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Abstract

This paper addresses the problem of stabilizing systems that evolve on SE(3). The proposed solution consists of an output-feedback

controller that guarantees almost global asymptotic stability of the desired equilibrium point, in the sense that the equilibrium

point is stable and we have convergence for all initial conditions except for those in a nowhere dense set of measure zero. The output

vector is formed by the position coordinates, expressed in the body frame, of a collection of landmarks fixed in the environment.

The resulting closed-loop system exhibits the following properties: i) the position and orientation subsystems are decoupled, ii)

the position error is globally exponentially stable, and iii) the orientation error is almost globally exponentially stable. Results are

also provided that allow one to select landmark configurations so as to control how the position and orientation of the rigid body

converge to their final equilibrium values.
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1. Introduction

The classical approach to the stabilization in position and

orientation of a fully actuated rigid body relies on a local

parameterization of the rotation matrix, such as the Euler

angles, which transforms the state-space into an Euclidean

vector space [19]. In this setting, the problem admits a triv-

ial solution. However, no global solution can be obtained

and there is no guarantee that the generated trajectories

∗ Corresponding author. Tel.: +351-21-8418090; fax: +351-21-

8418291.

Email address: rita@isr.ist.utl.pt (Rita Cunha).

will not lead the system to one of its geometric singularities.

Moreover, the described trajectories may be practically in-

adequate, since the norm of the Euler angles vector does not

correspond to a metric on the Special Orthogonal Group

SO(3) [16]. An alternative way of parameterizing rotations,

which still has ambiguities but is globally nonsingular, is

offered by the unit quaternions. Several examples in the

literature address the problem of spacecraft attitude con-

trol using quartenion based solutions [21,15,12,9]. For ex-

ample, Isidori et al. [9] present a nonlinear controller based

on quaternions that solves an attitude regulation problem

for low-Earth orbit rigid satellites. This and other param-
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eterizations are also applied in different settings, such as

in [13], where Malis and Chaumette use the angle-axis rep-

resentation to tackle a visual-servoing problem. However,

all these examples require full state knowledge and special

care to avoid discontinuities when mapping the current ori-

entation to the selected parameter representation.

In this paper, we present an output-feedback solution

to the problem of rigid-body stabilization, defined on a

setup of practical significance. It is assumed that there is a

collection of landmarks fixed in the environment and that

the coordinates of the landmarks’ positions are provided

to the system. The proposed solution assumes that these

coordinates are expressed in the body frame and therefore

match the type of measurements produced by a number of

on-board sensors. Examples of such sensors include CCD

cameras, laser scanners, pseudo-GPS, etc.

The main contribution of this paper is the design of an

output-feedback control law, based on the described mea-

surements, that guarantees almost GAS of the desired equi-

librium point. In loose terms, this corresponds to saying

that the point is stable and that the solution converges

asymptotically to that point, except for a nowhere dense

zero measure set of initial conditions [2,5]. The relaxation

in the notion of GAS from global to almost global provides

a suitable framework for the stability analysis of systems

evolving on manifolds not diffeomorphic to an Euclidean

vector space, as is the case of the Special Euclidean Group

SE(3) [16]. As discussed in [3,11,1,14], topological obstacles

preclude the possibility of globally stabilizing these systems

by means of continuous state feedback.

The approach followed in this paper is in line with the

methods presented in [11,4,6], which address the attitude

tracking problem on SO(3) based on the so-called modified

trace function. Building on these results, we address the

more general problem of stabilization in SE(3) and, equally

important, we provide a controller that only requires output

feedback, as opposed to full-state.

The proposed control law decouples the position and ori-

entation subsystems and guarantees global exponential sta-

bility (GES) of the position error and almost GES of the

orientation error. In addition, we establish results that de-

scribe the effect of the geometry of the points on the dy-

namic behavior of the closed-loop system. In particular, we

show that the absolute value of the angle in an angle-axis

parameterization of the rotation matrix decreases mono-

tonically to zero. Moreover, the axis of rotation can be made

almost GAS by appropriate landmark placement. Notice

that while it suffices that the angle of rotation goes to zero

for the rotation matrix to converge to the identity matrix,

the convergence of the axis of rotation to an equilibrium

provides further insight on how the rigid body moves to the

final configuration.

The paper is organized as follows. Section 2 introduces

the problem of stabilization on SE(3) and defines the out-

put vector considered. Section 3 describes the construction

of an almost globally asymptotically stabilizing state feed-

back controller for the system at hand. In the process, an

exact expression for the region of attraction is derived. In

Section 3.1, we show that the proposed control law can be

expressed solely in terms of the output, and then analyze

the convergence of the position and orientation errors and

of the angle and axis of rotation arising from the angle-axis

parameterization of the error rotation matrix. Section 3.2

extends the preceding results to address the problem of

tracking a moving reference. Simulation results that illus-

trate the performance of the control system are presented

in Section 4. Section 5 summarizes the contents of the pa-

per and presents directions for future work. A preliminary

version of a subset of these results was presented at the

Conference on Decision and Control and can be found in
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[8].

2. Problem formulation

Consider a fully actuated rigid body, attached to a frame

{B} and whose kinematic model is described by

ṗ = v − S(ω)p (1a)

Ṙ = RS(ω), (1b)

where p ∈ R
3 is the position of the rigid body with respect

to a fixed frame {I}, expressed in {B}, R ∈ SO(3) is the

rotation matrix from {I} to {B}, v, ω ∈ R
3 are the linear

and angular velocities of {B}with respect to {I}, expressed

in {B}, and S(.) is a function from R
3 to the space of three

by three skew-symmetric matrices so(3) = {M ∈ R
3×3 :

M = −MT} defined by

S













a1

a2

a3












=







0 −a3 a2

a3 0 −a1

−a2 a1 0






. (2)

Note that S is a bijection and verifies S(a)b = a×b, where

a,b ∈ R
3 and × is the vector cross product.

