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Abstract

This paper addresses the problem of stabilizing to a desired equilibrium point an eye-in-hand system, which consists of a
single camera mounted on a rigid body free to move on SE(3). It is assumed that there is a collection of landmarks fixed in
the environment and that the image coordinates of those landmarks are provided to the system by an on-board CCD camera.
The proposed method addresses not only the problem of stabilization but also that of maintaining feature visibility along
the system’s trajectory. The resulting solution consists of a feedback control law based on the current and desired image
coordinates and reconstructed attitude and depth ratio information, which guarantees that i) the desired equilibrium point
is an almost global attractor; ii) a set of necessary conditions for feature visibility holds throughout the system’s trajectories;
and iii) the image of a predefined feature point is kept inside the camera’s field of view.
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1 Introduction

Computer vision has long been recognized as an ex-
tremely flexible means of sensing the environment and
acquiring valuable information for feedback control.
Over the last few decades, awareness of this potential
has brought about a widespread interest in the field
of vision-based control, also known as visual-servoing.
Vision-based control can be used to perform a variety of
tasks such as positioning a manipulator’s end-effector
with respect to an object to be grasped (Cowan, Wein-
garten, and Koditschek, 2002; Deng, Janabi-Sharifi, and
Wilson, 2005; Cheah, Liu, and Slotine, 2010) or landing
an UAV over a predefined target (Ma, Soatto, Kosecka,
and Sastry, 2004; Hamel and Mahony, 2007).

One of the main questions in vision-based control, which
continues to challenge researchers, is the Field of View
(FOV) problem. Although several recent papers address
the problem explicitly, no definitive solution has been
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proposed. As described in Cowan et al. (2002), the FOV
problem presents two challenges: the features should not
leave the image boundaries and they should also not be-
come occluded by the object on which they are marked.

A wide range of different approaches has been put for-
ward, which mostly only consider the problem of keep-
ing the features inside the camera’s FOV. Malis and
Chaumette (2002) propose a solution whereby control
of rotation is decoupled from that of position, using for
that purpose the homography-based reconstruction of
the orientation displacement between two views of a pla-
nar object, whose 3-D coordinates maybe unknown. To
reduce the likelihood of feature loss, the control strat-
egy keeps the centroid of the observed object inside
the FOV. Cowan et al. (2002) develop a visual-servoing
scheme based on a specific type of artificial potential
function called navigation functions. Using the gradient
vector field for a conveniently defined navigation func-
tion not only guarantees almost global convergence to
the goal within the specified domain but also restricts
the camera transient configurations to remain inside a
predefined set, preventing the features from becoming
occluded and leaving the FOV. For a 6-DOF body how-
ever, the navigation function is defined in the configura-
tion space rather than in the image space. More recently,
Lopes and Koditschek (2007) extend this approach to

Preprint submitted to Automatica 13 December 2010



control nonholonomic three degree of freedom kinematic
systems. Chen, Dawson, Dixon, and Chitrakaran (2007)
present an image-space path planner that tackles the
FOV problem using once again navigation functions.
The image-space navigation is defined such that the gra-
dient points away from the feature loss scenario, but
does not specifically avoid self-occlusions. Similarly to
the classical image-based approach (Espiau, Chaumette,
and Rives, 1992), determining the extent of the region of
attraction for the resulting trajectory generator remains
an open question. A number of recent methods combine
classical image-based and position-based visual-servoing
by either switching between the two (Gans and Hutchin-
son, 2007; Deng et al., 2005; Chesi, Hashimoto, Prat-
tichizzo, and Vicino, 2004) or simultaneously driving
both errors to zero (Gans, Hu, and Dixon, 2008). The
switching rules are typically designed so as to keep the
features in the FOV and simultaneously avoid large po-
sition and rotation errors. With these strategies, the sta-
bility of the system is difficult to analyze. For exam-
ple, in (Gans and Hutchinson, 2007), asymptotic stabil-
ity is guaranteed locally but no estimate of the region
of attraction is provided. Chesi and Vicino (2004) also
follow a path planning approach to address the FOV
problem, using a circular-like trajectory generator to re-
duce translational displacements. Garćıa-Aracil, Malis,
Aracil-Santonja, and Pérez-Vidal (2005) allow for some
features to temporarily leave the FOV, using weight
functions to guarantee the continuity of an image-based
control law and obtain a result of local stability.

