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Hybrid Control Strategy for the Autonomous
Transition Flight of a Fixed-Wing Aircraft

Pedro Casau, David Cabecinhas, and Carlos Silvestre, Member, IEEE

Abstract— This paper develops a hybrid control strategy
that provides autonomous transition between hovered and
leveled flights to a model-scale fixed-wing aircraft. The aircraft’s
closed-loop dynamics are described by means of a hybrid automa-
ton with the hover, transition, level, and recovery operating
modes, each one corresponding to a different region of the
flight envelope. Linear parameter varying control techniques
are employed in hover and level, providing robust local stabi-
lization, and a nonlinear locally input-to-state stable controller
provides practical reference tracking to the transition operating
mode. These controllers, together with an appropriate choice
of reference maneuvers, ensure that a transition from hovered
flight to level flight, or vice versa, is achieved. Whenever the
aircraft state reaches unexpected values, the recovery controller
is triggered in order to drive the aircraft toward stable hovered
flight, providing a chance to retry the transition maneuver. The
controllers’ performance and robustness is assessed within a
realistic simulation environment in the presence of sensor noise.

Index Terms— Aerospace applications, hybrid automata,
nonlinear control, unmanned air vehicles (UAVs), vertical take-off
and landing (VTOL) vehicles.

I. INTRODUCTION

OVER the last decade, the advent of new sensor technol-
ogy and the success of already deployed platforms have

bolstered a worldwide interest in developing and expanding the
capabilities of uninhabited air vehicles (UAVs). These aerial
vehicles provide unprecedented autonomy and efficiency when
compared with standard aircrafts, built under the constraints
imposed by the presence of a human pilot. An UAV bypasses
many human limitations enabling several new features [1],
such as high altitude operation, high endurance, reduced
weight, more efficient structural and aerodynamic aircraft
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designs, etc. New sights emerge in the fields of aircraft
design and mission planning with the implementation of these
features, giving birth to new application scenarios [2].

A particular application of interest is ocean surface data
gathering. This application is still limited to a few scientific
institutions scattered worldwide, and most vehicles have been
designed to conduct simple survey missions that, in general,
do not require close interaction between the operator and
the environment. The effective use of UAVs in demanding
marine science applications must be clearly demonstrated,
namely by evaluating the system in terms of adaptability to
different missions scenarios, maritime launch and recovery,
survivability, autonomy, endurance, payload performance and
usability, and system integration with the existing marine
science instrumentation. Several UAV configurations, such
as rotorcraft, ducted-fan vehicles, tilted-wing and fixed-wing
aircraft, are being exploited in order to successfully meet these
stringent requirements (see [3]–[7]). Each of these vehicles
must be able to safely land and take-off on the deck of an
available ship. Other applications include search and rescue
in hazardous environments [8], fire mitigation [9], traffic
monitoring [10], and targeting [1].

Fixed-wing aircraft with vertical take-off and landing
(VTOL) capabilities are able to maneuver within exiguous
environments while in hovered flight, and have a wide mission
radius while in leveled flight, thus combining standard heli-
copter and airplane characteristics [11]. They provide superior
endurance and comparable maneuverability to that of the
rotorcraft UAVs, making them a preferable choice for the
discussed application. In general, the vertical take-off and
landing procedure for an autonomous air vehicle spans the
regions of the flight envelope highlighted in Fig. 1. For a
fixed-wing aircraft perched on a post, the standard take-off
maneuver begins with the aircraft landed nose up, entering
the hover flight region of the flight envelope when the thrust
overcomes the weight, thus becoming airborne. The take-off
sequence is then finalized by performing a pitch down maneu-
ver, accompanied by a forward velocity increase, thereby
achieving the transition from hover to level flight.

Several control strategies have been proposed in order
to accomplish autonomous transition, including open-loop
maneuvers [12], linear optimal techniques [13], locally stable
nonlinear controllers [6], and adaptive controllers [14]. The
work reported in [13] presents a nonlinear model which is
used to produce full state feedback laws that locally stabilize
the aircraft in both hover and level flight regions of the flight
envelope. Open-loop maneuvers and switching between the
two control laws enable autonomous take-off and landing
within an indoors experimental setup. However, the open-loop

1063–6536/$31.00 © 2012 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 1. Regions of the flight envelope spanned by a VTOL aircraft.

maneuvers and the switching logic are formulated specifically
for the experimental setup at hand, and there is the lack of
a systematic approach to the transition flight problem. The
work developed in [6] addresses the transition problem much
more carefully, presenting a formal definition of the hover
and level flight regions of the flight envelope. Instead of
linear controllers, as in [13], two nonlinear controllers perform
path-following, providing robustness to the system as long
as the reference trajectory remains far from the envelope
boundaries. Switching is performed at the intersection between
the two flight regions. This strategy is more systematic but it
relies on aerodynamic force approximations for each flight
region and, moreover, the pitch angle is directly considered
as a control input which is obviously not the case for a real
system.

This paper draws inspiration from these works and presents
a solution for the autonomous transition flight problem, which
resorts to the hybrid automata framework [15]. This framework
allows for a complex model to be described in a modular way
by collecting simpler dynamic models, each one describing an
operating mode of the system. For the particular problem at
hand, the operating modes correspond to the hover, transition
and level flight regions of the flight envelope. Stabilization
during hovered and leveled flight is achieved by means of
linear optimal control techniques. We perform a model sim-
plification in order to obtain a polytopic linear parameter
varying (LPV) structure for the system, and the controllers
for each flight regime are obtained as the solution to a
linear matrix inequality optimization problem. This strategy
provides local stabilizing controllers for trimming trajectories
in a polytopic region of the state space [16]. The transition
operating mode employs a nonlinear controller, which enables
practical reference tracking. In order to enhance the system’s
robustness, a fourth operating mode is added to the automata
providing “recovery” maneuvers whenever the aircraft faces
overwhelming perturbations. A nonlinear controller that ren-
ders the hover equilibrium point globally asymptotically stable
is used during this operating mode that is triggered if the
aircraft state reaches out to unexpected values.

A preliminary version of this paper focused only on the
design of a transition controller for a fixed-wing aircraft [17].

The present work also builds upon another work, which
focused on the design of a recovery controller [18]. In this
paper, we combine the controllers designed in [17] and [18]
into a new hybrid automaton which guarantees that either:
1) the aircraft successfully performs the transition maneuver
if the perturbations are confined within certain bounds or 2) it
recovers to stable hovered flight if not.

The rest of this paper is organized as follows. Section II
presents some notational conventions which are employed
throughout this paper. Section III describes the aircraft model.
The hybrid automaton and the robust maneuvers are defined
in Sections IV and V. The controller design is presented in
Section VI. Finally, some simulation results for the proposed
control law are shown in Section VII, and concluding remarks
are presented in Section VIII.

II. NOTATION

The set of rules that embody the mathematical equations
throughout this text is presented in this section for improved
clarity.

1) Scalar values are represented by either uppercase or
lowercase letters (example: ρ and A).

2) Vectors are represented by boldface lowercase letters
(example: v).

3) Matrices are represented by boldface uppercase letters
(example: I).

4) Coordinate frames are represented by a capital letter in
closed brackets (example: {I }).

5) The superscript I x means that the vector x is written in
the reference frame {I }.

6) The function atan2(y, x) returns the angle γ ∈ (−π, π]
between point with coordinates (x, y) and the positive
x-axis.

7) The operator Bε(p) denotes a ball of radius ε around the
point p, i.e., the set of points x such that ‖x − p‖ < ε.

8) The mapping denoted by co(.) is the convex hull operator.
9) The abbreviation w.r.t. stands for with respect to.

10) The definition of input-to-state stable (ISS) with restric-
tions for a dynamic system is taken from [19] and
reproduced here for completeness. Consider the nonlinear
system

ẋ = f (x, u) (1)

with state x ∈ R
n , input u ∈ R

m , in which f (0, 0) = 0
and f (x, u) is locally Lipschitz on R

n × R
m . Let X be

an open subset of R
n containing the origin and let U be

a positive number. System (1) is said to be input-to-state
stable with restriction X on x(0) and restriction U on u(·)
if there exist class K functions γ0(·) and γu(·) such that,
for any x(0) ∈ X and any input u(·) ∈ Lm∞ satisfying
‖u(·)‖∞ < U , the response x(t) satisfies

‖x(·)‖∞ ≤ max{γ0(‖x(0)‖), γu(‖u(·)‖∞)}
lim sup

t→∞
‖x(t)‖ ≤ γu(lim sup

t→∞
‖u(t)‖).

11) A saturation function is a twice differentiable nondecreas-
ing function σ : R → R, which satisfies the following
properties:
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Fig. 2. Model-scale aircraft in hovered flight.

a) σ(0) = 0;
b) sσ(s) > 0 for all s �= 0;
c) lim

s→±∞ σ(s) = ±1.

12) The sign(.) function is given by

sign(x) =

⎧
⎪⎨

⎪⎩

1, if x > 0

0, if x = 0

−1, if x < 0.

III. AIRCRAFT DYNAMIC MODEL

The dynamic model is specifically tailored for the
model-scale aircraft depicted in Fig. 2, which has a standard
wing/tail configuration and a wingspan of approximately 1 m.
The aircraft has a standard set of actuators constituted by
two counter-rotating propellers, ailerons/flaps, elevator, and a
rudder. The counter-rotating propellers provide unidirectional
thrust T ≥ 0 while keeping the induced roll negligible.
The propeller’s flow (slipstream) washes the wing, tail, and
control surfaces, thus providing increased maneuverability
during low-speed operation. In the sequel, we consider that
the thrust is aligned with the wing’s zero lift line and, if that
is not the case, then the flaps deflection may be used to enforce
such condition (at the cost of additional drag forces).

