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Abstract—This paper addresses the problem of robust take-off of a
quadrotor UAV (Unmanned Aerial Vehicle) in critical scenarios, such as
in presence of sloped terrains and surrounding obstacles. Throughout
the maneuver the vehicle is modeled as a hybrid automaton whose states
reflect the different dynamic behavior exhibited by the UAV. The original
take-off problem is then addressed as the problem of tracking suitable
reference signals in order to achieve the desired transitions between
different hybrid states of the automaton. Reference trajectories and
feedback control laws are derived to explicitly account for uncertainties
in both the environment and the vehicle dynamics. Simulation results
demonstrate the effectiveness of the proposed solution and highlight the
advantages with respect to more standard open-loop strategies, especially
for the cases in which the slope of the terrain renders the take-off
maneuver more critical to be achieved.

Index Terms—Aerial Robotics, Underactuated Robots, Hybrid Au-
tomaton, Optimization

I. INTRODUCTION

Flight control of autonomous Unmanned Aerial Vehicles (UAV) is
an active and extensively researched topic, with crucial importance
in numerous civilian and military applications [1], [2], [3], [4]. To be
truly autonomous, an UAV must perform maneuvers that encompass
not only the normal flight conditions, like hover or forward flight, but
also the take-off and landing maneuvers, where interaction with the
ground occurs. In the critical take-off phase the autopilot controller
must provide robustness to uncertainties in both the environment
and the dynamical vehicle model. In most of the available literature,
automated take-off maneuvers for aerial rotorcraft are performed in
a semi open-loop fashion. The maneuvers are achieved by tracking a
given trajectory that takes the vehicle to hover, or that descends, at a
slow enough rate to hopefully land the aircraft without damage. This
is the situation presented in several works, e.g. [5], [6], and [7], where
the aspect of ground contact modeling or robustness to environment
uncertainties is not dealt with.

Hybrid automata allow to model a complex system in a modular
way by collecting simpler dynamical models, each one focusing only
on a precise operating mode of the system. They constitute a subset of
the larger class of hybrid dynamical systems [8]. Hybrid controllers
have been successfully applied for the trajectory tracking of aerial
vehicles in different setups, from which we highlight two. In [9], a
hybrid controller is designed to fulfill multiple hierarchical objectives
and includes a tactical planner, responsible for the higher level
behavior of the aircraft, and a trajectory planner, which generates
the desired trajectory for each mode. A different hierarchical control
architecture for aggressive maneuvering applicable to autonomous
helicopters is proposed in [10]. The hybrid controller is based on
an automaton whose states represent feasible trajectory primitives. In
both papers, different states of the automata correspond to different
trajectories and not to different dynamics of the vehicle. Additionally,
in the former work, the overall switched system stability analysis
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is not presented and, in the latter, perfect tracking of the nominal
trajectories is assumed.

In this work we target the problem of automatic take-off in critical
scenarios where heuristic “open-loop” approaches can not be used
to guarantee successful maneuvers and control solutions able to
finely steer the vehicle along appropriate trajectories are needed.
The prototypical scenario motivating our attempts is sketched in
Figure 1. The presence of a left-sided obstacle along with a sloped
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Fig. 1. Left: the quadrotor hits an obstacle if uncontrolled vertical thrusts
are applied. Right: a safe take-off maneuver.

terrain makes the application of heuristic take-off strategies, for
instance based on the application of uncontrolled large vertical thrusts
aiming to rapidly detach the vehicle from the ground, inappropriate
as leading to hit the obstacle (see the sketch on left of Figure 1).
Indeed, as shown on the right of the figure, successful take-off
maneuvers necessarily require a first phase in which the vehicle is
tilted clockwise by pivoting about the landing gear, followed by a
getaway maneuver in which the vehicle slides to the right while
keeping the contact with the ground, before definitely taking-off at a
safe distance from the obstacle. The accomplishment of this kind of
maneuver, in turn, is challenging due to the changes of the dynamics
governing the vehicle in the different phases and to the possible
uncertainties characterizing the environment and the vehicle. Our goal
is precisely to set-up a framework to handle the above scenario and
to robustly design successful maneuvers.

The methodology adopted to address this problem borrows from
the control framework proposed in [11] and builds upon previous
work on ground interactions [12] and interactions with structures
in the environment [13]. In this approach, the vehicle is modeled
as a hybrid automaton where each state corresponds to a different
operating condition, where the vehicle is subject to different dy-
namics, according to the nature of the ground contact. The control
methodology presented in the following requires that the current
operative mode of the UAV is known. For the specific take-off
operation, the operative mode can be retrieved by merging the
information deriving from contact or force sensors, to be placed at
each extremity of the vehicle’s landing gear, with the knowledge of
the velocity and the attitude of the system obtained through a standard
inertial navigation unit.

Once the hybrid automaton is defined, the take-off control problem
is addressed as trajectory generation and tracking control problems.
In particular, both the reference signals and the feedback laws for
each operating mode are derived considering explicitly the presence
of uncertainties. The references are designed such that their practical,
and not perfect, tracking ensures that the desired transitions happen,
despite the possible presence of parametric or modeling uncertainties.
Other approaches to maneuver based motion-planning include [14]
and [15], where supervisor hybrid controllers are also used to ensure
that a sequence of maneuvers is followed robustly.

The main contribution of this work consists in the explicit design
of the hybrid automaton, robust reference maneuvers, and low-level
controllers for a quadrotor vehicle. We derive the dynamics for a
quadrotor pivoting and/or sliding along a slope and construct a robust
hybrid controller, along with the definition of appropriate reference



trajectories, that allows for fully autonomous robust take-off of the
vehicle. Robust reference maneuvers for take-off are obtained as
solutions of constrained optimal control problems.