We propose a novel vision-based controller that guar-
antees almost global attractivity of the desired config-
uration defined in SE(3). The approach adopted bor-
rows from the work of authors like Koditschek (1989),
Bullo and Murray (1999), Malisoff, Krichman, and Son-
tag (2006), Chaturvedi, McClamroch, and Bernstein
(2009), and Cunha, Silvestre, and Hespanha (2008).
Within this framework, rigid body configurations are
expressed in their natural space, as elements of SE(3),
so as to avoid problems related to singularities or the
so-called unwinding behavior (Bhata and Bernstein,
2000). The key novel contributions of this work with
respect to the references above is that our results are
not limited to guaranteeing rigid body stabilization. In
fact, the key challenge addressed in this work is to find
a stabilizing feedback controller that is guaranteed to
keep the features visible and simultaneously provide a
formal characterization of the region of the attraction
for the resulting closed-loop system. For that purpose,
our control algorithm relies on a two-stage controller
based on the current and desired image coordinates and
reconstructed orientation and depth ratio information
that enforces necessary conditions for feature visibility
throughout the closed-loop trajectories of the camera.

In contrast to most vision-based strategies, which only
consider the problem of keeping the features inside the
camera’s FOV (Malis and Chaumette, 2002; Gans and

Hutchinson, 2007; Chen et al., 2007), the proposed
method also takes into account the second type of fea-
ture loss, which is due to self-occlusions. To this end, the
necessary conditions for visibility are defined so that the
camera not only points towards the features, but also
remains in front of them. In addition, although there
is no absolute guarantee that all feature points remain
visible, the likelihood of maintaining feature visibility is
reinforced by ensuring that a predefined feature point,
such as the features’ centroid, is kept inside the FOV as
it converges to the desired value. Finally, with the cur-
rent approach we are not confronted with the difficult
problem of local minima intrinsic to image-based strate-
gies (Gans and Hutchinson, 2007; Chen et al., 2007;
Deng et al., 2005), and therefore we can obtain a well
defined region of attraction for the desired equilibrium
point.

Similarly to (Malis and Chaumette, 2002; Chesi and Vi-
cino, 2004; Chen et al., 2007), our solution does not re-
quire knowledge of the 3-D coordinates of the observed
features and relies on the homography-based reconstruc-
tion method to recover the rotation and depth ratio be-
tween the current and desired views of a set of copla-
nar points. To enforce feature visibility, the two-stage
controller first drives the position error to an arbitrar-
ily small neighborhood of the origin, while pointing to-
wards the feature points and only then ensures con-
vergence in both position and orientation. Unlike other
homography-based solutions that use the angle-axis rep-
resentation for rotations, our second-stage controller for
the rotation system uses directly the rotation matrix and
more importantly defines an attractor for the rotation
axis. This has a significant impact on the transients of
the system, which is essential for enforcing feature visi-
bility. The control law is complemented by an adaptive
scheme to update the estimate of the desired depth and
drive to zero the position error.

The paper is organized as follows. Section 2 introduces
the vision-based control problem, derives necessary con-
ditions to ensure feature visibility, and defines an image
error vector. Section 3 describes the proposed vision-
based controller. An exact expression for the region of
attraction is derived in Section 3.1 and the transient
configurations are shown to verify necessary conditions
for feature visibility in Section 3.2. Simulation results
that illustrate the behavior of the control system in the
presence of image measurement noise and errors in cam-
era calibration are presented in Section 4. A preliminary
version of this paper was presented at the 46th IEEE
Conference on Decision and Control (Cunha, Silvestre,
Hespanha, and Aguiar, 2007).

2 Problem formulation

Consider a fully-actuated rigid-body, attached to a coor-
dinate frame {B} and let (p, R) = ( BpI ,

B

I
R) ∈ SE(3)
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denote the configuration of an inertial coordinate frame
{I} with respect to {B}, such that

ṗ = −v − S(!)p (1a)

Ṙ = −S(!)R, (1b)

where v and ! ∈ ℝ
3 are the body-fixed linear and angu-

lar velocities, respectively and S denotes the map from
ℝ

3 to the space of skew-symmetric matrices so(3) =
{M ∈ ℝ

3×3 : MT = −M} defined so that S(a)b = a×b,
where a,b ∈ ℝ

3 and × denotes the cross product oper-
ator.

Consider also a desired configuration (p∗, R∗) ∈ SE(3),
defined as the configuration of {I} with respect to the
desired body frame {D}, which is assumed to be fixed

in the workspace, i.e. ṗ∗ = 0 and Ṙ∗ = 0. Introducing
the error variables

pe = p− p∗ ∈ ℝ
3, Re = RR∗T ∈ SO(3), (2)

we can write the respective state equations as

ṗe = −v − S(!)(pe + p∗) (3a)

Ṙe = −S(!)Re, (3b)

where v and ! ∈ ℝ
3 are the body-fixed linear and an-

gular velocities, respectively.

As illustrated in Figure 1, it is assumed that there is a
collection of n feature points placed at fixed positions
in the environment. The image coordinates yj and y∗

j ,
j ∈ {1, 2, . . . , n}, acquired at the current and desired
configurations (p, R) and (p∗, R∗), respectively, are both
available for feedback.
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Fig. 1. Setup for the vision-based control problem.

