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Abstract

Navigation systems are a key element in a large variety of mobile platforms, where the correct knowledge of their position and

attitude is essential in most applications. This paper focuses on the observability of linear motion quantities (position, linear

velocity, linear acceleration, and accelerometer bias). It presents necessary and sufficient conditions, with clear physical insight, for

the observability of these variables in 3-D. The analysis provided is based on kinematic models, which are exact and intrinsic to the

motion of a rigid-body, and different cases are presented depending on the assumptions made on the sensor suite that is available

on-board.
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1. Introduction

The design of Integrated Navigation Systems arises natu-

rally in the development of a large variety of mobile plat-

forms, whether manned or unmanned, autonomous or human-

operated, as the knowledge of the position and attitude of

the vehicle is a basic requirement for its successful operation.

Moreover, for control purposes, other quantities such as the lin-

ear and angular velocities are also often required.

Dead-reckoning navigation systems such as Inertial Naviga-

tion Systems (INS) provide all these quantities. However, the

estimation of the position and attitude of the vehicle is necessar-

ily obtained in this type of systems by integrating higher-order

derivatives such as the linear acceleration and the angular ve-

locity, which are measured using, e.g., an Inertial Measurement

Unit (IMU). As such, and regardless of the accuracy and pre-

cision of the IMU, the errors in the position and attitude esti-

mates grow unbounded due to non-idealities such as noise and

bias that affect the IMU readings [1]. These intrinsic limita-

tions of dead-reckoning navigation systems are usually tackled

by using aiding devices such as position and attitude sensors,

e.g., the popular Global Positioning System (GPS), inclinome-

ters, and magnetometers. However, even with the inclusion of

aiding devices, not all states are always observable, in partic-

ular, if biases are considered and the acceleration of gravity is

not known with enough accuracy. This paper investigates the

observability of linear motion quantities of mobile platforms.

Previous work on the study of observability of navigation

systems can be found in the literature. In [2] the observabil-

ity of INS during initial alignment and calibration at rest is
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analyzed. The nominal nonlinear navigation system dynamics

are perturbed yielding linearized error dynamics which are then

shown not to be completely observable. In [3] the observability

of a linearized INS error model is also examined for a station-

ary vehicle and it is reported, among other results concerning

the leveling errors, that the unobservable states, which are dis-

tributed in two decoupled subspaces, can be systematically de-

termined. In-flight alignment of INS is studied in [4] where it

is shown that its observability can be improved by adequately

maneuvering. In [5] sufficient conditions for the observability

of stationary Strapdown Inertial Navigation Systems (SDINS)

are analytically derived. In [6] an observability analysis of a

GPS/INS system during two types of maneuvers, linear accel-

eration and steady turn, is presented. The analysis is based on a

perturbation model of the INS and it is shown that the observ-

ability is improved when the vehicle maneuvers. Observability

properties of the errors in an integrated navigation system are

studied in [7], where the authors show that acceleration changes

improve the estimates of attitude and rate-gyro bias and changes

of the angular velocity enhance the lever arm estimate. How-

ever, no theoretical results for non-trivial trajectories are given

and only simulation results are provided, which confirm that the

degree of observability of the system increases with the rich-

ness of the trajectories described by the vehicle. To the best of

the authors knowledge, in the literature only local observabil-

ity results are known, most of them obtained in the context of

navigation systems designed around the Extended Kalman Fil-

ter (EKF). These results, that reflect the continued adoption of

EKF techniques to solve the Navigation problem, are very intu-

itive and were fundamental to motivate the need for the analysis

presented in this paper. A related study on the observability of

perspective systems can be found in [8], which has application

to vision-based systems with perspective outputs. In [9] the au-

thors propose a locally convergent observer for the attitude, in

3-D, using line-based dynamic vision, and also discuss the ob-
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servability of the corresponding system, revealing interesting

group properties tied to the underlying system structure.

This paper presents a detailed analytical study on the ma-

neuvers that can improve observability and provides necessary

and sufficient conditions for the observability of linear motion

quantities (position, linear velocity, linear acceleration, and ac-

celerometer bias) assuming exact angular measurements. Four

different sensor suites are considered and definite results are

provided for all of them. The analysis is based on kinematic

models, which are exact and intrinsic to the motion of the vehi-

cle, and builds on well established observability results for lin-

ear time-varying (LTV) and linear time invariant (LTI) systems.

For LTI systems, the concept of observability suffices to syn-

thesize a globally asymptotically stable observer or filter. For

LTV systems, stronger forms of observability should be consid-

ered. As such, the present work provides not only observability

conditions but also results regarding uniform complete observ-

ability, which allow to derive globally asymptotically stable ob-

servers or filtering solutions, see [10]. Preliminary work by the

authors can be found in [11].

The paper is organized as follows. In Section 2 some ba-

sic observability definitions and results are briefly presented

for the sake of completeness. The linear motion dynamic sys-

tems whose observability is studied are introduced in Section 3,

while the main results of the paper are derived and discussed in

Section 4. Section 5 summarizes the main conclusions of the

paper.

1.1. Notation

Throughout the paper the symbol 0 denotes a matrix (or

vector) of zeros and I an identity matrix, both of appropri-

ate dimensions. A block diagonal matrix is represented as

diag(A1, . . . ,An) and, if X is a complex-valued matrix, XT and

X∗ denote its transpose and conjugate transpose, respectively.

For x, y ∈ R
3, x × y represents the cross product. The pure

unit imaginary number is defined as j :=
√
−1 and the Special

Orthogonal Group is denoted by SO(3).