Defining (p, R) ∈ SE(3) as the configuration of {B}

with respect to {I}, consider also the desired target con-

figuration (p∗, R∗) ∈ SE(3) defined as the configuration of

the desired body frame {D} (assumed to be fixed in the

workspace) with respect to {I}. In loose terms, the control

objective consists of designing a control law for v and ω that

ensures the convergence of (p, R) to (p∗, R∗) (or, equiva-

lently, of {B} to {D}), with the largest possible basin of at-

traction. This control law uses measurements that come in

the form of the coordinates of n fixed landmarks expressed

in the body frame. The coordinates of these points, which

we call landmarks, are available both in the current body

frame (p, R) and in the desired body frame (p∗, R∗), as

shown in Figure 1. This type of measurements are typically

produced by on-board sensors that are able to locate land-

marks fixed in the environment. Because the sensors are

on-board, they produce the coordinates of the landmarks

positions in the body frame. Examples of such sensors in-

clude CCD cameras, ladars, pseudo-GPS, etc.

Fig. 1. Problem setup.

According to Figure 1, we define the matrix of inertial

landmark coordinates

X = [x1 . . . xn] ∈ R
3×n, (3)

where xj ∈ R
3 denotes the coordinates of the jth point

expressed in {I}, and the matrix of body landmark coor-

dinates

Q = [q1 . . . qn] ∈ R
3×n, (4)

where

qj = Rxj − p, j ∈ {1, 2, . . . , n}, (5)

denotes the coordinates of the jth point expressed in

{B}. Similarly, we introduce the target matrix Q∗ =

[q∗

1 . . . q
∗

n] ∈ R
3×n, where q∗

j = R∗xj − p∗. Defining the

vector 1 = [1 · · · 1]T ∈ R
n, Q and Q∗ can be rewritten as

Q = RX − p1T , Q∗ = R∗X − p∗1T ,

respectively. The landmarks are required to satisfy the fol-

lowing conditions:

Assumption 1 At least three of the n ≥ 3 points are not

collinear.

Assumption 2 The origin of {I} belongs to the interior

of the landmarks’ convex hull.
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Using (3), it is straightforward to observe that Assump-

tion 2 is equivalent to the set of algebraic conditions spec-

ified in the following proposition.

Proposition 3 Assumption 2 is satisfied if and only if

there exists a vector a = [a1 . . . an]
T ∈ R

n such that Xa =

0, 1T a = 1, and aj > 0, j ∈ {1, 2, . . . , n}.

To conclude the problem formulation, we introduce the

error variables

e = p − p∗ ∈ R
3, Re = R∗RT ∈ SO(3), (6)

and the state-space model for the error system, which can

be written as

ė = v − S(ω)(e + p∗) (7a)

Ṙe = −S(R∗
ω)Re, (7b)

with the output vector given by (4). The control objective

can then be defined as that of designing a control law based

on Q that drives e to zero and Re to the identity matrix I3.

3. Control design on SE(3)

The approach adopted to solve the proposed stabilization

problem builds on Lyapunov theory and, for that purpose,

the following candidate Lyapunov function is considered

V =
1

2
tr((Q−Q∗)Da(Q−Q∗)T ) (8)

where

Da = diag(a) ∈ R
n×n (9)

and a = [a1 . . . an]
T ∈ R

n is the vector defined in Proposi-

tion 3 such that Xa = 0, 1T a = 1, and Da > 0.

Since we are concerned with the global asymptotic sta-

bilization of a system evolving on SE(3), it is convenient to

express V as a function on SE(3). With that objective in

mind, we introduce the constant matrices

M = XDaX
T ∈ R

3×3, (10)

P = tr(M)I3 −M ∈ R
3×3, (11)

and describe some of their properties, which will be useful

for the forthcoming derivations.

Proposition 4 The matricesM and P can be rewritten as

M =

n
∑

j=1

ajxjx
T

j (12)

P = −
n

∑

j=1

ajS(xj)
2. (13)

Moreover, when Assumptions 1 and 2 hold, P is positive

definite.

PROOF. The matrix M given in (10) can be rewritten as

M = XDaX
T =

[

x1 · · · xn
]







a1x
T

1...

anx
T

n






=

∑

ajxjx
T

j .

Then, it is easy to see that

P = tr(M)I3 −M = (
∑

ajx
T

j xj)I3 −
∑

ajxjx
T

j

=
∑

aj(x
T

j xjI3 − xjx
T

j ) = −
∑

ajS(xj)
2.

If Assumption 2 holds then aj > 0 for j ∈ {1, 2, . . . , n}

and therefore

uTPu =
∑

aj‖S(xj)u‖
2 ≥ 0, ∀u ∈ R

3

and

uTPu = 0 ⇔ S(xj)u = 0,∀j ∈ {1, 2, . . . , n}. (14)

If Assumption 1 holds, (14) is verified if and only if u = 0.

2

To gain further insight, we also consider the angle-axis

parameterization for orientation [16], according to which

we can representRe ∈ SO(3) as a rotation of angle θ ∈ [0, π]

about an axis n ∈ S
2 , {x ∈ R

3 : xTx = 1} using the map

rot : ([0, π],S2) → SO(3)

(θ,n) 7→ I3 + sin θS(n) + (1 − cos θ)S(n)2. (15)

Notice that the map rot(., .) is surjective but not injective.

For instance, rot(0,n) = I3 and rot(π,n) = rot(π,−n), for

all n ∈ S
2. More details on the angle-axis parameterization

can be found in Appendix A.
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In what follows, all expressions are first derived as func-

tions of Re ∈ SO(3) and only then written in terms of an

angle θ ∈ [0, π] and an axis n ∈ S
2. Consequently, they

are independent of the parameterization and not affected

by singularity problems. The angle-axis parameterization

is used solely to help in interpreting the system’s behavior

and finding useful properties, such as the positive definite-

ness of a function.

The following Lemma shows how we can rewrite (8) as

a function of e and Re and verify that V = 0 if and only if

e = 0 and Re = I3.