The aircraft dynamic model construction requires the def-
inition of an inertial reference frame {I } and a body refer-
ence frame {B}, which is attached to the moving body. The
reference frame {I } is fixed at some point in the Earth’s
surface, which is considered to be flat and still for the current
application. It is identified by the set of unitary vectors
{iI , jI ,kI }, where iI is directed to geographic North and
is parallel to the ground, kI is perpendicular to iI and is
directed toward the nadir, and jI completes the right-handed
set (this reference frame is sometimes designated by NED,
or North-East-Down). The reference frame {B} is fixed at
the aircraft’s center of gravity and it is identified by the set
of unitary vectors {iB , jB,kB}, where iB is directed toward
the aircraft nose and lies on the aircraft’s symmetry plane,
jB is perpendicular to the aircraft’s symmetry plane, and kB

Fig. 3. 2-D representation of aircraft.

completes the right-handed set. For the sake of simplicity, we
assume that iB is coincident with the wing’s zero-lift line and
aligned with the thrust vector. This configuration of references
frames is depicted in Fig. 3.

Having defined the reference frames, one obtains the aircraft
equations of motion from the application of the Newton’s
second law to a rigid body, resulting in (see [20])

mv̇ = f − mω × v (2a)

Iω̇ = η − ω × (Iω) (2b)

ṗ = R	v (2c)

Ṙ = −S(ω)R (2d)

where v = [u v w]	 denotes the velocity of {B} w.r.t. {I }
expressed in {B}, ω = [p q r ]	 denotes the angular velocity
of {B} w.r.t. {I } expressed in {B}, p = [x y z]	 denotes the
position of {B} w.r.t. {I } expressed in {I }, R ∈ SO (3a) and
(3b) denotes the rotation matrix from {I } to {B}, f ∈ R

3

and η ∈ R
3 denote the external forces and torques acting on

the aircraft, respectively, m denotes the aircraft’s mass and
I ∈ R

3×3 denotes its tensor of inertia. The external forces are
given by

f = fT + Rfg + fa

where fT = [T 0 0]	, fg = [0 0 mg]	, and fa =
[Xa Ya Za]	 are the thrust, gravity, and aerodynamic forces
contributions, respectively. The external moments are solely
due to aerodynamic interactions, such that η = ηa =
[La Ma Na ]	.

One may construct the aerodynamic forces Xa and Za in
terms of both lift and drag as follows:

[
Xa

Za

]

= −
[

cosα − sin α
sin α cosα

] [
D
L

]

where L denotes the wing lift, D denotes the wing drag, and
α = atan2(w, u) is the angle of attack. The lift and drag
components are described by

L = 1

2
ρ(u2 +w2)AwCL(α) (3a)

D = 1

2
ρ(u2 +w2)AwCD(α) (3b)

respectively, where ρ ∈ R is the atmospheric pressure, Aw ∈ R

is the wing’s planform area, CL(α) ∈ R is the coefficient of
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Fig. 4. Forces and moments acting on the aircraft body.

lift, and CD(α) ∈ R is the coefficient of drag (see [21] for
more details). A graphical representation of these forces and
moments is provided in Fig. 4.

In these computations, we have assumed that the lift and
drag contributions due to the propeller slipstream are negligi-
ble due to its alignment with the wing’s zero lift line. The same
does not hold, however, for the aerodynamic actuators. In order
to model the aerodynamic interaction between the free-stream
flow and the propeller slipstream on the aerodynamic actua-
tors, we compute both contributions separately and combine
them together in the end using superposition (this strategy was
successfully used in the practical setup described in [13]). We
conclude that the aerodynamic torque produced by a elevator
deflection δe ∈ R is given by

Ma = xachs

1

2
ρ
(
‖v‖2 Ahs

(
CL(α

′) cosα + CD(α
′) sin α

)

+u2
p A p,hsCL(δe)

)
(4)

where δe ∈ R denotes the elevator deflection, xachs denotes
the horizontal stabilizer’s aerodynamic center, α′ = α +
(∂α/∂δe)δe with (∂α/∂δe) ∈ R, Ahs denotes the horizontal
stabilizer’s planform area, A p,hs denotes the horizontal stabi-
lizer’s area which is washed by the propeller slipstream, and
u p denotes the propeller slipstream velocity. The moments
La and Na are related to aileron deflection δa and rudder
deflection δr , respectively, in a similar way, but we omit the
corresponding equations for the sake of brevity. It can be
shown, using the momentum disk theory described in [22],
that the propeller slipstream velocity is given by

u p =
√

T

ρA p

where A p ∈ R denotes the propeller disk area.
The proposed controller is intended to push the flight

envelope to its limits, forcing us to build a dynamic model,
which fully describes the aircraft motion for any state. One
must, therefore, find the dependence of CL and CD over
the range of all possible values for the angle of attack, i.e.,
α ∈ (−π, π]. This constitutes a rather difficult task since, until
now airplanes were not expected to fly over the stall angle
and, for that reason, most literature references present airfoil

performance only for small angles of attack. However, in [23],
one may find the lift and drag behaviors of symmetrical airfoils
for the full angle of attack range.

For the purpose of controller design, the aircraft model
is first simplified. The approximations we consider are as
follows: 1) the so called “small-body forces,” which denote
the forces exerted on the vehicle upon the deflection of the
aerodynamic actuators, are neglected (this is an usual approx-
imation [24]); 2) Ya is approximately zero; 3) the aerodynamic
torque is considered directly as an input, but the corresponding
actuator deflections are calculated with (4); 4) the thrust is
readily available, i.e., the propellers’ dynamics are much faster
than the aircraft dynamics and can be disregarded for the
purpose of controller design; and 5) the aircraft motion occurs
solely on the vertical plane, i.e., y = 0 and

R =
⎡

⎣
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤

⎦ (5)

where θ ∈ (−π, π]. These approximations are verified for the
particular kind of aircraft dealt with in this paper, provided
that there is active regulation of the lateral movement to
zero. Furthermore, notice that the controllers are designed
to be robust to disturbances, which include possible model
mismatches arising from these approximations.

When the aircraft motion is restricted to the vertical plane,
the dynamic model (2a)–(2d) is described by the following
reduced set of equations:

u̇ = Xa + T

m
− g sin θ − qw + δu(t) (6a)

ẇ = Za

m
+ g cos θ + qu + δw(t) (6b)

q̇ = Ma

Iyy
+ δq(t) (6c)

ẋ = u cos θ +w sin θ (6d)

ż = −u sin θ +w cos θ (6e)

θ̇ = q (6f)

where Iyy is the aircraft’s moment of inertia around the body
y-axis and δu(t), δw(t), and δq(t) are unknown perturbations
which might appear due to model uncertainties, deviations
from the vertical plane, sensor noise, among others.

In the sequel, we employ different Euler angle parametriza-
tions of the rotation matrix R ∈ SO (3a) and (3b), and we use
the triplet (φ, θ, ψ) to denote the rotations around the x-axis,
y-axis, and z-axis, respectively. The usual angles employed
in aircraft applications are the roll, pitch, and yaw angles,
which correspond to the Z-Y-X Euler angle parametrization
(see [20]). These angles, however, cannot be used to describe
the aircraft attitude (5) throughout the whole flight envelope
because the parametrization has singularities at θ = ±π/2 but
the flight envelope allows for θ ∈ (−π, π]. These parame-
trization issues are particularly important during the design of
the lateral controllers and, for that reason, the parametrization
for each operating mode is detailed in Section VI-D.

The aircraft model present in this section is valid for an
aircraft of arbitrary size because the aerodynamic forces and
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moments are characterized by the dimensionless quantities
CD(α) and CL(α). These coefficients depend on the aircraft
geometry and on the Reynolds number, therefore, as long
as these two parameters do not change, the aircraft can be
scaled arbitrarily. Since the controller is derived from the
given model, it is also applicable to any aircraft which has
enough thrust to overcome its weight and has enough torque
to perform the transition maneuver and confine the aircraft
motion to the vertical plane. These issues are addressed again
in Section V, where we discuss the transition trajectory.

In the next section, we present a hybrid automaton that
divides the flight envelope into four different regions, each
of which is characterized by different dynamic properties.

IV. HYBRID AUTOMATON

The previous section presented the open-loop dynamics of
the aircraft system, but when several controllers are designed
for different regions of the flight envelope, discrete behavior
is imbued into the system due to controller switching. This
behavior is better captured by means of a hybrid automaton,
which is identified by: a set of the operating modes Q; a
domain mapping D : Q ⇒ R

n × R
m ; a flow map f :

Q × D → R
n ; a set of edges E ⊂ Q × Q; a guard mapping

G : E ⇒ R
n × R

m and; a reset map R : E × R
n × R

m → R
n

(see [25] for further details). The control framework presented
in [15] for practical tracking of hybrid automata is used to
tackle robustness issues arising from model simplifications
and parametric uncertainty. This framework has been used to
model UAVs interacting with the environment [26]. However,
in the transition problem that we address, there are no physical
obstacles inducing the operating mode jumps. Rather, the oper-
ating mode jumps depend on the topology of the controllers’
basins of attraction and on the reference trajectory which is
provided to the system.

