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SUMMARY

This paper presents a new methodology for the design and implementation of gain-scheduled
controllers for multi-rate systems. The proposed methodology provides a natural way to address the
integrated guidance and control problem for autonomous vehicles when the outputs are sampled at
different instants of time. A controller structure is first proposed for the regulation of non-square multi-
rate systems with more measured outputs than inputs. Based on this structure, an implementation for
a gain-scheduled controller is obtained that satisfies an important property known as the linearization
property. The implementation resembles the velocity implementation for single-rate systems. The
method is then applied to the problem of steering an autonomous rotorcraft along a predefined
trajectory defined in terms of space and time coordinates. By considering a convenient error vector
to describe the vehicle’s dynamics the trajectory tracking problem is reduced to that of regulating
the error variables to zero. Due to the periodic multi-rate nature of the onboard sensor suite, the
controller synthesis is dealt with under the scope of linear periodic systems theory. Simulation results
obtained with a full non-linear rotorcraft dynamic model are presented and discussed. Copyright c©
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last few decades there has been a surge of interest in the development of efficient
and reliable guidance and control algorithms for unmanned vehicles. An endless number of
applications are reported in the literature, ranging from underwater geological surveillance [14]
to spacecraft missions [19]. Increasing advances in sensor technology call for the development
and design of control systems capable of taking full advantage of the sensors characteristics.
Moreover, the designer is often faced with challenging control problems due to the choice of
cost-effective sensor solutions.
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Traditionally, the guidance and control problem for autonomous vehicles involves the design
of an inner and an outer loop [18]. The inner loop is designed to stabilize the vehicle dynamics
and usually requires a high sampling rate, whereas the outer loop design relies essentially on
the vehicle’s kinematic model, converting tracking errors into inner loop commands, and is
amenable to a lower sampling rate. As explained in [17], since the two systems, kinematics
and dynamics, are effectively coupled, stability and adequate performance of the combined
systems are not guaranteed. An interesting feature of this technique is that, since the kinematic
variables are commonly available at lower rates (consider for example the case of a GPS
receiver), the design of the different loops at different rates often handles naturally the multi-
rate characteristic of the sensors.

Another line of work, presented in [6], [9], [17] proposes and integrated solution for the
guidance and control problem. This solution amounts to applying a conveniently defined path-
dependent transformation to the vehicle’s equations of motion, which involves both kinematic
and dynamic variables of the vehicle. In this new space, referred to as error-space, the problems
of trajectory tracking or path-following reduce to the problem of driving this newly-defined
error to zero. The family of error transformations presented in [6], [9], [17] have the notable
property of guaranteeing that the linearization of the error dynamics is time-invariant along
trimming trajectories, which comprise arbitrary straight lines and z -aligned helices. Since the
vehicle’s dynamic behavior changes considerably throughout its flight envelope, gain-scheduling
control laws, which have become a standard solution in flight control systems, are typically
used. In this setting, the multi-rate characteristics of the sensors have been traditionally
handled by the navigation system design [14] without guaranteeing the performance (or even
the stability) of the overall closed loop system, although the problem can be formulated as a
control design problem.

This paper follows the line of work reported in [6], [9], [17], adopting the integrated guidance
and control approach and proposes a novel method to take into account the multi-rate
characteristics of the sensors in the controller design. To this effect, theoretical results are first
derived which make use of the existing background for multi-rate systems and gain-scheduling
theory. The theory for multi-rate systems is intimately related with the theory of periodically
time-varying systems. See, for example, [15] and the references therein for early work on the
subject and [13] for more recent developments. Noteworthy is the bulk of work in this field
by Bittanti, Colaneri and co-workers. With particular interest to the present paper are the
definitions of stabilizability and detectability for periodic systems [1], and the solutions of
the problems of regulation for square multi-rate systems [5], output stabilization for periodic
systems [3], and LQG optimal control for multi-rate systems [4]. In the field of gain-scheduling
an excellent survey can be found in [16]. The commonly adopted method for the development
of gain-scheduled controllers, which is also followed in the current paper, involves the following
steps:

1. Obtain a family of parameter dependent linear models, usually by Jacobian linearization
of the plant about a finite number of representative operating points characterized by
parameter values. The parameters correspond to fixed values of scheduling variables,
which are functions of internal state variables and exogenous signals.

2. Design a family of linear controllers for the family of parameter dependent linear models.
If a finite set of linearized plant models is available from the first step, then linear
controllers are designed for each linear model, corresponding to a fixed parameter
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value, and their coefficients are interpolated. Typically the interpolation is such that
the controllers coefficients depend continuously on the parameters.

3. Implement the gain-scheduled controller on the nonlinear plant. The controller
coefficients (gains) computed for time-frozen parameters are changed on-line according
to the current value of the scheduling variables.

4. Perform extensive simulations for the resulting control system to access its performance
characteristics.

Since the controllers are designed for time-frozen parameters and when implemented the
parameters are allowed to vary, the linearization of the nonlinear gain-scheduled controller
about a given equilibrium point does not in general match the designed time-frozen linear
controller. This mismatch is commonly known as the hidden coupling [16] and might lead to
performance degradation or even instability. Therefore, for a correct implementation of the
controllers, the following property is required to hold:

Linearization property: At each equilibrium point, the nonlinear gain-scheduled controller must
linearize to the linear controller designed for that equilibrium.

A technique known as the velocity implementation, presented in [10], [11] and discussed
in [12], [16] which is related with the work presented herein, provides a simple solution for
the implementation of controllers with integral action that satisfies the linearization property.

Based on the foundations of gain-scheduling and multi-rate control theory and motivated
by the problem at hand, the contributions of this paper are two fold: i) a new structure is
proposed for the regulation of non-square multi-rate systems with more outputs than inputs
and, based on this structure, ii) a straightforward method is obtained for the implementation of
gain-scheduled controllers for multi-rate systems that satisfy the linearization property. Using
these results, and casting the integrated guidance and control problem as a regulation problem,
we are able to solve in a systematic manner the guidance and control problem for autonomous
vehicles equipped with multi-rate sensor suite. An application of this methodology is presented
which tackles the trajectory tracking problem of steering an autonomous rotorcraft along a
pre-defined trajectory. The synthesis of linear controllers, one of the stages in the design of
the gain-scheduled controller, makes use of the H2 control synthesis framework for periodic
systems. The performance of the resulting non-linear multi-rate guidance and control law is
compared to that obtained with a standard single-rate compensator designed using equivalent
weighting matrices in the H2 controller design problem.