2. Preliminary Observability Definitions

Consider the LTV system
{

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
, (1)

where x, u, and y are the state, input, and output of the system,

respectively, t ∈ [t0,+∞[, and A(t), B(t), and C(t) are continu-

ous matrices of compatible dimensions.

Definition 2.1 (Observability). The LTV system (1) is called

observable on
[

t0, t f

]

if any initial state x (t0) is uniquely deter-

mined by the corresponding output
{

y(t), t ∈
[

t0, t f

]}

.

Definition 2.2 (Observability Gramian and Transition Matrix).

The observability Gramian associated with the pair (A(t),C(t)),

denoted asW
(

t0, t f

)

, is given by

W
(

t0, t f

)

=

∫ t f

t0

φT (t, t0) CT (t)C(t)φ (t, t0) dt,

where

φ (t, t0) = I+

∫ t

t0

A (σ1) dσ1+

∫ t

t0

A (σ1)

∫ σ1

t0

A (σ2) dσ2dσ1+. . .

is the transition matrix associated with A(t).

Theorem 2.1. The LTV system (1) is observable on
[

t0, t f

]

if

and only ifW
(

t0, t f

)

is invertible.

Definition 2.3 (Uniform complete observability). The LTV

system (1) is called uniformly completely observable if there

exist positive constants δ, α1, and α2 such that

α1I �W (t, t + δ) � α2I (2)

for all t ≥ t0.

Remark 1. When the system matrices A(t) and C(t) are norm-

bounded, it is easy to see that the right side of (2) is always

satisfied. This is the case of the systems under study in the

paper and therefore only the left side of (2) is considered and

the existence of α2 needs not to be addressed.

Remark 2. It is important to refer that Definition 2.3 applies

only to bounded realizations, which are in fact those consid-

ered in the paper. For a more detailed discussion on the con-

cept of uniform complete observability, the reader is referred to

[12], while alternative criteria for uniform complete controlla-

bility/observability can be found in [13] and [14].

3. Linear Motion Kinematics

Let {I} be an inertial coordinate frame and {B} the body-fixed

coordinate frame, whose origin coincides with the center of

mass of the vehicle. Let Ip(t) ∈ R
3 denote the position of the

origin of {B}, described in {I}, and v(t) ∈ R
3 the velocity of the

vehicle relative to {I}, expressed in body-fixed coordinates. The

linear motion kinematics of the vehicle are given by

d

dt
Ip(t) = R(t)v(t), (3)

where R(t) ∈ SO(3) is the rotation matrix from body-fixed to

inertial coordinates, i.e., from {B} to {I}, that satisfies

Ṙ(t) = R(t)S [ω(t)] ,

where ω(t) ∈ R
3 is the angular velocity of the vehicle, ex-

pressed in body-fixed coordinates, and S (ω) R
3×3 is the skew-

symmetric matrix such that S (ω) x is the cross product ω × x.

The position of the vehicle in inertial coordinates is often avail-

able, e.g., when there is a GPS receiver installed on-board.

However, in underwater robotics, for instance, GPS is un-

available and alternative positioning sensors are required [15].

Acoustic positioning systems are common, e.g., long baseline

(LBL) or ultra-short baseline (USBL) sensors. In the latter

case, the USBL (in the so-called inverted configuration) typi-

cally measures the position of an external fixed mark relative to

the position of the vehicle, expressed in body-fixed coordinates,
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and thus the position of the vehicle is only available indirectly.

Indeed, if p(t) ∈ R
3 denotes the measurement of the USBL as

it was just described, it satisfies

p(t) = RT (t)
[

Ipm − Ip(t)
]

,

where Ipm ∈ R
3 denotes the inertial position of the mark. In

this framework, the kinematics of the vehicle can be described,

indirectly, by

ṗ(t) = −S [ω(t)] p(t) − v(t). (4)

An essential element of Navigation Systems is the IMU,

which usually contains two triads of orthogonally mounted ac-

celerometers and rate gyros. Assuming that the IMU is installed

at the center of mass of the vehicle and aligned with the body-

fixed coordinate frame {B}, the rate gyros provide the angular

velocity of the vehicle, ω(t), and the accelerometers measure

a(t) = v̇(t) + S [ω(t)] v(t) − g(t) + b(t), (5)

where g(t) ∈ R
3 denotes the acceleration of gravity and b(t) ∈

R
3 the bias of the accelerometer, both expressed in body-fixed

coordinates. Ideal accelerometers would not measure the gravi-

tational term but in practice this term must be considered due to

the inherent physics of these sensors, see [16] for further details.

The term S [ω(t)] v(t) corresponds to the Coriolis acceleration

of the vehicle and must also be considered. The measurements

provided by the rate gyros are also usually corrupted by biases.

However, these biases can be compensated using an Attitude

and Heading Reference System (AHRS) and there are are sev-

eral solutions for this problem in the literature, see e.g. [17]

and [18] for almost globally asymptotically stable attitude ob-

servers, which also account for the rate gyro bias, or [19] for a

globally asymptotically stable solution.

In the remainder of this section four different dynamic sys-

tems will be introduced that describe the linear motion of the

vehicle and its relation with the various sensors. The differ-

ences between the proposed dynamics depend upon the sensor

suite considered. As it was seen, both (3) and (4) describe the

evolution of the position of the vehicle given the information

provided by the sensors installed on-board. In what concerns

observability properties they are equivalent assuming exact an-

gular measurements. Throughout the paper, and without loss

of generality, (4) is preferred due to its particular structure. Fi-

nally, it is assumed that ω(t) and its derivative are bounded, and

that ω(t) is continuous, which is true for all manned and un-

manned platforms.

