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Abstract—Tri-axial linear accelerometers are key components in
a great variety of applications and, in particular, in navigation sys-
tems. Nonidealities such as scale factors, cross coupling, bias, and
other higher-order nonlinearities affect the output of this sensor,
leading, in general, to prohibitive errors. On the other hand, these
coefficients are often slowly time-varying, which renders offline
calibration less effective. One such coefficient that usually varies
greatly over time and between power-ons is the bias. This paper
details the calibration of an accelerometer unit and presents also a
dynamic filtering solution for the bias, which also includes the esti-
mation of the gravity in body-fixed coordinates. Simulation and ex-
perimental results obtained with a motion rate table are presented
and discussed to illustrate the performance of the proposed algo-
rithms.

Index Terms— Accelerometers, calibration, Kalman filters, nav-
igation, sensor systems and applications.

I. INTRODUCTION

ECENT advances in materials and production processes

have led to the increasingly miniaturization of a large va-
riety of sensing devices. Among these sensors are a new genera-
tion of micro-electro-mechanical systems (MEMS) accelerome-
ters, which are nowadays used in a large variety of applications.
These sensors have good dynamic specifications, considering
the cost, size, and power requirements, but are often subject to
large offsets, cross-coupling factors, and other nonlinearities.
While in some cases these nonidealities are of no importance,
e.g., in cell phones to detect the vertical direction or in computer
hardware for active hard drive protection, they are prohibitive
for the design of navigation systems, which justifies offline cal-
ibration. Furthermore, the coefficients of these nonidealities are
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often slowly time-varying, which renders offline calibration less
effective and substantiates the need for online parameter estima-
tion. This paper presents the calibration of a low-cost tri-axial
accelerometer and a novel filtering solution for online bias and
gravity estimation with application to the design of navigation
systems for mobile platforms.

High performance accelerometers are a key element and have
been extensively used in Inertial Navigation Systems (INS).
With the widespread use of MEMS technology, accelerom-
eters are nowadays a fundamental aiding sensor for attitude
estimation in low-cost, middle range performance Attitude
and Heading Reference Systems (AHRS), with application
to autonomous air, ground, and ocean robots. These inexpen-
sive, low power sensors, used as pendula, allow for accurate
attitude estimates at very low frequency by comparing the
Earth gravitational field vector measurements in body frame
coordinates with the vertical, see [1], [2], and references therein
for examples of such application in attitude estimation. The
integration of accelerometer readings with Global Positioning
System (GPS) measurements are commonly employed for
linear motion estimation in Integrated Navigation Systems, see
[3] and references therein for examples of such application.

The topic of accelerometer calibration has been subject
of intensive research. Indeed, various methods have been
proposed in the literature, from precision centrifuge tests of
linear accelerometers [4] to multi-position methods [5]-[7]. In
[8], error models for inertial sensors, including a solid-state
tri-axial accelerometer, were explicitly included in an extended
Kalman filter (EKF) to estimate the position and orientation of
a robot, while in [9] Kalman filtering techniques were applied
to the calibration and alignment of Inertial Navigation Sys-
tems, which was also studied in [10]. More recently, in [11],
nonlinear Kalman filters, of first and second order, coupled
with position feedback, were used to characterize accelerome-
ters. An optimization-based calibration procedure for tri-axial
accelerometer-magnetometers was proposed in [12], where
a robotic arm is used to generate different angular positions
of the body of the sensor. In [13] a fully electrical setup was
proposed to test and calibrate MEMS accelerometers and a case
study was presented in [14], where a 4-DOF system is proposed
for fully automated accelerometer calibration. An interesting
survey on the history of accelerometers, which also includes a
section on calibration activities, is found in [15].

The contribution of this paper is twofold: 1) an accelerom-
eter calibration technique is proposed and applied to offline



accelerometer calibration that includes the estimation of bias,
scale factors, cross coupling factors, and quadratic coefficients
and 2) a time-varying Kalman filter is derived for online dy-
namic bias and gravity estimation. The calibration technique
proposed in the paper resorts to attitude relative measurements
as provided by a Motion Rate Table (MRT). The a priori
knowledge of the gravity vector is not required since it is also
explicitly estimated, in contrast with previous methods that
assume that the vertical is known. The second part of this paper
is of particular importance for the design of navigation systems
since it allows for online estimation of the accelerometer bias
which, for low-cost units, is usually time-varying, rendering
offline calibration less effective. Moreover, the gravity is also
estimated, in body-fixed coordinates. This is in contrast with
previous solutions where the gravitational term is canceled
resorting to the knowledge of the attitude of the body, therefore
leading to cancellation problems that cause a severe degrada-
tion in the performance of the resulting navigation systems. In
addition to simulation results, the proposed algorithms were
experimentally evaluated resorting to a motion rate table, which
offers ground truth data.