The remainder of the paper is organized as follows. First we develop a theoretical framework
for the design of multi-rate gain scheduled controls valid for a wide class of non-linear systems.
Section 2 describes the problem formulation and Sections 3 and 4 present the main results:
the regulator structure and gain-scheduling implementation, respectively. In Section 5 we
apply the proposed methodology to the design of an integrated guidance and control system
that addresses the trajectory tracking problem for a small-scale rotorcraft, and evaluate the
performance of the resulting nonlinear feedback system in simulation. Section 6 presents some
concluding remarks.
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1.1. Notation

The space of n-dimensional continuous-time signals, x(t) : R
+ �→ R

n, is denoted by L(R+,Rn)
or simply by L(R+) and the space of n-dimensional discrete-time signals, xk : Z

+ �→ R
n,

is denoted by l(Z+,Rn) or simply by l(Z+). The notation diag([a1 a2 . . . an]) indicates
a block diagonal matrix where the entries ai can be either scalar or matrices. Whenever
the matrices dimensions are clear, identity and zero matrices are denoted by I and 0.
Otherwise the dimensions are explicit indicated as in I3×3, 03×2. A vector of n ones is
denoted by 1n = [1 1 . . . 1]

T
. For dimensionally compatible matrices A and B, we define

(A,B) := [AT BT ]T . Further notation will be introduced when necessary.

2. PROBLEM FORMULATION

Consider the nonlinear system

G =

⎧⎪⎨
⎪⎩
ẋ(t) = f(x(t), u(t), w(t))

y(t) = h(x(t), w(t))

z(t) = g(x(t), u(t), w(t))

(1)

where x(t) ∈ R
n is the state and u(t) ∈ R

m is the control input. The vector w(t) =
[r(t)T d(t)T ]

T
∈ R

nw is a vector of exogenous signals where r(t) represents references to be
tracked and d(t) represents both external disturbances and measurement noise. The vector
y(t)= [ym(t)T yr(t)

T ]
T

=[hm(x(t), w(t))T hr(x(t), w(t))T ]
T
∈ R

p contains a vector of measured
outputs ym(t) ∈ R

nym and a vector of reference tracking outputs yr(t) ∈ R
nyr , which we

assume to have the same dimensions as the control input, nyr
= m. This vector is required to

track the reference r(t) with zero steady-state error, i.e, the vector e(t) defined as

e(t) = yr(t) − r(t)

must satisfy e(t) = 0 at steady-state. Some of the components of yr(t) may be included in
ym(t) as well. Finally, the vector z(t) ∈ R

nz is a performance output. We assume that f and
g are continuously differentiable functions.

2.1. Linearization family

We assume that there exists a family of equilibrium points for G of the form

Σ={(x0, u0, w0) : f(x0, u0, w0) = 0, yr0 = hr(x0, w0) = r0, (x0, u0, w0) ∈ Ω ⊂ R
n+m+nw}

(2)
which can be parameterized by a vector α0 ∈ Ξ ⊂ R

s, such that

Σ = {(x0, u0, w0) = a(α0), α0 ∈ Ξ}

where a is a continuously differentiable function. In the vector w0(α0) = [r0(α0) d0(α0)] we
set d0(α0) = 0 since the exogenous input d is not known in advance. We further assume that
there exists a continuously differentiable function v such that α0 = v(y0, w0). By applying the
function v to the measured values of y and w, we obtain the variable

α = v(y, w) (3)
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which is usually referred to as the scheduling variable.

Linearizing the nonlinear system G about each point in the equilibrium manifold Σ,
parameterized by α0, yields the family of linear systems

Gl(α0) =

⎡
⎣ẋδ(t)
zδ(t)
yδ(t)

⎤
⎦ =

⎡
⎣A(α0) B1(α0) B2(α0)
C1(α0) D11(α0) D12(α0)
C2(α0) D21(α0) 0

⎤
⎦

⎡
⎣xδ(t)
wδ(t)
uδ(t)

⎤
⎦ (4)

where, for example, A(α0) = ∂f
∂x

(a(α0)) and xδ(t) = x(t) − x0.

2.2. Multi-rate sensors and actuators

We consider that the sample and hold devices that interface the discrete-time controller and
the continuous-time plant operate at different rates. The setup is shown in Figure 1, where
the generic discrete-time controller is denoted by K.

G

K

yp(t)y2(t)y1(t)

ypky2ky1k

w z

u1(t)u2(t)um(t)

u1ku2kumk

S1 S2 SpH1H2Hm

Figure 1. Multi-rate setup

Associated with each sampler Si there is a sequence of sampling times {σi1, σ
i
2, ..} that

satisfies 0 < σij < σij+1. Similarly, associated with each holder Hi there is a sequence of

sampling times {τ i1, τ
i
2, ..} that satisfies 0 < τ ij < τ ij+1. We assume that the sample and hold

operations are periodic and that their periods are related by rational numbers. Thus we can
define a sequence of equally spaced time instants {t0, t1, ...}, tk+1 − tk = ts, k ∈ Z

+, such that
for every sampling time σij and hold time τ ij there exists a k1 and a k2 for which σij = tk1 and

τ ij = tk2 .

Each mapping Si : yi(t) ∈ L(R+) → yik ∈ l(Z+) is given by

(Siyi)k = gi(k)yi(tk) = yik, gi(k) =

{
1 if σij = tk for some j

0 otherwise

meaning that the output of the sampler Si is zero if channel i is not sampled at time tk, and
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each mapping Hi : uik ∈ l(Z+) → ui(t) ∈ L(R+) is given by

ξik+1 = (1 − ri(k))ξik + ri(k)uik, ξi0 = 0

ũik = (1 − ri(k))ξik + ri(k)uik ri(k) =

{
1 if τ ij = tk for some j

0 otherwise

ui(t) = ũik t ∈ [tk, tk+1)

Defining the matrices
Γk = diag(g1(k), ..., gp(k))

and
Ωk = diag(r1(k), ..., rm(k))

the multi-rate sample and hold operations can be written in compact form as

S : y(t) ∈ L(R+) → yk ∈ l(Z+)

yk = Γky(tk)

H : uk ∈ l(Z+) → u(t) ∈ L(R+)

ξk+1 = (I − Ωk)ξk + Ωkuk ξ0 = 0

ũk = (I − Ωk)ξk + Ωkuk

u(t) = ũk t ∈ [tk, tk+1) (5)

where due to the periodic nature of the sample and hold devices, for some positive integer h
which denotes the period, we have

Γk = Γk+h Ωk = Ωk+h.

