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Abstract— This paper addresses the design and discrete time
implementation of nonlinear observers for the estimation of
position and attitude with application to Unmanned Air Vehi-
cles. A continuous time nonlinear observer on SE(3) is derived,
that uses inertial and ranges measurements. The estimation
errors are shown to converge exponentially fast to the desired
equilibrium points in the presence of bias in the rate gyros. An
observer discrete time implementation is proposed that resorts
to recent geometric numeric integration results suitable for
solving ODEs on SO(3). Simulation results are presented to
assess the performance of the continuous time observer and of
the discrete time implementation. The estimation results in the
presence of noise in the inertial and range measurements are
also analyzed.

I. INTRODUCTION
Attitude and position estimation is a classical problem

often subject to new advances and enriching insights, despite
its wide historical background. Among a large diversity of
estimation techniques, nonlinear observers stand out as a
promising approach often endowed with stability results.

Research on the problem of deriving a stabilizing law
for systems evolving on manifolds, where attitude is pa-
rameterized, can be found in [1], [2], [3], [4], [5], that
provide important guidelines for observer design and discuss
the topological characteristics and limitations for achieving
global stabilization on the SO(3) manifold.

In many applications it is desired to design observers based
only on the rigid body kinematics, that are an exact descrip-
tion of the physical quantities involved. In this approach,
the attitude and position of the vehicle are propagated by
integrating inertial sensor measurements [6], [7], [8],[9].

The development of numeric integration methods that pre-
serve geometric properties, has witnessed in the last fifteen
years a remarkable progress, and particular emphasis was
placed by the scientific community on integration methods
for integration of differential equations evolving on a Lie
group. These methods were originally proposed by Crouch
and Grossman in [10], and the general order conditions
computed in [11]. In [12] the author construct generalized
Runge-Kutta methods for integration of differential equations
evolving on Lie groups, where the computations are per-
formed in the Lie algebra, which is a linear space. More
recently, the work in [13], [14] derives the commutator free
Lie group method, to overcome some of the problems asso-
ciated with the computation of commutators. An application
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of geometric numeric integration to multi-body dynamics
evolving in SE(3) can be found in [15].

In this work, an attitude and position nonlinear observer is
proposed, that integrates measurements from inertial sensors,
namely accelerometers and rate gyros, with ranges provided
by an acoustic positioning system. The latter is composed
by an ultrasonic beacon array assumed fixed in the inertial
frame and an acoustic receiver array installed on the vehicle.
The range data supplied by the acoustic positioning system is
processed resorting to a standard spherical interpolation tech-
nique that provides the positions of the beacons in vehicle
frame, and the position of the receivers in the inertial frame.
By exploiting sensor information, a stabilizing feedback law
is proposed and the exponential convergence to the origin of
the estimation errors is shown.

The discrete time implementation of the observer is ad-
dressed. Using recent results from numerical analysis, an
integration method is adopted to approximate conveniently
the original continuous time observer. The discrete time
algorithm is detailed and its performance is illustrated in
simulation. Discrete time implementation results, with noise
in the inertial and range measurements, are presented to
support that the algorithm can be adopted in practice.

The paper is structured as follows. In Section II, the
attitude and position estimation problem is introduced. The
sensors installed onboard the vehicle are described and some
geometric relations are introduced. In Section III the attitude
and position observers are proposed, and their properties are
highlighted. A low complexity discrete time implementation
of the observer is presented in Section IV, and in Section V
simulations illustrate and compare the performance of the
observer and its discrete time approximation. Simulation
results with noisy sensors are also presented. Concluding
remarks and future work are presented in Section VI.

NOMENCLATURE

The used notation is rather standard. The set of
real n × m matrices is denoted as M(n,m) and
M(n) := M(n, n). The set of orthogonal, and
special orthonormal matrices are respectively denoted
as O(n) :=

{
U ∈ M(n) : UT U = I

}
, SO(n) :=

{R ∈ O(n) : det(R) = 1}. The n-dimensional sphere
and ball are described by S(n) :=

{
x ∈ Rn+1 : xT x = 1

}
and B(n) :=

{
x ∈ Rn+1 : xT x ≤ 1

}
, respectively. The

operator [x]× stands for the skew symmetric matrix defined
by the vector x ∈ R3 such that [x]× y = x×y, y ∈ R3, and
[.]⊗ denote the unskew operator, such that,

[
[a]×

]
⊗ = a,

a ∈ R3. The time dependence of variables will be omitted
in general, but explicitly denoted where consider necessary.