3.1. Navigation with calibrated accelerometer

The first case considered in the paper is not, at first, a simple

one, but its observability analysis turns out to be quite straight-

forward after an appropriate state transformation. It is consid-

ered here that the vehicle is equipped with a positioning sensor

and a calibrated accelerometer, together with a triad of rate gy-

ros or an AHRS, to provide the angular velocity of the vehicle.

The derivative of the linear position is given by (4), whereas

the derivative of the velocity may be obtained from (5). The ac-

celeration of gravity is assumed locally constant in inertial co-

ordinates. Thus, the derivative of this quantity when expressed

in body-fixed coordinates is given by

ġ(t) = −S [ω(t)] g(t).

The system dynamics can then be written as






























ṗ(t) = −S [ω(t)] p(t) − v(t)

v̇(t) = −S [ω(t)] v(t) + g(t) + a(t)

ġ(t) = −S [ω(t)] g(t)

y(t) = p(t)

, (6)

where a(t) is here considered as a deterministic input and y(t)

denotes the system output, available for the estimation of the

system state.

3.2. Navigation with known gravity

In Section 3.1 the gravity was unknown and the accelerome-

ter was assumed to be calibrated. In this section the accelerom-

eter measurements are assumed corrupted by an unknown bias

but the gravity is supposed to be known. Although possible

from the practical point of view, e.g., if the magnitude of the

gravity is known, as well as the attitude of the vehicle, this is not

a very useful situation as any misalignment in the gravity accel-

eration vector expressed in body-fixed coordinates may result in

severe problems in the overall acceleration compensation. Nev-

ertheless, it presents an interesting theoretical problem and pro-

vides insight to the more general setup, which is presented in

Section 3.4. Moreover, it is also found in practical applications

when a high-accuracy AHRS is available, which allows to de-

termine the acceleration of gravity in body-fixed coordinates

with enough accuracy. The system dynamics that reflect these

assumptions are given by






























ṗ(t) = −S [ω(t)] p(t) − v(t)

v̇(t) = −S [ω(t)] v(t) − b(t) + a(t) + g(t)

ḃ(t) = 0

y(t) = p(t)

, (7)

where a(t) and g(t) are assumed to be deterministic inputs.

3.3. Dynamic accelerometer bias estimation

This section introduces a class of systems suitable for the es-

timation of the bias of an accelerometer assuming exact angular

and linear velocity measurements, in body-fixed coordinates.

This is particularly interesting, for example, if one has avail-

able a calibration table which permits the generation of high-

resolution trajectories with known velocities. Furthermore, the

most general setup, which is presented in Section 3.4, is an ex-

tension of this framework and therefore insight on the observ-

ability of this setup translates into insight on the observability

properties of the most general setup. The system dynamics read

as






























v̇(t) = −S [ω(t)] v(t) + g(t) − b(t) + a(t)

ġ(t) = −S [ω(t)] g(t)

ḃ(t) = 0

y(t) = v(t)

, (8)
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where a(t) is again assumed to be a deterministic input and the

output of the system is the velocity of the origin of the body-

fixed coordinate frame.

3.4. Navigation with gravity and accelerometer bias dynamic

estimation

The general setup regarding the estimation of linear motion

quantities of mobile platforms is presented in this section. Both

the acceleration of gravity and the bias of the accelerometer are

supposed unknown and the system dynamics can be written as







































ṗ(t) = −S [ω(t)] p(t) − v(t)

v̇(t) = −S [ω(t)] v(t) + g(t) − b(t) + a(t)

ġ(t) = −S [ω(t)] g(t)

ḃ(t) = 0

y(t) = p(t)

, (9)

where a(t) is assumed to be a deterministic input.

4. Main Results

4.1. Navigation with calibrated accelerometer

This section examines the observability of the dynamic sys-

tem (6), which has been derived in the past by the authors to

propose a navigation filter with a calibrated accelerometer. In

[20] it was shown that the system is observable. In practice,

stronger forms of observability are convenient in order to guar-

antee the stability of state observers or filters. That is estab-

lished in the following theorem.

Theorem 4.1. The LTV system (6) is uniformly completely ob-

servable.

Proof. In compact form, the dynamic system (6) can be rewrit-

ten as
{

ẋ1(t) = A1(t)x1(t) + B1u1(t)

y1(t) = C1x1(t)
,

where u1(t) = a(t) is the input of the system,

x1(t) =





















p(t)

v(t)

g(t)





















∈ R
9

is the vector of states of the system,

A1(t) =





















−S [ω(t)] −I 0

0 −S [ω(t)] I

0 0 −S [ω(t)]





















,

B1 =





















0

I

0





















,

and C1 = [I 0 0]. Consider the state transformation

x1(t) := T1(t)x1(t),

with

T1(t) := diag (R(t), R(t), R(t)) . (10)

Notice that (10) is a Lyapunov transformation matrix as

• T1(t) is continuously differentiable for all t;

• Both T1(t) and Ṫ1(t) are bounded for all t, where

Ṫ1(t) = diag (R(t)S [ω(t)] , R(t)S [ω(t)] , R(t)S [ω(t)]) ;

• det [T1(t)] = 1.

Then, the new system dynamics can be written as

{

ẋ1(t) = A1x1(t) + B1(t)u1(t)

y1(t) = C1x1(t)
, (11)

where

A1 =





















0 −I 0

0 0 I

0 0 0





















, B1(t) =





















0

R(t)

0





















,

and C1(t) =
[

RT (t) 0 0
]

. It is easy to compute the observability

Gramian associated with the pair
(

A1, C1(t)
)

on [t, t + δ], given

by

W1
(t, t + δ) =























δI − δ2
2

I − δ3
6

I

− δ2
2

I δ3

3
I δ4

8
I

− δ3
6

I δ4

8
I δ5

20
I























,

which does not depend on t and is positive definite for all δ > 0.