This set of h-periodic matrices completely characterize the multi-rate setup.
The operators S : L(R+) → l(Z+) and H : l(Z+) → L(R+) can be decomposed into

S = ΓdSts and H = HtsΩd, with

Ωd :uk ∈ l(Z+) → ũk ∈ l(Z+)

ξk+1 = (I − Ωk)ξk + Ωkuk ξ0 = 0

ũk = (I − Ωk)ξk + Ωkuk

Hts :ũk ∈ l(Z+) → u(t) ∈ L(R+)

u(t) = ũk t ∈ [tk, tk+1)

Sts :y(t) ∈ L(R+) → ỹk ∈ l(Z+)

ỹk =

[
ỹmk
ỹrk

]
= y(tk)

Γd :ỹk ∈ l(Z+) → yk ∈ l(Z+)

yk = Γkỹk =

[
Γmk 0
0 Γrk

] [
ỹmk
ỹrk

]
where Γk =

[
Γmk 0
0 Γrk

]
has been partitioned according to the output decomposition

yT = [yT

m yT

r ].
The following definitions will also be useful. Given the set of matrices Γk , k = 0, .., h− 1 ,

we define Γ as
Γ̄ = diag([Γ0 Γ1 . . .Γh−1]) (6)

which is of the form Γ̄ = diag([γ1 γ2 . . . γh×p]), where the γi are either zero or one, and we
also define a projection matrix ΠΓ which extracts the nonzero components of Γ̄v, for some
vector v

ΠΓΓ̄v = [vi1 vi2 . . . vin̄ ] T (7)
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and satisfies
ΠT

ΓΠΓ = Γ̄ ΠΓ ΠT

Γ = In̄×n̄ ΠΓ = ΠΓΓ̄.

Matrices Γ̄m, Γ̄r, Ω̄ and ΠΓm
, ΠΓr

, ΠΩ are defined in the same manner. Similarly to y(t), the
values of r(t) at sampling instants tk will be denoted by r̃k and to take into account the multi-
rate nature of the outputs we define rk = Γrk r̃k. We can then introduce the error variables
ẽk = ỹrk − r̃k and ek = yrk − rk.

2.3. Problem Statement

Given this setup the problem addressed in this paper can be stated as follows:
Problem statement:

I. For a fixed operating point α0, find a possibly time-varying discrete-time linear controller
C(α0) : [ymδk, eδk] → uδk

C(α0) =

⎧⎨
⎩

[
xc

δk+1

uδk

]
=

[
Ack(α0) Bc

1k(α0) Bc
2k(α0)

Cck(α0) Dc
1k(α0) Dc

2k(α0)

] ⎡
⎣ xc

δk

yδmk

eδk

⎤
⎦ (8)

for the linearization of the nonlinear plant (4) with interface (5) that stabilizes the
resulting closed-loop system and achieves zero steady-state error for ek, where uδk =
uk − u0, ymδk = ymk − Γmkym0, ym0 = hm(x0, w0) and eδk = ek.

II. Based on the family of linear controllers C(α0), implement a discrete-time controller K,
possibly nonlinear and time-varying, that satisfies the linearization property and takes
the form

K =

{
xck+1 = fc(x

c
k, ymk, ek, αk, k)

uk = hc(x
c
k, ymk, ek, αk, k)

, (9)

where xck ∈ R
nK , and for a given k, fc and hc are continuously differentiable functions of

their arguments. Given its dependence on αk, the scheduling variable sampled at time
tk, K is referred to as a gain-scheduled controller. By linearization property we formally
mean that if we consider a family Σc of equilibrium points for the controller compatible
with Σ, defined in (2), such that

Σc = {xc0 : xc0 = fc(x
c
0, ym0, 0, α0, k), u0 = hc(x

c
0, ym0, 0, α0, k), ym0 = hm(x0, w0)

and (x0, u0, w0) = a(α0), α0 ∈ Ξ},
(10)

the controller K linearizes to C(α0), at each equilibrium point α0, that is,

∂fc
∂xc

(ac(α0), k) = Ack(α0)
∂fc
∂ym

(ac(α0), k) = Bc1k(α0)
∂fc
∂e

(ac(α0), k) = Bc2k(α0)

∂hc
∂xc

(ac(α0), k) = Cck(α0)
∂hc
∂ym

(ac(α0), k) = Dc
1k(α0)

∂hc
∂e

(ac(α0), k) = Dc
2k(α0),

ac(α0) = (xc0, ym0, 0, α0)

In Section 3 we propose a controller structure that solves Part I of the problem statement.
This structure renders a simple implementation for the controller, which is described in
Section 4, where we prove that the linearization property is verified for this implementation
(Part II of the problem statement).
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3. REGULATOR STRUCTURE

In this section we focus on proving the existence of a linear controller for the system Gl
defined in (4)), with interface SH , given by (5), that achieves closed loop stability and zero
steady-state error for the desired outputs. To simplify the notation, both the dependency
on α0, which here is assumed a constant parameter, and the δ subscript, which indicates
deviation from equilibrium variables, are dropped. For example, we will use A instead of
A(α0) and x(t) instead of xδ(t). We will come back to this local point of view at the end of
the section. Furthermore, since w(t), z(t), and the associated matrices play no role in stability
and regulation issues, they will also be temporarily disregarded. The equations for the plant
are then simply given by

Gl =

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) +B2u(t)

y(t) =

[
ym(t)
yr(t)

]
= C2x(t) =

[
Cm
Cr

]
x(t)

(11)

Due to the periodic nature of the multi-rate sample and hold devices some of the systems
involved in this paper will be linear periodically time-varying, and therefore we first review
some of the results regarding periodic systems. Then we present an existing solution for the
regulation of multi-rate square linear systems and propose a solution for the regulation of
non-square systems.

3.1. Periodic systems theoretical background

Consider the discrete-time linear periodic system

P =

{
xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk
(12)

with initial time k = 0 and initial condition x0 and where Ak, Bk, Ck, and Dk are h-periodic
matrices, for example, Ak = Ak+h. The lifted time-invariant system P̄ associated with P is
defined as

P̄ =

{
x̄l+1 = Āx̄l + B̄ūl

ȳl = C̄x̄l + D̄ūl
(13)

where x̄l = xlh, ūl =
[
uT

lh uT

lh+1 . . . uT

lh+h−1

]T

, ȳl =
[
yT

lh yT

lh+1 . . . yT

lh+h−1

]T

, and
the system matrices are given by Ā = Φ(h, 0), B̄ = [Φ(h, 1)B0 Φ(h, 2)B1 . . . Bh−1], C̄ =

[CT

0 (C1Φ(1, 0))T . . . (Ch−1Φ(h− 1, 0))T ]T , and D̄ = dij , dij =

⎧⎪⎨
⎪⎩
Ci−1Φ(i− 1, j)Bj−1 i > j

Di i = j

0 i < j
where Φ(i, j), is the transition matrix defined such that Φ(i, j) = Ai−1Ai−2 . . . Aj , for i > j
and Φ(i, i) = I.