The feature points, whose position coordinates in
{I}, {B}, and {D} are denoted by xj ∈ ℝ

3, pj =

[xj yj zj ]
T ∈ ℝ

3, and p∗
j = [x∗

j y∗j z∗j ]
T ∈ ℝ

3,
j ∈ {1, 2, . . . , n}, respectively, are required to satisfy
the following assumptions:

Assumption 1 There are at least four coplanar points
of which no three are collinear.

Assumption 2 All points are “below” a plane Π that
contains the origin of {I} and is orthogonal to n�.

Using the perspective camera model, the image yj of the
point pj can be written as

yj =
1

zj
Apj (4)

where A ∈ ℝ
3×3 is the camera calibration matrix and

zj the unknown depth. Similarly, the image y∗
j of p∗

j is

given by y∗
j = 1

z∗

j

Ap∗
j . It is also convenient to define the

images of the current and desired position vectors as

y =
1

z
Ap, y∗ =

1

z∗
Ap∗ (5)

respectively. Assuming thatA is known, we assumewith-
out loss of generality that A = I from now on.

For coplanar points, it is well known that the image
pairs (yj ,yj

∗) are related by a homography, which is the
basis for a 3-D reconstruction algorithm (see for example
(Faugeras and Lustman, 1988; Ma et al., 2004)). More
specifically, we can write

yj =
zj
z∗j

Hy∗
j , H = Re +

1

d
tnT (6)

where t = p − Rep
∗, n = −R∗n�, and d is the desired

distance to the feature plane that verifies nTp∗
j = d.

If Assumption 1 is verified, the homography matrix H
is completely defined and the depth ratios zj/z

∗
j can

be readily obtained (Malis and Chaumette, 2002). In
particular, from y and y∗ we can compute the depth
ratio between the position vectors p and p∗ defined as

� =
z

z∗
. (7)

In general, the decomposition of the homography ma-
trix yields two valid solutions for the rotation matrix Re

and translation (up to a scale factor) between the two
views. Additional images of the same scene or additional
point correspondences in a different plane can be used
to choose the correct solution (Faugeras and Lustman,
1988).

In view of the above, the primary control objective can
be defined as that of designing a controller based on y,
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y∗, and reconstructed variables Re and � that drives
(p, R) to (p∗, R∗). The proposed solution also relies on
an adaptive scheme to update the desired depth estimate
and estimate error denoted by

ẑ∗, z̃∗ = ẑ∗ − z∗ ∈ ℝ,

respectively. For vision-based control systems, a simple
convergence result is not sufficient to avoid failure, since
the FOV problem needs to be explicitly addressed. Thus,
we consider the additional goal of keeping the features
inside the camera’s FOV along the closed-loop system’s
trajectories.

As discussed in the introduction, feature loss can occur
for two reasons: the features may either leave the cam-
era’s FOV or become occluded by the object on which
they are marked (see for example the camera configura-
tion {B3} shown in Figure 2). The likelihood of the first
type of feature loss can be greatly reduced by ensuring
that a relevant feature point remains in the FOV. For
that purpose, we consider the image error given by the
difference between the images of p and p∗, i.e.

ye = y − y∗. (8)

Since p is the position of the origin of the inertial frame
{I} expressed in the body frame {B}, it is important to
place {I} so that ye can provide an adequate measure for
feature visibility. For example, the centroid of the feature
points is a reasonable choice, provided that the image of
the centroid, which in general does not coincide with the
centroid of the image points, is available for feedback. In
Section 4, we present a particular case where the image
of the centroid can be readily obtained from the images
of the feature points, even though none of the features
points coincides with the centroid. Also note that even if
ye is converging to zero, y may become invalid if z goes
to zero. Therefore, we introduce

z = eT

3p > 0, e3 = [0 0 1]T , (9)

as a necessary condition for keeping the features in the
FOV.

To address the second type of feature loss, we introduce
the requirement

nT

�
Ip = −nT

�R
Tp > 0, (10)

to guarantee that the camera remains “above” the plane
Π.

In summary, the problem addressed in this paper can be
stated as follows:

Problem 3 Consider the rigid body kinematic model de-
scribed in error coordinates by (1). Design a controller
for v and !, based on y, y∗, Re, and �, such that

fB1g
fB2g

fB3g
n¼

Π

Fig. 2. Valid ({B1}) and invalid ({B2} and {B3}) configura-
tions.

i) (pe, Re) = (0, I3) is an almost global attractor,
meaning that its region of attraction ℛA coincides
with SE(3) except for a nowhere dense set of zero
measure;

ii) for every initial condition in a predefined set J ⊂
ℛA, (9) and (10) are guaranteed to hold along the
system’s trajectories;

iii) for sufficiently small errors on the initial depth es-
timate, the image y is kept inside the FOV.

