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Abstract— In this paper we consider the problem of esti-
mating the attitude of a rigid body equipped with a triad of
rate gyros and a pan and tilt camera. The nonlinear attitude
observer integrates angular velocity measurements from rate
gyros, with images of a planar scene provided by the camera. By
exploiting directly sensor information, i) a stabilizing feedback
law is introduced and exponential convergence to the origin of
the estimation errors is shown; ii) an active vision system is
proposed that relies on an image-based exponentially input-to-
state stable (ISS) control law for the camera pan and tilt angular
rates to keep the features in the image plane. The discrete time
implementation of the observer makes use of recent results in
geometric numeric integration to preserve the rotation matrix
properties. Simulated and experimental results demonstrate the
effectiveness and applicability of the proposed solution.

I. INTRODUCTION

Computer vision has long been recognized as an extremely

flexible resource for sensing the environment and acquiring

valuable information for pose estimation and control. Vision-

based techniques can be seen as a reliable alternative to

GPS based navigation for the operation of Unmanned Aerial

Vehicles’ (UAVs) in indoor and urban environments. The aim

of this paper is the development of a nonlinear image based

observer to estimate the vehicle attitude relative to a set of

image features.

The use of cameras as positioning sensor in control and

navigation applications has its most significant representative

in the body of work devoted to vision-based control. Over the

years, this topic has been extensively studied, experimentally

tested, and is well documented (see for example [1] and

references therein). The literature on vision-based rigid-body

stabilization and estimation highlights important questions

and indicates possible solutions to i) keeping feature visi-

bility along the system’s trajectories for a large region of

attraction [2] ii) minimizing the required knowledge about

the 3-D model of the observed object [3], iii) guaranteeing

convergence in the presence of camera parametric uncer-

tainty and image measurement noise [3], iv) establishing

observability conditions for attitude estimation [4], [5].

In many applications it is desired to design observers based

only on the rigid body kinematics, that are an exact descrip-

tion of the physical quantities involved. In this approach,

the attitude of the vehicle is propagated by integrating
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Instituto Superior Técnico, Lisbon, Portugal. E-mails: {sbras, rita,
jfvasconcelos, cjs, pjcro}@isr.ist.utl.pt
Tel: (+351) 21-8418054, Fax: (+351) 21-8418291.

This work was partially supported by Fundação para a Ciência e a
Tecnologia (ISR/IST plurianual funding) through the POS Conhecimento
Program that includes FEDER funds and by the project PTDC/EEA-
ACR/72853/2006 HELICIM. The work of J.F. Vasconcelos was supported
by a PhD Student Scholarship, SFRH/BD/18954/2004, from the Portuguese
FCT POCTI programme.

inertial sensor measurements [6], [7], [8]. Research on the

problem of deriving a stabilizing law for systems evolving on

manifolds, where attitude is parameterized, can be found in

[9], [10], [11], [12], [13], that provide important guidelines

for observer design and discuss the topological limitations

to achieving global stabilization on the SO(3) manifold.

The development of numeric integration methods that

preserve geometric properties evolving on Lie groups has

witnessed in the last fifteen years a remarkable progress.

These methods were originally proposed by Crouch and

Grossman in [14]. In [15] the author construct generalized

Runge-Kutta methods for integration of differential equations

evolving on Lie groups, where the computations are per-

formed in the Lie algebra, which is a linear space. More

recently, the work in [16] describes commutator-free Lie

group methods to overcome some of the problems associated

with the computation of commutators. An application of geo-

metric numeric integration to multi-body dynamics evolving

in SE(3) can be found in [17].

In this work we consider the problem of estimating the

attitude of a rigid body equipped with a triad of rate gyros

and a pan and tilt camera. By exploiting directly sensor

information, a stabilizing feedback law with exponential

convergence to the origin of the estimation errors is pro-

posed. As a second goal, we develop an active vision system

targeted at keeping the features inside the image plane. For

that purpose, an image-based control law for the camera

pan and tilt angular rates is proposed. The discrete time

implementation of the observer is addressed using recent

results from numerical analysis.

The paper is structured as follows. In Section II, the

attitude estimation and the camera pan and tilt control prob-

lems are introduced. In Section III the attitude observers are

presented, and their properties are highlighted. The camera

pan and tilt controller is derived in Section IV. A low

complexity discrete time implementation of the observer is

presented in Section V. In Section VI simulations illustrate

the performance of the observer discrete time approximation

and the pan and tilt controller. A real time prototype is

described in Section VII, and some preliminary experimental

results are shown. Concluding remarks and comments on

future work are presented in Section VIII.