In this section, we introduce a formal definition of the
hybrid automaton depicted in Fig. 5. The definition relies
heavily on the properties of the controllers designed for each
operating mode; therefore, it is important to introduce some
of those properties beforehand. The controller of the operating
mode q ∈ Q is the map

(t, ξ ) �→ μq (t, ξ )

and it has a basin of attraction (possibly time-varying)
Bq (ξ

�(t),μ�(t)) ⊂ R
6 × R

2, as defined below.
Definition 1: Let φ(t, ξ ) be the solution to ξ̇ = f (q, ξ ,μq ),

for some q ∈ Q, that starts at initial state ξ and is defined
for all t ≥ 0. The basin of attraction of the operating mode
q ∈ Q is

Bq (ξ
�(t),μ�(t)) =

{
(ξ ,μ) ∈ R

6 × R
2 : lim

t→∞(φ(t, ξ ),μ)

= (ξ �(t),μ�(t)),μ = μq (t,φ(t, ξ ))
}
. (7)

�
For the particular application of performing a transition
between hover and level, the individual operative mode con-
trollers, whose development is deferred to Section VI, have
the following properties: the hover controller μH stabilizes the

Fig. 5. System’s hybrid automaton. The formal description of the hybrid
automaton includes the definition of the domain D(q), the flow map
f (q, ξ ,μ), the edges E ⊂ Q × Q, the guard map G(E), and the reset map
R(E, ξ ,μ) for each operating mode q ∈ Q, provided in the sequel.

aircraft at a given trimming trajectory (ξ Heq
,μHeq

) with basin
of attraction BH (ξ Heq

,μHeq
), the level controller μL stabilizes

the aircraft at a given trimming trajectory (ξ Leq
,μLeq

) with
basin of attraction BL(ξ Leq

,μLeq
), and the transition controller

μX performs practical tracking of a reference trajectory with
an error no larger than ε > 0. In order to be consistent with
the notation introduced in [15], the reference trajectories are
denoted by

v�q1→q2
(t) = (ξ �q1→q2

(t),μ�q1→q2
(t))

for all t ≥ 0 and for some suitable pair (q1, q2) ∈ E . Additional
details on the design of the reference trajectories are provided
in Section V; the recovery controller performs stabilization of
the hover trimming trajectory and it has a basin of attraction
BR(ξ Heq

,μHeq
) which one wants to make as large as possible.

Ideally, BR(ξ Heq
,μHeq) = R

6 × R
2. In practice, it is very

difficult to determine the topology of the basins of attraction
for nonlinear systems. Nevertheless, Lyapunov functions can
be used to provide estimates of the basins of attraction, using
some conservative bounds which allow this task to become
slightly easier [27, Corollary 1].

For the Hybrid Automaton describing the airplane system,
we consider the system state ξ ∈ R

6 and the actuator input
μ ∈ R

2 are given by

ξ = [u w q θ x z]	
μ = [τu τq ]	

where τu = T/m, τq = Ma/J . A graphical representation of
the automaton is presented in Fig. 5 and a detailed description
follows in the sequel.

In the following paragraphs, we describe the hybrid automa-
ton presented in Fig. 5 in detail.

1) Operating Modes: The operating mode q belongs to the
set Q = {H, L, X, R}, where H is the hover operating mode,
X is the transition operating mode, L is the level operating
mode, and R is the recovery operating mode.
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2) Edges: The set of edges E ⊂ Q × Q identifies any
operating mode transition from q1 to q2 represented in Fig. 5
with the pair (q1, q2). The possible operating mode transitions
in this model are: (H, X), (X, L), (L, X), (X, H ), (H, R),
(X, R), (L, R), and (R, H ).

3) Domain Mapping: For each operating mode, the domain
mapping D : Q ⇒ R

6 × R
2 assigns the set where the variables

(ξ ,μ) may range and it is defined by

D(H ) = BH (ξ Heq
,μHeq

)

D(X) = BX (ξ
�
q1→q2

(t),μ�q1→q2
(t))

D(L) = BL(ξ Leq
,μLeq)

D(R) = BR(ξ Heq
,μHeq

)

where v�q1→q2
(t) = (ξ �q1→q2

(t),μ�q1→q2
(t)) is a given reference

trajectory defined for all t ≥ t0.
4) Flow Map: The flow map f : Q × R

6 × R
2 → R

6

describes the evolution of the state variables in each operating
mode q ∈ Q, i.e., in each operating mode, the state’s derivative
is given by

ξ̇ = f (q, ξ ,μ)

where function f is derived from the differential equations (6)
and q ∈ Q only affects the choice of the controller.

5) Guard Mapping: The guard mapping G : E ⇒ R
6 × R

2

determines, for each pair (q1, q2) ∈ E , the set to which the
aircraft state must belong in order to perform the transition
from q1 to q2. The rationale behind the Guard mapping design
is as follows. The hover and level controllers stabilize (6) in
a neighborhood of their respective trimming trajectories and,
additionally, the transition controller performs the tracking of
a reference trajectory between these two (disjoint) regions
with arbitrarily small error ε>0. The Guard mapping design
guarantees the stability of the overall system under nominal
operation, because controller switching occurs only when the
system state is (robustly) inside the stable regions of the hover
and level trimming trajectories. If the system state is driven
outside this stability region due to unexpected perturbations,
then the recovery controller is triggered. These considerations
are encoded in the following definition of the guard map:

G(H, X) = Bε0(v
�
q1→q2

(0))

G(X, L) = Bl(ξ Leq
,μLeq

)

G(L, X) = Bε0(v
�
q1→q2

(0))

G(X, H ) = Bh(ξ Heq
,μHeq)

G(H, R) = R
8\Bh(ξ Heq

,μHeq
)

G(L, R) = R
8\Bl(ξ Leq

,μLeq
)

G(X, R) = R
8\Bε(v�q1→q2

(t))

G(R, H ) = Bh(ξ Heq
,μHeq

)

where ε0 > 0 is the maximum allowed error on the
initial state of a transition maneuver, B�(ξ Leq

,μLeq
) ⊂

B�(ξ Leq
,μLeq

) ⊂ BL(ξ Leq
,μLeq

) and similarly Bh(ξ Heq
,

μHeq ) ⊂ Bh(ξ Heq
,μHeq) ⊂ BH (ξ Heq

,μHeq), with �, � ∈ R

and h, h ∈ R.The parameters h, h, �, and � are chosen so as
to prevent chattering during switching events, which is always
possible by choosing h < h and � < � sufficiently apart from

Fig. 6. Hybrid automaton sample trajectory. The aircraft starts in recovery
mode with q� = L , switches to hover when (ξ ,μ) ∈ Bh(ξ Heq ,μHeq ) and to
transition when ξ ∈ Bε0(v

�
X→L (0)). In the end, the aircraft switches to level

when (ξ ,μ) ∈ Bl(ξ Leq ,μLeq ).

each other. Fig. 6 depicts these sets for a sample trajectory,
from the recovery to the level operating mode.

6) Reset Map: For each (q1, q2) ∈ E and (ξ, μ) ∈ G(q1, q2),
the reset map R : E × R

6 × U → R
6 identifies the jump of

the state variable ξ during the operating mode transition from
q1 to q2. For this particular application, the reset map is the
trivial map

R({q1, q2}, ξ, μ) = ξ for any {q1, q2} ∈ E
as there are no impulsive state changes, only the employed
local controller is modified when switching operating modes.

V. ROBUST MANEUVERS

The problem of achieving robust transitions between hover
and level flights is twofold: 1) the reference maneuver which
links the two sets must be at least ε-distant from the domain
limits and any guard sets leading to undesired operative mode
transitions and 2) the controller must be able to achieve
practical reference trajectory tracking with an error no larger
than ε, in the presence of external disturbances and uncertain
parameters.

Three different kinds of robust maneuvers are defined
within the followed Hybrid Automata control framework [15].
The first one, denoted as ε-robust q1-single maneuver in
[t0, t1), is such that the state and the input do not intersect
any guard condition in order to maintain the same “single”
operating mode q1. The second type, denoted as ε-robust
q1 → q2 approach maneuver in [t0, t f ], is such that at time
t f the maneuver belongs robustly to the desired guard set,
G({q1, q2}), in order to guarantee a switch to the operating
mode q2. The last one, the q1 → q2 transition maneu-
ver in [t0, t1), is obtained as a combination of an ε-robust
q1 → q2 approach maneuver and a set of ε-robust q2-single
maneuvers.

Although q1-single maneuvers and q1 → q2 transition
maneuvers are defined for the hybrid automaton presented in
Section IV, the most important maneuvers are the X → L
and X → H approach maneuvers, identified by v�X→L(t)
and v�X→H (t), respectively. These reference maneuvers are
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computed by means of nominal system inversion. The nominal
system is given by (6) and may be rewritten as

u̇ = τu + hu(u, w, q, θ)

ẇ = hw(u, w, q, θ)

q̇ = τq

θ̇ = q (8)

where

hu(u, w, q, θ) = Xa

m
− g sin θ − qw

hw(u, w, q, θ) = Za

m
+ g cos θ + qu

and δu(t) = δw(t) = δq(t) = 0. Given twice differentiable
desired state trajectories u�(t) and θ�(t), the downward veloc-
ity initial state w�(0), then the reference control inputs τ �u (t)
and τ �q (t), and the reference state variable w�(t) are computed
numerically by solving (8).

The design of optimal transition maneuvers between hov-
ered and leveled flight for aerial vehicles is an active research
topic by itself, as can be seen in [28]–[30], and does not
constitute the main focus of this paper. Instead, we design the
transition trajectories using some intuitive insight mentioned
in [28]–[30]: 1) the transition maneuver connects the hover
and the level trimming trajectories, denoted by (ξ Heq

,μHeq
)

and (ξ Leq
,μLeq

), respectively; 2) the propeller’s maximum
thrust must overcome the weight of the aircraft by, at least, an
amount νT > 0 in order to perform any transition trajectories,
i.e., Tmax > (1 + νT )mg (it is suggested in [29] that νT ≥
0.15); 3) as a safe trajectory design guideline, we exploited
trajectories where the angle of attack was constrained to small
values, typically |α| < 15°; 4) the reference trajectory must
have the property that u�(t) > 0 for all t ≥ t0; and 5) the
maximum torque during the transition maneuver should verify
τq(t) ≤ νM , for some νM > 0 and for all t ≥ t0.