For the sake of completeness, we recall the definitions
of almost global attractivity, and almost Global Asymp-
totic Stability (GAS) (Angeli, 2004; Chaturvedi, Bloch,
and McClamroch, 2006) for a system of the form ẋ =
f(x). The equilibrium point x = x∗ is said to be an al-
most global attractor if the complement of its region of
attraction is a nowhere dense set of measure zero. An al-
most GAS equilibrium point is an almost global attrac-
tor that is stable.

3 A Control Law for Visual-Servoing

In the following, we describe a solution to the problem
of vision-based control. To this end, it is convenient to
introduce the angle-axis representation for rotations, ac-
cording to which Re = rot(�,n) = I3 + sin �S(n) +
(1− cos �)S(n)2 represents a rotation of angle � ∈ [0, �]
about the unitary axis n ∈ S

2, and define the function
sign : ℝ 7→ {1,−1} such that sign(x) = 1 if x ≥ 0 and
sign(x) = −1 if x < 0.

In loose terms, the proposed solution can be described
as comprising two sequential steps:

i) driving the position vector p to an arbitrarily small
neighborhood of p∗;

ii) ensuring the convergence of (p, R) to (p∗, R∗) us-
ing a controller that also guarantees that n(t) →
sign(n(0)Tn1)n1 as t → ∞, where n1 = p∗/∥p∗∥.

This strategy will allow for the definition of a set J ∈
SE(3) such that for all initial conditions in J , both (9)
and (10) are verified along the trajectories of the system.
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The setJ depends on the desired configuration (p∗, R∗),
the feature plane Π, and the initial estimate error for the
desired depth z̃∗(t0) = ẑ∗(t0)− z∗. It is defined as

J = J1 ∩ J2 ∖ NA, (11)

where NA is a zero measure set that will be explicitely
defined shortly and

J1 = {(pe, Re) : z = eT

3 (pe + p∗) > 0}, (12)

J2 = {(pe, Re) :
Ip = −R∗TRT

e (pe + p∗) ∈ C

and −R∗TRT

ep
∗ ∈ C}, (13)

with the set C ⊂ ℝ
3 given by

C = {Ip : Ip∗T Ip > cos(�� − �)∥Ip∗∥∥Ip∥,

�� = arccos
(

∥S(n�)
Ip∗∥

/

∥Ip∗∥
)

� = 2arctan

(

√

(z∗
)2 + z∗

kz
z̃(t0)2

/

∥Ip∗∥

)}

.

(14)

As illustrated in Fig. 3, C defines an unbounded cone in
the space of inertial positions, which results from revolv-
ing the vector −S(n�)

2Ip∗ (i.e. the projection of Ip∗

onto to the feature plane) around Ip∗. It is easy to see
that C is placed “above” the plane Π, and therefore (10)
holds inside J2. Also note that the opening angle of the
cone has a maximum of �� = �/2 when Ip∗ is perpen-
dicular to the plane (in this case C coincides with the
half-space above the plane) and decreases to zero as Ip∗

approaches the plane. Notice the difference between the
cones depicted in Figures 3(a) and (b). The opening an-
gle of C is reduced by � defined as a function of z̃∗(t0).

(a) Ip∗ = [6 6 3.9]T ; n� = e3 (b) Ip∗ = [3 3 8]T ; n� = e3

Fig. 3. Set C ⊂ ℝ
3 for two different desired positions Ip∗.

Having described the goals and properties of the pro-
posed solution, a feedback law that yields this result can
be constructed as follows:

1) Pick M ∈ ℝ
3×3, such that M = MT ≥ 0, its two

largest eigenvalues verify �1 > �2 > 0, and y∗ is an
eigenvector of M associated with �1.

2) Define the controller

v =

{

k1(�y−y∗) until ∥�y−y∗∥<
 (15a)

k2(�y−y∗)−ẑ∗S(!)�y afterwards (15b)

! =

{

k3S(y
∗)�y until ∥�y−y∗∥<
(16a)

k4S
−1(ReM −MRT

e ) afterwards (16b)

and the update law for ẑ∗

˙̂z∗ =

{

0 until ∥�y − y∗∥ < 
 (17a)

kzy
∗TS(!)�y afterwards (17b)

where S−1 : so(3) 7→ ℝ
3 denotes the inverse of the skew

map S and 
, k1, k2, k3, k4, and kz are positive scalars.

3.1 Stability Analysis

In this section, we analyze the stability of the closed-
loop system and show that the first claim of Problem 3
is verified by the proposed controller, as stated in the
following result.