NOMENCLATURE

The 3-dimensional special orthogonal group and the spe-

cial Euclidean group are denoted by SO(3) and SE(3), re-

spectively. The notation diag(a) describes a diagonal matrix

formed by placing the elements of a ∈ R
n in the main

diagonal. A rotation matrix that transforms a vector from

frame {A} to frame {B} is denoted by B

A
R. The time
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Fig. 1. Diagram of the experimental setup.

dependence of variables will be omitted, unless required for

the sake of clarity.

II. PROBLEM FORMULATION

Consider a rigid body equipped with a triad of rate gyros

and a pan and tilt camera. Let {B} be the frame attached to

the rigid body, {L} the local frame attached to the feature

plane, and {C} the camera frame with origin at the camera’s

center of projection with the z-axis aligned with the optical

axis. The observed scene consists of four points whose

coordinates in {L} are denoted by Lxi ∈ R
3, i ∈ {1, . . . , 4}.

Without loss of generality, the origin of {L} is assumed

to coincide with the centroid of the feature points so that
∑

4

i=1

Lxi = 0.
The image based navigation problem illustrated in Fig. 1

can be summarized as the problem of estimating the attitude

of a rigid body given by the rotation matrix from {L} to

{B}, denoted as L

B
R, using images of the feature points and

angular velocity readings. An image-based controller for the

camera pan and tilt angles will also be considered to keep

the features in the image plane.

A. Sensor Suite

The triad of rate gyros is assumed to be aligned with {B}
so that it provides measurements of the body angular veloc-

ity ωB corrupted by a constant bias term ωr = ωB + bω ,

ḃω = 0.
As shown in Fig. 1, the camera can describe pan and tilt

motions corresponding to the angles ψ and φ, respectively.

As such the rotation matrix from {C} to {B} is given by
B

C
R = RpanRtilt, (1)

Rpan = Rz(π/2 + ψ), Rtilt = Rx(π/2 + φ)

where Rz(·) and Rx(·) denote rotation matrices about the

z-axis and x-axis, respectively. The distances between the

tilt rotation axis and the origins of {C} and {B}, are

respectively, l1 and l2.
For simplicity of notation, we denote the configuration of

{C} with respect to {L} by (R,p) ∈ SE(3), where R = L

C
R

is the rotation matrix from {C} to {L} and p the position

of the origin of {L} with respect to {C}. Then, the 3-D

coordinates of the features points expressed in {C} can be

written as qi = RT Lxi + p, i ∈ {1, . . . , 4} and, using the

perspective camera model [5], the 2-D image coordinates of

those points yi ∈ R
2 can be written as
[

yi

1

]

= δiAqi, (2)
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Fig. 2. Block diagram of the attitude observer and camera controller. The

quantities R̂ and b̂ω are, respectively, the attitude and angular rate bias
estimates.

where A ∈ R
3×3 is the camera calibration matrix assumed

to be known and δi is an unknown scalar encoding depth

information and given by δi = (eT

3
qi)

−1, e3 = [0 0 1]T .

B. Attitude kinematics

In what follows, we will address the problem of estimating

the attitude of the camera frame {C} with respect to the

local frame {L} given by R ∈ SO(3). Assuming that the

camera pan and tilt angles are known, we can readily obtain

the attitude of the rigid body L

B
R = RC

B
R as proposed. The

camera frame attitude kinematics can be described by

Ṙ = R[ω]×, (3)

where once again for simplicity of notation ω ∈ R
3 denotes

the camera angular velocity and [x]× is the skew symmetric

matrix defined by the vector x ∈ R
3 such that [x]×y = x×y,

y ∈ R
3. Taking the time derivative of (1), straightforward

computations show that ω can be written as

ω = C

B
RωB + RT

tilt[φ̇ 0 ψ̇]T , (4)

where ψ̇ and φ̇ are the time derivatives of the camera pan

and tilt angles, respectively.

C. Problem Summary

In summary, the estimation problem addressed in this

paper can be stated as follows:

Problem 1: Consider the attitude kinematic model de-

scribed by (3). Design a dynamic observer for R based on

ωr and yi, i = {1, . . . , 4}, with the largest possible basin of

attraction.