Fig. 1. Frames and navigation system configuration.

II. PROBLEM FORMULATION
This section, introduces the sensor suite used in the

attitude and position observer. The rigid body kinematics are
described by

Ṙ = R [ω]× , ṗ = v−[ω]× p, v̇ = aSF+RT Lg−[ω]× v,

where R is the shorthand notation for the rotation matrix
from body frame {B} to the local frame {L}, ω is the
rigid body angular velocity expressed in {B}, p, and v are
the position and velocity of the rigid body with respect to
{L} expressed in {B}, respectively, Lg is the gravitational
acceleration expressed in {L}, and aSF is the specific force
applied to the vehicle expressed in {B}. For the sake of
simplicity, {L} is assumed to be an inertial frame.

The rigid body angular velocity is measured by a rate gyro
sensor triad, corrupted by a constant bias term

ωsensor = ω + bω,

and a triaxial accelerometer measures the specific force,
which is the difference between the vehicle acceleration Ba
and the gravitational acceleration Bg, both in expressed in
body frame,

aSF := asensor = Ba− Bg.

The acoustic positioning system gives the range from each of
the beacons to the acoustic receivers installed on the vehicle.
Using a spherical interpolation method [16], it is possible to
obtain the position of receiver j in {L}, denoted as Lpj ,
and the position of beacon i in {B}, denoted as bi. Without
loss of generality, the origin of {B} is defined at receiver
1, i.e. Lp = Lp1. The position of the beacons in {B} is
described by bi = RT

(
Lxi − Lp

)
, where i = 1, ..., n, n is

the number of beacons and Lxi is the position of the i-th
beacon in {L}. This relationship can be expressed in matrix
from as B = RT (X − Lp1T

n ), where B := [b1 ... bn],
X := [Lx1 ... Lxn], B, X ∈ M(3, n) and 1n := [1 ... 1]T .

The origin of the local frame is defined at the centroid of
beacons. Therefore, the vectors Lxi, i = 1, ..., n, illustrated
in Fig. 1, verify

∑n
i=1

Lxi = 0.
The objective of the present work is to exploit the informa-

tion provided by the sensor suite, by deriving a position and

Fig. 2. Cascaded observer, composed by the attitude and the position
observers.

attitude observer that combines the inertial measurements
with ranges between a beacon array and a receiver array.

III. OBSERVER SYNTHESIS

The proposed observer is designed to match the rigid
body dynamics and, as illustrated in Fig. 2, it results in
a cascaded composition, where the attitude and angular
velocity estimates, from the attitude observer, are fed into
the position observer. In this section the attitude and position
observers are presented and their properties derived. It is
shown that the attitude and angular velocity bias errors
converge exponentially fast to the origin and that the position
observer is globally exponentially stable.

A. Attitude Observer

The attitude observer considered in this section estimates
the rotation matrix by exploiting angular velocity measure-
ments available from rate gyros, and angular position data
obtained from the receiver array installed on the vehicle. The
proposed observer estimates the orientation of the rigid body
by computing the kinematics

˙̂R = R̂ [ω∗]× , (1)

where R̂ is the estimated attitude, and ω∗ is the feedback
term that compensates for the estimation errors. See [6]
and references therein for related work based on vector
measurements. Whereas the angular velocity measurements,
ωsensor are used directly in the observer term ω̂, the beacons
positions in frame {B}, bi, are introduced by means of a
convenient linear coordinate transformation.

The attitude error is defined as R̃ := R̂RT and
its dynamics are given by ˙̃R = R̃ [R(ω∗ − ω)]×.
The error matrix R̃ can be parameterized in Euler
angle-axis by a rotation vector λ ∈ S(2) and by a
rotation angle θ ∈ [0 π], yielding the formulation [17]
R̃ = rot(θ, λ) :=cos(θ)I + sin(θ) [λ]× + (1− cos(θ))λλT .

Consider the transformation BUX := BDXAX , where
DX :=

[
01×n−1
In−1

]
−

[
In−1

01×n−1

]
and AX := [aij ]. The

representation of the transformation in frame {L}, is given
by UX := RBUX = XDXAX .