The system P is asymptotically stable, if and only if P̄ is asymptotically stable or
equivalently if all the eigenvalues of matrix Ā have norm less that one ‖λi(Ā)‖ < 1, ∀i.
These eigenvalues are called the characteristic multipliers of system P . Detectability and
stabilizability are defined in the following way.
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Definition 3.1. The periodic system P is said to be stabilizable if there exists a set of periodic
matrices Fk, Fk = Fk+h, such that xk+1 = (Ak+BkFk)xk is stable and it is said to be detectable
if there exists a set of periodic matrices Gk, Gk = Gk+h, such that xk+1 = (Ak +GkCk)xk is
stable.

Similarly to stability, these conditions can be verified using the lifted LTI system P̄ as stated
in the following result.

Lemma 1. The periodic system P is detectable (stabilizable) if and only if P̄ is detectable
(stabilizable).

Proof 1. See [1].

The following is also true for periodic systems.

Lemma 2. The periodic system P is detectable and stabilizable if and only if there exists a
periodic linear controller Kp : yk → uk such that the closed loop system is asymptotically
stable.

Proof 2. See [3].

3.2. Regulation of multi-rate systems for square plants

For continuous-time and discrete-time single-rate systems, it is well-known that zero-error
regulation for constant references of a number of outputs no greater than the number of
inputs can be achieved by incorporating in the controller system a number of integrators
equal to the number of tracking variables [8]. Regulation for constant references is not tied in
with linearity and is achieved even in the presence of model uncertainties that do not affect
closed loop stability. These integrators are usually placed after the system, directly integrating
the regulated errors [10], [12]. For the discrete-time multi-rate output regulation problem the
structure depicted in Figure 2 is proposed in [5] for a square system†, which can be interpreted
as a particular case of (11) with nym

= 0, nyr
= p, m = p, Cr = C2. The block CI represents

a periodically time-varying system whose state space description is given by

CI =

{
xI

k+1 = xI

k + Ωku
I

k

yI

k = xI

k + Ωku
I

k

(14)

and that integrates its input at the sampling instants at which the hold operation is active.
The block CK represents a linear controller that, in general, is required to be periodically time-
varying. Notice that, in this case, integral action is applied at the input of the plant, because
directly integrating the error would produce a non-constant signal at the plant’s input, given
that CK is generally time-varying.

As expected, integral action plays the key role in achieving zero-output regulation. In [5]
it is proved that, under mild assumptions, the augmented system seen by the controller CK
is detectable and stabilizable. By Lemma 2 there exists a controller CK that asymptotically
stabilizes the closed loop system. The system trajectories will therefore converge to the unique

†Some small modifications have been made, namely notation and considering a slightly different system for
integral action, CI . These changes however do not impact on the ideas and results presented in [5].
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[
ẋ(t)
y(t)

]
=

[
A B2

C2 0

] [
x(t)
u(t)

]

+

yk

rkekuk

StsHts

CI CK

Ωd Γd

Γrk r̃k

Figure 2. Regulator structure for square systems

equilibrium point that due to integral action and under the assumption that the discretization
of Gl given in (11) has no transmission zeros at z = 1, is characterized by uk = u0 and
yrk = Γkr0, yr(t) = r0.

3.3. Regulation for non-square plants

For a large class of control problems the number of available outputs is greater than the number
of actuators. This is generally the case for guidance and control problems for autonomous
vehicles. It is well-known that in general we can only impose zero steady-state error for a
number of outputs no greater than the number of inputs [8]. However we would like to take
advantage of all the available outputs for control and not just the ones for which we require
zero steady-state error. Besides improving the transient response, the use of the remaining
outputs can be in fact necessary in many applications to guarantee the detectability of the
system. In general, assuming uncertainty on the coefficients of the matrices describing the
plant, the remaining outputs of the plant ymk have constant but unknown values at steady-
state. Motivated by this discussion and by the velocity implementation [11], which will be
described shortly, the regulator structure in Figure 3 is proposed.

[
ẋ(t)
y(t)

]
=

[
A B
C 0

] [
x(t)
u(t)

]

+

ymkyrk

y(t) ỹk

rk
ek

uk

u(t)ũk

yC

k

StsHts

CI
CD

CK

Ωd

ΩI ΓD

Γd

Gd

Γrk
r̃k

Figure 3. Regulator structure for non-square systems
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ON THE DESIGN OF MULTI-RATE TRACKING CONTROLLERS 11

The periodic system CD has state space realization given by

CD =

{
xD

k+1 = (I − Γmk)x
D

k + Γmkymk

yD

k = −Γmkx
D

k + Γmkymk
. (15)

This system has the role of differentiating the output ym at sampling instants at which
the sampling operation is active. At steady-state the constant unknown values ym0 are
differentiated bypassing the need to feedforward these values.

The system Ga seen by the controller CK to be synthesized (see Figure 3) is given by
Ga = ΓDGdΩI where i) ΩI comprises the multi-rate input system Ωd and periodic integrator
CI , ii) Gd the linear system with sample-hold interface and iii) ΓD the multi-rate output
system Γd and differentiator CD.

The operations of systems Ωd and CI can be combined to yield the simple description of
ΩI , which is the same as CI , i.e.,

ΩI =

{
xI

k+1
= xI

k + Ωky
C

k

ũk = xI

k + Ωky
C

k

The equations for Gd = StsGlHts can be written as

Gd =

⎧⎨
⎩

xk+1 = Adxk +Bdũk

ỹk =

[
ỹmk
ỹrk

]
= Cdxk =

[
Cdm
Cdr

]
xk

(16)

where Ad = eAts , Bd =
∫ ts
0
eAτdτB2 and Cd = C2. Finally the equations for ΓD are

ΓD =

⎧⎪⎪⎨
⎪⎪⎩

xD

k+1 = (I − Γmk)x
D

k +
[
Γmk 0

] [
ỹmk
ẽk

]
yD

k =

[
−Γmk

0

]
xD

k +

[
Γmk 0
0 Γrk

] [
ỹmk
ẽk

]
Computing the series of these three systems we obtain

Ga =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣xk+1

xI

k+1

xD

k+1

⎤
⎦ =

⎡
⎣ Ad Bd 0

0 I 0[
Γmk 0

]
Cd 0 (I − Γmk)

⎤
⎦

⎡
⎣xkxI

k

xD

k

⎤
⎦ +

⎡
⎣BdΩkΩk

0

⎤
⎦ yC

k

yA

k =

[[
Γmk 0
0 Γrk

]
Cd 0

[
−Γmk

0

]] ⎡
⎣xkxI

k

xD

k

⎤
⎦ +

[
0

−Γrk

]
r̃k

(17)

The next theorem states sufficient conditions under which the system Ga is detectable and
stabilizable that only depend on the original discrete-time plant Gd, described by (16).