This paper is organized as follows. The accelerometer models
are presented and discussed in Section II. Section III details the
offline calibration technique proposed in the paper, while the
online dynamic bias and gravity estimation solution is derived
in Section I'V. Simulation and experimental results are given in
Sections V and VI, respectively, including both the offline cal-
ibration of a low-cost MEMS accelerometer and dynamic bias
and gravity estimation tests. Finally, Section VII summarizes
the main conclusions and contributions of this paper.

A. Notation

Throughout this paper the symbol 0 denotes a matrix of zeros
and I the identity matrix, both of appropriate dimensions, while
diag(A,...,A,) is a block diagonal matrix. If x € R3 and
y € R? are two vectors, X X y represents the cross product.
For x = [z1...7,]T € R", the vector #' is defined as the
vector that results from the element-wise power operation, i.e.,

x' = [z} ...25] € R", while the vector z'! is defined as

sign(x; )x}

il .

x I
sign(x,)x!,
The rotation matrix from a coordinate frame { A} to a coordinate

frame { B} is denoted by §R. Finally, the Dirac delta function
is denoted by 6(¢).

II. ACCELEROMETER MODEL

The simplest accelerometer model for single axis sensors
considers only a scale factor and a constant offset, as given by

am(t) = fa(t) +b

where a,,(t) is the output of the accelerometer, f is the scale
factor, b denotes the bias, and a(¢) stands for the acceleration
that is measured in the absence of offsets, which includes not
only the acceleration of the body of the accelerometer but also
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a term due to the effect of the gravitational field on the mass
whose acceleration is actually measured, which is not coinci-
dent with the accelerometer case. Notice that the term due to
the gravitational field appears regardless of the accelerometer
technology as all objects are subject to the gravitational force,
which induces a force of opposite direction to the gravity on the
mass whose acceleration is actually measured, see [5] and [16]
for further details.

For navigation purposes, tri-axial accelerometers, composed
of three, single-axis, orthogonally mounted linear accelerom-
eters, are employed. The generalization of the simplest single-
axis model for tri-axial accelerometers, which accounts for scale
factors and bias, reads as

a,(t) = Fa(t) + b M

where F € R3*3 is a diagonal matrix that includes the scale
factors, b € R? is the bias, and

a(t) = V(1) + S ()] v(t) - g(1)

where v(t) and w(t) denote the linear and angular velocities
of the body-fixed frame { B}, respectively, expressed in body-
frame coordinates, S[w(t)] € R3*2 is the skew symmetric ma-
trix such that S[w()]v(t) = w(t) x v(t), and g(t) € R3 is
the acceleration of gravity, expressed in body-fixed coordinates.
In practice, the set of single-axis accelerometers is not orthog-
onally mounted, which introduces cross coupling between the
acceleration felt on the different accelerometer axes. This non-
ideality may be simply modeled by no longer considering F' as
a diagonal matrix. Instead, F is just assumed to be an invertible
matrix, which accounts simultaneously, in this case, for scale
and cross coupling factors.

The accelerometer model (1) is still, and in spite of capturing
already a different number of nonidealities, only an approxima-
tion of the real model. Indeed, the electrical devices involved
in the measurement process, from transducers to amplifiers, are
not linear, do not have constant coefficients, and are subject to
different types of noise. A more complete (and complex) model
[4], that includes higher-order terms, is given by

am(t) = Fa(t) + b+ FFaa’(t) + FF 5al? (1)
+FF3a’(t) + FFall(t) + ..

where Fy € R**3, F|y € R**3, F3 € R3*3, and F|3 € R®*3
are diagonal matrices.