Lemma 5 Under Assumption 2, the candidate Lyapunov

function V defined in (8) can be expressed as a function on

SE(3) of the form

V (e, Re) = V1(e) + V2(Re), (16)

where

V1(e) =
1

2
eTe, (17)

V2(Re) = tr ((I −Re)M) . (18)

In addition, V2 satisfies the following properties:

i) V2 ≥ 0, for all Re ∈ SO(3);

ii) when Assumption 1 holds, V2 = 0 ⇔ Re = I3;

iii) for any θ ∈ [0, π] and n ∈ S
2 such that Re = rot(θ,n),

V2 can be written as

V2 = (1 − cos θ)nTPn, (19)

where P is given by (11).

PROOF. Recalling thatQ = RX−p1T andQ∗ = R∗X−

p∗1T , the expression for V given in (8) can be rewritten as

V = 1
2 tr

(

[R∗T (Re − I3)X − e1T ]Da

[XT (RT

e − I3)R
∗ − 1eT ]

)

.

Since under Assumption 2, we haveXa = 0, the cross terms

−R∗T (Re− I3)XDa1eT and its transpose are also equal to

zero and we can write

V = 1
2 tr(R∗T (Re − I3)M(RT

e − I3)R
∗) + 1

2 tr(e(1T a)eT )

= 1
2e

T e + 1
2 tr((RT

e − I3)(Re − I3)M)

= V1(e) + V2(Re).

Regarding i), we can verify that V2 ≥ 0 by noting

that, according to (12), V2 can be rewritten as V2(Re) =

1
2

∑

j ajx
T

j (RT

e − I3)
T (Re− I3)xj . Next, consider the claim

in iii). For any θ ∈ [0, π] and n ∈ S
2 such that Re =

rot(θ,n), we can use (15) to rewrite V2 as

V2 = − sin θ tr(S(n)M) − (1 − cos θ)tr(S(n)2M)

= − sin θ
∑

ajx
T

j S(n)xj + (1 − cos θ)tr((I3 − nnT )M)

= (1 − cos θ)nT (tr(M)I3 −M)n

= (1 − cos θ)nTPn

Finally, to prove ii), notice that V2 = 0 is equivalent to

θ = 0 if and only if P > 0 and, by Proposition 4, this is

true if Assumptions 1 and 2 hold. 2

The next step towards the definition of a control law

based on V is that of determining an expression for V̇ =

V̇1 + V̇2.

Lemma 6 The time derivatives of V1 and V2 are given by

V̇1 = eT (v + S(p∗)ω) (20)

and

V̇2 = −S−T (ReM −MRT

e )R∗
ω, (21)

respectively, where S−1 : so(3) 7→ R
3 corresponds to the

inverse of the skew map S defined in (2). In addition, for

any θ ∈ [0, π] and n ∈ S
2 such that Re = rot(θ,n), (21) can

be written as

V̇2 = −nTPN(θ,n)TR∗
ω, (22)

where N(θ,n) = sin θI3 + (1 − cos θ)S(n).

PROOF. Differentiating V1 and using (7a), we obtain

V̇1 = eT ė = eT (v − S(ω)(e + p∗))

= eT (v − S(ω)p∗).
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Taking the derivative of (18) and using (7b) and Proposi-

tion 20, we have

V̇2 = −tr(ṘeM) = tr (S(R∗
ω)ReM)

= −S−T (ReM −MRT

e )R∗
ω.

Let a be a vector in R
3 and consider the angle-axis rep-

resentation for Re. Then, according to Proposition 20, we

have

aTS−1(ReM −MRT

e ) = −tr (S(a)ReM)

= − tr (S(a)(I3 + sin θ S(n) + (1 − cos θ)(nnT − I3))M)

= − sin θ tr(S(a)S(n)M) − (1 − cos θ) tr(S(a)nnTM)

= − sin θ tr ((naT − aTnI3)M) − (1 − cos θ) nTMS(a)n

= sin θ aTPn + (1 − cos θ) aTS(n)Pn

and thus, S−1(ReM − MRT

e ) = N(θ,n)Pn, where

N(θ,n) = sin θ I3 + (1 − cos θ)S(n). 2

Before presenting a solution to the stabilization problem,

we describe a preliminary approach to the problem that

serves as motivation. According to Lemma 6, V̇ can be

written as

V̇ = aT

vv + aT

ωω, (23)

where av = e, aω = −S(p∗)e − R∗TS−1(ReM −MRT

e ).

In view of (23), the simplest state-feedback control law

yielding V̇ ≤ 0 would be

v = −kvav, ω = −kωaω, (24)

with kv > 0 and kω > 0. This choice of controller guar-

antees, by Lyapunov’s stability theorem, local stability of

(e, Re) = (0, I3) and, by LaSalle’s invariance principle,

global convergence to the largest invariant set in the do-

main satisfying V̇ = 0. In this particular case, the whole

set defined by V̇ = 0 is positively invariant, since all its el-

ements are equilibrium points of the system. In summary,

GAS would only be guaranteed if (e, Re) = (0, I3) were the

unique solution of V̇ = 0. The following result discards this

possibility.

Lemma 7 Under Assumptions 1 and 2, the time derivative

of V along the trajectories of the system (7) with the control

law (24) is equal to zero if and only if e = 0 and Re belongs

to the set

CV2
= {I3}∪{rot(π,n) ∈ SO(3) : n is an eigenvector of P} .

(25)

PROOF. According to (23) and (24), we have

V̇ = 0 ⇔

{

av = 0

aω = 0
⇔

{

e = 0

S−1(ReM −MRT

e ) = 0

To solve S−1(ReM − MRT

e ) = 0 or, equivalently,

N(θ,n)Pn = 0, note that the null space of N is given by

ker(N(θ,n)) =



















R
3 if θ = 0

span(n) if θ = π

0 otherwise

,

and, since P > 0 and n ∈ S
2,

N(θ,n)Pn = 0 ⇔ θ = 0 or

{

θ = π

Pn ∈ span(n)
.