To develop an active vision system using the camera

pan and tilt degrees of freedom, we consider the following

problem:

Problem 2: Let ȳ be the image of the features’ centroid

given by [ȳT 1]T = δ̄Ap, δ̄ = (eT

3
p)−1. Design a control

law for ψ̇ and φ̇ based on ωr and yi, i ∈ {1, . . . , 4}, such

that ȳ approaches the center of the image plane.

Figure 2 depicts the cascaded composition of the system,

where the angular rate bias estimate is fed into the pan and

tilt controller.

III. ATTITUDE OBSERVER

In the following, we propose a solution to Problem 1 that

builds on results presented in [6], where a nonlinear position

and attitude observer based on landmark measurements and

biased velocity measurements was shown to provide expo-

nential convergence to the origin for the position, attitude,

and bias errors. The proposed observer is designed to match

the rigid body attitude kinematics taking the form

˙̂
R = R̂[ω̂]×, (5)



where R̂ is the estimated camera attitude and ω̂ is the

feedback term designed to compensate for the estimation

errors.

Some rotational degrees of freedom are unobservable in

the case features are all collinear as discussed in [6] and

references therein. The following necessary condition for

attitude estimation is assumed.

Assumption 1: The features are not all collinear.

We will consider a feedback law for ω̂ that uses measure-

ments of the form

U = RT [Lu1 . . . Lun] ∈ R
3×n, (6)

where Lui ∈ R
3 are time-invariant in the local frame {L}. To

obtain these vector readings from the image coordinates yi,

we explore the geometry of planar scenes. For that purpose,

we introduce the matrices

X =
[

Lx1 · · · Lx4

]

, Y =

[

y1 · · · y4

1 · · · 1

]

,

where Lxi are the 3-D coordinates of the feature points

expressed in {L} and yi the corresponding 2-D image

coordinates. We can now state the following lemma.

Lemma 1: Let σ = [σ1 σ2 σ3 σ4]
T ∈ R

4 \ {0} and

ρ = [ρ1 ρ2 ρ3 ρ4]
T ∈ R

4 \ {0} be such that Yσ = 0,

Xρ = 0, and 1T
ρ = 0, where 1 = [1 1 1 1]T . Consider

that the features verify the Assumption 1 and the camera

configuration is such that the image is not degenerate (neither

a point nor a line). Then, the depth variables δi can be

written as δi = α ρi

σi
,where α ∈ R, ρi 6= 0, and σi 6= 0

for i ∈ {1, 2, 3, 4}.

Proof: See [18].

Writing (2) in matrix form and using Lemma 1, we have

Y = A(RTX − p1T )αD−1

σ Dρ, where Dρ = diag(ρ).
From the feature centroid constraint X1 = 0, it follows that

αRTX = A−1YD−1

ρ Dσ(I − 1

4
11T ),which takes the form

of (6) up to a scale factor. We can use the properties of the

rotation matrix and the positive depth constraint δi > 0 to

obtain the normalized vector readings

x̄i = RT

Lxi

‖Lxi‖
= sign(α)

αRT Lxi

‖αRT Lxi‖
. (7)

where sign(α) = sign
(

ρi

σi

)

. Finally, we define the matrix U

using linear combinations of (7) so that U = X̄AX , where

AX ∈ R
5×5 is nonsingular and X̄ = [x̄1, . . . , x̄4, x̄i × x̄j ]

for any linear independent x̄i and x̄j .

The directionality associated with the features positions

is made uniform by defining transformation AX such that

UUT = I. The desired AX exists if Assumption 1 is satisfied

[6].

Let the bias in angular velocity measurements be constant,

i.e. ḃω = 0, and consider the Lyapunov function

V =
||R̃ − I||2

2
+

1

2kbω

||b̃ω||
2,

where kbω
> 0, b̃ω := b̂ω − bω, and b̂ω is the estimated

bias in angular velocity measurements. Its time derivative is

given by

V̇ = sT

ω(ω̂ − C

B
Rω) +

1

kbω

˙̃
bT

ωb̃ω, (8)

where sω = RT [R̃−R̃T ]⊗, and [·]⊗ is the unskew operator,
such that, [[a]×]⊗ = a, a ∈ R

3. The feedback term sω can
be expressed as an explicit function of the sensor readings
[6, Theorem 8]. Consider the attitude feedback law