Theorem 4 Let Σ denote the closed-loop system that
results from the feedback interconnection of (1) and (15)-
(16), with ẑ∗ as an exogenous input driven by (17). The
point (pe, Re) = (0, I3) is an almost global attractor of
Σ and the corresponding region of attraction is given by
ℛA = SE(3) ∖ NA, where

NA = {(pe0, Re0) : pe(t0) = pe0, Re(t0) = Re0,

∥pe(t1)∥ ≤ z∗
, tr(I3 −Re(t1)) = 4,

ṗe = k1(�y − y∗)− k3S(p)S(�y)y
∗,

Ṙe = k3S(S(�y)y
∗)Re, for t0 ≤ t ≤ t1

}

(18)

Moreover, pe = 0 is a global attractor of the position
system and Re = I3 is an almost GAS equilibrium point
of the rotation system. □

To prove Theorem 4, we begin by focusing on the po-
sition system and then proceed to analyze the overall
closed-loop system. Direct substitution of (15)-(16) in
(1a) yields the following non-autonomous system for pe

z∗ṗe=

⎧



⎨



⎩

−k1pe−k3
1

z∗
S(pe+p∗)2p∗until ∥pe∥ < z∗
,

(19a)

−k2pe+z̃∗S(!)(pe+p∗) afterwards. (19b)

Lemma 5 The position error system (19) with ! and
z̃∗ = ẑ∗ − z∗ as exogenous inputs given by (16b) and
driven by (17b), respectively, has a global attractor at the
origin.
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PROOF. Consider the Lyapunov function V1 =
z∗

2 pT

epe. Until the bound ∥pe∥ < z∗
 is reached, V̇1 is
given by

V̇1 = −k1p
T

epe + k3
1

z∗
pT

eS(p
∗)2pe ≤ −k1

2

z∗
V1

which implies that pe converges exponentially fast to the
origin until the bound is reached. To analyze the stability
of the second stage (19b), note that the time derivative

of the Lyapunov function V2 = V1 + (z∗)2

2kz
(z̃∗)2 along

the system trajectories is given by V̇2 = −k2p
T

epe ≤
0, which implies that pe and z̃∗ are bounded and V2

converges to a finite limit. Since in addition ! given
by (16b) is bounded, we have that ṗe given by (19b)

is bounded and consequently V̈2 is bounded and V̇2 is
uniformly continuous. Then, we can apply Barbalat’s
Lemma to show that V̇2 and consequently pe converge
to zero. ■

Remark 6 Until the bound ∥pe∥ < z∗
 is reached, pe

converges exponentially fast to the origin, which is expo-
nentially stable. The closed-loop system will therefore al-
ways reach in finite time the bound ∥pe∥ < z∗
. Once the
bound is reached, the system begins a second stage ruled
by the control laws (15b) and (16b) and update law (17b).
Notice that no chattering will occur, given that there is no
switching back to the first control laws (15a) and (16a),
even if ∥pe∥ becomes greater than z∗
. During the sec-
ond stage, pe continues to converge to zero and we can
ensure that the bound ∥pe∥

2 < (z∗
)2 + z∗

kz
z̃∗(t0)

2 holds,
given that the update law does not apply until this stage.

To analyze the stability of the second stage, we present
the following technical result.

Lemma 7 Consider the feedback law for ! given by

! = k!S
−1(ReM −MRT

e ), (20)

where M ∈ ℝ
3×3 is such that M = MT ≥ 0 and its

two largest eigenvalues values verify �1 > �2 > 0. A
possible choice for M is described in Section 4. Then,
the interconnection of (3b) and (20) has an almost GAS
equilibrium point at Re = I3 with region of attraction
SO(3) ∖ {Re : tr(I3 −Re) = 4}. Moreover, almost every
initial condition n(0) for the axis of rotation n(t) con-
verges asymptotically to sign(n(0)Tn1)n1, where n1 is a
unitary eigenvector of M associated with �1. □

PROOF. For the sake of brevity, we present an outline
of the proof, which uses results from Cunha et al. (2008).
Consider the Lyapunov function V = tr(I3−Re), which
can also be written as V = 2(1− cos �) using the angle-
axis representation for the rotation matrix Re. Straight-
forward computations show that, along the trajectories

of the closed-loop system, V̇ is given by

V̇ = −
1

2
k!V (4− V )nTPn,

where P is the positive definitive matrix given by P =
tr(M)I3−M . Since V takes values between 0 and 4 and

V̇ < 0 except for V = 0 and V = 4, we can conclude that
Re = I3 is asymptotically stable and the set outside its
region of attraction is given by {Re : tr(I3 −Re) = 4}.

