denote the sampling period of
the synchronized IMU, LASER scanner, and altitude sensors.
Thus, considering that xk := x(tk), with tk = k Ts + t0,
k ∈ N0 and t0 is the initial time, the Euler discretization
of the system dynamics (2) with system disturbance and
measurement noise yields{

xk+1 = Fk xk +wk

yk+1 = Hk+1 xk+1 + nk+1

, (4)

where Fk = Inx + TsAk, Hk = Ck, wk ∈ Rnx and
nk ∈ Rny are zero-mean discrete white Gaussian noise, with
E[wkw

T
l ] = Qk δk−l and E[nk n

T
l ] = Rk δk−l, respectively,

and δk denotes the Dirac delta function.

A. Prediction Step

The resulting discrete Kalman filter equations for the
above system are standard [18]–[20]. Nonetheless, system
(4) does not account for the unobserved landmarks xMU ,
which have to be propagated in open-loop using the nonlinear
equations defined in (1). Using the full system state vector
xF =

[
xT xTMU

]T
, the complete prediction equations are

given by{
x̂Fk+1|k

= FFk|k
x̂Fk|k

PFk+1|k
= FFk|k

PFk|k
FTFk|k +QFk

,

where x̂F denotes the estimated state vector and PF the
state covariance matrix, the disturbance matrix is defined as
QF = diag (Q,QMU), whereas the covariance matrix can
be decomposed as in observable, unobservable, and crossed
terms. The full transition matrix FFk|k

is defined as

FFk|k
=

[
Fk 0nx×nxMU

FUOk|k
FMUk|k

]
,

where the remaining undefined terms can be easily inferred
from the nominal system dynamics (1).
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B. Update Step

At each sampling instant a new altitude measurement and
a new LASER horizontal profile are obtained and projected
into the horizontal frame {H}. The projected altitude mea-
surement is readily used in the filter, whereas the LASER
profile is fed to a landmark detection algorithm, and the
observed landmarks are associated with the existing state
landmarks using the joint compatibility branch and bound
(JCBB) algorithm [21]. Having obtained the new associa-
tion pairs between measured landmarks and existing state
landmarks, the sets of observed and unobserved landmarks,
respectively, IO and IU , and the observable and unobserv-
able state vectors are redefined. In addition, the association
algorithm naturally provides the innovation vector, νk+1 =
yk+1 − Hk+1 x̂k+1|k, and the respective covariance matrix,
Sk+1 = Hk+1 Pk+1|kH

T
k+1 + Rk+1. Thus, for the update

step all the filter estimates related with the unobserved land-
marks remain unchanged, that is, x̂MUk+1|k+1

= x̂MUk+1|k
,

PMUk+1|k+1
= PMUk+1|k

, and also PUOk+1|k+1
= PUOk+1|k

,
whereas for the observed state, is just a matter of using the
standard discrete Kalman filter update equations.

V. EXPERIMENTAL RESULTS

This section describes the experimental setup and presents
the results for the sensor-based SLAM filter introduced
before. To validate the convergence properties and the con-
sistency of the proposed algorithm, an instrumented quadro-
tor was hand-driven along a path of about 60 meters in
an indoor environment with a loop, as shown below in
Fig. 3, at an average speed of 0.4 m/s. The trajectory
described by the vehicle starts near the bottom right corner
and circulates counter clockwise until some of the first
landmarks detected are once again visible. The vehicle is
a customized quadrotor UAV, property of ISR, equipped
with a MEMSENS nanoIMU, a Maxbotix XL SONAR for
altitude measurement, and a Hokuyo UTM-30LX LASER
scanning device mounted horizontally to provide horizontal
profiles of the surroundings. The disturbance covariance
matrix, assumed Gaussian, for the vehicle dependent state
variables is defined as QV = Ts diag

(
σ2
z , σ

2
v I3, σ

2
br

)
, with

σz = 0.04 m, σv = 0.02 m/s, σbr = 5.7×10−5 deg/s, and the
landmark position disturbance covariance matrix is given by
Qpi

= Ts σ
2
p I2, σp = 0.07 m. The altitude measurement is

also considered to be zero-mean Gaussian distributed noise
with variance Rz = σ2

z , σz = 0.03 m, and the landmark
position measurement noise covariance matrix is given as a
function of the angular and range standard deviation values,
σα = 3.75 deg, σρ1 = 0.15 m, and σρ2 = 0.25 m, assuming
a small angle approximation (see [12] for more details).

When analyzing the convergence properties of any nav-
igation filter, the main goal is to observe a decreasing
uncertainty in all variables. This can readily be seen in
Fig. 1, where the uncertainty of all the vehicle related
variables decreases over time. Furthermore, it can be seen
that the uncertainty of each landmark decreases whenever it
is observed and increases otherwise, as shown in Fig. 2.
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Fig. 1. Uncertainty of vehicle related variables: altitude, linear velocity,
and gyro rate bias.
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Fig. 2. Uncertainty of landmark position, showing the detailed evolution
of the position variance for the first 20 observed landmarks, where each line
represents a landmark.

In sensor-based SLAM, the localization is trivial, as the
vehicle is at the origin and aligned with the body frame. As
for the mapping, the algorithm provides at each instant a map
of the environment with consistent uncertainty estimates.
These results are presented in Fig. 3, with a detailed view
of the last part of the trajectory (lower right corner of the
map) in Fig. 3(b). It can be seen that in this sensor-based
framework, as there is no vehicle localization uncertainty,
the unobserved landmarks uncertainty increases allowing for
a consistent map building, and eventually to close a loop. The
uncertainty of the older landmarks at the bottom right corner,
which are deliberately left as duplicates of the new landmarks
being detected, would enable the proper association and
loop closing procedure for the global sensor-based map. A
more thorough presentation of these results is found in the
companion paper [12].

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the problem formulation, analysis, de-
sign, and experimental performance evaluation of a globally
asymptotically stable sensor-based SLAM filter. Conversely
to traditional EKF-SLAM algorithms, the proposed method
avoids the attitude representation of the vehicle in the filter
state, enabling the modification of the nominal nonlinear
dynamics into a structure that can be regarded as LTV for
analysis and filter design. The filter does not rely on any
odometry sensor, but rather on angular rate measurements,
having the byproduct of estimating the linear velocity in
the vehicle frame, as well as the rate gyro bias and the
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Fig. 3. Map and trajectory in {H} frame, featuring the landmark position
and 95% confidence bounds, depicted in light blue, and the trajectory of
the vehicle, in magenta. The duplicate landmarks, that could be used for
loop closure are also depicted in magenta, whereas the current laser profile
is depicted in gray and the visibility polygon in yellow.

altitude. In the second part of this work, presented in the
companion paper [12], the vehicle attitude, position, and
the estimated environment map described in inertial frame
are computed resorting to the closed form solution of an
optimization problem. The performance and consistency of
the proposed solution to the SLAM problem is validated in
a structured real world environment, where the algorithm
shows the reduction of the uncertainty in every state variable
but the unobserved landmarks, and produces a consistent map
estimation that can be used to close a 60 meter long loop.

Future work includes the implementation of a loop closure
method and the real time optimized implementation and
testing of the algorithm in UAVs. In addition, the authors
plan to compare the performance and consistency of the
proposed sensor-based SLAM algorithm with the state-of-
the-art SLAM algorithms.
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