II. NOTATION

The following mathematical notation is used throughout this work.
The expression g : X → Y indicates that g is a map with domain X
and codomain Y . Similarly, h : X ⇒ Y denotes a set-valued map h
with domain X and codomain Y . The sign function sgn(x) : R→ R
extracts the sign of a real number. For the purposes of this work
it is defined as sgn(x) = −1, if x is negative, sgn(x) = 1, if x
is positive, and sgn(0) = 0. A saturation function is defined as a
differential function σ(·) : R → R satisfying |dσ(x)/dx| ≤ 2 for
all x, xσ(x) > 0 for all x 6= 0, σ(0) = 0, σ(x) = sgn(x) for
|x| > 1, and |x| < |σ(x)| < 1 for |x| < 1. For a point x ∈ Rn,
Bε(x) denotes the ball of radius ε centered at x, that is, Bε(x) =
{y ∈ Rn : ‖x− y‖ < ε}. The symbol ∧ denotes the logical AND
operator. The definition of input-to-state stable (ISS) with restrictions
for a dynamic system is taken from [16].

III. QUADROTOR HYBRID MODEL

The UAV considered in this paper is a quadrotor aircraft actuated
in force, generated by the four propellers. For sake of simplicity, we
consider only the “planar dynamics” on the configuration manifold
S1×R2. The general “spatial dynamics”, defined on the configuration
manifold SO(3) × R3, can be dealt with by properly adapting the
presented arguments.

Fig. 2(a) presents a graphical description of the quadrotor geometry
and the landing environment. The ground is modeled as a flat
surface at an angle β with the horizontal. A body-fixed frame
{B} = {CM, ~jB, ~kB} is attached to the quadrotor’s center of mass
(CM), with the vector ~kB pointing upward, along the thrust direction.
The inertial frame {I} = {O,~j,~k} is defined by the vectors ~j
and ~k that point North and up, respectively. An additional frame
{L} = {O, ~jL, ~kL} is attached to the origin of {I} and rotated with
respect to {I} by an angle β. The angle θ denotes the rotation angle
from the inertial frame to the body frame.

The planar model of the quadrotor, illustrated in Fig. 2(b), has
two counter-rotating motors for propulsion, generating forces F1

and F2, and a landing gear with two points of contact with the
ground, denoted by A and B. The distance from the center of
mass to each motor and to each contact point are denoted by r
and `, respectively. The angle with vertex in CM and subtended
by the motor and contact point is denoted by γ. The shorthand
`g = ` cos(γ) is introduced to simplify mathematical expressions.
The aerodynamic forces generated by the motors at each of the
propellers are represented by F1 and F2.
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Fig. 2. Take-off slope and quadrotor

The coordinates of CM in the {I} and {L} reference frames are

denoted by (x, z) and (xL, zL), respectively, and are related by

xL = x cosβ + z sinβ,

zL = −x sinβ + z cosβ.

The coordinates of the contact point A (α, ζ), expressed in the {L}
frame can be written as

α = x cosβ + z sinβ + ` cos(θ + γ + β),

ζ = −x sinβ + z cosβ − ` sin(θ + γ + β).

Due to the symmetry of the quadrotor, we only consider maneuvers
where rotation occurs around the contact point A, resulting in
θ(t)+β ≥ 0, for the operating modes where contact with the ground
exists. The symmetric situation is dealt with similarly and will not
be discussed in this work.

To simplify computations, the state of the quadrotor is expressed in
different coordinate systems, according to its operative mode. When
in free flight, the quadrotor state is described by the center of mass
coordinates (x, z), the angle θ angle, and their respective derivatives.
In situations where contact with the ground occurs, the quadrotor state
is completely described by the states α, α̇, θ, and θ̇, decoupling the
translational motion of the contact point from the rotational motion
around the contact point.

In what follows, we adopt the standard Coulomb friction
model [17] to describe the interaction between the UAV and the
terrain. The friction force Ff is bounded in norm by the product of the
normal contact force FN and the friction coefficient µ, as expressed
by the constraint |Ff | ≤ µFN . In case of sliding between the quadro-
tor and the ground, the magnitude of the friction force is maximum
and opposes the movement, resulting in Ff = −µsgn(α̇)FN , where

FN = (mg cosβ − (F1 + F2) cos(θ + β)), (1)

and α̇ is the contact point velocity along the slope. In a non-sliding
situation, the vehicle will remain at rest until the tangent component
of the external forces acting on the vehicle overcomes the friction
force limit, |Ff | ≤ µFN . To allow the quadrotor to start at rest
when taking off, and to come to a rest when landing, we require
that tanβ < µ. Additionally, for simplicity, we consider just one
friction coefficient, corresponding to a situation where the kinetic
and static coefficients are the same. This nonlinear behavior of the
friction force can be modeled in a hybrid automata framework by
considering different states for the rest and the sliding situations.

For the development of our quadrotor automaton, we consider five
operating modes. These depend on the number of contact points with
the ground, and on the relative motion between the vehicle and the
ground, which determine different vehicle dynamics. The operating
modes are described as follows.

• Free Flight (FF) - In this operating mode the quadrotor is in
free flight and no contact with the landing slope occurs.

• Take-off-and-Landing (TL and TLs) - In a take-off-and-landing
situation, there exists a single contact point between the quadro-
tor and the ground, depicted as A in Fig. 3(a). The shorthand
notation TL denotes the non-sliding situation and TLs the take-
off-and-landing mode where sliding exists between the quadrotor
and the ground.

• Landed (LL and LLs) - In the landed operating mode, the
landing gear is in full contact with the ground, with both
points A and B touching the landing slope, see Fig. 3(b). The
shorthand notation LL denotes the non-sliding situation and LLs
the landing operative mode were the quadrotor slides on the
ground.
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Fig. 3. Quadrotor operating modes

A. Dynamics of the operating modes

1) Free Flight: In this operating mode the aircraft is airborne. The
free flight planar quadrotor is modeled as a rigid body evolving on
SE(2) = S1 × R2, namely

mẍ = (F1 + F2) sin θ + δx,

mz̈ = (F1 + F2) cos θ −mg + δz,

Jθ̈ = (F1 − F2)r,

(2)

where m and J denote respectively the mass and moment of
inertia of the vehicle, g the gravity acceleration, and δx and δz are
exogenous disturbance acting along the lateral and vertical direction.
Aerodynamic drag forces are not considered as they are negligible
at velocities near the hover condition. To support the employment
of the simplified dynamical model proposed above, the Free Flight
controller is designed to be robust to external disturbances, which can
encompass wind disturbances and modeling uncertainties and errors,
up to a given limit.