The chosen reference trajectories are smooth functions
which are characterized by the initial forward velocity u0, the
final forward velocity u∞, the initial pitch angle θ0, the final
pitch angle θ∞, the transition start times tθ , and tu and the
parameters�u and �θ which determine the speed at which the
transition is performed for each of the state variables u and θ .
The selected parameters provide faster transient in the forward
velocity u than in the pitch angle θ during the transition from
hovered to leveled flight, in order to increase maneuverability.
The transition from level flight to hover is simply a pitch
up maneuver at constant forward speed. This speed is only
brought to zero when the aircraft is facing the zenith. The
transition maneuvers are defined by

u�(t) =

⎧
⎪⎨

⎪⎩

u0, if t0 ≤ t < tu
u0 + (u∞ − u0) exp(−�u(t − tu))

(exp(�u(t − tu))−�u(t − tu)− 1) ,
if t ≥ tu

θ�(t) =

⎧
⎪⎨

⎪⎩

θ0, if t0 ≤ t < tθ
θ0 + (θ∞ − θ0) exp(−�θ(t − tθ ))

(exp(�θ (t − tθ ))−�θ(t − tθ )−1) ,
if t ≥ tθ .

These trajectories are used for hover to level flight and level
flight to hover transitions with appropriate parameter choice.

t [s]

u X
→
L
(t
)[
m
/s
]

t [s]

θ X
→
L
(t
)[
ra
d/
s]

Fig. 7. Reference trajectory (u�, θ�) for the transition maneuver from hover
to level, with u0 = 1 m/s, u∞ = 10.83 m/s, �u = 1 s−1, tu = 0 s, θ0 = 90°,
θ∞ = 10°, �θ = 0.7 s−1, and tθ = 0.1 s.

The same strategy can be employed for aircrafts with different
sizes, as long as the conditions τumax > (1 + νT )g and
τqmax > νM are verified. These conditions, however, are very
naive and it might be very difficult to verify them for larger
scale aircrafts, if not impossible. As a general rule, the aircraft
designer should know that scaling up the aircraft without any
other changes will lead to slower transition trajectories and
less hovering time. Therefore, there is an upper bound on the
aircraft scale where the proposed strategy may still be applied.
Partial solutions to this problem include the change to fuel with
higher energy density and improved aircraft geometry.

A sample reference trajectory from hover to level is depicted
in Fig. 7 for the following parameters: u0 = 1 m/s, u∞ =
10.83 m/s, �u = 1 s−1, tu = 0 s, θ0 = 90°, θ∞ = 10°,
�θ = 0.7 s−1, and tθ = 0.1 s.

VI. CONTROLLER DESIGN

The Hybrid Automaton’s definition provided in Section IV
requires the design of four controllers, one for each operating
mode. Summarizing the previously stated requirements, the
controller objectives are to: 1) robustly stabilize the aircraft
in hovered and leveled flights; 2) perform the tracking of a
given reference trajectory, which takes the aircraft from hover
to level and vice-versa with a tracking error no larger than
ε; 3) whenever the aircraft state overcomes some specified
bounds, perform a recovery maneuver which takes the aircraft
to hover and is robust with respect to exogenous disturbances;
and 4) design a controller for each operating mode, which sta-
bilizes the lateral motion of the aircraft, thus keeping it on the
vertical plane. Such diversity of control objectives requires the
application of different control laws to each operating mode.

In hovered and leveled flights, we adopt a linear control
law of the form μ̃q = −Kξ̃ q , where ξ̃ q = ξ − ξ �q is the
error between the state and some constant reference ξ �q , and
the state feedback gain K is computed as the solution to an
optimal control problem subject to linear matrix inequalities
constraints (in the computations, we used the openly avail-
able YALMIP Toolbox [31]). A nonlinear controller which
performs reference tracking is employed during transition
operating mode and another nonlinear controller which renders
the hover equilibrium point globally stable is used while in
recovery mode. For the lateral controller, we employ scheduled
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controller gains using a similar strategy to that which is used
in the hover and level controllers design. Each of the proposed
solutions is further detailed in the sequel.

In addition, one needs to be careful about input saturations
because it imposes severe constraints on the control. The
reader must keep in mind that μq (t) ∈ U ⊂ R

2, where

U = [τumin, τumax ] × [τqmin, τqmax ].
The controller design presented in Section VI may not address
this issue explicitly, but the controller design parameters, the
reference trajectory, and the hybrid automaton’s definition are
tuned to prevent the boundaries of the actuators from being
reached.

A. Hover and Level Controllers

To design the hover and level flight controllers, we use
a gain scheduling control methodology. A bank of linear
controllers is designed for different operative conditions, and
the closed-loop controller to be used is dependent on the
vehicle state. The scheduling of the different controllers is
achieved without discontinuities in the output by using the
D-methodology. See [32] and [33] for an application of the
same technique to the automated level flight and landing of
an aircraft.

Consider the LPV system

˙̃
ξ = A(δ)ξ̃ + B(δ)μ̃ (9)

which approximates the nonlinear system (6) within a known
region δ ∈ �. The hover and level operating mode controllers
are obtained as the solution to the optimal control problem of
minimizing the cost function

J =
∫ ∞

0
ξ̃

	
Qξ̃ + μ̃	Rμ̃ dt . (10)

In addition to the approximation of the general nonlinear
model as a LPV system, we select the polytopic LPV structure
which is defined below.

Definition 2: System (9) is said to be a polytopic LPV
system with affine parameter dependence if the system matrix

S(δ) = [A(δ) B(δ)]
verifies S(δ) = S0 + Sδδ, for all δ ∈ �, and the parameter set
takes the form � = co(�0), where �0 is a set with a finite
number of points, i.e., �0 = {δ1, . . . , δr }.

In a polytopic LPV setting, the solution to the minimization
of (10) results in a linear control feedback law of the form

μ̃q = −Kξ̃ q . (11)

Additionally, the polytopic formulation enables the stability
assessment of the solutions to (9) by solving a finite set
of linear matrix inequalities [34]. The control objective is
translated into the following optimization problem:

min tr(P)

s.t. A(δi )
	P + PA(δi)+ K	B(δi )

	P + PB(δi )K

< −Q − K	RK (12)

for all δi ∈ �0. It can be shown using the Schur’s complement
and the congruence transformations Y = P−1 and L = KY,
that the previous optimization problem is equivalent to

max tr(Y)

s.t.

[
YA(δi )

	+A(δi )Y+L	B(δi )
	+B(δi )L Y L	

Y −Q−1 0
L 0 −R−1

]

< 0

−Q−1 < 0

−R−1 < 0

for all δi ∈ �0.
The following result shows that the feedback controller

stabilizes the LPV system (9) for all δ ∈ �.
Proposition 3: Consider the LPV system (9) and the control

law (11), where K is a solution to (12), then the closed-loop
system is globally asymptotically stable for all δ ∈ �.

Proof: Consider the Lyapunov function candidate

V = ξ̃
	

Pξ̃

whose derivative is given by

V̇ = ξ̃
	
(A(δ)P + PA(δ)+ K	B	(δ)P + PB(δ)K)ξ̃ .

Since K satisfies (12), the Lyapunov function’s derivative is
upper bounded by

V̇ = −ξ̃
	
(Q + K	RK)ξ̃ < 0

therefore, global asymptotic stability follows by standard
Lyapunov arguments.

Each operating mode has a different operating point and
specifications which require distinct weightings. Therefore,
controller dimensioning requires:

1) linearization around the chosen operating point (ξ q ,μq );
2) integrator states choice according to the operating mode

requirements;
3) controllability evaluation;
4) (Q,R) weighting using Bryson’s trial-and-error

method, [35], which employs the diagonal matrices

Q =
⎡

⎢
⎣

�ξ−2
1max

. . . 0
...

. . .
...

0 . . . �ξ−2
nmax

⎤

⎥
⎦

R =
⎡

⎢
⎣

�μ−2
1max

. . . 0
...

. . .
...

0 . . . �μ−2
mmax

⎤

⎥
⎦

where �ξ imax
represents the i th state maximum expected

deviation from equilibrium and �μ jmax represents the j th
input maximum expected deviation from equilibrium.

The proposed controllers stabilize the simplified aircraft
system (9) if δ(t) ∈ � for all t ≥ 0. This provides
some information about the size of the basin of attraction
Bq(ξ qeq

,μqeq
) for each q ∈ {H, L}. The set � depends on the

parameters δq = [ũq θ̃q ]	. The admissible ranges for these
parameters are

ũ ∈ [ũqmin , ũqmax ]
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Fig. 8. Transition cascade system representation.

θ̃ ∈ [θ̃qmin, θ̃qmax ]. (13)

The LPV system approximation is performed using a least
square fitting to the nonlinear system, upon linearization within
a denser grid with the limits defined by (13). The extent of
the simplifications made so far depend on the size of the set
� and on the deviations between the LPV and the nonlinear
systems.