Moreover, for any fixed δ > 0, there exists a lower bound for

the minimum eigenvalue of W1
(t, t + δ). Therefore, (11) is

uniformly completely observable, and it follows that (6) is also

uniformly completely observable as both systems are related

through a Lyapunov transformation [21].

4.2. Navigation with known gravity

This section examines the observability of the dynamic sys-

tem (7). Notice that, for constant angular velocity the system

is always observable. Thus, one can expect the system to be

always observable, as in Section 4.1. Before going into the ob-

servability analysis, the following proposition is introduced.

Proposition 4.2. Let f(t) :
[

t0, t f

]

⊂ R → R
n be a continuous

and i-times continuously differentiable function on I :=
[

t0, t f

]

,

T := t f − t0 > 0, and such that

f (t0) = ḟ (t0) = . . . = f(i−1) (t0) = 0.

Further assume that

max
t∈I

∥

∥

∥f(i+1)(t)
∥

∥

∥ ≤ C.

If

∃ :
∥

∥

∥f(i) (t1)
∥

∥

∥ ≥ α,
α > 0

t1 ∈ I
then

∃ : ‖f (t0 + δ)‖ ≥ β.
0 < δ ≤ T

β > 0
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Proof. The proof is presented in Appendix A.

The following theorem is the main result of this section.

Theorem 4.3. The LTV system (7) is uniformly completely ob-

servable.

Proof. In compact form, the dynamic system (7) can be rewrit-

ten as
{

ẋ2(t) = A2(t)x2(t) + B2u2(t)

y2(t) = C2x2(t)
, (12)

where

u2(t) =

[

a(t)

g(t)

]

∈ R
6

is the input of the system,

x2(t) =





















p(t)

v(t)

b(t)





















∈ R
9

is the vector of states of the system,

A2(t) =





















−S [ω(t)] −I 0

0 −S [ω(t)] −I

0 0 0





















,

B2 =





















0 0

I I

0 0





















,

and C2 = [I 0 0]. Consider the Lyapunov transformation

x2(t) := T2(t)x2(t),

with

T2(t) := diag (R(t), R(t), I) .

Then, the new system dynamics can be written as

{

ẋ2(t) = A2(t)x2(t) + B2(t)u2(t)

y2(t) = C2(t)x2(t)
,

where

A2(t) =





















0 −I 0

0 0 −R(t)

0 0 0





















,

B2(t) =





















0 0

R(t) R(t)

0 0





















,

and C2(t) =
[

RT (t) 0 0
]

. Let

R[1] (t, t0) :=

∫ t

t0

R (σ) dσ

and

R[i] (t, t0) :=

∫ t

t0

. . .

∫ σi−1

t0

R (σi) dσi . . . dσ1,

where (.)[i] represents the i− th integral of the quantity. Then,

it is a simple matter of computation to show that the transition

matrix associated with A2(t) is given by

φ2
(t, t0) =





















I − (t − t0) I R[2] (t, t0)

0 I −R[1] (t, t0)

0 0 I





















and, ifW2

(

t0, t f

)

denotes the observability Gramian associated

with the pair
(

A2(t),C2(t)
)

,

dT
W2

(

t0, t f

)

d =

∫ t f

t0

∥

∥

∥d1 − (τ − t0) d2 + R[2] (τ, t0) d3

∥

∥

∥

2
dτ

for all

d =





















d1

d2

d3





















∈ R
9, ‖d‖ = 1.

Define

f (τ) := d1 − (τ − t) d2 + R[2] (τ, t) d3

for all t ≥ t0, δ > 0, and τ ∈ [t, t + δ]. Notice that

dT
W2

(t, t + δ) d =

∫ t+δ

t

‖f (τ)‖2 dτ.

The first three derivatives of f(τ) are given by

d

dτ
f (τ) = −d2 + R[1] (τ, t) d3,

d2

dτ2
f (τ) = R (τ) d3,

and
d3

dτ3
f (τ) = R (τ) S [ω(τ)] d3.

Notice that all three derivatives are norm bounded for τ ∈
[t, t + δ], uniformly in t. Suppose that d1 , 0. Then, there

exists α1 > 0 such that

‖f (t)‖2 = α2
1

for all t ≥ t0. Moreover, notice that d
dτ
‖f (τ)‖2 has an upper

bound, which does not depend on t. As, in addition to that,

dT
W2

(t, t) d =

∫ t

t

‖f (τ)‖2 dτ = 0

for all t ≥ t0 it follows, using Proposition 4.2, that

∃ ∀ : dTW2
(t, t + δ1) d ≥ β1.

δ1 > 0 t ≥ t0
β1 > 0

Suppose now that d1 = 0 and d2 , 0. Then, there exists α2 > 0

such that
∥

∥

∥

∥

∥

d

dτ
f (τ)

∣

∣

∣

∣

∣

τ=t

∥

∥

∥

∥

∥

= α2

5



for all t ≥ t0. In addition to that, f(t) = 0 and
∥

∥

∥

∥

d2

dτ2 f (τ)
∥

∥

∥

∥

has

an upper bound, which does not depend on t. Therefore, using

Proposition 4.2 twice, it follows that

∃ ∀ : dTW2
(t, t + δ2) d ≥ β2.