2

Since the matrix P is completely determined by the land-

mark positions that define X, Lemma 7 shows that CV2

is determined by the geometry of the measured points. To

illustrate this observation, consider two configurations for

the landmark points, a rectangle and a square, correspond-

ing to the matrices

X1 =







b b −b −b

c −c −c c

0 0 0 0






, X2 =







b b −b −b

b −b −b b

0 0 0 0






,

respectively, with b > c > 0. It is easy to see that the vector

a = 1
n
1 satisfies X1a = X2a = 0 and 1T a = 1 and so Pi =

1
n
(XiX

T

i − tr(XiX
T

i )I3), i ∈ {1, 2}. Simple algebra shows

that, in the first case, V̇2 = 0 has exactly four solutions

given by

C
(1)
V2

= {I3,diag(−1,−1, 1)}∪

{diag(−1, 1,−1),diag(1,−1,−1)} , (26)
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while, in the second, these solutions form the set

C
(2)
V2

= {I3,diag(−1,−1, 1)}∪

{Re ∈ SO(3) : Re =

[

cosψ sinψ 0
sinψ − cosψ 0

0 0 −1

]

, ψ ∈ R}. (27)

The sets C
(1)
V = {0} × C

(1)
V2

and C
(2)
V = {0} × C

(2)
V2

are

depicted in Figures 2(a) and (b), respectively, where, for

simplicity of representation, it is assumed that R∗ = I3

and p∗ = [0 0 d]T , d > 0. The desired configuration is

represented in black by the vector p∗ and the coordinate

frame {D}. The remaining configurations are represented

in gray.

(a) rectangle - four solutions

(b) square - infinite number of solutions

Fig. 2. Set of configurations such that V̇ = 0 for two different

landmark geometries.

Lemma 7 reflects the topological obstacles, discussed in

[3], [11], [1], and [14], to achieving, by continuous state feed-

back, global stabilization of systems evolving on manifolds

not diffeomorphic to the Euclidean Space. In fact, given a

system evolving on a manifold M, GAS of a single equilib-

rium point would imply the existence of a smooth positive

definite function V : M 7→ R with negative definite deriva-

tive over all M, that could be viewed as a Morse function

with a single critical point, and, to admit such a function,

M would have to be diffeomorphic to the Euclidean Space

[14]. In view of these obstacles, a relaxation in the notion of

GAS from global to almost global needs to be considered. It

allows for the existence of a nowhere dense zero measure set

of initial conditions that do not tend to the specified equi-

librium point. In practical terms, this relaxation is fairly

innocuous, since disturbances or sensor noise will prevent

trajectories from remaining at these (unstable) equilibria.

To formalize this notion of stability, which is adopted in

[7], [17], and [2], we first recall the definition of region of

attraction.

Definition 8 (Region of Attraction) Consider the fol-

lowing autonomous system evolving on a smooth manifold

M

ẋ = f(x) (28)

where x ∈ M and f : M → TM : x 7→ f(x) ∈ TxM is

locally Lipschitz and suppose that x = x∗ is an asymptot-

ically stable equilibrium point of the system. The region of

attraction for x∗ is defined as

RA = {x0 ∈ M : φ(t, x0) is defined for all t ≥ 0 and

φ(t, x0) → x∗ as t→ ∞}

(29)

where φ(t, x0) denotes the solution to (28) at time t, with

initial condition x(0) = x0.

The reader is referred to [14] for the definition of a locally

Lipschitz function defined on a manifold.

Definition 9 (Almost GAS) Consider the system (28).

The equilibrium point x = x∗ is said to be almost globally

asymptotically stable if it is stable and M\RA is a nowhere

dense set of measure zero.

Going back to the original kinematic model (7), we define

the following continuous feedback law based on the function

7



V

v = −kve − kωS(e + p∗)bω, (30a)

ω = kωbω, (30b)

where

bω = R∗TS−1(ReM −MRT

e ),

This control law actually has the same equilibrium points

as the simpler one considered before. However, we are now

able to show that the desired equilibrium (e, Re) = (0, I3)

is almost GAS, implying that the remaining equilibria are

unstable and that their regions of attraction have at most

zero measure. Additionally, we will see shortly that these

control signals can be directly expressed in terms of the

available measurements.

Theorem 10 For any kv and kω positive, the closed-loop

system resulting from the interconnection of (7) and (30)

has an almost GAS equilibrium point at (e, Re) = (0, I3).

The corresponding region of attraction is given by

RA = SE(3) \ {(e, Re) : tr(I3 −Re) = 4} . (31)

Remark 11 To prove almost GAS, we need to determine

the actual region of attraction and not just an estimate of it,

as could be readily obtained using Lyapunov’s method. This

would only provide us with a closed invariant set of the form

Ωc = {x ∈ M : V (x) ≤ c} that is guaranteed to be contained

in the region of attraction RA but that can never coincide

with it, since RA is necessarily an open set [10]. Instead,

the proof of Theorem 10 relies on Zubov’s theorem, which

can be used to find the boundary of RA (see [10] and [20]).

For the sake of completeness, we restate the theorem, with

only slight alterations with respect to the version presented

in [20]. 2

Theorem 12 (Zubov’s Theorem) Consider the system

(28) and suppose that f is Lipschitz continuous on the re-

gion of attraction RA of an asymptotically stable equilib-

rium point x∗. Then, an open set G containing x∗ coincides

with RA, if and only if there exist two continuous positive

definite functions W : G 7→ R and h : M 7→ R such that

i) W (x∗) = 0, W (x) > 0 for all x ∈ G\{x∗},

ii) W (x) → 1 as x→ ∂G or, in the case of unbounded G, as

d(x, x∗) → ∞, where ∂G is the boundary of G and d(. , .)

is a metric defined on M,

iii) Ẇ (x) is well defined for all x ∈ G and

Ẇ (x) = −h(x) (1 −W (x)) . (32)

PROOF. [Theorem 10.] We start by showing that the

derivative of V is nonpositive. Substituting (30) in (20) and

(21) yields

V̇ = −kvne
T e − kωb

T

ωbω.