Theorem 1. Assume that the following conditions hold

i) (Ad, Bd) is stabilizable and (Ad, Cd) is detectable.
ii) Each output is sampled and each input is updated at least once in a period T, i.e., ∀i∃k∈{1,...,h} :

(Γk)ii = 1 and ∀i∃k∈{1,...,h} : (Ωk)ii = 1 .

iii) If there exists λk(Ad) = λk such that ‖λk‖ = 1 then λhk 	= 1, and if there exists a pair
λi(Ad) = λi, λj(Ad) = λj such that λi 	= λj, ‖λi‖ ≥ 1 and ‖λj‖ ≥ 1 then λhj 	= λhi .
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12 D. J. ANTUNES, C. J. SILVESTRE, R. CUNHA

iv) There are no transmission zeros at z = 1 from the input of Gd to the regulated output, i.e.,[
Ad − I Bd
Cdr 0

]
(18)

is full rank.

Then, the augmented periodic system Ga is detectable and stabilizable.

Proof 3. See Appendix.

By Lemma 2 detectability and stabilizability guarantees the existence of an asymptotic
stabilizing controller for the augmented system Ga. Due to the previous discussion, the
following theorem comes as no surprise.

Lemma 3. Consider the feedback interconnection of Ga and CK and suppose the controller
CK asymptotically stabilizes the resulting closed loop system. Then, zero-error output regulation
for yr(t) is achieved even in the presence of plant perturbations, provided that closed-loop
stability is preserved.

Proof 4. See Appendix.

3.4. Solution to Part I of the Problem Statement

Suppose that the state space realization of an asymptotically stabilizing controller CK for
plant Ga is given by

CK =

⎧⎨
⎩

[
xK

k+1

yK

k

]
=

[
AK

k BK

1k BK

2k

CK

k DK

1k DK

2k

] ⎡
⎣xK

k

yDk
ek

⎤
⎦ (19)

Returning to the original problem, stated in Part I of the problem statement, of finding a local
controller, with the properties referred therein, we rewrite the equations for CI , CK , and CD
in the form

C(α0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
xK

δk+1

yK

δk

]
=

[
AK

k (α0) BK

1k(α0) BK

2k(α0)
CK

k (α0) DK

1k(α0) DK

2k(α0)

] ⎡
⎣xK

δk

yD

δk

eδk

⎤
⎦

[
xD

δk+1

yD

δk

]
=

[
I − Γmk Γmk
−Γmk Γmk

] [
xD

δk

ymδk

]
[
xI

δk+1

uδk

]
=

[
I Ωk
I Ωk

] [
xI

δk

yK

δk

] (20)

where we have added the dependency on α0 and the notation indicating that it is a local
controller, for example, xK

δk
instead of xK

k . These equations can be combined to yield

C(α0) =

⎧⎨
⎩

[
xc

δk+1

uδk

]
=

[
Ack(α0) Bc1k(α0) Bc2k(α0)
Cck(α0) Dc

1k(α0) Dc
2k(α0)

] ⎡
⎣ xc

δk

ymδk

eδk

⎤
⎦ (21)

where xc
δk

= [(xK

δk
)T (xD

δk
)T (xI

δk
)T ]

T
and
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ON THE DESIGN OF MULTI-RATE TRACKING CONTROLLERS 13

Ack(α0) =

⎡
⎣ AK

k (α0) −BK

1k(α0)Γmk 0
0 I − Γmk 0

ΩkC
K

k (α0) −ΩkD
K

1k(α0)Γmk I

⎤
⎦ Bc1k(α0) =

⎡
⎣ BK

1k(α0)Γmk
Γmk

ΩkD
K

1k(α0)Γmk

⎤
⎦

Bc2k(α0) =

⎡
⎣ BK

2k(α0)
0

ΩkD
K

2k(α0)

⎤
⎦ Cck(α0) =

[
ΩkC

K

k (α0) −ΩkD
K

1k(α0)Γmk I
]

Dc
1k(α0) =

[
ΩkD

K

1k(α0)Γmk
]
Dc

2k(α0) =
[
ΩkD

K

2k(α0)
]

(22)

which is a solution to Part I of the problem statement.

4. GAIN-SCHEDULING IMPLEMENTATION

The controller structure obtained in the last section is especially suited for a gain-scheduling
implementation that satisfies the linearization property, described in Part II of the problem
statement. We present next this implementation and establish its connection with the velocity
implementation, which is a methodology for the discrete-time single-rate case to implement a
gain-scheduling controller that satisfies the referred linearization property.

4.1. Gain-scheduling implementation

Having designed the parameterized family of linear controllers C(α0), (20), suppose we
implement the gain-scheduled non-linear controller K as follows

K(αk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
xK

k+1

yK

k

]
=

[
AK

k (αk) BK

1k(αk) BK

2k(αk)
CK

k (αk) DK

1k(αk) DK

2k(αk)

] ⎡
⎣xK

k

yD

k

ek

⎤
⎦ (23.1)[

xD

k+1

yD

k

]
=

[
I − Γmk Γmk
−Γmk Γmk

] [
xD

k

ymk

]
(23.2)[

xI

k+1

uk

]
=

[
I Ωk
I Ωk

] [
xI

k

yK

k

]
(23.3)

αk = v(ỹk, wk) (23.4)[
xY

k+1

ỹk

]
=

[
I − Γk Γk
I − Γk Γk

] [
xY

k

yk

]
(23.5)

(23)