Some rotational degrees of freedom are unobservable in
the case beacons positions are all collinear as discussed in
[6] and references therein. The following necessary condition
is assumed.

Assumption 1: The positions of the beacons are not
collinear, i.e. rank(B) ≥ 2.

The directionality associated with the beacons positions
is made uniform by defining transformation AX such that



UXUT
X = I. The desired AX exists if Assumption 1 is

satisfied, nevertheless the case of two noncollinear beacons
positions requires minor modifications of the feedback law,
see [6, Appendix A] for discussion of this subject.

Let the bias in angular velocity measurements be constant,
i.e. ḃω = 0, and consider the candidate Lyapunov function

V = 2(1− cos(θ)) +
1

2Kbω

||b̃ω||2, (2)

where Kbω
∈ R+, b̃ω := b̂ω − bω , and b̂ω is the estimated

bias in angular velocity measurements. Its time derivative is
given by

V̇ = sT
ω (ω∗ − ω) +

1
Kbω

˙̃bT
ω b̃ω, (3)

where sω = RT
[
R̃ − R̃T

]
⊗

= 2 sin(θ)RT λ. The feedback
term sω can be expressed as an explicit function of the sensor
readings [6, Theorem 8]

sω =
n∑

i=0

(R̂T XDXAXei)× (BDXAXei),

where n is the beacon number and ei is the unit vector where
ei=1. The attitude feedback law is given by

ω∗ = ωsensor − b̂ω −Kωsω = ω − b̃ω −Kωsω, (4)

where Kω ∈ R+. Applying the feedback law (4) to the
Lyapunov function (3) and defining

˙̂bω := Kbωsω, (5)

the Lyapunov function derivative is given by V̇b =
−Kω||sω||2.

Using the feedback law (4) and the definition (5) the closed
loop attitude error dynamics results in

˙̃R = −KωR̃(R̃ − R̃T )− R̃
[
Rb̃ω

]
×

˙̃bω = KbωRT
[
R̃ − R̃T

]
⊗

(6)

Global asymptotic stability of the origin is precluded by
topological limitations associated with the estimation error
R̃ = rot(π, λ) [18]. In the next lemma the boundedness
of estimation errors is shown and used to provide sufficient
conditions that exclude convergence to the equilibrium points
satisfying R̃ = rot(π,λ).

Lemma 1: The estimation errors x̃b = (R̃, b̃ω) are
bounded. For any initial condition that verifies

1
Kbω

||b̃ω(t0)||2
4(1 + cos(θ(t0)))

< 1, (7)

the attitude error is bounded by θ(t) ≤ θmax < π for all
t ≥ t0.

Proof: Let Ωρ = {x̃b ∈ Db : V ≤ ρ}. As the
Lyapunov function (2) is a weighted distance from the origin,
∃γ ||x̃b||2 ≤ γV and Ωρ is a compact set. V̇ ≤ 0 implies
that any trajectory that starts in Ωρ remains in Ωρ. So,
∀t≥t0 ||x̃b(t)||2 ≤ γV (x̃b(t0)) and the state is bounded.

The gain condition (7) is equivalent to V (x̃b(t0)) < 4.
The invariance of Ωρ implies that V (x̃b(t)) ≤ V (x̃b(t0)),

and so 2(1 + cos(θ)) ≤ V (x̃b(t0)) < 4 and consequently
∃θmax : θ(t) ≤ θmax < π ∀t≥t0 .

Exponential convergence of the system (6) trajectories to
the desired equilibrium point is established in the following
theorem.

Theorem 1: Assume that ω is bounded. Then the attitude
error and the bias estimation error converge exponentially
fast to the equilibrium point (R̃, b̃ω) = (I, 0), for any initial
condition satisfying (7).
Due to space constraints, the proof is omitted, but can
be obtained by adaptation of the derivation used in [6,
Theorem 7]

B. Position Observer

This section derives the position observer based on the
IMU acceleration measurements, position readings obtained
from range data, and on the attitude observer estimates. The
dynamics of the position and velocity estimates are described
by

˙̂p = v̂ − [ω̂]× p̂ + sp, (8)
˙̂v = aSF + R̂T Lg − [ω̂]× v̂ + sv, (9)

where sp and sv are the feedback terms that compensate for
the estimation errors, and ω̂ is an estimate of the angular
velocity given by ω̂ := ωsensor − b̂ω = ω − b̃ω.