2) Partial interaction with the ground: In the TL and TLs modes
of operation, there is only one contact point of the quadrotor with the
ground, as evidenced in Fig. 3(a). The vehicle’s motion is restricted
to rotation around the contact point A and translation of the contact
point along the slope. Recalling that α ∈ R is the ~jL coordinate of
the contact point A in the {L} reference frame and that θ ∈ (−π, π]
is the rotation angle from the {I} to the {B} reference frame, the
generalized forces acting on the vehicle in these operating modes are

F1(F1, F2, α̇, θ) = (F1 + F2) sin(θ + β)

− µsgn(α̇)(mg cosβ − (F1 + F2) cos(θ + β)),

F2(F1, F2) = F1(r + `g)− F2(r − `g).

The Lagrangian function of the system in the TL and TLs modes,
considering the kinetic and potential energies, is

L = 1
2
m(ẋ2 + ż2) + 1

2
Jθ̇2 −mgz

= 1
2
m(α̇2 + θ̇2`2 + 2α̇θ̇` sin(θ + β + γ))

+ 1
2
Jθ̇2 −mg(α sinβ + ` sin(θ + γ)).

In order to simplify the design of controller for the dynamic
system we define two virtual controls, Fα and Fθ , related to the
real actuations by(

Fα
Fθ

)
= L(θ)−1G(θ)M

(
F1

F2

)
(3)

where M , G(θ), and L(θ) are given by

M =

(
1 1

r + `g `g − r

)
,

G(θ) =

(
sin(θ + β) + µsgn(α̇) cos(θ + β) 0

0 1

)
,

L(θ) = m

(
1 ` sin(θ + γ + β)

` sin(θ + γ + β) `2 + J/m

)
,

respectively. This input transformation is always defined, since L(θ)
is invertible for all θ, and results on the following dynamics, after
solving the Lagrangian equations defining the system,

α̈ = Fα + hα(θ, θ̇, α̇, µ), θ̈ = Fθ + hθ(θ, θ̇, α̇, µ), (4)

where

hα(θ, θ̇, α̇, µ) =
1

J +m`2 cos2(β + γ + θ)

(
− g(J +m`2)·

· (µ cosβsgn(α̇) + sinβ) + gm`2 cos(γ + θ) sin(γ + θ + β)

− `(J +m`2) cos(γ + θ + β)θ̇2
)
, (5)

hθ(θ, θ̇, α̇, µ) =
m`

J +m`2 cos2(β + γ + θ)

(
cos(γ + θ + β)·

·(−g cosβ+` sin(γ+θ+β)θ̇2)+gµ cosβ sin(γ+θ+β)sgn(α̇)
)
.

(6)

The input transformation (3) is invertible if and only if the matrix
G(θ) is non-singular, as matrix M is full rank. That is, the original
forces F1 and F2 are recoverable from Fα and Fθ if

sin(θ + β) + µsgn(α̇) cos(θ + β) 6= 0.

Note that the inverse transformation depends on a number of physical
parameters, and in particular on µ which is typically uncertain.

The dynamics (4) apply only to a quadrotor sliding along the slope.
In the take-off and landing operating mode, the vehicle is in a non-
sliding situation. The α position is constant and the dynamic system
is reduced to the angular component of (4) with α̇ = 0, resulting in

θ̈ = Fθ + hθ(θ, θ̇, 0, µ). (7)

Equations (4) and (7) describe a 4-state dynamical model for the
vehicle. The coordinates of the center of mass and its derivatives are
uniquely defined by the states α, α̇, θ, and θ̇.

3) Complete interaction with the ground: In the LL and LLs
operating modes, the vehicle is completely landed and only the
ground contact friction affects the motion of the vehicle. As in these
configurations it is impossible to generate forces along the ~jL axis of
the {L} frame, the only effect of the controls F1, F2 is to reduce the
normal force FN , consequently reducing the friction force Ff . The
dynamic model for the LLs operating mode is completely described
by the dynamical system

mα̈ = −mg sinβ − µsgn(α̇)FN , θ̇ = 0, (8)

with FN given by (1). When in the LL operating mode, this reduces
to

α̇ = 0, θ̇ = 0, (9)

and the vehicle’s state remains constant. In these operative modes,
and in order to prevent physically impossible transitions from LL to
FF by employing discontinuous forces, we extend the system input
with two integrators, where (v1, v2) are the residual control inputs

Ḟ1(t) = v1(t) , Ḟ2(t) = v2(t). (10)

B. Hybrid model of the overall dynamics

A description of the overall dynamics is obtained by means of a
hybrid automaton whose states correspond to the operating modes
described above. A hybrid automaton is identified by the following
objects, instanced here for the specific case of the planar quadrotor.

1) Operating Modes: The quadrotor automaton
comprises the set Q of operating modes, denoted by
Q = {LL, LLs, TL, TLs, FF}.



2) Domain map: The state of the system ξ ∈ R6 is described
by either (x, ẋ, z, ż, θ, θ̇) or (α, α̇, zL, żL, θ, θ̇). When the UAV is in
contact with the ground (LL, LLs, TL, and TLs operating modes), the
preferred reference frame and the state ξ = (x, ẋ, z, ż, θ, θ̇) are the
{L} frame, yielding ξ = (α, α̇, zL, żL, θ, θ̇), while the {I} frame
is preferred for the free flight mode. The inputs F1 and F2, which
correspond to the forces generated by the propellers, are bounded
by a minimum and maximum value, leading to the definition of the
input domain U ⊂ R2 as the compact interval U = [Fmin, Fmax] ×
[Fmin, Fmax]. The domain mapping D : Q ⇒ R6 × R2 defines, for
each operating mode, the set of values that the state ξ and the control
input u may take.

3) Flow map: The flow map f : Q×R6×R2 → R6 describes for
each operating mode q ∈ {LL,LLs, TL, TLs, FF} the evolution
of the state variables. In each operating mode q we have the dynamic
system ξ̇ = f(q, ξ, u), where each function f(q, ξ, u) is derived from
the differential equations (2), (4), (7), (8), and (9).