ω̂ = C

BR(ωr − b̂ω + R
T

pan[φ̇ 0 ψ̇]T ) − kωsω

= C

BR(ω − b̃ω) − kωsω,
(9)

where kω > 0. Applying the feedback law (9) to the

Lyapunov function (8) and defining

˙̂
bω := kbω

B

C
Rsω, (10)

the Lyapunov function derivative is given by V̇ =
−kω||sω||

2.
Considering the feedback law (9) and the differential

equation (10), the closed loop attitude error dynamics results
in

˙̃R = −kωR̃(R̃ − R̃T ) − R̃[RC

BRb̃ω]×
˙̃
bω = kbω

B

CRRT [R̃ − R̃T ]⊗
(11)

Lemma 2 provides sufficient conditions for the bounded-

ness of the estimation errors that exclude convergence to

the equilibrium points satisfying ||R̃ − I||2 = 8. Global

asymptotic stability of the origin is precluded by topological

limitations associated with those points [19].

Lemma 2: The estimation errors x̃b = (R̃, b̃ω) are

bounded. For any initial condition that verifies

1

kbω

||b̃ω(t0)||
2

8 − ||R̃(t0) − I||2
< 1, (12)

the attitude error is bounded and ||R̃(t) − I||2 < 8 for all

t ≥ t0.

Exploiting the results derived for LTV systems in [20],

Theorem 1 establishes the exponential convergence of the

system (11) trajectories to the desired equilibrium point.

Theorem 1: Assume that ω, ψ̇ and φ̇ are bounded. Then

the attitude error and the bias estimation error converge

exponentially fast to the equilibrium point (R̃, b̃ω) = (I, 0),
for any initial condition satisfying (12).

Due to space constraints, the proofs of Lemma 2 and

Theorem 1 are omitted. However they can be obtained by

adaptation of the derivation used in [6, Lemma 6] and [6,

Theorem 7], respectively.

IV. CAMERA PAN AND TILT CONTROLLER

In this section, we address the problem of keeping the

features inside the image plane, exploring the camera’s

ability to describe pan and tilt angular motions. As stated in

Problem 2, the strategy adopted to achieve this goal amounts

to controlling the camera pan and tilt angular velocities ψ̇
and φ̇, using directly the image measurements yi and the

angular velocity readings ωr, so as to keep the image of the

features’ centroid at a close distance from the center of the

image plane.

We resort to Lyapunov theory and consider the following

candidate Lyapunov function

W =
1

2
pT Πp =

1

2
(p2

x + p2

y), (13)

where p = [px py pz]
T is the position of {L} expressed

in {C} and Π ∈ R
3×3 is the x-y plane projection matrix.
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Fig. 3. Projection of the visual features in the image plane.

Using the expression for ω given in (4), the camera position

kinematics can be written as

ṗ = [p]×ω − v

= [p]×(RT

tiltR
T

panωB + RT

tilt[φ̇ 0 ψ̇]T ) − v, (14)

where v is the camera linear velocity. Recall that by defini-

tion p coincides with the position of the features’ centroid

and its image is given by ȳ. Therefore, by guaranteeing

that the Lyapunov function W is decreasing, or equivalently

[px py] is approaching the origin, we can ensure that ȳ is

approaching the center of the image plane. To simplify the

notation and without loss of generality, assume from now on

that A = I so that ȳx = px/pz and ȳy = py/pz .

Before proceeding to define the pan and tilt control law,

we highlight the fact that ȳ can be easily obtained from the

image measurements yi. By noting that the feature centroid

lies at the intersection between the vectors x3−x1 and x4−
x2 and the intersection between lines is clearly an image

invariant, we can immediately conclude that ȳ coincides with

the point at the intersection between y3 − y1 and y4 − y2

(see Fig. 3).

Lemma 3: Let the camera position kinematics be de-

scribed by (14) and assume that the rigid body and camera

motions are such that pz > 0 and cos φ 6= 0. Consider the

control law for the camera pan and tilt angular velocities

given by
[

φ̇

ψ̇

]

= kc

[

0 −1
1

cos φ
0

]

ȳ −

[

1 0 0
0 tanφ 1

]

RT

panω̂B, (15)

where ω̂B = ωr − b̂ω and kc > 0. Then, the time derivative
of the Lyapunov function W along the system trajectories
satisfies

Ẇ ≤ −(kc − ǫ)W, ∀ ‖Πp‖ ≥
1

ǫ

(

‖Πv‖ + pz‖b̃w‖
)

, (16)

and 0 < ǫ < kc.