B. Transition Controller

The controller for the transition operating mode pro-
vides practical tracking of a reference trajectory v�(t) =
(u�(t),w�(t), q�(t), θ�(t), τ �u (t), τ

�
q (t)), computed according

to the criteria defined in Section V. Using the error variables
ũ = u − u�(t), w̃ = w − w�(t), q̃ = q − q�(t), and
θ̃ = θ − θ�(t), we will prove that there exist positive gains
ku, kq , and kθ such that the feedback control law

μX =
[
τ �u (t)+ τ̃u

τ �q (t)+ τ̃q

]

(14)

with

τ̃u = −kuũ

τ̃q = −kθ (θ̃ + kqq̃)

locally asymptotically stabilizes the error dynamics, given by

˙̃u = τ̃u +�u(ũ, w̃, q̃, θ̃ , t)+ δu(t) (15a)
˙̃w = �w(ũ, w̃, q̃, θ̃ , t) + δw(t) (15b)
˙̃q = τ̃q + δq(t) (15c)
˙̃θ = q̃ (15d)

where

�u(ũ, w̃, q̃, θ̃ , t) = hu(u
�(t)+ũ, w�(t)+w̃, q�(t)+q̃, θ+θ̃ )

−hu(u
�(t),w�(t), q�(t), θ�(t))

�w(ũ, w̃, q̃, θ̃ , t) = hw(u
�(t)+ũ, w�(t)+w̃, q�(t)+q̃, θ+θ̃ )

−hw(u
�(t),w�(t), q�(t), θ�(t)). (16)

The reference trajectory is one of equilibrium (if δu = δw =
δq = 0) because

[ũ w̃ q̃ θ̃ ] = [0 0 0 0] ⇒ [ ˙̃u ˙̃w ˙̃q ˙̃θ ] = [0 0 0 0].
Consider two cascade systems depicted in Fig. 8, which
describe the dynamics of (ũ, w̃) and (q̃, θ̃ ). Input-to-state
stability is established separately for each of these systems
in Propositions 4 and 6, from which input-to-state stability for
the overall system then follows.

Due to the underactuation of (15), it is important to study
the properties of the function �w(ũ, w̃, q̃, θ̃ , t), which char-
acterizes the dynamics around the equilibrium trajectory for

the state variable w ∈ R. Employing the Taylor’s polynomial
expansion around w̃ = 0 yields

�w(ũ, w̃, q̃, θ̃ , t) = �w|w̃=0 + R0(w̃) (17)

where R0(w̃) is the remainder, satisfying

lim
w̃→0

|R0(w̃)| = 0

according to Taylor’s theorem [36]. Moreover, R0(w̃) is given
by

R0(w̃) = ∂�w

∂w̃

∣
∣
∣
∣
w̃=w̃0

w̃

for some w̃0 ∈ [0, w̃]. The first order partial derivative of
�w(ũ, w̃, q̃, θ̃ , t) with respect to w̃ is given by

∂�w

∂w̃
= −1

2
ρA

√
u2 +w2δ(α) (18)

with

δ(α) = CD(α)(1 + sin2(α))

+1

2

(

CL(α) + ∂CD(α)

∂α

)

sin(2α)

+∂CL(α)

∂α
cos2(α). (19)

This derivative plays a crucial role on the stability of the
closed-loop system as argued in Proposition 4. In particular,
one must design a reference trajectory from the hover domain
to the level domain such that δ(α�(t)) > 0 for all t ≥ 0, where

α�(t) = atan2(w�(t), u�(t)).

Assuming that the lift and drag coefficients are described by

CL(α) = CLαα

CD(α) = CD0 + kCL(α)
2 (20)

for some CLα > 0, CD0 > 0 and k > 0 (see [21]), then it is
straightforward to show that there exist such trajectories for
small enough α�(t), since we have δ(0) = CLα > 0. Equa-
tion (20) is only applicable for small angles of attack which
is somewhat limiting for the application we are considering.
If we assume that the lift and drag profiles are given by

CL = CL0 sin(2α)

CD = CD0 + CD1 sin2(α) (21)

for the whole range of angles of attack, then it is possible
to verify that δ(α) > 0 holds for all α ∈ (−π, π] (see
Fig. 9). From Fig. 10, one may check that (21) is a reasonable
approximation but it hides the issue of airfoil stall, which is
indeed a very important factor affecting the behavior of δ(α)
because, at that point, the term (∂CL(α)/∂α) cos2(α) becomes
negative due to the loss of lift.
A lift profile which models the stall behavior is provided
in [37], and it is given by

CL(α) = (1 − χ(α))(CL0 + CLαα)

+χ(α)(2sign(α) sin2(α) cos(α))
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α [deg]

δ(
α
)

Real data
Approximation

Fig. 9. δ(α) for the NACA0025 airfoil at Re = 80 000 [23], using real data
and the approximation (21).

α

α

α

α

Fig. 10. NACA0025 airfoil data at Re = 80 000 [23].

α

δ
α

Fig. 11. Parameter δ(α) for the lift and drag models given in [37] with
parameters M ≈ 8.9372, α0 = 0.1426, CL0 = 0, CLα = 5.5370 rad−1,
CD0 = 0.0196, and k = 0.0112.

where CL0 ∈ R, CLα ∈ R are model parameters and

χ(α) = 1 + e−M(α−α0) + eM(α+α0)

(1 + e−M(α−α0))(1 + eM(α+α0))

with α0 ∈ R and M > 0. The parameters M ≈ 8.9372, α0 =
0.1426, CL0 = 0, and CLα = 5.5370 rad−1 provide a good fit
to the airfoil data shown in Fig. 10 as long as α ∈ [−0.4, 0.4].
The parameter δ(α) for this set of parameters is shown in
Fig. 11 and it displays the positive definiteness of δ(α) for
|α| ≤ 0.4 rad, thus meeting the assumptions on Proposition 4
for a stable transition flight.

We conclude that, depending on the stall behavior, the
robustness of the transition controller may be compromised.
In an aircraft design phase, thick airfoil profiles are preferred
for the envisaged application as they exhibit smoother stall
behavior than thin airfoil profiles ([21]).

In Proposition 4 (whose proof is deferred in Appendix A),
we verify that the positive definiteness of δ(α) ensures the
stability of the w̃ system. The control authority in the ũ
system is used to keep the influence of perturbations small.
Corollary 5 evinces that under the ideal scenario of δ(α) > 0
for all α ∈ (−π/2, π/2), the restrictions on the initial error
w̃(0) can be made arbitrarily large as long as we select a high
enough controller gain ku > 0 and small enough restrictions
on the initial state ũ(0).

Proposition 4: For any number �u > 0, if u�(t) > 0 and
δ(α�(t)) > 0 for all t ≥ 0, then there exist cu > 0, cw > 0,
�θ > 0, �w > 0, and k�u > 0 such that for all ku ≥ k�u
the system with the dynamics (15a) and (15b) is rendered
ISS with restrictions cu in the initial state ũ(0), cw on the
initial state w̃(0), �u on the input δu(t), �w on the input
δw(t) and �θ on the input (q̃, θ̃ ) using the control law defined
in (14).

If the aircraft possesses a wing such that δ(α) > 0 for all
α ∈ (−π/2, π/2), then the system with the dynamics (15a)
and (15b) is rendered ISS with arbitrary restrictions on the
initial state w̃(0) as stated in the following corollary, whose
proof is deferred in Appendix B.

Corollary 5: For any number �u > 0 and cw > 0, if
u�(t) > 0 for all t ≥ 0 and δ(α) > 0 for all α ∈ (−π/2, π/2),
then there exist cu > 0, �θ > 0,�w > 0, and k�u > 0 such that
for all ku ≥ k�u the system with the dynamics (15a) and (15b) is
rendered ISS with restrictions cu in the initial state ũ(0), cw on
the initial state w̃(0), �u on the input δu(t), �w on the input
δw(t), and �θ on the input (q̃, θ̃ ) using the control law defined
in (14).

The importance of the result stated in the previous corollary
stems from the fact that by establishing cw arbitrarily improves
the system robustness to external disturbances. Due to the
shortage of detailed studies on the behavior of airfoils over
high angles of attack, it is difficult to assess whether the
condition δ(α) > 0 for all α ∈ (−π/2, π/2) is satisfied for any
other airfoil designs than those presented in [23]. Nevertheless,
the data given in [23] and shown in Fig. 10 reveals that there
exist in fact airfoils that exhibit this property, albeit marginally,
thus suggesting that more sophisticated airfoil designs which
delay or smoothen the wing stall might add extra robustness
to the proposed control strategy. The following proposition
states a rather obvious result, concerning the stability of the
system (q̃, θ̃ ).

Proposition 6: For any positive numbers kq and kθ ,
the system with the closed loop of the system dynam-
ics (15c) and (15d) and the control law (14) is ISS without
restrictions.

Proof: The unperturbed closed-loop system of the form
ẋ = Ax and it is given by

[
q̃
θ̃

]

=
[−kθkq −kθ

1 0

] [
q̃
θ̃

]

(22)

which is a linear-time invariant system and the matrix A
is Hurwitz. It follows then that, for any positive-definite
matrix Q, there exists a solution P to the Lyapunov equation

A	P + PA = −Q
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such that the function

V2(x) = x	Px (23)

is positive-definite and its derivative

V̇2(x) = −x	Qx

is negative-definite, and the unperturbed system is exponen-
tially stable. The perturbed system includes the unknown
quantity δq(t), which disturbs the nominal linear system.
Adding this perturbation to the linear system (22) provides the
following bound on the derivative of the Lyapunov function
given in (23):

V̇2 ≤ −λmin(Q)‖x‖2 + ‖x‖|δq(t)|
where λmin(Q) is the eigenvalue of Q with smallest real part.
As a consequence, for any η ∈ [0, 1) it is possible to find that

V̇2 ≤ −λmin(Q)η‖x‖2 ‖x‖ ≥ |δq(t)|
(1 − η)λmin(Q)

. (24)

Thus, the system is ISS without restrictions and with asymp-
totic gain 1/((1 − η)λmin(Q)).

Not only is the system (q̃, θ̃ ) ISS without restrictions, but
it is possible to set λmin(Q) arbitrarily high such that the
perturbation influence on the system behavior is arbitrarily
small. Employing this insight, the following result proves the
stability of the overall system (15).

Proposition 7: For any numbers �q > 0, �u > 0, kθ > 0,
kq > 0, if u�(t) > 0 and δ(α�(t)) > 0 for all t ≥ 0, then
there exist cu > 0, cw > 0, cq > 0, cθ > 0, �q > 0,
�w > 0, and k�u > 0 such that for all ku > k�u the system with
the dynamics (15) is rendered ISS with restrictions cu in the
initial state ũ(0), cw on the initial state w̃(0), cq on the initial
state q̃(0), cθ on the initial state θ̃ (0), �u on the input δu(t),
�w on the input δw(t), and �q on the input δq(t) using the
control law defined in (14).