Nonlinear time-varying models for accelerometers, with
many parameters, offer better accuracies, at the expense of
the complexity. From the practical point of view, it seems ap-
pealing to use simpler methods that preserve accuracy as: 1) for
very highly nonlinear time-varying dynamic models the com-
plexity of the inversion of the model could be overwhelming.
Closed-form solutions are obviously not available and iterative
numerical solvers would be required to operate in real-time;
2) time-varying models would be likely to depend on other
variables such as temperature, which would require additional
sensors; and 3) the effect of higher-order nonlinearities is often
very mild, particularly when compared to the magnitude of
the electrical noise. Therefore, the model employed in this
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work, and after successful experimental validation of the model
accuracy, is

a,(t)=F [a(t) + F2a2(t)] +b+n,(t) 2)

where n,(t) denotes the accelerometer noise. The quadratic
even term was chosen as it was evident, from experimental eval-
uation, that this was the most dominant nonlinear term. More-
over, there exists a closed-form solution to obtain a(¢) from (2),
which is a precious advantage for real-time navigation applica-
tions since no iterative solvers are required.

III. ACCELEROMETER OFFLINE CALIBRATION

There exists a multitude of tests and calibration procedures
described in the literature. In this paper it is assumed that the
accelerometer is exposed to several different known rotations
and a rather large number of measurements is taken at each static
position. This can be achieved resorting to a tri-axial motion
rate table, e.g., the Ideal Aerosmith Model 2103HT, used in this
work to obtain the experimental data.

The motion rate table outputs the rotation from body-fixed
to inertial coordinates apart from an installation error due to
non-horizontal mounting of the table. If there is a precision level
available, this installation error is known and it is possible to
compute the rotation matrix R from body-fixed to inertial coor-
dinates. Otherwise, it is necessary to consider

R(t) = TRBR(?)

where LR() is the rotation from body-fixed coordinates to the
table installation fixed reference frame, which is given by the
calibration table, and éR corresponds to the matrix that encodes
the installation offset.

Since measurements are considered only at static positions, it
is true that

v(t) =v(t) =0.

Therefore, using (2), the nominal accelerometer readings are
given by

an(t) = F [—g(t) + Fog*(t)] + b. A3)

The acceleration of gravity in body-fixed coordinates may be
expressed as

g(t)=R"(t)'g

where g is the acceleration of gravity expressed in inertial coor-
dinates. Nowadays, there exist very accurate models for the ac-
celeration of the gravity, e.g., the 1984 World Geodetic System
(WGS84), see [17] for further details. Therefore, if R is known,
the computation of F', F'5, and b corresponds to the simple de-
termination of linear coefficients. In the case considered in the
paper only LR is known, which means that the direction of the
gravity must also be determined. In this case, it is possible to
rewrite (3) as

2
an(t) = F (~ERT(1)7g + F2 [FRT()7g]") +b @)
where
"g=1R"g

is the acceleration of gravity expressed in table-fixed coordi-
nates. Multiplying (4) on the left by F~! gives

2

F'a,(t)+ 5RY(t)'g — F2 [LRT()Tg] —b' =0 (5

where
b’ = F 'b.

Equation (5) presents a better form than (4) in order to esti-
mate the unknown parameters F, b, Fo, and the acceleration of
gravity in table coordinates, Tg, since it has less products be-
tween unknowns. Nevertheless, a quadratic term still exists. In
the presence of noise, there is no exact solution to (5) if a large
set of measurements is considered. A simple and computation-
ally efficient way to calibrate the accelerometer is to solve an
optimization problem in two steps. First, the quadratic term is
ignored, which allows to write, for a set of static measurements
{a;n(t;),i = 1,..., N}, corresponding to a set of rotation ma-
trices {LR(t;),i = 1,...,N}

f
[D.(t;)) ERT(t) -I)|Tg| =0
b
where
al() o 0
D.,t)=| o af#) 0 | eR¥>?
0 0 al (1)
and
fi flT
f=|f| cR’ Fl1=|f]
f3 ff
Define the stack matrix X as
D.(t1) LRT(t;) -I

D.(t2) LRT(t;) -1

D,(tn) ERT(ty) -1
In the presence of sensor noise, a simple solution corresponds
to the minimization problem

X, = arg min |[|Xx,||
lIxoll=1

which is easily obtained from the vector associated with the
minimum singular value of the singular value decomposition
(SVD) of X. The magnitude of the acceleration of gravity, as



TABLE I
ALGORITHM TO CALIBRATE THE ACCELEROMETER

1) Compute the SVD of X. Select the vector associated with the minimum
singular value.