4) Edges: The set of edges E ⊂ Q × Q includes all the pairs
(q1, q2) such that a transition between the modes q1 and q2 is
possible, for some combination of state and actuation. For the take-off
and landing procedure, we consider the transitions depicted in Fig. 4.
We do not consider direct edges linking LL to FF or FF to LL as these
transitions are not considered in the following design of the take-off
and landing maneuvers due to possible robustness issues. Observe
also that they can be equivalently obtained by passing instantaneously
trough the intermediate operative modes TL and TLs.

LL
ξ̇ = 0
D(LL)

LLs
(8)

D(LLs)

TL
(7)
D(TL)

TLs
(4)

D(TLs)

FF
(2)
D(FF )

Fig. 4. Planar quadrotor hybrid automaton

5) Guard mapping: The set-valued guard mapping G : E ⇒ R6×
R2 determines, for each edge (q1, q2) ∈ E , the set G({q1, q2}) to
which the quadrotor state ξ and inputs F1, F2, must belong so that
a transition from q1 to q2 can occur. There are three main groups of
transitions to consider for the take-off and landing procedures. The
transition from two contact points (LL and LLs operating modes) to
one contact point (TL, TLs) is governed by the sign of the torque
Fτ at point A,

Fτ (θ, F1, F2) = (F1 + F2)lg + (F1 − F2)r −mg` cos(θ + γ),

and the inverse transition depends on the angle of the vehicle with
the slope, θ + β, and also on sign of Fτ . The operating mode
transitions between free flight and the TLs mode depend on the force
perpendicular to the slope F⊥,

F⊥(θ, F1, F2) = (F1 + F2) cos(θ + β)−mg cosβ,

and the height of the quadrotor relative to the ground. Lastly, the
transitions between the at rest and the sliding modes are governed
by the relation between the force along the slope at the contact point
(Fα + hα), the perpendicular force F⊥, and the vehicle’s velocity
along the slope α̇, according to the Coulomb friction model. The

function

Fslide(θ, θ̇, F1, F2, µ) = |Fα(θ, θ̇, µ, F1, F2) + hα(θ, θ̇, 0, µ)|

− µ mg cosβ

m cos2(θ + β + γ)
+ µ

(F1 + F2) cos(θ + β)

m cos2(θ + β + γ)

encapsulates these relations. A transition from a non-sliding mode to
a sliding mode occurs for Fslide > 0, whereas a reverse transition
happens when the velocity along the slope reaches zero and Fslide <
0. In the landed operating mode, this function is reduced to

Fslide(−β, 0, F1, F2, µ) = mg sinβ − µ(mg cosβ − (F1 + F2)).

6) Reset maps: For each (q1, q2) ∈ E and (ξ, u) ∈ G({q1, q2}),
the reset map R : E × R6 × R2 → R6 identifies the jump of the
state variable ξ during the operating mode transition from q1 to q2.
The jumps in the state reflect instantaneous changes which are caused
by the collisions of the contact points with the landing slope. In the
take-off maneuver the nominal transitions do not involve impact with
the ground and thus all the reset maps are trivially the identity maps.

IV. THE CONTROL PROBLEM

A. Robust Control Strategy and Architecture

With the hybrid automaton in hand, the problem of performing
a take-off maneuver can be reformulated as a problem of changing
the operative mode q from the initial landed configuration LL to the
final free-flight mode FF , by passing through intermediate states
like TL and TLs. The problem requires control policies achieving
a transition to a desired operative mode robustly with respect to
uncertainties in the model and environment parameters. At the same
time, all transitions leading to an undesired final configuration must
be avoided. Motivated by the scenario in Figure 1, the targeted take-
off maneuver involves the transition between the following sequence
of hybrid states LL → TL → TLs → FF . In all the above
sequence the state LLs is regarded as a unideal state to be avoided
in the course of the maneuver. Indeed, the system in the LLs mode
lacks of control authority in the lateral direction, rendering LLs an
undesired state when targeting robust maneuvers.

Inspired by the general framework proposed in [11], the control
problem is divided into two different steps. The first step amounts
to computing, for each of the three desired transitions (LL → TL,
TL → TLs and TLs → FF ) and for the final free flight mode,
reference trajectories for both the states ξ and the inputs u of
the system, jointly denoted as reference maneuvers, whose tracking
guarantees that the desired transition takes place. A key issue is to
generate robust reference maneuvers whose practical, and not perfect,
tracking guarantees the desired transition while preventing the system
to entering undesired modes. In the proposed framework robustness
is quantified in terms of a design parameter ε > 0 that roughly
expresses how far the actual motion of the system’s state and input
can be with respect to the reference maneuver in order to have the
desired transition effectively imposed.

The second step consists of designing feedback control laws
guaranteeing that, for the given reference maneuvers, the tracking
error (both in the state and in the input) is upper bounded by ε so
that the planned transition is enforced. To this purpose the proposed
control architecture (sketched in Figure 5) is constituted by a set
of low level controllers, associated to the specific operative modes
in which the vehicle operates, and a supervisor. The role of the
latter is to enable the appropriate low level controller, and to feed it
with the appropriate robust reference maneuver. The key requirement
behind the design of the low level controllers is to guarantee that,
under appropriate restrictions on the initial conditions and bound on
the parametric/exogenous disturbances, the tracking error is upper
bounded by ε.
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Fig. 5. Proposed control architecture, featuring the supervisor and low-level
controllers.

B. Design of Robust Reference Maneuvers

The computation of robust reference maneuvers regarding a desired
transition between the generic hybrid states q?1 and q?2 involves a
problem of nominal inversion of the system dynamics in the operative
mode q?1 that can be approached in different ways. In this paper,
the problem is formulated as an optimal problem and a numerical
tool is used for the practical computation of the reference maneuvers
(see Section V for details on the adopted numerical tool). With
ξ̇ = f(q?1 , ξ, u, ρ) the model of the system in the operative mode
q?1 with parametric uncertainty ρ, the optimal problem is formulated,
in general terms, as follow:

min
u?(t),ξ?(t),tf

tf +

∫ tf

t0

‖u?(τ)‖2dτ

subject to

(a) ξ̇? = f(q?1 , ξ
?(t), u?(t), ρ0) , ξ?(t0) = ξ?0 , t ∈ [t0, tf ]

(b) u?(t) ∈ U , t ∈ [t0, tf ]

(c) χε(q
?
1 , q

?
2 , ξ

?(t), u?(t)) ≤ 0 , t ∈ [t0, tf ]

(d) Ψε(q
?
1 , q

?
2 , ξ

?(tf ), u?(tf )) ≤ 0 .