To show that almost every initial condition n(0) for
the axis of rotation n(t) converges asymptotically to
sign(n(0)Tn1)n1, consider the closed-loop system for n

ṅ = k!S(n)
2Pn (21)

and the Lyapunov function W = 1 − nT

1n. In addition,
let �1 ≥ �2 ≥ �3 ≥ 0 denote the eigenvalues of M and
n1 be such that Mn1 = �1n1. Simple algebra shows
that Pn1 = (�2 + �3)n1 and that if �1 > �2 > 0 then
nTPn > �2 + �3 for all n ∈ S

2∖{−n1,n1}. Taking the

time derivative ofW , we obtain Ẇ = −k!(n
TPn−(�2+

�3))(1 − W ), which is negative definite for W < 1 or
equivalently for n1

Tn > 0. It follows that n = n1 is
asymptotically stable and its region of attraction con-
tains {n : nT

1n > 0}. The same argument but with
W = 1 + nT

1n can be used to show that n = −n1 is
asymptotically stable and its region of attraction con-
tains {n : nT

1n < 0}. Using (21), it is easy to show that
nT

1n(t) = 0 defines an invariant set. As such, we can con-
clude that n(t) converges to sign(n(0)Tn1)n1, provided
that n(0)Tn1 ∕= 0. ■

PROOF. [Theorem 4] From Lemma 5, we have that
pe = 0 is a global attractor of the position system (19).
To analyze the rotation system, assume that the initial
condition is given by (pe(t0), Re(t0)) and the switching
from the first to the second controller occurs at time
t1 ≥ t0. If ∥pe(t0)∥ ≤ z∗
, the system is started directly
inside the domain of application of the second controller
(15b)-(16b), so that t1 = t0. It follows immediately from
Lemma 7 and (16b) that Re = I3 is an asymptotically
stable equilibrium point and that Re(t) → I3 as t →
∞, provided that tr(I3 − Re(t0)) ∕= 4. If ∥pe(t0)∥ >
z∗
, Re(t1) provides the initial condition for the second
stage, which evolved from the initial condition Re(t0)
with an angular velocity ! given by (16a). Using the
same arguments of the first case, Re converges to I3,
provided that tr(I3 −Re(t1)) ∕= 4.

Putting together the results regarding the stability of pe

and Re, we can conclude that (pe, Re) = (0, I3) is an al-
most global attractor of the closed-loop system and that
the zero measure set NA outside its region of attraction
is given by (18). ■
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3.2 Necessary Conditions for Feature Visibility

In this section, we show that claims ii) and iii) of Prob-
lem 3 are also verified by the proposed controller. By an-
alyzing the convergence behavior of the closed-loop sys-
tem, we will be able to prove that the set J defined in
(11) verifies claims ii) of Problem 3. Next, we will show
that for sufficiently small z̃∗(t0), the image y remains
inside the FOV.

Theorem 8 Let Σ denote the system that results from
the feedback interconnection of (3) and (15)-(16) and
consider the set J and angle �� defined in (11) and (14),
respectively. For all initial conditions (pe(t0), Re(t0)) ∈
J , the trajectories (pe(t), Re(t)) of Σ with t ≥ t0 are
such that z(t) > 0 and Ip∗T Ip(t) > cos��∥

Ip∗∥∥Ip(t)∥.
□

PROOF. Since J results from the intersection of three
sets J = ℛA ∩J1 ∩J2, we consider each set separately.
First we note that ℛA is positively invariant given that
it is the region of attraction of the desired equilibrium
point.

We can also show thatJ1 is positively invariant, meaning
that the depth z(t) = eT

3p(t) remains positive if z(t0) is
positive. While the first controller is being applied, the
closed-loop system for p can be written as

ṗ = −
k1
z∗

(p− p∗)−
k3
z∗2

S(p)2p∗. (22)

By noting that pTS(p∗)ṗ = 0, we can conclude that p(t)
lives in the plane defined by p∗ and p(t0). We can fur-
ther restrict the region within which p(t) evolves from
p(t0) to p∗, by selecting different values for k1 and k3
and analyzing the resulting solutions. With k1 = 0, p(t)

would have constant norm and move towards ∥p(t0)∥
∥p∗∥ p∗

through the shortest arc of circumference connecting

p(t0) to
∥p(t0)∥
∥p∗∥ p∗ (see Fig. 4). With k3 = 0, p(t) would

move along the straight line connecting p(t0) to p∗. As
illustrated in Fig. 4, all other combinations for k1 > 0
and k3 > 0 result in solutions between these two limit
trajectories, which indicates that z(t) > 0 if z(t0) > 0.
During the second stage, since ∥p−p∗∥2 does not grow

beyond (z∗
)2+ z∗

kz
z̃∗(t0)

2, sufficiently small 
 and z̃∗(t0)

guarantee that the depth z(t) remains positive.