2) Normalize the SVD solution obtained in Step 1 according to the
magnitude of the gravity and its direction (sign of the z-coordinate).

3) Use the gravity estimate obtained in Step 2 and compute the SVD of
X. Select the vector associated with the minimum singular value.

4) Normalize the SVD solution obtained in Step 3 according to the
magnitude of the gravity and its direction (sign of the z-coordinate).

5) Use the current gravity estimate in X2 and go to Step 3. Stop once the
difference between the previous gravity estimate and the most recent
goes below a predefined threshold.

well as its direction, are used to normalize the resulting SVD
solution.

The solution of this first step, in particular the gravity vector,
is used as an estimate for the quadratic term in (5), which allows
to also consider (5) as linear in the parameters, with

[D.(t) BRT (1) —diag ([FRT (1) "8]") —1]| 8

where f, € R? is the vector that contains the diagonal elements
of the diagonal matrix Fy and 7'g is the estimate of the gravity
vector previously obtained. Stacking all observations gives

Tf
X, fzg =0
b
with
Du(t) BRY(t) —diog([IR"(t2)"g]") -1
x,_ | Datt2) TR (1) —diag([%RT(tz)Té]2> 1
Da(tn) 5R(ty) ~diag([5RT(tx)"8]") 1

The parameters are readily obtained by computing the vector
associated with the minimum singular value of X, and normal-
izing it according to the known magnitude of the gravity. Fi-
nally, it is possible to reiterate this last step using as new gravity
estimate the solution of each previous step. The proposed algo-
rithm is detailed in Table L.

IV. DYNAMIC BIAS AND GRAVITY ESTIMATION

Although theoretically possible for certain maneuvers, online
estimation of the parameters of the accelerometer model (2) is
not practical: the number of unknown coefficients is too large
and highly aggressive maneuvers would be required to achieve
only a moderate level of performance. However, it is important
to include, in navigation systems, a simplified model to account
for some of the nonidealities of the accelerometers. The simplest
of these is the sensor bias, and while it is only one constant
for each axis, it is well known that an offset in the acceleration
measurement results in a severe degradation of the performance
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of the navigation solutions. Furthermore, experimental results
evidence that the bias varies greatly, not only over time but also
between power-ons.

It was shown in [18] that, assuming that the accelerometer
has been previously calibrated, removing the effect of scale and
cross factor errors and ignoring higher-order nonlinearities, the
bias may be estimated under some mild assumptions. Therefore,
it is assumed in this section that the accelerometer has been pre-
viously calibrated using the technique proposed in the previous
section, which allows to use the model

an(t) =V(t) +Sw®)]v(t) —gt) + b+ n4(t).  (6)

The acceleration of gravity g (in body-fixed coordinates) is not
known in robotic applications. While there are models for its
magnitude, its direction depends on the attitude of the robot, and
it is used, in fact, to estimate this variable. A common assump-
tion when designing attitude filters is that the magnitude of the
acceleration of gravity dominates, for sufficiently low frequen-
cies, the other terms, see [1] for an example of such application.
The direction of the gravity is approximated, in that case, by

o an(l)
)~ o @

which induces errors in the attitude estimates. While these er-
rors are in general negligible, they may prove to be prohibitive
for highly maneuvering vehicles, e.g., aerial robots, vehicles ex-
ecuting trajectories with approximately constant accelerations,
or applications where high-accuracy requirements are in place,
such as space applications. Therefore, the gravity acceleration
in body-coordinates is also considered as an unknown in this
framework.

The direction of the acceleration of gravity is locally constant
in inertial coordinates. Therefore, the time derivative of g is
simply given by

The bias, later assumed to correspond to a random walk process
is, at this point, assumed to be constant, which means that

b(t) = 0.
Finally, from (6), it is possible to write
v(t) = an(t) — S[w(t)] v(t) + g(t) — b —n,(t).