Proof: Define the set

�2(l) = {(q̃, θ̃ ) ∈ R
2 : V2(q̃, θ̃ ) ≤ l}. (25)

For any cq > 0 and cθ > 0, there exists l2 such that

{(q̃, θ̃ ) ∈ R
2 : |q̃| ≤ cq ∧ |θ̃ | ≤ cθ } ⊂ �2(l2).

For any given �q > 0, and using the result in (24), it is
possible to set λmin(Q) such that

{

(q̃, θ̃ ) ∈ R
2 : ‖(q̃, θ̃ )‖ < �q

(1 − η)λmin(Q)

}

⊂ �2(l2).

In this situation, the set �2(l2) is forward invariant and, if the
initial state is within this set, the system state does not leave
�2(l2) for all time. The result follows from Propositions 4
and 6 as long as the restrictions cq and cθ are such that:

�θ ≥ max
(q̃,θ̃ )∈�2(l2)

‖(q̃, θ̃ )‖

employing the relation (25).
The required initial conditions for Proposition 7 are

enforced by the switching logic, which only enables the
transition controller when q̃(0) ≤ cq and θ̃ (0) ≤ cθ are
satisfied.

In short, this section presented a trajectory tracking con-
troller for the underactuated system described in Section III.
This controller is input-to-state stable with restrictions on the
disturbances and on the initial tracking errors. Moreover, it
relies on the wing lift/drag characteristics which are measured
by means of δ(α) provided in (19).

C. Recovery Controller

The controller developed throughout this section for the air-
craft dynamic system (6) achieves almost global stabilization
of the hover equilibrium point, characterized by

ueq = 0 m/s weq = 0 m/s

qeq = 0 rad/s �eq = 0 rad

where � = θ − π/2 using the Z-X-Y Euler angle parame-
trization of R ∈ SO (3a) and (3b). Moreover, the control law
provides T ≥ Tmin for all t ≥ 0, under an appropriate choice
of parameters.

The longitudinal controller design relies on Lyapunov stabil-
ity principles and it is obtained through standard backstepping
techniques (see [38]). In the next section, the equilibrium
point (ẋ, ż,� −��, q − q�) = 0 is rendered almost globally
exponentially stable1 for the unperturbed system (δu(t) =
δw(t) = δq(t) = 0 for all t ≥ 0), and ISS for the perturbed
case, given the control law

τu = g

cos��

(

1 + λzσ

(
kz ż

λz

))

(26a)

τq = q̇� − kq(q − q�)− sin(�−��)

�2
(26b)

�� = λxσ

(
kx ẋ

λx

)

(26c)

q� = �1 ẋτu
sin�− sin��

sin(�−��)
+ �1 żτu

cos�− cos��

sin(�−��)

−k�
sin(�−��)

(1 + cos(�−��))2
+ �̇� (26d)

where τu := T/m, τq := M/Iyy , �1, �2, kx , kz , k�, kq , and
λx are controller parameters and σ(s) denotes the saturation
function.

1) Unperturbed System: In this section, we focus on the
case where δu(t) = δw(t) = δq(t) = 0 for all t ≥ 0, and prove
that (26) renders the equilibrium point (ẋ, ż, �̃, q̃) = 0, almost
globally exponentially stable. In order to improve the clarity
of this paper, we present each of the backstepping iterations
before the main result.

Consider the aircraft subsystem comprising the dynamics of
the states (ẋ, ż) and consider the following Lyapunov function
candidate V1 = �1(ẋ2 + ż2)/2, where �1 > 0 and whose
time derivative is given by (provided that δu(t) = δw(t) =
δq(t) = 0):
V̇1 = �1 ẋ(u̇ cos θ − qu sin θ + ẇ sin θ + qw cos θ)

+�1 ż(−u̇ sin θ − qu cos θ + ẇ cos θ − qw sin θ). (27)

1See [39] for further details on almost global stability of dynamic systems.
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Replacing (6a)–6(e) into (27) yields

V̇1 = −�1τu sin�ẋ −�1
ρA

2m
‖v‖ 3

2 CD(α)−�1τu cos�ż+�1gż

(28)
where we have used the relations τu := T/m, cos θ = − sin�
and sin θ = cos�. Letting � = �� and replacing (26a)
and (26c) into (28) yields

V̇1
∣
∣
�=�� = −�1τumin ẋ sin

(

λxσ

(
kx ẋ

λx

))

−�1
ρA

2m
‖v‖ 3

2 CD(α)− �1 żσ

(
kz ż

λz

)

(29)

where τumin ≤ mint≥0 τu(t). The condition τumin > 0 is met,
provided that λx ∈ (0, π/2) and λz ∈ (0, 1), as proved in the
following lemma.

Lemma 8: Let τu and �� be defined by (26a) and (26c),
respectively, and let σ : R → R be the function with the
properties described in Section II. For any λx , λz verifying
λx ∈ (0, π/2) and λz ∈ (0, 1), there exist τumin > 0 and
τumax > 0 such that

τumin < τu(t) ≤ τumax (30)

for all t ≥ 0.
Proof: From the properties of the saturation function we

know that −1 ≤ σ(s) ≤ 1, therefore we may conclude that

−λx ≤ λxσ

(
kx ẋ

λx

)

≤ λx − λz ≤ λzσ

(
kz ż

λz

)

≤ λz .

(31)

Replacing (26a) and (26c) in (31), we conclude that −λx ≤
�� ≤ λx . For |λx | < π/2 we have that cos(−λx ) = cos(λx ) >
0, and the following holds:

0 <
g

cos(λx )
(1 − λz) ≤ τu ≤ g

cos(λx )
(1 + λz)

if and only if λz ∈ (0, 1). It is easy to check that τumin =
g(1 − λz)/ cos(λx ) > 0 and τumax = g(1 + λz)/ cos(λx) > 0
satisfy (30), thus concluding the proof.

Applying the property of the saturation function σ(s)s > 0
to (29), we conclude that for any kx > 0, kz > 0, λx ∈ (0, π/2)
and λz ∈ (0, 1), the relation V̇1(ẋ, ż)|�=�� < 0 holds for all
(ẋ, ż) �= 0, under the mild assumption that CD(α) > 0 for
all α ∈ (−π, π]. Therefore, the closed-loop system resulting
from the interconnection between the dynamics (6a) and (6b)
with (26a) and (26c) has a globally asymptotically stable
equilibrium point at (ẋ, ż) = 0. This concludes the first
iteration of the backstepping procedure.

For the second backstepping iteration, we extend the
dynamic system in order to include the dynamics 6(f).
We define the error variable �̃ := � − �� and consider
the following Lyapunov function candidate V2(ẋ, ż, �̃) =
V1(ẋ, ż)+ 1 − cos(�̃), whose time derivative is given by

V̇2 = V̇1 + sin(�̃)(q − �̇�). (32)

Letting q = q�, and replacing (26d) and (28), into (32) yields

V̇2
∣
∣
q=q� = −�1τu ẋ sin�� − �1

ρA

2m
‖v‖ 3

2 CD(α)

−�1τu ż cos�� − k� tan2

(
�̃

2

)

. (33)

Replacing (26) into (33) yields

V̇2
∣
∣
q=q� = −�1τumin ẋ sin

(

λxσ

(
kx ẋ

λx

))

− �1 żσ

(
kz ż

λz

)

−�1
ρA

2m
‖v‖3/2CD(α)− k� tan2

(
�̃

2

)

(34)

which verifies V̇2|q=q� < 0 for all (ẋ, ż, �̇) /∈ {0}∪{(0, 0, π)}.
The proposed control law given in (26) is almost globally
asymptotically stable in the sense that there is a set of
Lebesgue measure zero, given by {(0, 0, π)}, that does not
belong to the domain of attraction for the equilibrium point
(ẋ, ż, �̇) = 0. From the previous iterations of the backstepping
procedure, we are able to derive the following proposition
which constitutes the main contribution of this paper.

Proposition 9: For any �1 > 0, �2 > 0, kx > 0, kz > 0,
k� > 0, kq > 0, and λx ∈ (0, π/2), if CD(α) > 0 for all
α ∈ (−π, π] and δu(t) = δw(t) = δq(t) = 0, then the origin
of the closed-loop system resulting from the interconnection
between (6) and the control law (26) is almost globally
exponentially stable. Moreover, the thrust T (t) is bounded for
all t ≥ 0.

Proof: The boundedness of T follows from Lemma 8. We
now resort to the Lyapunov candidate function

V (ẋ, ż, �̃, q̃) = V2(ẋ, ż, �̃)+ �2

2
q̃2 (35)

where �̃ := �−�� and q̃ := q −q�. This function is positive
definite and continuously differentiable in the domain R

3 ×
(−π, π) and its time derivative is given by

V̇ = V̇2 + �2q̃(τq − q̇�). (36)

Replacing (32) into (36) and using q̃ := q − q�, we obtain

V̇ = V̇1 + sin(�̃)(q̃ + q� − �̇�)+ �2q̃(τq − q̇�)

= V̇2
∣
∣
q=q� + q̃ sin(�̃)+ �2q̃(τq − q̇�). (37)

Replacing (34) and (26b) into (37) yields

V̇ = −�1τumin ẋ sin

(

λxσ

(
kx ẋ

λx

))

− �2kqq̃2

−�1
ρA

2m
‖v‖3/2CD(α)− �1 żσ

(
kz ż

λz

)

− k� tan2

(
�̃

2

)

(38)

where τumin is found from the results in Lemma 8, using the
properties λx ∈ (0, π/2) and λz ∈ (0, 1). The Lyapunov
function time derivative provided in (38) alone justifies almost
global asymptotic stability employing standard Lyapunov
arguments. In order to prove the almost global exponential sta-
bility of (ẋ, ż, �̃, q̃) = 0, two steps are required: 1) notice that
near (ẋ, ż) = (0, 0) the effect of the saturated control inputs
has primacy over that of the aerodynamic drag and 2) verify
that far from the origin, the drag contribution supersedes the
control inputs, providing almost global exponential stability.