In the previous formulation the index cost is clearly shaped in order
to trade-off the time needed to accomplish the desired maneuver (note
that the final time tf is a degree-of-freedom) and the required control
energy, which depends on the magnitude of the forces generated
by the quadrotor propellers. The constraints (a) and (b) force the
solution to be functionally controllable for the nominal system in the
operative mode q?1 and to fulfill actuator limitations characterizing
the real system. In this respect it is worth noting that nominal value
ρ0 of the uncertainty ρ is used in (a), namely that an inversion of
the nominal system is necessarily targeted. A special role in (a) is
played by the initial condition ξ?0 that is a degree-of-freedom to
be played in order to properly concatenate consecutive reference
maneuvers in the sequence of transitions. Finally, the functions χε(·)
and Ψε(·) in (c) and (d) must be properly specified in order to
have the maneuver (ξ?(t), u?(t)) solution of the optimal problem
accomplishing the desired transition task. In this respect, by bearing
Section IV-A and the meaning of the parameter ε in the definition of
robust transition maneuver, the function χε(·) must be specified in a
way that maneuvers (ξ?(t), u?(t)) fulfilling (c) are necessarily ε-far
from any undesired guard set (i.e. guard set different from G(q?1 , q

?
2)),

so that switches to undesired hybrid modes are avoided. In a more

precise way χε(·) must be such that any (ξ?(t), u?(t)) fulfilling (c)
necessarily satisfies

(x?(t), u?(t))
⋂  ⋃

(q?1 ,q2)∈E ,q2 6=q
?
2

G(q?1 , q2) + Bε

 = ∅

for all t ∈ [t0, tf ]. Furthermore, possible other path constraints, such
as the avoidance of obstacles nearby the take-off area, can be taken
into account in the definition of χε(·) by defining forbidden regions
in the x-z plane.

As far as the constraint (d) is concerned, the function Ψε(·) must be
properly shaped in a way that any maneuver (ξ?(t), u?(t)) fulfilling
(d) at time tf is necessarily ε-inside the guard set G(q?1 , q

?
2), namely

(ξ?(tf ), u?(tf )) + Bε ⊂ G(q?1 , q
?
2) .

In this way any actual maneuver (ξ(t), u(t)) that is ε-close to
(ξ?(t), u?(t)) necessarily enters, at a time upper bounded by tf ,
the set G(q?1 , q

?
2) so that the desired transition is enforced.

It is worth noting that possible uncertainties characterizing the
environment (such as the slope of the terrain, the friction coefficient,
the position of nearby obstacles, etc.) affect, in general, the definition
of the guard sets and thus the design of χε(·) and Ψε(·). In this
respect a crucial issue in the specification of χε(·) and Ψε(·) is to
adopt the a priori knowledge about the uncertainties (such as compact
sets where they range) so that the fulfillment of (c) and (d) leads to
the desired transition robustly.

The above optimization problem is solved for each of the
transition maneuvers LL → TL, TL → TLs, and TLs → FF ,
with the constraints derived keeping in mind the description of
the hybrid automaton presented in Section III. In order keep the
analysis at a tractable level, we only consider uncertainties in the
ground friction coefficient µ, which affects the modes where contact
with the ground exists, and no uncertainties in the slope β of the
landing surface. About the value of µ we assume to know only
upper and lower bounds denoted by µU and µL, respectively, and
we let µ0 ∈ [µL, µU ] be the nominal value of µ.

C. Design of low-level controllers

In this part we address the design of the local controllers in
each operating mode involved in the take-off maneuver. The goal
of the controller is guarantee that, under appropriate restrictions on
the initial conditions and of the exogenous disturbances, the specific
reference maneuver is tracked with an error that is upper bounded
by ε so that the desired transition takes place.

1) Low level controller in the LL mode: With u?(t) =
(v?1(t), v?2(t)) : [t0, tf ] → R2 and ξ?(t) = (F ?1 (t), F ?2 (t)) :
[t0, tf ] → R2 a robust reference maneuver solution of the optimal
problem in Section IV, for some ε > 0 and dynamics (9) and (10),
the control law is simply chosen as

v1 = −k(F1 − F ?1 ) + v?1 , v2 = −k(F2 − F ?2 ) + v?2 (11)

where k is a positive design parameter.
2) Low level controller in the TL mode: With u?(t) =

(F ?1 (t), F ?2 (t)) : [t0, tf ] → R2 and ξ?(t) = (θ?(t), θ̇?(t)) :
[t0, tf ] → R2 a robust reference maneuver solution of the optimal
problem in Section IV-B, applied to the TL mode dynamics (7), for
some ε > 0, we define (see (3))

F ?θ (t) =
(

0 1
)
L(θ?(t))−1G(θ?(t))M

(
F ?1 (t)
F ?2 (t)

)
for all t ∈ [t0, tf ].



The control law for the TL dynamics (7) is then chosen as

Fθ = −KP (θ − θ? +KD(θ̇ − θ̇?)) + F ?θ (12)

with KD,KP positive design parameters. It turns out that KD and
KP can be tuned so that the closed-loop trajectory tracks, with an
error bounded by ε, the reference maneuver provided that initial
error and the uncertainty on µ are sufficiently small. This is detailed
in the next proposition (whose proof is deferred in Appendix A) in
which we let u = (F1, F2) and ξ = (θ, θ̇).

Proposition 1: Consider the closed-loop system resulting from (7)
and (12). Let KD > 0. There exists a K?

P > 0 such that for all
KP ≥ K?

P there exist ∆TL,0 > 0 and ∆TL,µ > 0 such that if
‖ξ(t0) − ξ?(t0)‖ < ∆TL,0 and ‖µ − µ0‖ ≤ ∆TL,µ the following
holds

‖(ξ(t)− ξ?(t), u(t)− u?(t))‖ < ε ∀ t ∈ [t0, tf ] .