In this work it is assumed that linear velocity readings are
available in order to estimate b and g. Nevertheless, extending
the framework to also estimate v considering linear position
measurements is trivial, see [18] for further details. The final
system dynamics, considering state disturbances and measure-
ment noise, are given by

{ x(t) = A(t)x(t) + Bay,(t) + ny(t)

¥(t) = Cx() + m, (1) @

where x(t) = [v7 (£)gT (t)bT(1)]" is the system state
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—S [w(t)] I 1

At) = 0 ~S[w(t)] 0

o 0 0
(1
B=0
0

C = [I00], and n, and n, are assumed to be zero-mean white
Gaussian noise, with

E [nx(t1)ng (t2)] =E(6)6(t1 — ta),
E [ny (t1)ng (t2)] =O()6(t1 — t2)

and
E [ny(t1)ny (t2)] =0

where Z and © are the process and noise intensity matrices,
respectively. The linear time-varying system (7) is observable
on [to,ty] if and only if the direction of the angular velocity
w(t) changes for some t; € [to, tf] or, equivalently

V3 :S[w(t)]d#0.
deR® t; € [to,t/]
4]l =1.

The proof of this result can be found in [18]. Therefore, the
estimation problem is well-posed and the time-varying Kalman
filter design is straightforward, see [19] and [20]. For the sake
of completeness, the Kalman filter equations are given by

X(t) = A(t)X(t) + K(1) [y () — CX(t)]

for the state estimate, while the covariance matrix evolves ac-
cording to

P(t) = A()P(t) + P(t) AT (1) +E(t) — P(t)CTO ' CP(t).
The Kalman gain matrix is given by
K(t) =P(t)CTO (1).

Remark 1: Notice that, even though the nominal system con-
siders b(t) = 0, in the filter design the bias is assumed to be
driven by zero mean, white Gaussian noise. This allows the filter
to track slowly time-varying bias, in addition to variations be-
tween power-ons. The intensity of the white noise that is as-
sumed to drive the bias is a parameter that can be fine-tuned

according to the change rate of the bias.

V. SIMULATION RESULTS

This section presents simulation results that were carried out
prior to the experimental tests in order to assess the performance
of the proposed solutions. The simulations attempt to replicate
the experimental trials so that the results are comparable. The
multi-position accelerometer calibration algorithm is evaluated

500

400

300f} -

200H - -

—

o

o
T

(=]

Euler angles (°)

-100r-

—2001

-3001

—400,"200 200 600 800 1000 1200 1400 1600 1800

t(s)

Fig. 1. Evolution of the Euler angles for accelerometer calibration.

in Section V-A, while simulation results with the proposed fil-
tering solution for dynamic bias and gravity estimation are pre-
sented in Section V-B.

A. Accelerometer Calibration

In order to assess the effectiveness of the proposed calibration
method, Monte Carlo simulations were first carried out consid-
ering an accelerometer with

[ 0.990 0.001 —0.002
F'=1 0020 1.005 0.003
| —0.010 —0.004 1.010
[ 0.05
b’ = | —0.01 | (m/s?)
| 0.04

and
F, = 10~ *diag(2.5,1.5, —0.75).

In addition to that, sensor noise was considered. In particular,
zero-mean additive white Gaussian noise was added to the
acceleration measurements, with standard deviation of 0.0013
m/s2. In each simulation the attitude of the accelerometer varies
according to Fig. 1, where the evolution of the roll, pitch, and
yaw Euler angles is depicted. The corresponding evolution of
the resulting gravity vector is shown in Fig. 2. As it is possible
to observe, the attitude trajectory evolves in steps and covers
many different configurations, not only to have the calibration
problem well-posed (sufficient data) but also to achieve better
results. A transition time of 2 s is used between steps and each
step lasts 22 s. The data is sampled, at a sampling rate of 100
Hz, during a period of 4 s on each step, in which the accelerom-
eter is static, for calibration purposes. The first and last periods
of 180 s of the simulation are presented solely because they
will be required for hardware synchronization purposes.

The resulting mean of the errors of the estimated parameters
is below 102 for all variables, which evidences that the esti-
mates are unbiased. On the other hand, the standard deviation
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of the error stays below 10~7, which corresponds to very ac-
curate estimates of the accelerometer parameters. These values
show that the proposed calibration procedure should yield good
results in practice.