Proof: Taking the time derivative of (13) and using the

expressions for ṗ given in (14), we obtain

Ẇ = pT Π(pz[e3]×ω − v)

= pz[py − px 0]RT

tilt(R
T

panωB + [φ̇ 0 ψ̇]T ) − pT Πv.

Choosing φ̇ and ψ̇ such that

RT

tilt(R
T

panω̂B + [φ̇ 0 ψ̇]T ) = −kc[−ȳy ȳx κ]T , (17)

for some κ and noting that ωB = ω̂B − b̃w yields Ẇ =
−kcW − pT Π(v + pz[e3]×

C

B
Rb̃w) and consequently (16)

holds. Solving (17) for φ̇, ψ̇, and κ, we obtain the control

law (15).

Remark 1: If we apply the control law (15) to the system

with state Πp = [px py]T and interpret v and pzb̃w as inputs,

it follows from (16) that the system is exponentially input-to-

state stable (ISS). As such, the distance between the image

of the centroid ȳ and the origin is ultimately bounded by

‖Πv/pz‖ and ‖b̃w‖ and converges exponentially fast to that

bound. Moreover, if Πv/pz and b̃w converge to zero so does

ȳ.

V. DISCRETE TIME IMPLEMENTATION

In this section we describe a procedure to implement the

attitude observer proposed in Section III in discrete time.

Classic Runge-Kutta methods cannot be correctly applied

to rotation matrix dynamics since they are not able to

preserve polynomial invariants like the determinant [21,

Theorem IV.3.3]. An alternative is to apply a method that

preserves orthogonality, like a Lie group integrator.

The attitude observer dynamics is composed by differential

equations (5) and (10), evolving in SO(3) and R
3, respec-

tively. The first is integrated resorting to geometric numeric

integration methods namely, the Crouch-Grossman Method

(CG) [14], the Munthe-Kaas Method (MK) [15], and the

Commutator-Free Lie group Method (CF) [16]. The second

is implemented in discrete time using a classical numeric

integration technique.

The presented geometric numerical integration algorithms

require the knowledge of the function ω̂(t) at instants

between sampling times. Different sampling and computation

strategies can be adopted to obtain an approximation of this

function using methods such as polynomial interpolation of

the sampled data. In the present work, the unit is equipped

with tactical grade inertial sensors and computational re-

sources are limited, then ω̂ is linearly interpolated in the

interval [(k − 1)T, kT ], where T is the sample period.

Due to the adopted interpolation, the use of integration

methods with order higher than two does not improve the

methods accuracy, hence we narrow our analysis to second

order methods. The complexity required to implement each

step of the second order CG and MK methods, is summarized

in Table I, for the operations in SO(3), exponential map

(Exp), inverse of the differential of the exponential map

(Dexp-1), and 3×3 matrix multiplication (mmult), as defined

in [17]. The coefficients for these methods can be obtained in

[21] and [17]. Note that there is no second order CF method

and higher orders imply higher computational cost, hence it

was not included in Table I. Due to its lower computational

cost, the second order CG method is selected.

TABLE I

COMPLEXITY IN EACH STEP FOR CG, MK AND LC METHODS.

operation Exp Dexp-1 mmult

CG 2nd order 1 0 1

MK 2nd order 1 1 2

The discrete time implementation of equation (10) was
obtained by using a second order Adams-Moulton Method,
see [22] for further details. This selection was done based on
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arguments similar those used for (5). The resulting numerical
integration algorithm can be summarized as

b̂ω k = b̂ω k−1 +
T

2

(

kbω

B

CRksω k + kbω

B

CRk−1sω k−1

)

,

Rk = Rk−1 Exp
(

TK(1)
)

, K(1) = [ω̂ (kT − T/2)]×,

where ω̂(kT − T/2) ≈ 1

2
(ω̂(kT − T ) + ω̂(kT )).

VI. SIMULATION

To assess the effectiveness of the proposed ensemble, this

section illustrates, in simulation, the dynamic behavior of

the active camera pan and tilt controller and the discrete

time implementation of the attitude observer about a typical

vehicle maneuver. The tuning capabilities of the observer and

the controller are also displayed for two sets of feedback

gains.

In the simulation, the positions of the features are Lx1 =
[0 − 1 − 1]T m, Lx2 = [0 1 − 1]T m, Lx3 = [0 − 1 1]T m,

and Lx4 = [0 1 1]T m, that satisfy
∑

4

i=1

Lxi = 0 and

Assumption 1. The distances l1 and l2 are set to 0.1 m,

and 0.2 m, respectively. The vehicle simulated trajectory is

characterized by a circular motion parallel to the Lx,L y,
plane with a radius of 2 m. The associated centrifugal

acceleration is aligned with the direction of the Bz axis,

the initial velocity is −4π/12.5 m s−1 along the By axis,

and at time 10 s the velocity decreases linearly during 5 s,

reaching zero when the vehicle reaches the starting point of

the maneuver. The observer sample time is set to 0.02 s.