3) Low level controller in the TLs mode: With
u?(t) = (F ?1 (t), F ?2 (t)) : [t0, tf ] → R2 and ξ?(t) =
(α?(t), α̇?(t), θ?(t), θ̇?(t)) : [t0, tf ] → R4 a robust reference
maneuver solution of the optimal problem in Section IV-B, for some
ε > 0 and using the dynamics (4), we define (see (3))(

F ?α(t)
F ?θ (t)

)
= L(θ?(t))−1G(θ?(t))M

(
F ?1 (t)
F ?2 (t)

)
for all t ∈ [t0, tf ].

The control law for the TLs dynamics (4) is then chosen as

Fα = −KP (α− α? +KD(α̇− α̇?)) + F ?α
Fθ = −KP (θ − θ? +KD(θ̇ − θ̇?)) + F ?θ

(13)

with KD,KP positive design parameters. The main properties of
the closed-loop system are detailed in the next proposition in which
it is show how, for an appropriate tuning of KD and KP , the
actual closed-loop trajectory remains ε-close to the robust reference
maneuver provided that the initial condition is sufficiently close to
the reference and the uncertainty on µ is sufficiently small. In the
statement of the proposition we let u = (F1, F2) and ξ = (α, α̇, θ, θ̇).

Proposition 2: Consider the closed-loop system (4) and (13).
There exist a K?

D > 0 and, for all positive KD ≤ K?
D , a K?

P > 0
such that for all KD ≤ K?

D and KP ≥ K?
P there exist ∆TLs,0 > 0

and ∆TLs,µ > 0 such that if ‖ξ(t0) − ξ?(t0)‖ < ∆TLs,0 and
‖µ− µ0‖ ≤ ∆TLs,µ the following holds

‖(ξ(t)− ξ?(t), u(t)− u?(t))‖ < ε ∀ t ∈ [t0, tf ] .

The proof of the proposition is deferred in Appendix B.

4) Control in Free Flight: Let u?(t) = (F ?1 (t), F ?2 (t)) :
[t0, tf ]→ R2 and ξ?(t) = (z?(t), ż?(t), x?(t), ẋ?(t), θ?(t), θ̇?(t)) :
[t0, tf ] → R6 a robust reference maneuver solution of the optimal
problem in Section IV-B for some ε > 0 and using the free
flight operative mode dynamics (2). The control law governing the
quadrotor is free-flight is chosen as follow

(
F1

F2

)
=

1

2

 1

cos θ
1

1

cos θ
−1

( u1 + (F ?1 + F ?2 ) cos θ?

u2 + F ?1 − F ?2

)
(14)

where
u1 = −k1(z − z?)− k2(ż − ż?)
u2 = −KP (KD(θ̇ − θ̇?) + tan θ − tan θ? + θout)

and

θout = λ2σ

(
K2

λ2
ζ

)
, ζ = ẋ− ẋ? + λ1σ

(
K1

λ1
(x− x?)

)
(15)

where KD, KP , ki, λi, Ki, with i = {1, 2}, are positive design
parameters and σ(·) is a saturation function. The proposed control
structure rests upon the design idea proposed in [18] and can be
interpreted as a cascade control structure constituted by an inner loop,
controlling the angular (θ, θ̇) dynamics, and an outer loop governing
the lateral (x, ẋ) and vertical (z, ż) dynamics. The next proposition
details the tuning of the previous controller in order to achieve the
desired asymptotic properties. In the statement of the proposition we
let u = (F1, F2), ξ = (z, ż, x, ẋ, θ, θ̇). Furthermore, the tuning of
the controller is given in terms of two parameters uL and uU defined
as

uL := min
t∈[t0,tf ]

(F ?1 (t) + F ?2 (t)) cos θ?(t) , uU := 2Fmax .

For a proof, we refer the reader to [18] (see also [19]).
Proposition 3: Consider the closed-loop system given by (2) and

(14)-(15) where δx and δz are exogenous bounded disturbances. Let
k1, k2 be positive parameters and let λi, Ki be chosen as λi =
εi−1λ?i , Ki = εK?

i , i = 1, 2, where ε is a design parameter and
(λ?i ,K

?
i ) satisfy

λ?2
K?

2

<
λ?1
4
, 8K?

1λ
?
1 < uLλ

?
2, 24

K?
1

K?
2

<
1

6

uL
uU

.

There exist K?
D > 0, K?

P (KD) > 0 and ε?(KP ) > 0 such that
for any positive KD < K?

D , KP ≥ K?
P (KD) and ε ≤ ε?(KP ) there

exist ∆FF,0 > 0 and ∆FF,d > 0 such that if ‖ξ(t0) − ξ?(t0)‖ ≤
∆FF,0 and ‖(δx, δz)‖∞ ≤ ∆FF,d the following holds

‖(ξ(t)− ξ?(t), u(t)− u?(t)‖ < ε ∀ t ∈ [t0, tf ] .

D. Supervisor Design

With the definition of robust reference maneuvers and the prop-
erties of the low-level controllers highlighted above, the design of
the supervisor reduces to orchestrate the switch of the low-level
controllers and drive them with the appropriate reference maneuver
according to the actual state of the vehicle. Specifically, we assume
that four robust reference maneuvers (ξ?LL, u

?
LL) : [t01, tf1] →

D(LL) , (ξ?TL, u
?
TL) : [t02, tf2] → D(TL), (ξ?TLs, u

?
TLs) :

[t03, tf3]→ D(TLs) , (ξ?FF , u
?
FF ) : [t04, tf4]→ D(FF ) are given

as solutions of the optimal problem developed in Section IV-B for
some fixed ε and respective operative mode. Furthermore, with the
reference maneuvers and ε fixed, we fix the four low-level controllers
according to the structures and the design principles specified in
Section IV-C. Specifically, we let uLL, uTL, uTLs, uFF be the
control laws designed respectively in (11), (12), (13) and (14)-(15)

The supervisor logic switches the low-level controller according
to the actual state q(t) of the vehicle. The latter takes value in the
set {LL, TL, TLs, FF} and it is supposed to be known by the
reading of sensors appropriately placed in the quadrotor airframe.
The supervisor logic is thus simply u(t) = uq(t)(t). In the next items
we detail the main properties achieved by the resulting closed-loop
system that show how the desired take-off maneuver takes place. The
claims in the items come immediately by joining the notion of robust
reference maneuver and the properties of the low-level controllers
highlighted in the Propositions in Section IV-C.
• Let F1(t01), F2(t02) be fulfilling the initial state restriction in

the landed operative mode. Then there exists a time ts1 ≤ tf1
such that q(t) = LL for all t ∈ [t01, ts1) and q(ts1) = TL. At
time ts1 the low-level controller is thus switched to uTL.