Then, we have V̇ ≤ 0 for all (e, Re) ∈ SE(3) and V̇ = 0 for

e = 0 andRe in the set CV2
already determined in Lemma 7.

By Lyapunov’s stability theory, we can conclude local sta-

bility of (0, I3) and, by LaSalle’s invariance principle, global

convergence to the set {(e, Re) : e = 0 and Re ∈ CV2
}. To

prove almost global asymptotic stability of (0, I3), consider

the autonomous orientation subsystem resulting from the

feedback interconnection of (7b) and (30b), and the con-

tinuously differentiable positive definite function

V̄2(Re) = tr(I3 −Re), (33)

which corresponds to (18) with M = I3. Using the angle-

axis representation, Re = rot(θ,n), and with an obvious

abuse of notation, V̄2 can be expressed as V̄2(θ) = 2(1 −

cos θ). Using (22) with P = 2I3 and (30b) with the original

P , the time derivative ˙̄V2 can be written as

˙̄V2 = −2 sin θ nTR∗
ω = −2kω(sin θ)2 nTPn ≤ 0. (34)

Defining the set G = SO(3)\NA, where NA = {Re : tr(I3−

Re) = 4}, it is straightforward to show that W (Re) =

1
4 V̄2(Re) together with h(Re) = kωV2(Re) satisfy the con-

ditions of Theorem 12, therefore implying that G is the re-

gion of attraction for the orientation subsystem and RA
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defined in (31) is the region of attraction for the overall po-

sition and orientation closed-loop system. By noting that

the set outside the region of attraction can be rewritten as

SE(3) \ RA = {(e, Re) : d(I3, Re) = 4}, where d(. , .) is the

metric on SO(3) given by

d : SO(3) × SO(3) → [0, 4]

(R1, R2) 7→ tr(I3 −RT

1R2), (35)

one concludes that SE(3) \ RA is a nowhere dense set of

measure zero, and therefore (0, I3) is almost GAS. 2

Remark 13 We can define a bijection between SO(3) and

a ball in R
3 of radius π, by assuming that antipodal points

on the ball’s surface (the sphere of radius π) represent the

same rotation. For each rotation matrix Re ∈ SO(3), there

is a unique point θn in the interior of the ball, 0 ≤ θ < π,

or two antipodal points θn and −θn in the surface, θ = π,

such that rot(θ,n) = Re.

As illustrated in Figure 3, the level surfaces for V̄2(Re) =

tr(I3 − Re), or equivalently for V̄2(θ) = 2(1 − cos θ), take

the form of spheres of radius θ ∈ [0, π], with a minimum at

V̄2(0) = 0 and a maximum at V̄2(π) = 4. Hence, the nowhere

dense zero measure set {Re : tr(I3 − Re) = 4}, which is

outside the region of attraction for the rotation system, can

be identified with the ball’s surface. 2

Fig. 3. Region of attraction for the rotation system.

Remark 14 When M satisfies certain conditions, the

function V2(Re) defined in (18) corresponds to the mod-

ified trace function on SO(3) studied in [11] and [4]. In

those works, to prove almost GAS of the desired equi-

librium points, the authors rely on the fact that V2 is a

Morse function on SO(3), i.e. a function whose critical

points are all nondegenerate and consequently isolated [11].

This corresponds to constraining P , or equivalently M , to

have all distinct eigenvalues. In our work, this restriction

has been lifted, since the proof of almost GAS follows a

different approach. We can therefore consider landmark

configurations, which do not yield a Morse function for

V2 because their critical points are not isolated. It can be

shown that CV2
is exactly the set of critical points of V2,

i.e. the set of rotations Re ∈ SO(3) such that the deriva-

tive (dV2)Re
: TRe

SO(3) 7→ R is not surjective. Hence, the

function V2 for the square configuration shown in Fig. 2(b)

is not a Morse function, since the set C
(2)
V2

given in (27)

comprises a connected set. 2

3.1. Properties of the control law

The first property that we would like to highlight is the

fact that the control law (30) can be expressed solely in

terms of the current and desired outputs Q and Q∗, respec-

tively.

Lemma 15 Under Assumption 2, the control law defined

in (30) can be rewritten as

v = kv(Q−Q∗)a + S(Qa)ω, (36a)

ω = kωS
−1(QDaQ

∗T −Q∗DaQ
T ) − kωS(Q∗a)Qa.

(36b)

PROOF. Since Q = RX + p1T and, according to Propo-

sition 3, Xa = 0 and 1Ta = 1, we have that Qa = −p and

so (30a) can be rewritten as

v = −kve − S(p)ω = kv(Q−Q∗)a + S(Qa)ω.

To obtain an alternative expression for (30b), note that

9



ω = kωbω = kωR
∗TS−1 (ReM −MRT

e )

= kωS
−1

(

RTMR∗ −R∗TMR
)

= kωS
−1

(

RTXDaX
TR∗ −R∗TXDaX

TR
)

,

and RTX = Q(In−a1T ). Then, we can take the expression

RTXDaX
TR∗, rewrite it as

RTXDaX
TR∗ = Q(In − a1T )Da(In − 1aT )Q∗T

= QDaQ
∗T −QaaTQ∗T ,

and use Proposition 21 to obtain

ω = kωS
−1(QDaQ

∗T −Q∗DaQ
T )

− kωS
−1(QaaTQ∗T −Q∗aaTQT )

= kωS
−1(QDaQ

∗T −Q∗DaQ
T ) − kωS(Q∗a)Qa.

2

The remaining properties relate to the dynamic behavior

of the closed-loop system, which can be rewritten as

ė = −kve (37a)

Ṙe = −kω(ReM −MRT

e )Re (37b)

We can immediately conclude that the proposed control law

decouples the position and orientation errors subsystems

and that the position error subsystem (37a) has a globally

exponentially stable equilibrium point at e = 0.