The initial estimation errors in the simulations are

||R(0) − I|| = 1.4460, b̃ω(0) = π
180

[0.5 0.5 0.5]T rad, and

the initial pan and tilt camera angles are both set to

20 π
180

rad, thus, (12) is satisfied by the initial conditions.

Figure 4 illustrates the stability and the convergence of

the estimation errors of the observer discrete time imple-

mentation, validating the results of the Section III. The time

evolution of the norm of the center of the features, ||ȳ||, and

the actuation imposed by the camera pan and tilt controller

are shown in Fig. 5. The overshoot on ||ȳ|| is due to the

initial bias estimation error. Notice that, as expected, when

the camera linear velocity is non zero the center of the

features in the image plane differs from the center of the

image. The figures also show that the feedback gains can be
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used to tune the convergence characteristics of the observer

and the controller.

VII. EXPERIMENTAL RESULTS

In this section we describe the practical implementation

of the proposed observer and camera pan and tilt controller.

The experimental setup used is composed by a MemSense

nIMU, that provides the angular velocity measurements and

an AXIS 215 PTZ Camera. The sensor measurements are

provided to the estimator without any pre-filtering. The

features considered consist of circles segmented by color and

placed in Lx1 = [0 −0.5 −0.3]T m, Lx2 = [0 0.5 −0.3]T m,
Lx3 = [0 − 0.5 0.3]T m and Lx4 = [0 0.5 0.3]T m. The

distances l1 and l2 of the AXIS 215 PTZ are 0 m, and

0.088 m, respectively. The system sampling frequency is set

to 10 Hz due the time constrains on the communication with

the camera and the image processing time. In the following,

and for the sake of readability, the estimator results are

displayed using Z-Y-X Euler angles, roll, pitch, and yaw,

from frame {B} to frame {L}.

The selected gains are kω = 1, kbω
= 0.01, and kc = 0.5.

Notice that the use of high values for the gains kbω
gives

better bias estimation characteristics but reduces the accuracy

of the attitude estimates, since the estimator tends to amplify

the measurements noise. Therefore, a compromise needs to

be considered, function of the sensors noise characteristics

and the desired estimator performance.

The experimental setup only guarantees a reliable ground

truth to the Bz axis, hence the experiment consisted in

rotating the system about this axis. The rotation takes place

at time t = 84 s. The initial roll, pitch, and yaw angles are

0 rad, 0 rad, and −2π/180 rad, respectively, and the final are

0 rad, 0 rad, and −45π/180 rad (0.7854 rad), respectively.

The initial camera pan and tilt angles are set to zero.

The time evolution of the attitude and bias estimation is

shown in the Fig. 6. It is clear the attitude estimate converges

to the real attitude when the system is disturbed and the

rate gyros bias reaches a steady state. Furthermore, we

highlight the overall accuracy of the estimates. The standard

deviation of the roll, pitch and yaw angles in the first 84 s of
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Fig. 7. Time evolution of the position of the center of the features in the
image coordinates and the camera pan and tilt velocities.

the experiment are 0.0842π/180 rad, 0.2989π/180 rad, and

0.3466π/180 rad, respectively.

Figure 7 depicts the position of the center of the features

relatively to the image center, and the camera pan and tilt

velocity. As predicted by the theoretical results the actuation

increases with the error, and the error converges to zero when

the system is in a stationary position. Due to the fact that

camera pan and tilt velocity commands are integer values of

degrees per second the actuation signals are quantized.

VIII. CONCLUSIONS

This paper addressed the problem of estimating the attitude

of a rigid body equipped with a triad of rate gyros and

a pan and tilt camera. Based only on the position of four

features in the image plane and biased angular velocity

measurements, the error estimates obtained by the observer

converge exponentially fast to the origin. In order to keep the

features in image, an exponentially ISS nonlinear controller

for the pan and tilt camera angles was proposed. Simulations

were presented to illustrate the dynamic behavior of the

overall solution. A simple experimental evaluation with a

real time prototype exhibited good performance and attested

the applicability of the proposed technique.
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