The feedback laws are obtain by setting sp and sv as

sp = −Kp(p̂− R̂T Lp) sv = −Kv(p̂− R̂T Lp),

where Lp is the position of the origin of {B}, relatively to
{L}, expressed in {L}.

The position and velocity errors are defined as p̃ := p̂−p
and ṽ := v̂ − v, respectively. Their dynamics are given by

˙̃p = ṽ − [ω̂]× p̃ +
[
b̃ω

]
×

p−Kp(p̂− R̂T Lp)

˙̃v = (R̂ − R)T Lg − [ω̂]× ṽ +
[
b̃ω

]
×

v −Kv(p̂− R̂T Lp).
(10)

The stability of the system (10) is obtained by assuming a
weak upper bound on the position and velocity trajectories.

Assumption 2: For any γv, γp > 0, there exist kv, kp > 0,
such that vehicle position and velocity satisfy

||p(t)|| ≤ kpe
γp(t−t0), ||v(t)|| ≤ kveγv(t−t0).

This assumption considers that the position and velocity can-
not grow exponentially fast indefinitely, and is not restrictive
in practice due to the fact that it is trivially verified by
physical constraints.

By applying a convenient Lyapunov transformation, it can
be shown that the attitude and position estimation errors
converge exponentially fast to the origin. This is formally
stated in the next theorem.

Theorem 2: Let Assumption 2 and the conditions of The-
orem 1 be satisfied. Then the estimation errors converge
exponentially fast to the equilibrium point (R̃, b̃ω, p̃, ṽ) =
(I,0,0,0) for any initial condition satisfying (7) and
(p̃, ṽ) ∈ R3 ×R3. Also, if R and bω are known, the origin
of (10) is globally exponentially stable.

Proof: Notice that p̂−R̂T Lp = p̃+RT (I−R̃T )Rp,
and consider the Lyapunov transformation R̆ ∈ SO(3)



applied to vectors p̃, and ṽ, where ˙̆R = R̆ [ω̂]×. The
dynamics of the transformed system are given by

d

dt
(R̆p̃) = R̆ṽ −KpR̆p̃ + R̆b̃ωp−KpR̆RT

(
I− R̃

)
Rp

d

dt
(R̆ṽ) = R̆(R̃T − I)Lḡ −KvR̆p̃ + R̆b̃ωv

−KvR̆RT (I− R̃)Rp,

which can be rewritten in matrix form as

ξ̇ = Aξ + u (11)

where ξ =
[
R̆ 0
0 R̆

]
x, with x =

[
p̃T ṽT

]T , A =
[
−KpI I
−KvI 0

]
,

and u =
[

R̆b̃ωp−KpR̆RT (I−R̃)Rp

R̆b̃ωv−KvR̆RT (I−R̃)Rp+R̆(R̂−R)T Lḡ

]
. The sys-

tem (11) is linear time invariant and for Kp > 0 and Kv > 0
the matrix A is Hurwitz, therefore the system is stable.

From Theorem 1 is known that for Kbω
large enough, there

are kR, kb, γR, γb > 0 such that ||R̃(t)− I|| ≤ kR||R̃(t0)−
I||e−γR(t−t0), ||b̃ω(t)|| ≤ kb||b̃ω(t0)||e−γb(t−t0). The input
vector ||u|| verifies the following inequality

||u|| ≤ ||b̃ω || (||p||+ ||v||) +
∣∣∣
∣∣∣R̃ − I

∣∣∣
∣∣∣
(
(Kp + Kv)||p||+ ||Lḡ||

)
.

Using the fact that ||p̄(t)|| and ||v̄(t)|| satisfy Assumption 2,
it can be shown that ||u(t)|| ≤ kue−γu(t−t0), where ku =

kb(kp + kv)‖b̃ω(t0)‖ + kR
(

kp(Kp + Kv) + ‖Lg‖
)
‖R(t0) − I‖ and

γu = min {γb −max {γp, γv} , γR − γp}, that is positive
since γp and γv can be made as small as desired by
Assumption 2. The transformed state ξ(t) satisfies

ξ(t) = eA(t−t0)ξ(t0) +

∫ t

t0

eA(t−τ)u(τ)dτ,

and by [19] the stability of the origin implies that there
exists ka, γa > 0 such that ||eAt|| ≤ kae−γat, therefore the
subsequent inequality holds

||ξ(t)|| ≤ kae−γa(t−t0)||ξ(t0)||+ kaku

∫ t

t0

e−γa(t−τ)−γu(τ−t0)dτ

≤ 2max

{
ka||ξ(t0)||, kaku

|γa − γu|
}

e−min{γu,γa}(t−t0).