• Let the uncertainties on the friction value be fulfilling |µ−µ0| ≤
∆TL,µ with ∆TL,µ coming from Proposition 1. Then there
exists a time ts2 ≤ ts1 + tf2 − t02 such that q(t) = TL for
all t ∈ [ts1, ts2) and q(ts2) = TLs. At time ts2 the low-level
controller is thus switched to uTLs.

• Let the uncertainties on the friction value be fulfilling |µ−µ0| ≤
∆TLs,µ and let ξ?(t03) and ξ(ts2) be such that ‖ξ(ts2) −
ξ?(t03)‖ ≤ ∆TLs,0 with ∆TLs,µ and ∆TLs,0 introduced in
Proposition 2. Then there exists a time ts3 ≤ ts2 + tf3 − t03
such that q(t) = TLs for all t ∈ [ts2, ts3) and q(ts3) = FF .
At time ts3 the low-level controller is thus switched to uFF .

• Let the exogenous disturbances (δx, δz) be fulfilling
‖(δx, δz)‖∞ ≤ ∆FF,d and let ξ?(t04) and ξ(ts3) be such that
‖ξ(ts3)−ξ?(t04)‖ ≤ ∆FF,0 with ∆FF,d and ∆FF,0 introduced
in Proposition 3. Then for all t ∈ [ts3, ts3 + tf4 − t04] the
vehicle evolves robustly in free-flight by tracking the reference
maneuver with an error upper bounded by ε.

V. SIMULATION RESULTS

In this section we present the results from a simulation run of the
proposed controller conducted using a software simulator for hybrid
systems [8]. To compute the reference maneuvers as solutions to the
constrained optimal control problems formulated in Section IV-B, a
numerical tool, named DIDO, has been adopted. DIDO implements
a direct collocation method (see for example [20] for an overview
of numerical optimization techniques) based upon Legendre pseudo-
spectral (PS) approximation. A detailed description of the tool can
be found in [21]. The numerical optimization process of DIDO can
be controlled by setting the number of node points. Limiting to 20
the maximum number of nodes employed to generate the maneuvers
used in the simulations, obtaining in few seconds feasible suboptimal
solutions to be used directly as references.

The vehicle and terrain parameters are m = 1 kg, J = 0.5 kg
m2, lg = 0.3 m, γ = 30◦, r = 0.5 m, β = 0.2 rad, µ = 0.45, and
µ0 = 0.5. The controller design parameters are KP = 3, KD = 3 for
the TL and TLs modes local controllers and KD = 0.3, KP = 70 for
the FF controller. To attest the robustness of the proposed controller to
sensor noise, the measurements of the states have been corrupted with
additive gaussian white noise of zero mean and standard deviation of
0.02 m, 0.02 m/s, 1.14◦ and 1.14◦/s. The vertical bars overimposed
on the figures denote the time instants when a transition of hybrid
state occurs.

For the take-off procedure, the reference trajectory consists of
a sequence of robust approach maneuvers LL→TL, TL→TLs, and
TLs→FF, resulting in the vehicle sliding up the slope. This maneuver
is chosen in contrast with the situation presented in Figure 1,
where the application of a heuristic take-off procedure results in the
quadrotor sliding down the slope and hitting an obstacle.

The time evolution of the system’s states and actuations are
presented in Figure 6. The discontinuities that arise in the forces and
the reference trajectories are due to the fact that the initial conditions
for the new transition maneuver do not necessarily correspond to
the end conditions of the approach maneuver leading into it. The
final discrepancy between the desired and the actual trajectory is
due to an imperfect knowledge of the friction coefficient µ. As a
consequence, practical tracking of the trajectories is achieved, with an
error smaller than ε, and the maneuver culminates with a successful
robust transition to the free flight operative mode.

VI. CONCLUSIONS

This paper addressed the problem of robust take-off control of a
quadrotor UAV, considering explicitly the interaction with the ground,
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Fig. 6. Comparison of the simulation maneuver and the desired maneuver
for the quadrotor take-off.

that guarantees successful maneuvers even in sloped terrains and
in the presence of external disturbances and uncertain parameters.
The vehicle was modeled as a hybrid automaton, whose states
reflect the different dynamic behaviors exhibited by the UAV. The
take-off procedure was then cast as the problem of changing the
operating mode from the initial to the final desired state, through
the edges allowed for the hybrid automaton. The transitions between
intermediate operating modes were achieved through the application
of low-level feedback controllers, associated with each mode, to track
robust reference signals. The supervisor and the combined properties
of the low-level controllers and reference trajectories ensures that the
desired intermediate transitions are attained, robustly to with respect
to uncertainties in the model and environment parameters, and that
the final desired state is reached.

Simulation results were presented to assess the performance of the
proposed hybrid controller, demonstrating the effectiveness of the
proposed solution, especially for the cases in which the slope of the
terrain renders the take-off maneuvers more critical to be achieved.

Future works will be primarily focused on the experimental valida-
tion of the proposed solution for the take-off problem, as well as im-
provements to the hybrid dynamical model and the hybrid controller.
In particular, for the experimental activity, a complex integration of
the sensors (contact, force) and all the avionics equipments will be
required, extending the standard sensing capabilities of the vehicle
in order to robustly detect the current operative mode. This latter
issue suggests also to investigate methodological solutions aiming at
improving robustness to the possible uncertainties that may affect
the measure of the current hybrid state. Another interesting research
topic is the appropriate extension of the proposed framework to
a third dimension, by adapting the presented arguments, allowing
the controller to handle more complex scenarios in terms of the
characteristics of the possible environment of operation.
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APPENDIX

A. Proof of Proposition 1

With θ̃(t) = θ(t) − θ?(t) the closed-loop error dynamics can be
written as

¨̃
θ = −KP (θ̃ +KD

˙̃
θ) + Ψθ(θ̃,

˙̃
θ),

where

Ψθ(θ̃,
˙̃
θ) = hθ(θ

? + θ̃, θ̇? +
˙̃
θ, 0, µ)− hθ(θ?, θ̇?, 0, µ),

with hθ(·) defined in (6). Form this the result immediately follows
by using the fact that Ψθ(·, ·) is locally Lipschitz and the definition
of u.