B. Dynamic Bias and Gravity Estimation

In order to evaluate the performance of the proposed bias and
gravity estimation solution, simulations were carried out consid-
ering a setup very similar to the experimental one, which will be
presented in the following section. In particular, the rotation of
the accelerometer is parameterized by roll, pitch, and yaw Euler
angles, whose evolution is depicted in Fig. 3.

Additive zero-mean white Gaussian noise was considered for
all sensors, which were sampled at 100 Hz. The standard devia-
tions were chosen as 0.0013 m/s? for the acceleration measure-
ments, 0.05 °/s for the angular velocity readings, and 0.01 m/s
for the linear velocity measurements. In addition, the bias of the
accelerometer was set to

0.1
—0.05 | (m/s?).
0.025

b’ =
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The filter parameters were chosen as
E = diag(10 31,10 *I,10°T)
and
0 =0.1L

Finally, the initial velocity and gravity estimates were set close
to the true values, as the velocity is measured and the accelera-
tion of gravity is known up to some error (the acceleration mea-
surement is dominated by the gravity). The initial bias estimate
was set to zero.

The evolution of the gravity and bias estimates are depicted
in Figs. 4 and 5, respectively. As it is possible to observe, the
bias converges quickly to the true values. In order to better eval-
uate the performance of the filter, the evolution of the errors of
the linear velocity, gravity, and bias are depicted in Figs. 6-8,
respectively. Clearly, the mean errors converge to zero. More-
over, the errors on the bias and gravity estimates stay well below
the noise of the accelerometer, which evidences good filtering
performance of the proposed solutions.
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VI. EXPERIMENTAL EVALUATION

Experimental tests were carried out in order to evaluate the
performance of the proposed solutions. The experimental setup
is detailed in Section VI-A, while the accelerometer calibration
procedure and results are presented in Section VI-B. Finally, the
proposed filtering solution for dynamic bias and gravity estima-
tion is analyzed in Section VI-C.

A. Experimental Setup

To obtain high quality results, a calibration procedure re-
quires the execution of specific maneuvers, involving the ac-
quisition of high accuracy ground truth data to evaluate the es-
timated quantities produced by processing accelerometer data.
The Model 2103HT from Ideal Aerosmith [21] is a three-axis
MRT that provides precise angular position, rate, and accelera-
tion for development and testing of inertial components and sys-
tems. This table, presented in Fig. 9, was used to generate the
desired calibration trajectories and provide the required ground
truth signals. The angular resolution of the MRT is 0.000025°.
The accelerometer that was employed is presented in Fig. 10. It
is a Silicon Design Inc. tri-axial analog accelerometer [22], sam-
pled at 100 Hz using three Texas Instruments ADS1210, which
are directly connected to a microcontroller board built around
the Phillips XAS3 16-bit microcontroller with CAN (Controller
Area Network) Bus interface [23]. The ADS1210 is a high pre-
cision, wide dynamic range, delta-sigma analog-to-digital con-
verter (ADC), with 24-bit resolution, and it operates from a
single +5 V supply. The ADS1210 differential inputs are ideal
for direct connection to transducers, guaranteeing 20-bits of ef-
fective resolution, which is a suitable accuracy for the inertial
sensor used in the present application. Finally, a PC104 board,
connected to the CAN Bus, logs the data in a solid state disk for
post-testing analysis. The table top is autonomous in terms of
power and logging capabilities.

B. Dynamic Accelerometer Calibration

The accelerometer unit previously introduced was subject to
several tests, taken on different days and in different condi-
tions. The calibration results show that the scale and cross-axis
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Fig. 9. Experimental setup mounted on the Ideal Aerosmith motion rate table.

terms, as well as the quadratic coefficient, do not change signif-
icantly between tests, which validates the calibration of the ac-
celerometer prior to its usage in navigation systems. However,



Fig. 10. Detail of the MEMS accelerometer in the experimental setup.

the bias estimates resulting from the calibration test proposed in
Section III change greatly between tests, including tests where
the accelerometer power was never turned off. This evidences
that dynamic bias estimation is essential for this type of sensor.

The estimated parameters, which were used to correct the ac-
celeration measurements afterwards during dynamic bias and
gravity estimation, were

[0.9946  0.0037 —0.0061
F 1= [-00091 09998 0.0079
| —0.0071 —0.0186  1.0047
[ —0.7368
b’ = | —0.2803 | (m/s?)
| 0.3995

and
Fy; = 10’4diag(—2.362, 1.055, 3.666).