Considering now the set J2, we recall that it can be iden-
tified with the set C defined in (14) and analyze the time
evolution of the inertial position vector Ip = −RTp.
Similarly to the previous case, we note that Ip andRTp∗

live in the same plane, since IpTS(RTp∗)Iṗ = 0 and
IpTS(RTp∗)ṘTp∗ = 0. Also we know that p converges
to p∗, so Ip converges to a point on the sphere of radius
∥p∗∥. We can further restrict the region within which Ip

Fig. 4. Plane view of a set of solutions for (22) with desired
position p∗ = [2 0 4]T , initial condition p(t0) = [8 0 0]T ,
k1 = 0.5, and different gains 0 ≤ k3 ≤ 10.

evolves, by noting that when p(t0) and p∗ are aligned,
there is no rotational motion (! = 0) and Ipmoves along
the straight line with the direction of R(t0)

Tp∗. With
k1 = 0, there is no translational motion (v = 0) and
the body simply rotates to align p with the direction of
p∗. With k3 = 0, there is no rotational motion (! = 0)
and Ip moves along the straight line connecting Ip(t0)
and R(t0)

Tp∗. Again, all other gain combinations result
in solutions between these trajectories, implying that if
Ip(t0) and R(t0)

Tp∗ start inside the cone C defined in
(14), Ip will remain inside that cone.

For the second stage, we consider a particular case and
show that the intersection set J2∩{(pe, Re) : pe = 0} is
positively invariant. Recalling that pe = 0 is an equilib-
rium point of the position error system, Ip can be writ-
ten as Ip(t) = R∗TRe(t)R

∗Ip∗ for all t > 0 and the func-
tion W : SO(3) 7→ ℝ given by W (Re) = p∗T (I3−Re)p

∗

takes the form W (Ip) = Ip∗T (Ip∗ − Ip). The latter ex-
pression provides a useful interpretation for W , whose
level curves can be plotted against the sphere of radius
∥Ip∗∥ as shown in Fig. 5. Intersecting the level curves
of W with the cone C, it is straightforward to observe
that the nonincreasing monotonicity of W guarantees
the positive invariance of J2 ∩ {(pe, Re) : pe = 0}. To

Fig. 5. Level curves for W (Ip), where Ip = RT
e

Ip∗, inter-
sected with C.
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show that Ẇ ≤ 0, recall that y∗ and consequently p∗

are eigenvectors of M associated with �1. Then, Ẇ can
be written as Ẇ = −k4p

∗T (�1I3 −ReMRe)p
∗ ≤ 0.

To extend this result to the case where pe ∕= 0, consider
by similarity with the cone C, the definition of the set
C[p, �] given by

C[p, �] = {u : pTu ≥ cos�∥p∥∥u∥}.

and let t1 ≥ t0 denote the time when the switching
to the second stage occurs. If Ip(t1) ∈ C[Ip∗, �1] and
p(t) ∈ C[p∗, �] for t > t1, it follows that −R(t1)

Tp∗ ∈
C[Ip∗, �1 + �]. Using once again the Lyapunov func-
tion W , we can show that −R(t)Tp∗ ∈ C[Ip∗, �1 + �]
and consequently Ip(t) ∈ C[Ip∗, �1 + 2�] for t > t1.
Then, if �1 + 2� < ��,

Ip(t) will stay inside the cone
C = C[Ip∗, ��].

■

To conclude this section, we analyze the closed-loop sys-
tem for the image error ye = y − y∗. Recall, that while
the first controller (15a) and (16a) is being applied, the
closed-loop system for p is given by (22). Simple algebra
shows that ẏe can be written as

ẏe = −kyye, ky =
k1
z

+ k3�y
Ty. (23)

Given that z > 0, we have that ∥ye∥ is monotonically
decreasing to zero and y remains inside the FOV. After
that, we rely on the bound on the position error ∥pe∥

2 <
(z∗
)2+z∗z̃∗(t0) to guarantee that for a sufficiently small
z̃∗(t0), y does not leave the FOV as it converges to y∗.

4 Simulation Results

The simulation results presented in this section illustrate
the stability and convergence properties of the proposed
vision-based controller in the presence of image measure-
ment noise and camera calibration errors. To implement
the feedback law (15)-(16) given the target configuration
(p∗, R∗), we need to select both the matrix M ∈ ℝ

3×3

and the set of feature points in the form of a matrix
X ∈ ℝ

3×n, with n ≥ 4.

The matrixM is required to be such that the two largest
eigenvalues verify �1 > �2 > 0 and My∗ = �1y

∗. Defin-
ing the unitary vector n1 = y∗/∥y∗∥ and assuming that
n1 and e1 = [1 0 0]T are not collinear, a possible choice
for M is given by

M = USUT , (24)

U =
[

n1
S(n1)e1

∥S(n1)e1∥
S(n1)

2
e1

∥S(n1)2e1∥

]

, S =

[

�1 0 0
0 �2 0
0 0 �3

]

.

Regarding X, it may seem that it can be formed by vir-
tually any set of feature points satisfying Assumptions 1
and 2. However, since the visual-servoing problem is con-
cerned with keeping feature visibility and the proposed
solution only guarantees that (pe, Re) stays inside J ,
the matrix X should be carefully chosen. To meet the
assumptions and ensure that the set J does not lose its
significance, we consider a set of n = 8 feature points
such that

X =
[

X1 X2

]

X1 =
[

a1 a1 −a1 −a1

b1 −b1 −b1 b1
0 0 0 0

]

, X2 =
[

a2 a2 −a2 −a2

b2 −b2 −b2 b2
−c −c −c −c

]

and 0 < a1 < a2, 0 < b1 < b2, and c > 0. Note that the
choice of feature configurations is not limited to the one
just proposed.