δ2 > 0 t ≥ t0
β2 > 0

Finally, consider the last case where d1 = d2 = 0 and therefore

‖d3‖ = 1. Then,
∥

∥

∥

∥

∥

∥

d2

dτ2
f(τ)

∣

∣

∣

∣

∣

∣

τ=t

∥

∥

∥

∥

∥

∥

= 1

for all t ≥ t0 and again, as
∥

∥

∥

∥

d3

dτ3 f(τ)
∥

∥

∥

∥

is bounded from above,

uniformly in t, and

f(t) =
d

dτ
f(τ)

∣

∣

∣

∣

∣

τ=t

=
d2

dτ2
f(τ)

∣

∣

∣

∣

∣

∣

τ=t

= 0

for all t ≥ t0, it follows, using Proposition 4.2 twice, that

∃ ∀ : dTW2
(t, t + δ3) d ≥ β3.

δ3 > 0 t ≥ t0
β3 > 0

Either way,

∃ ∀ ∀ : dTW2
(t, t + δ) d ≥ β,

δ > 0 t ≥ t0 d ∈ R
9

β > 0 ‖d‖ = 1

which means that (12) is uniformly completely observable. As

the LTV systems (7) and (12) are related by a Lyapunov trans-

formation, it follows that (7) is also uniformly completely ob-

servable.

4.3. Dynamic accelerometer bias estimation

This section presents observability conditions for dynamic

accelerometer bias estimation. Before going into the details,

some straightforward but very useful and inspiring properties

regarding the observability of the system are presented and dis-

cussed.

In compact form, the dynamic system (8) can be written as

{

ẋ3(t) = A3(t)x3(t) + B3u3(t)

y3(t) = C3x3(t)
, (13)

where u3(t) = a(t) is the input of the system,

x3(t) =





















v(t)

g(t)

b(t)





















∈ R
9

is the vector of states of the system,

A3(t) =





















−S [ω(t)] I −I

0 −S [ω(t)] 0

0 0 0





















,

B3 =





















I

0

0





















,

and

C3 = [I 0 0] .

Within this framework, suppose that the angular velocity ω(t)

is constant. In this situation, the dynamic system (13) is LTI

and thus, to assess the observability of the system, it suffices to

check the rank of the observability matrix O3 associated to the

pair (A3,C3),

O3 :=







































C3

C3A3

C3A2
3

. . .

C3An−1
3







































. (14)

After a few algebraic manipulations it is possible to write (14)

as

O3 = DV8





































































I 0 0

−Λ I −I

Λ
2 −2Λ Λ

−Λ3 3Λ2 −Λ2

Λ
4 −4Λ3

Λ
3

...
...

...

Λ
8 −8Λ7

Λ
7





































































D∗
V3
,

where DV8 := diag (V, . . . , V), D∗
V3

:= diag (V∗, V∗, V∗), V is a

unitary matrix, i.e., V ∈
{

X ∈ R
3×3 : XT X = I

}

, and

Λ =





















‖ω‖ j 0 0

0 − ‖ω‖ j 0

0 0 0





















.

Thus, it is immediate to conclude that

• for ω = 0, rank [O3] = 6 and

• for ω , 0, rank [O3] = 8.

From this first result it is already possible to say that the system

(13) is not observable for, at least, some trajectories ofω(t), and

this is not a surprise. Indeed, for ω(t) = 0, both the gravity and

the bias are constant in body-fixed coordinates (and inertial co-

ordinates too) and it is impossible to distinguish between them

solely based on the velocity measurements. However, in this

situation, it is straightforward to show that it would be possible

to design an observer for both v(t) and the quantity g(t) − b(t).

When ω is constant but nonzero, the degree of observability of

the system increases. In this situation it is also straightforward

to show that the non-observable subspace is given by





















v

g

b





















= span









































0

ω

ω









































.

Thus, it is still possible to estimate both v(t) and g(t)−b(t). This

fact is important and will be exploited shortly as it suggests that

g(t)−b(t) is observable regardless of the trajectory described by

6



the angular velocity. Also, since the non-observable subspace

for constant non-null angular velocity is related to the axis of

rotation, it is expectable that, if the axis of rotation changes,

the system becomes observable. Before presenting the main

results, which confirm this conjecture, a Lyapunov state trans-

formation is introduced that greatly simplifies the analysis of

the system.

In Section 4.1 the observability of the system was assessed

through the use of an orthogonal Lyapunov transformation that

renders the pair
(

A1,C1

)

time invariant. Although the ap-

plication of this technique to (13) does not render the pair
(

A3(t),C3(t)
)

time invariant, it is still useful as it reduces the

number of time-varying elements of the new dynamics. Cou-

pled with this, it has been shown that both v(t) and g(t) − b(t)

are observable for constant angular velocities. These two ideas

motivate the state transformation

x3(t) := T3(t)x3(t), (15)

with

T3(t) :=





















R(t) 0 0

0 R(t) −R(t)

0 0 I





















.

Notice that (15) is a Lyapunov state transformation as

• T3(t) is continuously differentiable for all t;

• Both T3(t) and Ṫ3(t) are bounded for all t, where

Ṫ3(t) =





















R(t)S [ω(t)] 0 0

0 R(t)S [ω(t)] −R(t)S [ω(t)]

0 0 0





















;

• det [T3(t)] = 1.

The fact that (15) is a Lyapunov transformation suffices to es-

tablish the equivalence of observability properties between x3(t)

and x3(t).