Using the metric on SO(3) given by (35), we show next

thatRe = I3 is almost globally exponentially stable (GES),

in the sense that, for almost all initial conditions, the dis-

tance d(I3, Re) = tr(I3 − Re) converges exponentially fast

to zero.

Lemma 16 The orientation subsystem (37b) has an al-

most GES equilibrium point at Re = I3.

PROOF. Noting that d(I3, Re) = V̄2(Re) as defined in

(33), we can use the expression for ˙̄V2 given in (34) to obtain

˙̄V2 = −2kω(sin θ)2 nTPn

≤ −2kω(1 + cos θ)(1 − cos θ)λ1

= −kωλ1(2 −
1

2
V̄2)V̄2 ≤ 0,

where λ1 > 0 is the smallest eigenvalue of P . Since ˙̄V2 ≤ 0,

we have 2 − 1
2 V̄2(Re(t)) ≥ 2 − 1

2 V̄2(Re(0)) for all t ≥ 0.

Then, we can write

˙̄V2(Re(t)) ≤ −αV̄2(Re(t)),

where α = kω(2 − 1
2 V̄2(Re(0)))λ1 and α > 0 for all Re(0)

such that V2(Re(0)) < 4, i.e. for all initial conditions inside

the region of attraction. 2

To further analyze the stability and convergence proper-

ties of the orientation subsystem, it is convenient to con-

sider the angle of rotation θ and axis of rotation n (recall

that Re can be written as Re = rot(θ,n)). Note that the

convergence of θ to zero is enough to guarantee that Re

converges to I3. Consequently, analyzing the stability of θ

can provide an alternative way of proving Lemma 16. More

importantly, analyzing the convergence of n gives further

insight on how the system evolves to the target configura-

tion.

According to Lemma 19 and (7b), for 0 < θ < π, the

time derivatives θ̇ and ṅ are given by

θ̇ = −nTR∗T

ω, (38)

ṅ =
1

2

(

sin θ

1 − cos θ
S(n) + I3

)

S(n)R∗T

ω, (39)

respectively. Applying the control law ω = kωR
∗N(θ,n)Pn,

it is straightforward to show that, in closed-loop, (38) and

(39) become

θ̇ = −kω sin θ nTPn (40)

ṅ = kωS(n)2Pn, (41)

respectively. As stated in Proposition 4, the matrix P de-

fined in (11) is positive definite provided that the land-

marks satisfy Assumptions 1 and 2. We can immediately
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conclude from (40) that the proposed controller guarantees

not only the asymptotic convergence of θ to the origin, but

also its decreasing monotonicity. Considering now (41), if

the landmarks are placed such that all eigenvalues of P are

equal, i.e. P = αI3 for some α > 0, then ṅ = 0 and so

the convergence of R to R∗ is achieved by rotating along a

constant axis of rotation, which is determined by the initial

condition of the system. On the other extreme case where

all the eigenvalues of P are distinct, we can divide S
2 into

the positive and negative half-spaces associated with the

smallest eigenvalue of P and show that n converges to the

corresponding eigenvector, with positive or negative sign

depending on which of the half-spaces the system is started.

The boundary between the two sets constitutes an invari-

ant set of the system. The following result formalizes these

considerations and also the intermediate cases where λ1 =

λ2 < λ3 and λ1 < λ2 = λ3.

Lemma 17 Let P ∈ R
3×3 be a positive definite matrix with

eigenvalues 0 < λ1 ≤ λ2 ≤ λ3. Considering the system

(41), three cases may occur:

i) when λ1 = λ2 = λ3, (41) becomes ṅ = 0;

ii) when λ1 < λ2 ≤ λ3, the asymptotically stable equilibrium

points of (41) are given by the unitary eigenvectors n1

and −n1 associated with λ1 and n(t) → sign(n(0)T n1)n1

as t→ ∞, provided that n(0)T n1 6= 0;

iii) when λ1 = λ2 < λ3, the asymptotically stable equilibrium

points form the set {n : n ∈ span(n1,n2) ∩ S
2} and

the system converges to a point in this set provided that

n(0) 6= ±n3.

PROOF. To analyze the stability of (41) when λ1 < λ2 ≤

λ3, consider the candidate Lyapunov function V (n(t)) =

1 − nT

1n(t), with unique maximum at V (−n1) = 2 and

unique minimum at V (n1) = 0. According to (41), V̇ is

given by

V̇ = −kωn
T

1S(n)2Pn

= −kωn
T

1n(nTPn − λ1)

= −kω(nTPn − λ1)(1 − V ).

Then, if nTPn > λ1 and V < 1, we have V̇ < 0. These

conditions are equivalent to n 6= ±n1 and nT

1n > 0, respec-

tively. It follows that the system verifies the conditions of

Zubov’s Theorem with G = {n ∈ S
2 : nT

1n > 0}, W (n) =

V (n), and h(n) = kω(nTPn − λ1), and therefore n1 is

asymptotically stable with region of attraction given by G.

The same argument but with V (n(t)) = 1 + nT

1n(t) can

be used to prove that −n1 is asymptotically stable, with

region of attraction given by Ḡ = {n ∈ S
2 : nT

1n < 0}.

Considering now the case when λ1 = λ2 < λ3, it is

straightforward to show that V (n(t)) = 1 − n(t)T (n1n
T

1 +

n2n
T

2 )n(t) is a Lyapunov function for the system, with

derivative given by V̇ = −kω(nTPn − λ1)(1 − V ) and

maximum at V (±n3) = 1. Applying Zubov’s Theorem, we

can conclude that the set of asymptotically stable equilib-

ria is given by {n ∈ S
2 : V (n) = 0} = {n ∈ S

2 : n ∈

span(n1,n2)} and that G = {n ∈ S
2 : n 6= ±n3} defines

the region of attraction. 2

This lemma turns out to be a very useful result, because

it tells us how to select the axis of rotation to which n

converges, by choosing a particular placement for the land-

marks. This will be further illustrated in Section 4 through

examples.