Concatenating the attitude and transformed position esti-
mation errors as xf := (R̃ − I, b̃ω, ξ) and using the
inequalities ||xf || ≤ ||R̃−I||+ ||b̃ω||+ ||ξ|| and max{||R̃−
I||, ||b̃ω||, ||ξ||} ≤ ||xf ||, an exponential upper bound is
given by

||xf (t)|| ≤ kmax||xf (t0)||e−γmin(t−t0),

where kmax = kR+kb+ka+ka
kb(kp+kv+kRkp(Kp+Kv)+kR‖Lg‖)

|γa−γu|
and γmin = min {γa, γb −max {γp, γv} , γR − γp}.

Hence, the trajectories of the system (6,11) converge ex-
ponentially fast to the origin. The fact that ||ξ(t)|| = ||x(t)||
bears the exponential convergence of cascaded observer
(6,10). If R and bω are known, then u(t) = 0 and the origin
of (11) is globally exponentially stable by the properties of
linear time-invariant systems.

IV. OBSERVER DISCRETE TIME
IMPLEMENTATION

This section presents a discrete time implementation of the
pose observer proposed in Section III. This implementation
will be obtained by applying numeric integration methods

to the observer continuous time dynamics. The integration
method should guarantee that the discrete time implemen-
tation approximates conveniently the original continuous
time observer. The selection of the method depends on the
quality of the sensor suite, the desired sampling rate and the
computational resources available.

A. Numeric Integration of the Attitude Observer
The attitude observer dynamics is composed by differential

equations (1) and (5), evolving in SO(3) and R3, respectively.
The first is integrated resorting to a geometric numeric inte-
gration namely, the Crouch-Grossman Method (CG) [10], the
Munthe-Kaas Method (MK) [12], and the Commutator-Free
Lie group Method (CF) [13]. The second is implemented in
discrete time using a classical numeric integration technique.

The equation (1) of observer dynamics is not in the general
form Ẏ = A(t, Y )Y , which is assumed in the referenced
geometric integration methods, nonetheless an equivalent
equation in the desired form can be obtained by transposing
(1) which gives ( ˙̂R)T = (R̂ [ω∗]×)T ⇔ ˙̂RT = − [ω∗]× R̂T .

The presented geometric numerical integration algorithms
require the knowledge of the function ω∗(t) in instants
between sampling times. Different sampling and computation
strategies can be adopted to obtain an approximation of this
function using methods such as polynomial interpolation of
the sampled data. In the present research project, where the
unit is equipped with tactical grade inertial sensors and com-
putational resources are limited, ω∗ is linearly interpolated
in the interval [(k − 1)T, kT ].

To implement (1), a second order integration method is
adopted. Note that higher order methods do not enhance the
results accuracy, due to the linear interpolation adopted for
ω∗. The complexity required to implement each step of the
second order CG and MK methods is summarized in Table I,
for the operations in SO(3) exponential map (Exp), inverse
of differential of the exponential map (Dexp-1), and 3 × 3
matrix multiplication (mmult), as defined in [15]. Note that
Exp and Dexp-1 have close form solutions on the rotation
group. The CF methods were derived for order >= 3 and
therefore they are not included.

TABLE I
COMPLEXITY IN EACH STEP FOR CG, MK AND LC METHODS.

operation Exp Dexp-1 mmult
CG 2nd order 1 0 1
MK 2nd order 1 1 2

The discrete time implementation of equation (5) was
obtained by using a second order Adams-Moulton Method,
see [20] for further details. This selection was done based on
similar arguments as those used for (1). The resulting attitude
observer numerical integration algorithm can be summarized
as

b̂ω k = b̂ω k−1 +
T

2
(Kbωsω k + Kbωsω k−1)

K(1) = −(ω∗(kT − T/2)), R̂T
k = Exp

(
TK(1)

)
R̂T

k−1,

sω k =

n∑
i=0

(R̂T
k XDXAXei)× (BkDXAXei).



Since this is an implicit algorithm a numeric technique
like the Fixed-Point Method should be run in each integration
step.