The dynamics of x3 are given by

{

ẋ3(t) = A3(t)x3(t) + B3(t)u3(t)

y3(t) = C3(t)x3(t)
, (16)

where

A3(t) =





















0 I 0

0 0 −R(t)S [ω(t)]

0 0 0





















, B3(t) =





















R(t)

0

0





















,

and C3(t) =
[

RT (t) 0 0
]

. It is a simple matter of computation

to show that the transition matrix associated with A3(t) is given

by

φ3
(t, t0) =





















I (t − t0) I (t − t0) R (t0) − R[1] (t, t0)

0 I R (t0) − R(t)

0 0 I





















and, ifW3

(

t0, t f

)

denotes the observability Gramian associated

with the pair
(

A3(t),C3(t)
)

,

dTW3

(

t0, t f

)

d =

=
∫ t f

t0

∥

∥

∥d1 + (τ − t0) d2 + (τ − t0) R (t0) d3 − R[1] (τ, t0) d3

∥

∥

∥

2
dτ

for all

d =





















d1

d2

d3





















∈ R
9, ‖d‖ = 1.

The following theorem provides a necessary and sufficient

condition for the observability of (8).

Theorem 4.4. The LTV system (8) is observable on
[

t0, t f

]

if

and only if the direction of the angular velocity ω(t) changes

for some t1 ∈
[

t0, t f

]

or, equivalently,

∀ ∃ : S [ω (t1)] d , 0.

d ∈ R
3 t1 ∈

[

t0, t f

]

‖d‖ = 1

(17)

Proof. Let

f (τ) := d1 + (τ − t0) d2 + (τ − t0) R (t0) d3 − R[1] (τ, t0) d3

and notice that

dT
W3

(

t0, t f

)

d =

∫ t f

t0

‖f (τ)‖2 dτ.

If d1 , 0 then

‖f (t0)‖2 = ‖d1‖2 = α2
1 > 0.

Moreover, notice that d
dτ
‖f (τ)‖2 is a continuous function and

therefore it has an upper bound on any non-empty limited

closed interval (Weierstrass Theorem). As, in addition to that,

dT
W3

(t0, t0) d =

∫ t0

t0

‖f (τ)‖2 dτ = 0,

it follows, using Proposition 4.2, that

∃ : dTW3
(t0, t0 + δ1) d ≥ β1.

0 < δ1 ≤ t f − t0
β1 > 0

Suppose now that d1 = 0 and d2 , 0. Then,

∥

∥

∥

∥

∥

∥

d

dτ
f(τ)

∣

∣

∣

∣

∣

τ=t0

∥

∥

∥

∥

∥

∥

2

= ‖d2‖2 = α2
2 > 0

and, using Proposition 4.2 again, it is immediate to show that

∃ : dTW3
(t0, t0 + δ2) d ≥ β2.

0 < δ2 ≤ t f − t0
β2 > 0

Consider now the last case where d1 = d2 = 0 and therefore

‖d3‖ = 1. It is easy to see that

∥

∥

∥

∥

∥

∥

d2

dτ2
f (τ)

∥

∥

∥

∥

∥

∥

= ‖S [ω (τ)] d3‖

7



Now, using (17), it is possible to write

∃ :

∥

∥

∥

∥

∥

d2

dτ
f (τ)

∣

∣

∣

∣

τ=t1

∥

∥

∥

∥

∥

= α3

t1 ∈
[

t0, t f

]

α3 > 0

for all d3 such that ‖d3‖ = 1. But then, using Proposition 4.2

again, it follows, again, that

∃ : dTW3
(t0, t0 + δ3) d ≥ β3.

0 < δ3 ≤ t f − t0
β3 > 0

Therefore, if (17) is true, the LTVS is observable on
[

t0, t f

]

and,

as (8) and (13) are related through a Lyapunov transformation,

it follows that (8) is also observable on
[

t0, t f

]

. Suppose now

that (17) is not true. Then,

∃ ∀ : S (ω (t)) d0 = 0.

d0 ∈ R
3 t ∈

[

t0, t f

]

‖d0‖ = 1

Let

d =





















0

0

d0





















.

Then, it is straightforward to show that

∀ : f (t) = 0

t ∈
[

t0, t f

]

and therefore

∃ : dTW3

(

t0, t f

)

d = 0,

d ∈ R
n

‖d‖ ∈ R
9

which means that (13) is not observable on
[

t0, t f

]

. Thus, if

(13) is observable on
[

t0, t f

]

, it follows that (17) is true. As (8)

and (13) are related through a Lyapunov transformation, one is

observable if and only if so is the other. Therefore, if (8) is ob-

servable on
[

t0, t f

]

, it follows that (17) is true, which concludes

the proof.

The following theorem, that provides a necessary and suffi-

cient condition for a stronger form of observability, is the main

result of this section.

Theorem 4.5. The LTV system (8) is uniformly completely ob-
servable if and only if

∃ ∀ ∀ ∃ : ‖S (ω (t1)) d‖ ≥ ǫ.
δ > 0 t ≥ t0 d ∈ R

3 t1 ∈ [t, t + δ]

ǫ > 0 ‖d‖ = 1

(18)

Proof. The proof of sufficiency follows steps similar to those
presented in the proof of Theorem 4.3 and therefore it is omit-
ted. Suppose now that (18) is not true. Then,

∀ ∃ ∃ ∀ : ‖S (ω (t)) d‖ < ǫ.
δ > 0 t1 ≥ t0 d0 ∈ R

3 t ∈ [t1, t1 + δ]

ǫ > 0 ‖d0‖ = 1

(19)

Let

d =





















0

0

d0





















.