3.2. Tracking control around fixed landmarks

The approach proposed for stabilization on SE(3) can be

extended to solve a trajectory-tracking problem, in which

the rigid body is required to follow a moving configuration

using measurements originating from fixed landmarks. In

this setting, the desired configuration (p∗, R∗) ∈ SE(3) is

no longer fixed in the environment. Instead, it is assumed
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that, given an initial condition (p∗(0), R∗(0)) ∈ SE(3),

(p∗, R∗) evolves according to an exosystem of the following

form

ṗ∗ = v∗ − S(ω∗)p∗ (42a)

Ṙ∗ = R∗S(ω∗), (42b)

where the reference velocities v∗ and ω
∗ are assumed to be

continuously differentiable and bounded functions of time.

The motion of the elements q∗

j of the desired output matrix

Q∗ = [q1 . . . qn] is then governed by q̇∗

j = −v∗ −S(ω∗)q∗

j

and the error model defined in (7) becomes

ė = v − v∗ − S(ω)(e + p∗) + S(ω∗)p∗ (43a)

Ṙe = −S(R∗(ω − ω
∗))Re. (43b)

Considering once more the candidate Lyapunov function

V = V1(e)+V2(Re) defined in (16-18) and performing very

similar computations to those of Lemma 6, it is straight-

forward to show that the time derivatives of V1 and V2 are

now given by

V̇1 = neT (v − v∗ + S(p∗)(ω − ω
∗)) (44)

and

V̇2 = −S−T (ReM −MRT

e )R∗(ω − ω
∗), (45)

respectively. These immediately suggest the definition of a

feedback law by similarity with (30), which is given by

v = v∗ − kve − S(e + p∗)ω + S(p∗)ω∗, (46a)

ω = ω
∗ + kωR

∗TS−1(ReM −MRT

e ), (46b)

and can be expressed in terms of the output as

v = v∗ + kv(Q−Q∗)a + S(Qa)ω − S(Q∗a)ω∗, (47a)

ω = ω
∗ + kωS

−1(QDaQ
∗T −Q∗DaQ

T ) − kωS(Q∗a)Qa.

(47b)

As stated in the following corollary of Theorem 10, the

control law defined in (47) ensures almost global asymptotic

tracking of the reference (p∗, R∗).

Corollary 18 The closed-loop system resulting from the

interconnection of (43) and (46) has an almost GES equi-

librium point at (e, Re) = (0, I3), for any positive kv and

kω. The corresponding region of attraction is given by RA =

SE(3) \ {(e, Re) : tr(I3 −Re) = 4}.

PROOF. Note that the interconnection of (43) and (46)

results in an autonomous system of the form

ė = −kve

Ṙe = −kω(ReM −MRT

e )Re.

Since the closed-loop system is exactly the same as the one

considered in Theorem 10 and Lemma 16, we can conclude

that it has an almost GES equilibrium point at (e, Re) =

(0, I3), with region of attraction given by (31). 2

4. Simulation results

In this section, we present simulation results that cor-

roborate the stability characteristics of the system and il-

lustrate the properties discussed in the preceding sections.

We consider two different landmark configurations, corre-

sponding to matrices

X1 =







1 1 −1 −1

2 −2 −2 2

0 0 0 0






, X2 =







0 0 0 0

1 −1 −1 1

2 2 −2 −2






.

Note that in both cases, the origin of {I} coincides with the

landmark’s centroid and therefore satisfies Assumption 2.

It also follows that X11 = X21 = 0 and therefore a = 1
n
1

andDa = 1
n
In for both matrices. Figures 4(a) and (b) show

the trajectories described by the system using control laws

based on X1 and X2, respectively. Both were initialized

at the same position and orientation and share the same

target state (p∗, R∗) = ([0 0 − 10]T , I3).

We can see that, in both cases, the system starts by

describing an almost straight-line trajectory in position,

which reflects the quick convergence of the position error
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(b) Trajectory resulting from the landmarks in X2.

Fig. 4. System trajectories for the examples in Section 4.

e to a small neighborhood of the origin. From then on, the

behavior of the system is very much determined by the at-

titude controller, since the position evolves so as to main-

tain e close to zero. At this point, the difference between

trajectories becomes more pronounced. This behavior is di-

rectly related to the placement of the landmarks. As shown

in Figure 5, when X1 is used, the axis of rotation converges

to [0 − 1 0]T (solid line) whereas when X2 is used, it con-

verges to [0 0 1]T (dotted line). We recall that each of these

vectors corresponds to the eigenvector associated with the

smallest eigenvalue of P1 = 1
n
tr(X1X

T

1 )I3 − 1
n
X1X

T

1 and

P2 = 1
n
tr(X2X

T

2 )I3 −
1
n
X2X

T

2 , respectively.

The result obtained suggests that a careful placement of

the landmarks with respect to the desired configuration can

give rise to “better-behaved” trajectories. More specifically,
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 (
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d
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2

 X
1

x

y

z

θ(t)n(t)

n(t)

initial axis

final axis X1

final axis X2

Fig. 5. Time evolution for angle-axis pair (θ,n).

if X is selected such that the axis of rotation converges to

±p∗/‖p∗‖ (in the example, X2 verifies this condition), the

last stage of convergence will only involve a rotation about

that axis, producing no translational motion.

To illustrate the type of results that can be obtained with

the tracking controller and assess the robustness with re-

spect to measurement noise, we consider the case where the

system is supposed to track a circular trajectory based on

noisy measurements of the landmark configurationX2. Fig-

ure 6(a) shows the trajectory described by the system when

the initial position and orientation in the inertial frame are

set to IpB = [45 45 − 38]T and I

B
R = rot(2.8, [0.50 0.41 −

0.76]T ), respectively, which corresponds to an initial er-

ror state given by e = [−19.2 − 18.5 40.9]T and Re =

rot(3.1, [−0.52 −0.09 0.85]T ). The measurements were cor-

rupted with additive Gaussian noise with a standard devi-
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Fig. 6. Tracking a circular trajectory based on X2.