Let us define the set-valued map �(�) : R ⇒ R
2 as

�(�) = {(ẋ, ż) ∈ R
2 : ‖(ẋ, ż)‖ ≤ �}. Due to the properties
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of the saturation function highlighted in Section II, for every
� > 0 it is possible to find Lσ > 0 such that Lσ kz ż2 ≤
żλzσ (kz ż/λz) , Lσ (2/π)kx ẋ2 ≤ ẋ sin (λxσ (kx ẋ/λx )) , hold
true for all (u, w) ∈ �(�), because s sin(s) ≥ 2s2/π , for
all s ∈ [−π/2, π/2] (and λx ∈ (0, π/2)).

Using the relation tan2(�/2) ≥ �2/4 ≥ (1 − cos(�))/4,
for all � ∈ (−π, π), the Lyapunov function time derivative
has the following upper bound in �(�)× R × (−π, π):

V̇ ≤ −�1τumin Lσ kz ż2 − �1
2

π
gLσ kx ẋ2

−�2kq q̃2 − kθ
4
(1 − cos �̃).

Since CD(α) > 0 it is possible to find CD0 ∈ R such that
CD0 = minα∈(−π,π] CD(α). Moreover, selecting � such that
0 < � < � provides the following bound on the Lyapunov
function derivative:

V̇ ≤ −�1ρA�CD0

2m
(ẋ2 + ż2)− �2kqq̃2 − kθ

4
(1 − cos �̃)

for all (ẋ, ż, �̃, q̃) ∈ �(�)× R × (−π, π). Defining

� = min{2τumin Lσ kz, 4gLσ kx/π

(ρA�CD0)/m, 2kq, kθ /4}

which verifies � > 0, the following holds:

V̇ ≤ −�V (39)

for all (ẋ, ż, �̃, q̃) ∈ R
3 × (−π, π). It follows from standard

Lyapunov arguments that the origin is almost globally expo-
nentially stable.

Analyzing (38) we notice two different contributions to the
aircraft stability: 1) the aerodynamic drag, embodied by the
CD(α) term; and 2) the saturated control inputs, embodied by
the saturated actuations on the aircraft velocity: λxσ(kx ẋ/λx )
and λzσ(kz ż/λz). Neither of these contributions taken alone
suffices to prove almost global exponential stability of the
origin but, combining the two contributions together, the afore-
mentioned property is verified. A remarkable feature of the
proposed controller is that its performance does not depend on
the coefficient of lift evolution with the angle of attack, and so,
wing stall and other related subtleties are rendered meaningless
in this application. It should be noted that throughout the
design of the recovery controller we assume that: 1) the
aircraft movement is constrained to the vertical plane, and
2) the elevator has full control authority. We rely on active
lateral regulation to overcome deviations from the vertical
plane and, when the velocity is close to zero, the elevator is
guaranteed to have some degree of control authority because of
the propeller’s slipstream. However, this actuation is certainly
not unbounded and the controller might fail if the conditions
are too adverse. In the next section, the behavior of the aircraft
system is analyzed in the presence of unknown perturbations.
The almost global exponential stability of the unperturbed
system demonstrated in Proposition 9 plays a key role when
studying the effects of these perturbations.

Fig. 12. Reference actuator inputs for the transition maneuver from hover
to level. For these maneuvers, we have νT ≈ 0.45 and νM = 6.9 ×
10−3 rad/s2.

2) Perturbed System: Considering δu(t), δw(t), and δq(t) as
inputs, the aircraft system (6), subject to (26), is ISS as stated
in Proposition 10.

Proposition 10: The closed-loop system resulting from the
interconnection between (6) and (26), satisfying the assump-
tions of Lemma 8, is ISS with respect to the disturbances δu(t),
δw(t), and δq(t) if CD(α) > 0 for all α ∈ (−π, π].

Proof: Take (35) to be a Lyapunov function candidate.
One must compute its time derivative for the case where
the disturbances δ = [δu(t), δw(t), δq(t)]	 are nonzero.
Recombining (27) and (6) for this situation one finds that

V̇1 ≤ V̇1|δ=0 + 2‖(ẋ, ż)‖(|δu(t)| + |δw(t)|) (40)

making use of the relations |ẋ |, |ż| ≤ ‖(ẋ, ż)‖, | cos(s)| ≤ 1,
and | sin(s)| < 1. Using (40) and the relation (39), the
derivative of (35) is upper bounded by

V̇ ≤ −�V +2‖(ẋ, ż, �̃, q̃)‖(|δu(t)|+ |δw(t)|+ |δq(t)|). (41)

Introducing the variable ζ ∈ (0, 1) into (41), the following
relation is derived:
V̇ ≤ −�(1 − ζ )V ,

for ‖(u, w, q̃, �̃)‖ ≥ 2
|δu(t)| + |δw(t)| + |δq(t)|

�ζ
.

It follows that, the closed-loop system is input-to-state stable
with asymptotic gain 2(�ζ )−1.

D. Lateral Controller

The lateral controller objective is to keep the aircraft
motion constrained to the vertical plane. Therefore, the lateral
variables (v, p, r, φ,ψ) should not deviate too far from the
desired values (veq, peq, req, φeq, ψeq) = 0. Lateral regula-
tion is provided by means of a state feedback control law
μlat = −Kqξ lat, where q ∈ Q, μlat = [La Na ]	, ξ lat =
[v p r φ ψ x1 x2]	, K ∈ R

2×7 is the control gain and x1, x2
are suitable integrator states. This strategy robustly stabilizes
the aircraft within a sublevel set of the Lyapunov function
V (ξ ) = ξ	ξ near the linearization point (ξ0,μ0) = 0
(see [38]).

The selection of the integrator states is dependent on the
specific Euler angle parametrization, which was chosen for
each operating mode. For the attitude parametrization on the
hover and transition operating mode, we chose the Z-Y-X
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Fig. 13. Simulation results (first run). The aircraft starts in recovery and it is stabilized in hovered flight, the hover controllers provide increased stabilization
before switching to the transition operating mode. The aircraft reaches level operating mode as expected.

Euler angle parametrization but, to avoid parametrization sin-
gularities, we employed the Up-East-North inertial reference
frame. For these two operating modes, the selected integrator
states are x1 = v and x2 = φ. For the level operating mode, we
use also the standard Z-Y-X Euler angles and the NED inertial
reference frame. The selected integrator states are x1 = v and
x2 = ψ . For the recovery operating mode, we employ the
Z-X-Y Euler angle parametrization and the integrator states
x1 = v and x2 = ψ . This parametrization does not exhibit
any singularities for trajectories taking place near the vertical
plane. Also, it preserves the well-known decoupling between
the lateral and longitudinal dynamics, enabling the lateral
controller to be designed separately (see [20]). We employ
standard linear optimal techniques on the dimensioning of the
controller’s gain.

In the next section, we present the simulation results which
assess the controller’s performance.

VII. SIMULATION

The simulation presented in this section shows the con-
troller’s ability to perform the transition from hovered flight to
leveled flight regardless of the initial condition. The simulation
environment is based on the open-source simulation tool for
hybrid systems presented in [40], and the aircraft model was
obtained based on the aircraft depicted in Fig. 2.

A. Simulation Data

The selected hover and level equilibrium points are given
by

u Heq = 0 m/s uLeq ≈ 13.4 m/s

wHeq = 0 m/s wLeq ≈ 2.4 m/s

qHeq = 0 rad/s qLeq = 0 rad/s

θHeq = 90° θLeq ≈ 10°

respectively. The hover and level controllers locally stabilize
the given equilibrium points and are designed according to the

strategy defined in Section VI-A with ũqmax = −ũqmin = 1 m/s
and θ̃qmax = −θ̃qmin = 5°.

The transition controller parameters are kθ = 10 1/s2, ku =
10 s−1, and kq = 1 1/s. The recovery controller parameters are
�1 = 0.001, �2 = 30, k� = 0.1 s−1, kq = 2 s−1, ku = 1 s−1,
kw = 0.1 s−1, λu = 0.5, λw = π/4, and ε = 2.

The remaining aircraft parameters are m = 1.64 kg, Iyy =
0.08 kg.m2, Aw = 0.29 m2, b = 1.07 m, ρ = 1.225 kg/m3,
g = 9.81 m/s2, xachs = −0.56 m, Ahs = 0.0575 m2,
A p = 0.0415 m2, and A p,hs = 0.0155 m2. Moreover, the
chosen airfoil is the NACA0025 whose lift and drag profiles
are depicted in Fig. 10.

For the simulations presented in this section, the state
measurements used for feedback are corrupted with additive
zero-mean white noise, simulating sensor noise. The standard
deviation of aircraft velocity measurement errors is 0.1 m/s and
the attitude of the vehicle, in roll, pitch, and yaw Euler angles,
is corrupted by noises with standard deviation of 0.1° for the
roll, pitch, and yaw. Finally, the angular velocity measurements
are corrupted with a 0.05°/s standard deviation noise.

B. Reference Trajectory

As the reference trajectory, we employ the maneuver
described in Section V and depicted in Fig. 7. It is possible
to check that u�(t) > 0 and δ(α�(t)) > 0 for the proposed
trajectories, otherwise, the results stated in Proposition 4
would not be verified. The reference inputs τ �qX→L

(t) and
τ �u X→L

(t) resulting from the inversion of the nominal system
are depicted in Fig. 12.