B. Proof of Proposition 2

Let θ̃ := θ − θ? and α̃ := α − α?, and note that (4) in the new
coordinates transform as

¨̃
θ = F̃θ+Ψθ(θ̃,

˙̃
θ, ˙̃α, t)+δθ(t) , ¨̃α = F̃α+Ψα(θ̃,

˙̃
θ, ˙̃α, t)+δα(t) ,

where (see (5) and (6))

Ψθ(θ̃,
˙̃
θ, ˙̃α, t) = hθ(θ

? + θ̃, θ̇? +
˙̃
θ, α̇? + ˙̃α, µ)− hθ(θ?, θ̇?, α̇?, µ)

Ψα(θ̃,
˙̃
θ, ˙̃α, t) = hα(θ? + θ̃, θ̇? +

˙̃
θ, α̇? + ˙̃α, µ)− hα(θ?, θ̇?, α̇?, µ)

δθ(t) = (µ− µ0)
g cosβ sin(θ? + γ + β)

` cos(θ?(t) + γ + β)2
sgn(α̇?(t))

δα(t) = −(µ− µ0)
g cosβ

cos(θ?(t) + γ + β)2
sgn(α̇?(t))

and F̃θ := Fθ − F ?θ , F̃α := Fα − F ?α with Fθ and Fα defined in
(13). We observe that, by definition of θ?, the functions δα(t) and
δθ(t) satisfies |δδ(t)| ≤ Lδ|µ − µ0| and |δα(t)| ≤ Lα|µ − µ0| for
all t ≥ 0, for some positive constants Lδ and Lα.

Define the change of variables θ1 := θ̃, θ2 :=
˙̃
θ+ 1

KD
θ̃, α1 := α̃,

α2 := ˙̃α+ 1
KD

α̃ which transforms the closed-loop error system into

θ̇1 = − 1
KD

θ1 + θ2, (16)

θ̇2 = −KPKDθ2 + Ψθ(θ1, θ2 − 1
KD

θ1, α2 − 1
KD

α1, t)

− 1
K2

D
θ1 + 1

KD
θ2 + δθ,

and

α̇1 = − 1
KD

α1 + α2, (17)

α̇2 = −KPKDα2 + Ψα(θ1, θ2 − 1
KD

θ1, α2 − 1
KD

α1, t)

− 1
K2

D
α1 + 1

KD
α2 + δα.

Let ρ := mint∈[t0,tf ] θ
?(t) + β and note that ρ > ε > 0. Define

the Lyapunov function V (θ1, θ2, α1, α2) = Vθ(θ1, θ2) +Vα(α1, α2)
where

Vθ(θ1, θ2) :=
θ21

ρ− |θ1|
+

1

2
θ22 , Vα(α1, α2) :=

1

2

(
α2
1 + α2

2

)
,

and note that V (θ1, θ2, α1, α2) is defined and radially unbounded
on the domain (−ρ, ρ) × R × R × R. Furthermore, let Ω(`) :=
{(θ1, θ2, α1, α2) : V ≤ `2}, a level set of V .

By using the fact that Ψθ(·) and Ψα(·) are locally Lipschitz and
vanishing in θ1 = 0, θ2− 1

KD
θ1 = 0, α2− 1

KD
α1 = 0, for any ` there

exist positive L1 and L1 such that for all (θ1, θ2, α1, α2) ∈ Ωθ(`)
the following hold

|Ψθ(θ1, θ2 − 1
KD

θ1, α2 − 1
KD

α1, t)| ≤
L1(KD)|θ1|+ L1(KD)|α1|+ L2|θ2|+ L2|α2|

|Ψα(θ1, θ2 − 1
KD

θ1, α2 − 1
KD

α1, t)| ≤
L1(KD)|θ1|+ L1(KD)|α1|+ L2|θ2|+ L2|α2| ,

for all t ≥ 0.
The time derivative of Vθ and Vα along the solutions of (16)-(17),

can be upper bounded as

V̇θ ≤ T (θ)
(
− 1
KD

θ21 + |θ1||θ2|
)

+ (−KPKD + L2 + 1
KD

)θ22

+(L1(KD) + 1
K2

D
)|θ1||θ2|+ L1(KD)|θ2||α1|

+L2|θ2||α2|+ |θ2||δθ|

V̇α ≤
(
− 1
KD

α1 + α2

)
+ (−KPKD + L2 + 1

KD
)α2

2

+(L1(KD) + 1
K2

D
)|α1||α2|+ L2|θ2||α1|

+L1(KD)|θ1||α2|+ |α2||δα|

where T (θ1) =
(
2 + θ21/|θ1|

)
/ (ρ− |θ1|)2. Note that T (θ1) ≥ 2/ρ2

for all θ1 ∈ R. By completing the squares, it follows that for any `
and for any c there exists a K?

D > 0 and a K?
P (KD) > 0 such that



for any positive KD ≤ K?
D and KP ≥ K?

P the following bound on
V̇ can be established

V̇ ≤ −γ‖(θ1, θ2, α1, α2)‖+ c‖(δθ, δα)‖

for all (θ1, θ2, α1, α2) ∈ Ω`, where γ is a positive constant. From
this the result follows by standard Lyapunov arguments by using the
definition of u, of (δθ, δα) and by noting that for any ` and KD there
exist a ∆TLs,0 such that

{(θ1, θ2, α1, α2) ∈ R× R× R× R :

|θ1| ≤ ∆TLs,0, |θ2 − 1
KD

θ1| ≤ ∆TLs,0

|α1| ≤ ∆TLs,0, |α2 − 1
KD

α1| ≤ ∆TLs,0} ⊂ Ω(`) .