Notice that αk, which was considered to be a constant parameter during the design process,
now becomes a scheduling variable computed on-line from the plant outputs and exogenous
variables. Due to the multi-rate nature of the output, the system described by (23.5) is used
to perform a hold operation on the output yk so that the scheduling variable αk is computed,
at each iteration, according to the last sampled value of the output. The exogenous vector
is assumed available at each sampling instant, so that wk = w(tk). Notice that the non-
linear controller proposed in (23) conforms to the general description of K given in (9), with
xck = [(xK

k )T (xD

k )T (xI

k)
T ],
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14 D. J. ANTUNES, C. J. SILVESTRE, R. CUNHA

fc(x
c
k, ymk, ek, αk, k) =

⎡
⎣ AK

k (αk) −BK

1k(αk)Γmk 0
0 I − Γmk 0

ΩkC
K

k (αk) −ΩkD
K

1k(αk)Γmk I

⎤
⎦

⎡
⎣xK

k

xD

k

xI

k

⎤
⎦ +

⎡
⎣ BK

1k(αk)Γmk BK

2k(αk)
Γmk 0

ΩkD
K

1k(αk)Γmk ΩkD
K

2k(αk)

⎤
⎦[

ymk
ek

]
, (24)

and

hc(x
c
k, ymk, ek, αk, k) =

[
ΩkC

K

k (αk) −ΩkD
K

1k(αk)Γmk I
] ⎡
⎣xK

k

xD

k

xI

k

⎤
⎦ + (25)

[
ΩkD

K

1k(αk)Γmk ΩkD
K

2k(αk)
] [
ymk
ek

]
.

The next theorem establishes that, at each equilibrium characterized by α0, the nonlinear
controller K linearizes to the designed controller C(α0), and therefore K constitutes a solution
to Part II of the problem statement.

Theorem 2. Suppose for each parameter vector α0 ∈ Ξ, the feedback interconnection of
the linearized system Gl(α0), described by (4), and the designed controller C(α0), described
by (8), with multi-rate sample-data interface is asymptotically stable. Then the feedback
interconnection of the multi-rate nonlinear system and gain-scheduled controller K, described
by (23), admits a unique equilibrium point associated with α0 and the linearization of K, about
this equilibrium coincides with the designed controller C(α0), given by (20).

Proof 5. It is easy to verify that the equilibrium points for (23) defined in (10) are

xK =0, yK =0, xD =ym0, y
D =0, xI =u0, e=0, u=u0. (26)

Due to asymptotic stability and the linearity of the controller for each fixed value of the
parameter, these are the unique equilibrium points of the controller compatible with those of
the plant Σ. Defining the matrix

M(αk) =

[
AK

k (αk) BK

1k(αk) BK

2k(αk)
CK

k (αk) DK

1k(αk) DK

2k(αk)

]
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ON THE DESIGN OF MULTI-RATE TRACKING CONTROLLERS 15

the linearization of (23) about (26) can be written as

Kl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
xK

δk+1

yK

δk

]
= M(αk)

⎡
⎣xK

δk

yD

δk

eδk

⎤
⎦+

∂

∂αk
(M(αk)

⎡
⎣xK

k

yD

k

ek

⎤
⎦)(

∂v(ỹk,wk)

∂ỹk
ỹδk+

∂v(ỹk,wk)

∂wk
wδk)

︸ ︷︷ ︸
H.C.T[

xD

δk+1

yD

δk

]
=

[
I − Γmk Γmk
−Γmk Γmk

] [
xD

δk

yδmk

]
[
xI

δk+1

uδk

]
=

[
I Ωk
I Ωk

] [
xI

δk

yK

δk

]
[
xY

δk+1

ỹδk

]
=

[
I − Γk Γk
I − Γk Γk

] [
xY

δk

yδk

]
where H.C.T are the hidden coupling terms which result from introducing the scheduling
variable αk. Due to the special structure of the controller these terms cancel out when evaluated
at the equilibrium (26) since all its components are multiplied by one of the components of xK

k ,
yD

k , of ek, which are zero at equilibrium. The linearizations reduces then to (20) concluding the
proof.

4.2. Connection with the velocity implementation

The velocity implementation, presented in [11], is a method for implementing a gain-scheduled
controller with integral action that satisfies the linearization property. For the discrete-time
single-rate case, see [10]. The method can be briefly explained as follows. Suppose that for a
family of linear discrete-time single-rate plants one has designed a family of linear controllers
with the structure

C(α0) =

⎧⎪⎪⎨
⎪⎪⎩

xK

δk+1
= AK(α0)x

K

δk
+BK

1 (α0)ymδk +BK

2 (α0)y
I

δk

uδk = CK(α0)x
K

δk
+DK

1 (α0)ymδk +DK

2 (α0)y
I

δk

}
Cd(α0)

xI

δk+1
= xI

δk
+ (yrδk − rδk)

yI

δk
= xI

δk
+ (yrδk − rδk)

where we consider a non-strictly proper integrator to conform with the present formulation.
Suppose also that we implement the non-linear controller moving the integrators to the front
of the controller (input of the plant) as shown in Figure 4. Again, αk which was assumed
constant throughout the design process, becomes a time-varying scheduling variable through
the dependence αk = v(yk, wk). The equations for this implemented controller are

K(αk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xK

k+1 = AK(αk)x
K

k +BK

1 (αk)(ymk − yD

k ) +BK

2 (αk)(yrk − rk)
xI

k+1 = xI

k + CK(αk)x
K

k +DK

1 (αk)(ymk − yD

k ) +DK

2 (αk)(yrk − rk)
xD

k+1
= ymk

yD

k = xD

k

αk = v(yk, wk)
uk = xI

k + CK(αk)x
K

k +DK

1 (αk)(ymk − yD

k ) +DK

2 (αk)(yrk − rk)

The idea behind moving the integrators is that of building a linear equivalent controller for
constant parameter values that when implemented as a nonlinear controller gain-scheduled
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Cd(α0) 1

1−z−1

uδk

ymδk

yrδk − rδk

(a) Designed Controller

Cd(αk)
1

1−z−1

1 − z−1uk
ymk

yrk − rk

(b) Implemented Controller

Figure 4. Velocity implementation

on αk satisfies the linearization property. Since at equilibrium the input of Cd(αk) is zero-
valued, it follows that the so-called hidden coupling terms of the linearized controller, which
are due to the introduction of αk, are all canceled out (this argument was also the basis for
proving Theorem 2). It is easy to see that in general this does not occur for other controller
implementations (see [11], [12], [16] for examples).