C. Simulation Results

The simulation’s initial conditions for the first simulation
run are

u0 = 0 m/s w0 = 0 m/s,

q0 = 0 rad θ0 = −3π

4
rad.
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Fig. 14. Simulation results (second run). The aircraft attempts a transition maneuver. The transition is not fully performed due to unexpected disturbances
and the recovery mode is entered in order to retry the transition once again.

Under normal operation, the controller should:

1) stabilize the aircraft in hovered flight;
2) switch from recovery to hover, fine-tuning hovered flight

stabilization;
3) begin transition reference tracking;
4) switch to the level controller.

Fig. 13 depicts the first simulation run results where the
aircraft operated as expected, recovering from awkward initial
conditions and performing successfully the transition maneu-
ver, even in the presence of sensor noise and deviations from
the vertical plane. It is possible to notice that these distur-
bances affect the downward velocity w the most because this
direction does not have a direct control input. Also, notice that
the starting condition is highly unfavorable for stabilization
in hovered flight and that aircraft deployment should not
be performed with the aircraft facing down unless there is
enough ground clearance, because for such initial conditions
the aircraft will accelerate toward the ground. Again, the larger
the aircraft scale, the larger the ground clearance.

Second, we study a situation where the aircraft is not be
able to complete the transition in the presence of a severe
wing gust. The recovery mode provides the possibility to
retry the transition maneuver, as depicted in Fig. 14. In this
simulation run, during the transition, we inflict a wind gust
along the negative z-axis of the inertial reference frame with
the one-cosine profile [41], a magnitude of 10 m/s, and a
duration of 1 m (see Fig. 15), driving the aircraft state to
undesirable values. The recovery controller is then activated,
taking the aircraft to the hover operating mode so that it may
retry the transition maneuver.

Although the lateral variables are not depicted in Figs. 13
and 14, they remain bounded within reasonable values for the
simulations we performed.

x [m]

w
in
d
[m
/s
]

Fig. 15. One-cosine wind gust profile.

VIII. CONCLUSION

Throughout this paper, a novel hybrid control methodology
for a fixed-wing VTOL aircraft was developed. The proposed
controller relies on the Hybrid Automaton framework, dividing
the flight envelope into four different regions: hover, transition,
level, and recovery. The proposed controller employed linear
optimal control techniques while in hover or level, providing
local stabilization for trajectories in a polytopic region of
the flight envelope. A nonlinear controller that renders the
closed-loop dynamics input-to-state stable was developed for
practical reference tracking. The airfoil characteristics, refer-
ence constraints, and controller restrictions, which enable this
property, were discussed and a single parameter which charac-
terizes the inherent stability of the system was introduced. The
nonlinear controller designed for the recovery operating mode
almost globally exponentially stabilizes the hover equilibrium
point, allowing for this point to be reached from any flight con-
dition. Simulation results, performed with the full nonlinear
model for the aircraft, assessed the controller’s performance
and robustness.
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There are three major open questions arising from this
paper that should be addressed in the future. The first one
concerns the region of attraction of the lateral controller
throughout the recovery maneuver. Although we have shown
by simulation that lateral stabilization is achieved by designing
a lateral controller separately from the longitudinal controller,
it is still not clear whether this strategy works for all the
flight conditions spanned throughout the recovery maneuver.
Future work on this subject includes the design of a recovery
controller which does not rely on the separation between
lateral and longitudinal controllers. The second main issue to
be addressed in future work is the input saturation. Throughout
this paper, it was assumed that there exist controller parameters
which enable the inputs to remain bounded. Although this
assumption is fine for the local controllers, it might not
be true for the recovery controller. If we consider input
saturation, we should replace the notion of almost global
stabilization by the concept of semi-global stabilization and
try to determine, which are the maximum perturbations that
the controller is able to overcome. Finally, it is important
to improve the robustness of the controller to aerodynamic
stall.

APPENDIX

A. Proof of Proposition 4

Consider the Lyapunov function

V1(ũ, w̃) = 1

2

(
ũ2

r2
u

+ w̃2

r2
w

)

(42)

and the level set definition given by

�1(l) = {(ũ, w̃) ∈ R
2 : V1(ũ, w̃) ≤ l}. (43)

It turns out that, due to radial unboundedness, for any ru ∈ R

and rw ∈ R there exists positive l1 such that

{(ũ, w̃) ∈ R
2 : |ũ| ≤ cu ∧ |w̃| ≤ cw} ⊂ �1(l1). (44)

In order to show that the closed-loop system has the ISS
with restrictions property, we show that the level set �1(l1),
containing the initial state, is forward invariant under some
restrictions.

The functions defined in (16) are locally Lipschitz since the
functions hu , hw and hq are continuous and proper. Therefore,
there exist positive Lu and Lw such that for all (ũ, w̃) ∈ �1(l1)
and ‖(q̃(t), θ̃ (t))‖∞ ≤ �θ

∥
∥
∥�u

(
ũ, w̃, q̃, θ̃ , t

)∥
∥
∥ ≤ Lu‖(ũ, w̃, q̃, θ̃ )‖ (45)

∥
∥
∥�w

(
ũ, w̃, q̃, θ̃ , t

)∥
∥
∥ ≤ Lw‖(ũ, w̃, q̃, θ̃ )‖ (46)

holds uniformly for all t ≥ 0. In particular, for ru = rw = 1,
the Lyapunov function derivative V̇1 is given by

V̇1 = ũ
(
−kuũ +�u

(
ũ, w̃, q̃, θ̃ , t

)
+ δu(t)

)

+w̃
(
�w

(
ũ, w̃, q̃, θ̃ , t

)
+ δw(t)

)
. (47)

Substituting (17) into (47) yields

V̇1 = ũ

(

−kuũ +�u

(

ũ, w̃, θ2 − θ1

kq
, θ1, t

)

+ δu(t)

)

+w̃
(

�w
∣
∣
w̃=0 + ∂�w

∂w̃

∣
∣
∣
∣
w̃=w̃0

w̃ + δw(t)

)

.

Since δ(α�(t)) and u�(t) are positive for all t ≥ 0, there exists
a neighborhood B ∈ R

2 around the reference trajectory such
that

∂�w

∂w̃
< 0

for all t ≥ 0. Choosing the restrictions on the initial state such
that �1(l1) ⊂ B, it follows that it is possible to find

�w = min
t≥0

(ũ,w̃)∈�1(l1)

− ∂�w

∂w̃

∣
∣
∣
∣
w̃=0

(48)

because �1(l1) ⊂ R
2 is compact and �w is continuously

differentiable. Substituting (45), (46), and (48) into (47), the
following relation is derived:

V̇1
∣
∣
�1(l1)

≤ −(ku − Lu)ũ
2 + |ũ|(Lu + Lw)|w̃| −�ww̃

2

+|ũ|Lu‖(q̃, θ̃ )‖ + |ũ||δu(t)|
+|w̃|Lw‖(q̃, θ̃ )‖ + |w̃||δw(t)|. (49)

Employing Young’s inequality, it follows that:

|ũw̃| ≤ 1

2

(

ζ w̃2 + 1

ζ
ũ2

)

for any ζ > 0. Substituting the previous relation into (49)
yields

V̇1
∣
∣
�1(l1)

≤ −
(

ku − Lu − Lu + Lw
2ζ

)

ũ2

+|ũ|Lu‖(q̃, θ̃ )‖ + |ũ||δu(t)|
−

(

�w − ζ(Lu + Lw)

2

)

w̃2

+|w̃|Lw‖(q̃, θ̃ )‖ + |w̃||δw(t)|.
Therefore, for any �u > 0 there exist �w > 0, �θ > 0,
ζ > 0, and k�u(ζ ) > 0 such that for any ku ≥ k�u the system
is ISS with restrictions cu on the initial state ũ(0), cw on the
initial state w̃(0), �θ on the input (q̃, θ̃ ), �u on the input
δu(t) and �w on the input δw(t).

B. Proof of Corollary 5

Consider the Lyapunov function defined in (42) and the
level set definition (43). The relation (44) holds with

l1 = 1

2

(
c2

u

r2
u

+ c2
w

r2
w

)

and the boundary of the level set �1(l1) ⊂ R
2 is the ellipse

defined by the equation

ũ2
(

c2
u + r2

u
r2
w

c2
w

) + w̃2
(

c2
w + r2

w

r2
u

c2
u

) = 1.
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Since u�(t) > 0, then for any cw > 0 it is possible to select
ru , rw and cu such that

min
t≥0

u�(t) > cu > 0

and none of the points (−u�(t),−w�(t)) belong to the level
set �1(l1). Under these conditions and knowing that δ(α) >
0 for all α ∈ [−π/2, π/2], the relation (18) holds for all
(ũ, w̃) ∈ �1(l1).The proof now proceeds similarly to that of
Proposition 4, leading to the following upper bound on the
Lyapunov function derivative:

V̇1
∣
∣
�1(l1)

≤ −
(

1

r2
u
(ku − Lu)− Lur−2

u + Lwr−2
w

2ζ

)

ũ2

+|ũ|Lur−2
u ‖(q̃, θ̃ )‖ + |ũ|r−2

u |δu(t)|
−

(

r−2
w �w − ζ(Lur−2

u + Lwr−2
w )

2

)

w̃2

+|w̃|Lwr−2
w ‖(q̃, θ̃ )‖ + |w̃|r−2

w |δw(t)|.
Thus, for any �u > 0 there exists ζ > 0, k�u(ζ ) > 0, �w > 0,
and �θ > 0 such that for all ku ≥ k�u , the closed-loop system
is rendered ISS with restrictions cu in the initial state ũ(0),
cw on the initial state w̃(0), �u on the input δu(t), �w on the
input δw(t) and �θ on the input (q̃, θ̃ ).
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