It is interesting to note that the system converges fairly

quickly to a small neighborhood of the circumference but

lags behind the reference roughly until t = 100s (see Fig-

ure 6(b)). This result can be explained by analyzing the

convergence of the error variables e, θ, and θn shown in Fig-

ure 7. We can observe that e has a faster convergence than

θ and thus the former determines the initial convergence to

the curve, whereas the latter determines the convergence

to the actual reference.

Once again, the landmarks’ placement has a significant

effect on shaping the system’s behavior, since the conver-

gence of n to [0 0 1]T ensures that as long as e is at the
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Fig. 7. Time evolution for the position and orientation errors.

origin, the system will be on the circumference irrespective

of the value taken by θ.

5. Conclusions

In this paper, a Lyapunov-based output-feedback con-

troller for the stabilization of systems evolving on SE(3)

was introduced. The solution proposed guarantees almost

GES of the desired equilibrium point, i.e. the point is sta-

ble and except for a nowhere dense set of zero measure

all initial conditions converge exponentially fast to it. The

rigid body stabilization problem was defined in a setup of

practical significance, by assuming that the output vector

matches the type of measurements produced by a number

of different on-board sensors. Results were established that

describe the dependence of the rotation axis’ convergence

on the placement of the landmarks. An extension of the
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output-feedback stabilizing controller was also proposed to

address the problem of tracking a moving reference, based

on measurements of inertially fixed landmarks.

The work presented in this paper offers new opportu-

nities for further research. Building on the premise that

sensor information can be used directly to define relevant

error measures and feedback laws, several challenges can

be put forward. First, although simulations show that our

controller appears to be robust with respect to input dis-

turbances and measurement noise, it remains to prove that

this is so and to determine which tradeoffs are involved in

making the system robust with respect to this type of dis-

turbances. A second challenge is to go from stabilization to

reference-tracking. This problem was briefly touched upon

in Section 3.2, but the proposed solution has the limitation

of constraining the landmarks to be inertially fixed. An in-

teresting (unsolved) problem would be that of designing an

output-feedback controller to maintain the rigid body at a

fixed position relative to a collection of moving landmarks.

The introduction of a dynamic model is another fundamen-

tal topic that requires special attention. Extending the al-

most global stability result from a kinematic to a dynamic

setting may prove to be a challenging problem, specially

for the case of underactuated systems with second-order

nonholonomic constraints [18]. Finally, the prospect of ap-

plying the principles set forth in this paper to tackle the

problem of rigid body attitude and position estimation is

also very promising.
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Appendix A. Parameterizing SO(3)

The attitude of a rigid body in the Euclidean Space E
3

can be represented by a rotation matrix describing the rel-

ative orientation between a coordinate frame attached to

the body and an inertial reference frame. A rotation ma-

trix is an element of the special orthogonal group SO(3),

defined as

SO(3) , {R ∈ R
3×3 : RTR = I3 ∧ det(R) = 1},

i.e., a rotation matrixR ∈ SO(3) satisfies the orthogonality

condition RTR = I3 and the orientation-preserving condi-

tion det(R) = 1.

It is well-known that SO(3) admits several different pa-

rameterizations [16]. In this paper, we adopt the angle-axis

representation, which identifies an angle of rotation θ ∈

[0, π] and an axis of rotation n ∈ S
2 , {x ∈ R

3 : xTx = 1}

with an element of SO(3), according to the map defined in

(15). Given the kinematic equation of motion for R, we can

obtain expressions for θ̇ and ṅ as specified in the following

lemma.

Lemma 19 Let R ∈ SO(3) be a rotation of angle θ about

the axis n, whose time evolution is described by Ṙ =

−S(ω)R. Then, for 0 < θ < π, the time derivatives of θ

and n can be written as

θ̇ = −nT
ω, (A.1)

ṅ =
1

2

(

sin θ

1 − cos θ
S(n) + I3

)

S(n)ω, (A.2)

respectively.

PROOF. Consider the function V̄2 = tr(I − R) = 2(1 −

cos θ). Taking the time derivative of V̄2 yields
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−2 sin θnT
ω = 2θ̇ sin θ

θ̇ = −nT
ω, θ 6= kπ, k ∈ Z.

To derive an expression for ṅ, note that n is an eigenvector

of R associated with a unitary eigenvalue, and therefore

Rn = n. Taking the time derivative of this equation yields

Ṙn +Rṅ = ṅ ⇔ −S(ω)Rn = (I3 −R)ṅ

⇔S(n)ω = (− sin θS(n) − (1 − cos θ)(nnT − I3))ṅ

Since n is unitary, we have that nT ṅ = 0 and so we can

write

A(θ,n)ṅ = S(n)ω, A(θ,n) = − sin θS(n) + (1 − cos θ)I3.

Noting that A(θ,n) is non-singular for 0 < |θ| < π and

assuming that A−1 takes the form A−1 = aS(n) + bnnT +

cI3, for some a, b,and c ∈ R, we can solve AA−1 = I3 for

these scalars to obtain a = 1
2

sin θ
1−cos θ , b = 1

2
1+cos θ
1−cos θ , and c =

1
2 . Then, the derivative of n can be written as

ṅ = A−1(θ,n)S(n)ω =
1

2

(

sin θ

1 − cos θ
S(n) + I3

)

S(n)ω.

2

Appendix B. Auxiliary results

Proposition 20 For all a ∈ R
3 and B ∈ R

3×3,

tr(S(a)B) = −aTb, where b = S−1(B −BT ).

PROOF.

tr (S(a)B) =
1

2
tr (S(a)(B −BT )) +

1

2
tr (S(a)(B +BT ))

=
1

2
tr (S(a)S(b)) +

1

2
tr (S(a)(B −B))

=
1

2
tr (baT − aTbI3) = −aTb

2

Proposition 21 For all a,b ∈ R
3, S−1(abT − baT ) =

S(b)a.

PROOF. cTS−1(abT − baT ) = −tr(S(c)abT ) =

−bTS(c)a = cTS(b)a 2
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