There is a close relationship between the velocity implementation and the method presented
herein when the multi-rate setup is particularized to the single-rate case. In the single rate
case we have Γk = I, ∀k and Ωk = I ∀k, from which equations (14) and (15) reduce to
simple integrators and differentiators and therefore the controller described by (20) acquires
the same structure as that shown in Figure 4(b). However the point of view is somewhat
different. While in the velocity implementation method, the controller could be synthesized
by augmenting the state with the integrators at the front of the plant, which includes, for
example, P.I. controllers when the state is available, the same principle can not be applied in
the multi-rate case. Instead, the synthesized controller takes into account in the design the
differentiator at the output and the integrators at the input of the plant. Nevertheless we stress
that we do not make any assumption on how the controller is synthesized either for the multi-
rate case or for the particular case of single-rate (Lemma 2 assures that a stabilizing controller
exists) and that the set of stabilizing controllers for either one of the single-rate structures
show in Figure 4 is the same, when frozen-time values of the parameters are considered.

4.3. Outline of the proposed method

The following procedure outlines the method proposed for the design and implementation of
gain-scheduled controllers for multi-rate systems:

1. Given a nonlinear system in the form described by (1), with multi-rate input and output
interface SH described by (5), obtain a family of parameter-dependent linear models in
the form (4).

2. Design a family of linear controllers with the structure (21) and (22). Theorem 1 along
with Lemma 2 guarantee that for each fixed value of the schedule parameter a stabilizing
controller exists, under mild assumptions.

3. Implement the non-linear gain-scheduled controller according to (23). Theorem 2 assures
that the linearization property is verified.
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ON THE DESIGN OF MULTI-RATE TRACKING CONTROLLERS 17

5. Trajectory tracking control for autonomous rotorcraft

In this section the proposed method is applied to the control of an autonomous rotorcraft. To
this effect, the dynamics model of a small-scale helicopter, parameterized for the Vario X-treme
R/C helicopter [7], is used. We address a trajectory tracking control problem, which can be
described as the problem of steering a vehicle along a predefined trajectory defined in terms
of space and time coordinates. The solution presented relies on the definition of an adequate
error space to express the model of the vehicle [17]. The following section briefly describes the
helicopter dynamic model.

5.1. Vehicle Dynamic Model

The helicopter dynamics are described using the conventional six degree of freedom rigid body
equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v̇ = f (v, ω, u) + R−1(λ)[0 0 g]T

ω̇ = n (v, ω, u)

ṗ = R(λ)v

λ̇ = Q(φB, θB)ω

, (27)

where (p, R) ∈ SE(3) � R
3 × SO(3) denotes the configuration of the body frame {B}

attached to the vehicle’s center of mass with respect to the inertial frame {I} and the rotation
matrix R = R(λ) can be parameterized by the Z-Y-X Euler angles λ = [φB θB ψB]

T
,

θB ∈ ]−π/2, π/2[, φB , ψB ∈ R, R = RZ(ψB)RY (θB)RX(φB). The inertial frame {I} is such
that its z−axis is aligned with the gravity vector. The linear and angular body velocities are
denoted by v = [uB vB wB ]

T
∈ R

3 and ω = [pB qB rB]
T

∈ R
3, respectively. Notice that

the gravitational term fg(φB, θB) = R−1(λ)[0 0 g]T depends only on the roll and pitch angles

and that the euler angles rates λ̇ and the angular velocities are related by the well-known
transformation matrix Q(φB , θB).

The actuation u = [θ0 θ1s θ1s θ0t] comprises the main rotor collective input θ0, the main
rotor cyclic inputs, θ1s and θ1c, and the tail rotor collective input θ0t. The dynamic equations
for the helicopter are highly non-linear and its derivation is only accomplishable assuming
several simplifications. For a detailed explanation of the modeling of the small-scale helicopter
used in this paper the reader is referred to [7].

5.2. Generalized error dynamics

The integrated guidance and control strategy proposed in [17] for the trajectory tracking
problem, consists in defining a convenient non-linear transformation to be applied to the
vehicle dynamic and kinematic model. In the new error space the trajectory tracking problem
is reduced to that of regulating the error variables to zero using the fact that the linearization
of the error dynamics is time-invariant about any trimming trajectories. It is well-known that
these comprise helix and straight lines, parameterized by the vehicle linear speed, flight path
angle, yaw rate and yaw angle with respect to the path [17]. Thus, the control design for the
trajectory tracking problem can be solved by using tools that borrow from gain scheduling
control theory, where the aforementioned parameters play the role of scheduling variables that
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18 D. J. ANTUNES, C. J. SILVESTRE, R. CUNHA

interpolate the parameters of linear controllers designed for a finite number of representative
trimming trajectories.

In order to define the non-linear transformation we start by formally introducing the
trimming trajectories. Consider the helicopter equations of motion presented in (27), and
let vC, ωC, pC, λC = [φC θC ψC]

T
and uC denote the trimming values of the state and input

vectors, respectively. At trimming, these vectors satisfy v̇C = 0 and ω̇C = 0, implying that
u̇C = 0, φ̇C = 0 and θ̇C = 0. Given the dependence of the gravitational terms on the roll
and pitch angles, only the yaw angle can change without violating the equilibrium condition.
However, ψC satisfies ⎡

⎣ 0
0

ψ̇C

⎤
⎦ = Q(φC , θC)ωC

and thus the yaw rate ψ̇C is constant. From this analysis it is easy to show [17] that trimming
trajectories correspond to helices (which degenerate into straight lines when ψ̇C = 0) that can
be described by

λC =

⎡
⎣ φC

θC

ψ̇Ct+ ψ0 + ψCT

⎤
⎦ , pC =

⎡
⎢⎣

VC

ψ̇C
cos(γC) sin(ψ̇Ct+ ψ0)

− VC

ψ̇C
cos(γC) cos(ψ̇Ct+ ψ0)

−VC sin(γC)t

⎤
⎥⎦ +

⎡
⎣x0

y0

z0

⎤
⎦ ,

where VC = ‖vC‖ is the linear body speed and γC is the flight path angle. Therefore, apart
from a z-rotation and a translation, the parameter vector (VC , γC, ψ̇C, φC , θC, ψCT , ) completely
characterizes a trimming trajectory. As explained in [6], due to the tail rotor actuation,
helicopters can describe trimming trajectories with arbitrary but constant yaw angle relative
to the path, that is, with arbitrary ψCT . However the roll and pitch angles φC and θC are
automatically constrained by this choice. The trimming trajectory can thus be described by
the following parameterization

ξ0 =
[
VC γC ψ̇C ψCT

]T

Moreover, introducing ξ = (V, γ, ψ̇, ψ)

V = ‖v‖ γ = arctan(−
w′

B

u′
B

) ψ̇ = ψ̇B ψ = ψB − ψ0 ,

⎡
⎣u′Bv′

B

w′
B

⎤
⎦ = R

⎡
⎣uB

vB

wB

⎤
⎦ (28)

we have at equilibrium ξ = ξ0. For the sake of simplicity, in this particular case study, the
vector ξ0 is partitioned according to ξ0 = (ϕ0, α0), where ϕ0 := (VC , ψ̇C , ψCT ) is constant and
α0 := γC is allowed to vary. That is, we consider paths formed by the concatenation of trimming
trajectories that can be parameterized by α0 only. By imposing this restriction on the reference
trajectories and considering a similar partition for the scheduling variable ξ = (ϕ, α), where
ϕ = (V, ψ̇, ψ) and α = γ, we assume that ϕ does not change significantly between trajectories.
Notice that α conforms with the general description of scheduling variable given in Section 2.