Then,

dT
W3

(t1, t1 + δ) d=

∫ t1+δ

t1

∥

∥

∥(τ − t1) R (t1) d0 − R[1] (τ, t1) d0

∥

∥

∥

2
dτ,

which may be rewritten as

dTW3
(t1, t1 + δ) d =

=
∫ t1+δ

t1

∥

∥

∥

∥

∫ τ

t1
[R (t1) − R (σ1)] d0dσ1

∥

∥

∥

∥

2

dτ

=
∫ t1+δ

t1

∥

∥

∥

∥

∫ τ

t1

(

R (t1) −
[

R (t1) +
∫ σ1

t0
Ṙ (σ2) dσ2

])

d0dσ1

∥

∥

∥

∥

2

dt

=
∫ t1+δ

t1

∥

∥

∥

∥

∫ τ

t1

∫ σ1

t1
Ṙ (dσ2) d0dσ2dσ1

∥

∥

∥

∥

2

dτ.

Substituting the dynamics of the rotation matrix gives

dTW3
(t1, t1 + δ) d =

=
∫ t1+δ

t1

∥

∥

∥

∥

∫ t

t1

∫ σ1

t1
R (σ2) S [ω (σ2)] d0dσ2dσ1

∥

∥

∥

∥

2

dτ. (20)

Using simple norm inequalities in (20) gives

dTW3
(t1, t1 + δ) d ≤

≤
∫ t1+δ

t1

∫ t

t1

∫ σ1

t1
‖R (σ2) S [ω (σ2)] d0‖2 dσ2dσ1dτ

and, as the rotation has unit norm,

dTW3
(t1, t1 + δ) d ≤

≤
∫ t1+δ

t1

∫ t

t1

∫ σ1

t1
‖S [ω (σ2)] d0‖2 dσ2dσ1dτ. (21)

Using (19) in (21) allows to conclude that, for all δ > 0 and
ǫ > 0,

∃ ∃ ∀ : dTW3 (t1, t1 + δ) d ≤ δ3
6
ǫ2,

t1 ≥ t0 d ∈ R
9 t ∈ [t1, t1 + δ]

‖d‖ = 1

which implies that the LTV system (13) is not uniformly com-

pletely observable. Therefore, if (13) is uniformly completely

observable, then (18) is true. Finally, as (8) and (13) are re-

lated through a Lyapunov state transformation, it follows that if

(8) is uniformly completely observable, then (18) is true, which

completes the proof.

Remark 3. The meaning of the technical condition stated in

Theorem 4.5 is not evident at first glance. To make it clear

notice that, when (18) is not satisfied, the direction of the an-

gular velocity is converging to a constant vector. While for ob-

servability it suffices that the direction of the angular velocity

changes, for uniform complete observability a minimum level

of excitation is required. This is reflected as the requirement

of a minimum change of the direction of the angular velocity

vector.
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4.4. Navigation with dynamic accelerometer bias determina-

tion in the presence of unknown gravity

This section presents the last result of the paper, which as-

sesses the observability of a navigation system with dynamic

accelerometer bias estimation. This result is closely related to

the one presented in Section 4.3, since the nominal dynamics

for navigation with dynamic accelerometer bias determination

can be regarded as an extension of the dynamics for dynamic

accelerometer bias estimation.

The first result presented in this section provides a necessary

and sufficient condition for the observability of (9).

Theorem 4.6. The LTV system (9) is observable on
[

t0, t f

]

if

and only if (17) holds.

Proof. The system dynamics (9) can be rewritten, in compact

form, as
{

ẋ4(t) = A4(t)x4(t) + B4u4(t)

y4(t) = C4x4(t)
,

where u4(t) = a(t) is the input of the system,

x4(t) =





























p(t)

v(t)

g(t)

b(t)





























∈ R
12

is the vector of states of the system,

A4(t) =





























−S [ω(t)] −I 0 0

0 −S [ω(t)] I −I

0 0 −S [ω(t)] 0

0 0 0 0





























,

B4 =





























0

I

0

0





























,

and C4 = [I 0 0 0]. Consider the Lyapunov transformation

x4(t) := T4(t)x4(t), (22)

with

T4(t) :=





























R(t) 0 0 0

0 R(t) 0 0

0 0 R(t) −R(t)

0 0 0 I





























.

Then, the new system dynamics can be written as

{

ẋ4(t) = A4(t)x4(t) + B4(t)u4(t)

y4(t) = C4(t)x4(t)
, (23)

where

A4(t) =





























0 −I 0 0

0 0 I 0

0 0 0 −R(t)S [ω(t)]

0 0 0 0





























,

B4(t) =





























0

R(t)

0

0





























,

and C4(t) =
[

RT (t) 0 0 0
]

. The fact that (22) is a Lyapunov

transformation suffices to establish the equivalence of observ-

ability properties between x4 and x4. The similarities between

(23) and (16) are obvious. There is, in fact, just an extra level of

integrators. The remainder of the proof follows the same steps

as in Theorem 4.4 and is therefore omitted.

The following theorem is the main result of this section and

provides a necessary and sufficient condition for the system (9)

to be uniformly completely observable.

Theorem 4.7. The dynamic system (9) is uniformly completely

observable if and only if (18) holds.

Proof. The proof follows the same steps as in Theorem 4.5 and

is therefore omitted.