As shown in Fig. 6, the feature points correspond to the
vertices of a polyhedron that results from chopping the
top off a pyramid and the origin of {I} coincides with
the centroid of the polyhedron’s upper face. By aligning

Fig. 6. Current configuration (p, R), desired configuration
(p∗, R∗), and corresponding image coordinates y and y∗.

the plane Π with this upper face, we guarantee that the
inertial position Ip(t) remains above the features, while
converging to Ip∗ = −R∗Tp∗. This choice of feature ge-
ometry simplifies the process of recovering the rotation
matrix Re and the depth ratio � from images coordi-
nates, since the 3-D reconstruction algorithm for pla-
nar scenes can be directly applied to the pairs (Y1, X1)
and (Y2, X2). In addition, as shown in Fig. 1, the points
in X1 can be interpreted as the vertices of a rectangle
whose centroid lies at the intersection between the vec-
tors x3−x1 and x4−x2. It follows that the image of the
centroid also lies at the intersection between the vectors
y3 − y1 and y4 − y2, and therefore y can be readily ob-
tained even though it is not the image of a feature point.

The simulation results that follow were obtained with
the polyhedron parameters given by a1 = b1 = 0.12,
a2 = b2 = 0.14, and c = 0.04, the control gains k1 = 0.5,
k2 = 1, k3 = k4 = 0.1, and kz = 1, and the eigenval-
ues �1 = 0.8, �2 = 0.78, and �3 = 0.75. The target
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position and orientation were set to p∗ = [0.05 0.06 1]T

and R∗ = rot(−0.4, [0.77 0.63 − 0.1]T ), respectively,
yielding Ip∗ = [−0.29 0.23 − 0.93]T . The correspond-
ing set C, which results from choosing n� = [0 0 − 1]T ,
is shown in Fig. 7(a). The initial conditions were chosen

(a) 3-D trajectory
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(b) 2-D trajectory in the image plane

Fig. 7. System trajectories.

so as to illustrate the performance of the proposed so-
lution. With Ip(t0) = [−4.5 4.5 − 3.8]T m and R(t0) =
rot(2.71, [0.22 −0.39 0.89]T ), there is a large error in po-
sition and orientation, pe(t0) = [−2.59 − 1.86 5.73]T m
and �e(t0) = 159 deg, and the initial image is close to
the borders of the FOV (see Fig. 7(b)). For the initial
estimate of the desired depth, whose actual value was
z∗ = 1 m, we used ẑ∗(t0) = 1.5 m.

The camera calibration matrix used in the simulations

is given by

A =

⎡

⎢

⎢

⎣

f
sx

− f cot �
sx

ox

0 f
sy sin �

oz

0 0 1

⎤

⎥

⎥

⎦

, (25)

with the focal length f = 8 mm, the image center
(ox, oy) = (320, 240) pixels, the effective pixel size in
x and y (sx, sy) = (0.011, 0.01) mm, and the angle be-
tween axes � = 90o. An error of 25% was added to f/sx
and f/sy. Finally, the image update rate was set to 10
frames per second and the image measurements were
corrupted with additive Gaussian noise with a standard
deviation of 3 pixels.

Figure 7 illustrates the convergence behavior that can
be achieved with the proposed two-stage controller. The
first and second stages of the trajectory can be easily
identified. While the first controller is being applied, the
body rotates around itself to point to the target and
moves approximately along a straight line until pe is
close to zero (see Fig. 7(a)). This is projected into a
translation and zooming in of the image coordinates yj

in the image plane (see Fig. 7(b)). Regarding the second
controller, which takes the body to its desired configu-
ration, the resulting 3-D trajectory involves both rota-
tional and translational motions, which can be approx-
imately identified as a rotation of the feature points in
the image plane. Figure 8 shows the position error pe

and the angle for the rotation error �e as they converge
to zero. The linear and angular velocity inputs are shown
in Fig. 9 and 10, respectively.
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Fig. 8. Time evolution of the position error pe = [ex ey ez]
T

and orientation error �e.

5 Conclusions

The paper presented a vision-based solution to the prob-
lem of stabilization on SE(3). Based on the image co-
ordinates of a set of feature points and reconstructed
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Fig. 10. Time evolution of the angular velocity
! = [!x !y !z]

T .

rotation and depth information, a two-stage controller
was defined to ensure that the features remain visible
while the system converges to an almost global attractor.
Necessary conditions for feature visibility were enforced,
which include keeping the camera above the features and
maintaining a feature point inside the FOV. Simulation
results were presented, which support the adequacy of
the proposed method.
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