B. Numeric Integration of the Position Observer
The numerical integration of the differential equations

associated to the position observer, (8) and (9), both evolv-
ing in R3, was performed by resorting to a second order
Adams-Moulton Method. The resulting numerical integration
algorithm is described as follows

gp k = v̂k − [ω̂k]× p̂k −Kp(p̂k − R̂T
k

Lpk)

p̂k = p̂k−1 +
T

2
(gp k + gp k−1)

gv k = aSF k + R̂T
k

Lg − [ω̂k]× v̂k −Kv(p̂k − R̂T
k

Lpk)

v̂k = v̂k−1 +
T

2
(gv k + gv k−1).

This is also an implicit algorithm and therefore requires to
be solved by a numeric method at each integration step.

V. SIMULATIONS
In this section, simulation results obtained for the contin-

uous time observer and for its discrete time implementation
are presented and discussed. Additional simulations illustrat-
ing the robustness of the discrete time implementation when
the sensor readings are corrupted by Gaussian noise. The
sampling frequency of the discrete implementation was set
to 50 Hz. Five beacons were placed in the mission scenario
located at Lx1 = [20 20 20]T m, Lx2 = [−20 −20 20]T m,
Lx3 = [20 − 20 − 20]T m, Lx4 = [−20 20 − 20]T m, and
Lx5 = [0 0 0]T m. The acoustic receivers were placed on-
board the vehicle at Br1 = [0 0 0]T m, Br2 = [0.5 0 0]T m,
Br3 = [0 0.5 0]T m, and Br4 = [0 0 0.5]T m, where
Bri denotes the position of the acoustic receiver i in body
frame. The vehicle trajectory is characterized by oscillatory
acceleration and angular velocity with frequency 0.5 Hz. The
acceleration and angular velocity amplitudes are 1 m s−1,
and 1 rad s−1 in all axes, respectively.

The feedback gains were set to Kω = 0.1, Kbω = 0.003,
Kp = 3, and Kv = 2. The initial errors were assumed as
p̃(t0) = [0.5 0.5 0.5]T m, ṽ(t0) = [0.5 0.5 0.5]T m s−1,
θ(t0) = 22.5 π

180 rad, and b̃ω(t0) = π
180 [−0.5 − 0.5 −

0.5]T rad s−1. The condition (7), that is
1

Kbω
||b̃ω(t0)||2

4(1+cos(θ(t0)))
≈

0.0206 < 1 is verified. In the simulations with noise the
standard deviations of accelerometers and rate gyros were
set as σa = 6× 10−3 m s−2 and σω = 3.5× 10−4 rad s−1

in each channel, respectively, and the standard deviation for
each measured range was σranges = 0.05 m.

Fig. 3 illustrates the estimation errors of the continuous
time observer and of its discrete time implementation. The
angular velocity bias error decreases much slower than the
other errors because Kbω is much smaller than the other
gains. This is coherent with the fact that in practice the
bias has lower bandwidth than the other quantities that are
estimated. The quality of the discrete time approximation
can be inferred from Fig. 4, where the differences between
the continuous and discrete time observer estimates are
depicted. The results of the simulation with noisy sensors are
illustrated in Fig. 5 and Fig. 6. The latter figure also shows
the position obtained by the acoustic positioning system, and
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Fig. 3. Continuous observer and discrete time implementation estimates.

it can be seen that the discrete time implementation provides
a better position estimate than that obtained using only the
range measurement.

VI. CONCLUSIONS
In this work, a nonlinear attitude and position observer

using inertial sensor measurements and ranges to acoustic
beacons was derived. Using a cascade topology, it was shown
that the attitude and position estimation errors converge
exponentially fast to the origin. Existence of static bias in
angular velocity measurements was considered. A method
to obtain a discrete time implementation of the attitude
observer using recent results from numeric integration in Lie
groups was proposed, and a discrete implementation of the
attitude and position observers was obtained. Simulations
results demonstrated the convergence to the origin of the
estimation errors. The good approximation brought about
by the adopted discrete time algorithm evidenced that it is
suitable for realistic applications. The performance of the
discrete time implementation with noisy sensors provided
further motivation to its development and implementation.
Future work will focus on the implementation and validation
of the proposed algorithm in a real time architecture onboard
an Unmanned Aerial Vehicle.
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