5. Conclusions

Navigation Systems are key elements of a large variety of

robotic systems. This paper provided observability results re-

garding systems related to the estimation of linear motion quan-

tities of mobile platforms (position, linear velocity, linear accel-

eration, and accelerometer bias), in 3-D, assuming exact angu-

lar measurements. Four different cases were studied: i) a simple

calibrated sensor suite consisting of an IMU and a positioning

sensor. It was shown that the system is not only observable but

also uniformly completely observable, even without the knowl-

edge of the acceleration of gravity; ii) a triad of accelerometers

with unknown biases but considering that the acceleration of

gravity is known. It was shown that this system is also ob-

servable and uniformly completely observable; iii) dynamic ac-

celerometer bias estimation. In this case it was proved that not

all trajectories yield the system observable. In particular, it was

shown that the trajectories should be rich enough in what con-

cerns the evolution of the direction of the angular velocity and,

for uniform complete observability to be attained, the direction

of the angular velocity cannot stay indefinitely arbitrarily close

to a constant vector; and iv) the last case addressed the most

general setup where the triad of accelerometers may have an

unknown bias and the gravity is also supposed to be unknown.

It was shown that the system is observable if and only if the at-

titude evolution is sufficiently rich, in the same sense as the one

presented for dynamic accelerometer bias estimation. More-

over, it was also shown that the system is uniformly completely

observable if and only if a persistent change in the direction of

the angular velocity occurs. The summary of the conclusions is

presented in Table 1.
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A. Proof of Proposition 4.2

Proposition. Let f(t) :
[

t0, t f

]

⊂ R → R
n be a continuous

and i-times continuously differentiable function on I :=
[

t0, t f

]

,

T := t f − t0 > 0, and such that

f (t0) = ḟ (t0) = . . . = f(i−1) (t0) = 0.

Further assume that

max
t∈I

∥

∥

∥f(i+1)(t)
∥

∥

∥ ≤ C. (24)

If

∃ :
∥

∥

∥f(i) (t1)
∥

∥

∥ ≥ α,
α > 0

t1 ∈ I
(25)

then
∃ : ‖f (t0 + δ)‖ ≥ β.

0 < δ ≤ T

β > 0

(26)

Proof. Firstly, notice that the case C = 0 is trivial. Indeed, if

C = 0, then
∀ : f(i) (t) = f(i) (t1)

t ∈ I
and therefore

f (t0 + δ) = f(i) (t1)

∫ t0+δ

t0

∫ σ1

t0

. . .

∫ σi−1

t0

dσi . . . dσ1 =
δi

i!
f(i) (t1) ,

which implies (26). The remainder of the proof considers C >

0. Suppose that (24) and (25) are true. Then, using simple norm

inequalities, it is possible to write

∥

∥

∥f(i) (t1)
∥

∥

∥∞ ≥
1
√

n
α
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and

max
t∈I

∥

∥

∥ḟ(i+1)(t)
∥

∥

∥∞ ≤ C.

Let

k := arg max
j=1,...,n

∣

∣

∣

∣

f
(i)

j
(t1)

∣

∣

∣

∣

,

where

f(i)(t) =



























f
(i)

1
(t)
...

f
(i)
n (t)



























.

Evidently,
∣

∣

∣ f
(i)

k
((t1)

∣

∣

∣ ≥ 1
√

n
α

and

max
t∈I

∣

∣

∣ ḟ
(i+1)

k
(t)

∣

∣

∣ ≤ C. (27)

Resorting to the Lagrange’s Theorem, it is possible to write that

∣

∣

∣ f
(i)

k
(t) − f

(i)

k
(t1)

∣

∣

∣ =
∣

∣

∣ f
(i+1)

k
(ξ(t)) (t − t1)

∣

∣

∣ (28)

for all t ∈ I, where ξ (t) ∈
]

t0, t f

[

. Using simple norm inequali-

ties and (27) in (28) gives

∣

∣

∣ f
(i)

k
(t) − f

(i)

k
(t1)

∣

∣

∣ ≤ C |t − t1|

and therefore

f
(i)

k
(t) ≥ f

(i)

k
(t1) −C |t − t1|

for all t ∈ I. Now assume, without loss of generality, that

f
(i)

k
(t1) > 0. Then, there exists an interval I1 = [t2, t3] ⊂ I,

t2 < t3, where either t2 = t1 or t3 = t1, and with length

T1 :=
1

2
min

(

T,
α
√

nC

)

,

such that

∀ : f
(i)

k
(t) ≥ f

(i)

k
(t1) −C |t − t1| > 0.

t ∈ I1
(29)

Integrating (29) on I1 gives

∫

I1

f
(i)

k
(t) dt ≥ β > 0,

where

β := T1

(

α
√

n
− CT1

2

)

> 0.

Now, notice that

f
(i−1)

k
(t3) =

∫ t3

t0

f
(i)

k
(t) dt =

∫ t2

t0

f
(i)

k
(t) dt +

∫

I1

f
(i)

k
(t) dt.

If

f
(i−1)

k
(t3) , 0

then
∃ :

∣

∣

∣ f
(i−1)

k
(t0 + δ1)

∣

∣

∣ ≥ β1.

0 < δ1 ≤ T

β1 > 0

Otherwise, it must be

f
(i−1)

k
(t2) = −

∫

I1

f
(i)

k
(t) dt , 0,

which implies that

∃ :
∣

∣

∣ f
(i−1)

k
(t0 + δ2)

∣

∣

∣ ≥ β2.

0 < δ2 < T

β2 > 0

Either way,

∃ :
∣

∣

∣ f
(i−1)

k
(t0 + δ3)

∣

∣

∣ ≥ β3.

0 < δ3 ≤ T

β3 > 0

Repeating the same argument i − 1 times, it is immediate to

show that
∃ : | fk (t0 + δ)| ≥ β

0 < δ < T

β > 0

and, using simple norm inequalities

∃ : ‖f (t0 + δ)‖ ≥ β,
0 < δ < T

β > 0

which concludes the proof.
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