These are all within the specifications provided by the manufac-
turer.

Fig. 11 presents the error between the corrected accelerom-
eter measurements at static positions and the expected measure-
ments, which are due only to the acceleration of gravity. It is
possible to observe that, even after accelerometer calibration,
the mean of the error at each position is not always zero. This
is due not only to higher-order nonlinearities but also to the
time-varying nature of the parameters. There exist some posi-
tions at which the standard deviation of the error is much higher.
This is not due to the accelerometer but to the motion rate table,
which exhibited oscillations at some positions. Finally, a vibra-
tion was detected in the outer axis of the calibration table, with
a frequency around 11 Hz, which is most likely a natural res-
onance frequency of the body. That also contributes to the in-
creased standard deviation of the error and it is not present in real
applications. Interestingly enough, both the oscillations and the
vibrations of the table are so small that a slightly lower grade
accelerometer is unable to detect them.

C. Dynamic Bias and Gravity Estimation

The experimental results obtained for to dynamic bias and
gravity estimation are presented in this section. The evolution of
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Fig. 11. Error of the accelerometer measurements after calibration correction.

the attitude is the same as the one presented in Section V-B, so
that the results are comparable. The filter parameters, sampling
rate, and initial estimates are also the same. Notice that, with
the trajectory described in the experiment, the system dynamics
for online dynamic bias and gravity estimation are uniformly
completely observable, so that the Kalman filter error dynamics
are globally asymptotically stable.

The evolution of the gravity and bias estimates are depicted in
Figs. 12 and 13, respectively. The similarities between Figs. 12
and 4 evidence that the experimental results follow closely the
simulation results. It is possible to observe that the filter keeps
very good tracking of the acceleration of gravity, which is es-
sential for attitude estimation purposes in navigation systems. It
is also possible to see the time-varying nature of the bias.

Comparing the level of the accelerometer error at rest (after
calibration), presented in Fig. 11, with the magnitude of the
bias estimate, depicted in Fig. 13, they seem about the same for
this particular unit. Nevertheless, it is important to remark that
it does not render the bias estimation process useless. Indeed,
any acceleration bias that is not compensated for in a naviga-
tion system leads to the degradation of the system performance,
particularly due to the double integration that relates accelera-
tion and position quantities. Moreover, it is important to stress
that the bias estimate is only small in this case because the ac-
celerometer unit had been calibrated and therefore the bias was
partially compensated for, as shown in Section VI-B. Had this
not been the case and the bias estimate would be very large when
compared to the accelerometer noise.
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In order to better assess the performance of the filter, the evo-
lution of the errors of the linear velocity and gravity accelera-
tion are depicted in Figs. 14 and 15, respectively. Clearly, the
mean errors converge to zero which evidences the goodness of
the proposed filtering solution.
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Fig. 15. Evolution of the gravity error.

VII. CONCLUSION

Tri-axial accelerometers are key elements in a great variety of
applications and, in particular, in navigation systems. Nonide-
alities such as scale factors, cross coupling, and bias affect the
output of these sensors, leading, in general, to prohibitive er-
rors, particularly for sensitive and high-performance navigation
systems. This justifies offline calibration as a method to over-
come these nonidealities. On the other hand, these coefficients
are often slowly time-varying, which renders offline calibra-
tion less effective and calls for dynamic parameter estimation.
This paper presented a calibration technique for a tri-axial ac-
celerometer and a novel dynamic filtering solution for the bias,
which also accounts explicitly for the estimation of the gravity
in body-fixed coordinates. Simulation results were shown that
evidenced the expectable performance of the proposed algo-
rithms. Finally, alow-cost accelerometer unit was calibrated and
the bias and gravity filter was evaluated experimentally. In the
tests a MRT was employed that provided ground truth signals
for performance evaluation purposes, both for offline calibra-
tion and dynamic bias and gravity estimation, and that allowed
to conclude that the proposed solutions exhibit excellent perfor-
mance. Future work will consist in the inclusion of the proposed
dynamic estimation solution in future navigation systems, pre-
viously adjusted with the calibration algorithm presented in this

paper.
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