The generalized error vector relating the vehicle state and the commanded trajectory
parameterized by ξ0, or equivalently α0 since ϕ0 is constant, can be defined using the nonlinear
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transformation

xe =

⎡
⎢⎢⎣
ve
ωe
pe
λe

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v − vC

ω − ωC

R−1(pB − pC)
Q−1(λB − λC)

⎤
⎥⎥⎦ (29)

Since v̇C = 0 and ω̇C = 0 for any trimming trajectory, the nonlinear error dynamics can be
written as [17]

G =

⎧⎪⎪⎨
⎪⎪⎩

v̇e = v̇
ω̇e = ω̇
ṗe = vB −R−1

e vC − S(ω)pe
λ̇e = ω −Q−1QCωC − ( d

dt
Q−1)Qλe

(30)

where R−1
e = R−1R(φC , θC), QC = Q(φC , θC) and S(ω) is a skew-symmetric matrix defined

such that S(ω) = [ω×].

The output vector for which we require steady-state tracking is defined as

yer =

[
pe
ψe

]
, ψe =

[
0 0 1

]
λe

It is straightforward to obtain that yer = 0 implies xe = 0 and that the vehicle will follow
the path with the desired linear speed and orientation if and only if xe = 0. As mentioned in
the next section, the state is assumed available, although at different rates, and thus we have

yem = xe

The linearization of (30) about the equilibrium (xe = 0, u = uC), or equivalently, the
linearization of (27) about α0, can be written in compact form as

Gl(α0) =

⎧⎪⎨
⎪⎩

ẋeδ = Ae(α0)xeδ +Be(α0)uδ

yemδ = xeδ

yerδ = Cer(α0)xeδ

, (31)

where xeδ = xe, uδ = u − uC, yerδ = yer, yemδ = yem, and Cer(α0) =

[
0 I3 0
0 0 [0 0 1]

]
. For

details on the matrices of the linearization see [17]. With respect to Section 2, Gl(α0) is the
parameterized local system model, described by (4), for which the controller is to be designed.

5.3. Multi-rate characteristics of the sensors

As already mentioned, for an autonomous vehicle the dynamic and kinematic state-variables
comprise linear and angular velocities, position and orientation which are usually available
at different rates (for example the position is typically measured by a GPS receiver which
imposes a slow rate). In the present paper we assume that the state variables of the vehicle
corresponding to linear and angular velocities and orientation are measured at a sampling rate
of 50 Hz, which corresponds to a sampling period ts = 0.02 s, whereas the position variables
are measured at a sampling rate of 2.5 Hz, corresponding to a sampling rate of tsp = 0.4 s.
The actuators are assumed synchronous and updated at a rate of 50 Hz. According to these
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sampling rates, the h-periodic matrices Γmk, Γrk and Ωk that characterize the multi-rate setup,
defined in Section 2, are given by

Ωk = I4

Γmk =

{
I12 k = 0
diag([13 13 03 13]) otherwise

Γrk =

{
I4 k = 0
diag([03 1]) otherwise

, k = 0, .., h− 1.

where h = 20.

5.4. Controller Synthesis and Implementation

The commonly used method for the design of a family of controllers for the parameterized
family of models described by (31), which is also adopted in the present paper, comprises
the following steps: i) obtain a finite set of parameter values from the discretization of the
continuous parameter space, ii) synthesize a linear controller for each linear plant, described
by (31), obtained from the linearization of the nonlinear plant for each value of the schedule
parameter, iii) interpolate the coefficients of the linear controllers to obtain a continuously
parameter-varying controller.

We have restricted the parameter space to α = γ, which means that the synthesized
controllers are valid in operating conditions where the remaining parameters ϕ = (V, ψ̇, ψ)
do not change significantly about nominal values (VC , ψ̇C, ψC). The finite set of values for the
discretization of this one-dimensional parameter space was chosen to be

ᾱ0 = {ᾱ0i} = [-50 -40 -30 -20 -10 0 10 20 30 40 50]
π

180
rad.

so that the conditions under which the vehicle is expected to operate include straight lines
ψ̇C = 0 and z-aligned helices ψ̇C 	= 0, with a flight path angle between -50 and 50 degrees, that
the vehicle is required to follow with constant velocity, yaw rate and orientation with respect
to the path ((V, ψ̇, ψ) = (VC , ψ̇C, ψC)).

For each fixed value of α0, the standard output feedback H2 formulation for periodic system
was used to synthesize a controller CK for the augmented system Ga, described by (17),
where Ad, Bd, Cd are the discretizations of system matrices of (31). Notice that Ga has a
number of states equal to n+m+ nyr

= 12 + 4 + 12 = 28 and a number of outputs equal to
nym

+ nyr
= 12 + 4 = 16. For an h-periodic system G of the form

G :=

⎧⎨
⎩

xk+1 = Akxk +B1kwk +B2kuk
zk = C1kxk +D11kwk +D12kuk
yk = C2kxk +D21kwk +D22kuk

(32)

with D11k = 0, the H2 control problem can be interpreted as the problem of finding a linear
h-periodic controller K : yk �→ uk that minimizes the average over one period of the norms of
the impulse responses of the closed-loop system,

Gcl :=

{
xk+1 = Ak xk + B1kwk
zk = C1kxk
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which can be written as

‖Gcl‖2 = (
1

h

h−1∑
j=0

nw∑
i=1

‖Gclδ(k − j)ei‖2)
1
2 . (33)

whereGclδ(k−j)ei denotes the output response to an impulse applied at input i and time j. The
solution to this problem can be obtained by solving two periodic Riccati equations [2] or by the
solution of two LMI optimization problems [19]. The matrices associated with the performance
channel wk �→ zk are typically used as tuning knobs to improve the performance during
extensive simulations. For the results presented in the next subsection, these performance
matrices were chosen to be independent of k and α0i.

The resulting finite set of synthesized controller coefficients, for example {Ack(ᾱ0i)}, were
interpolated using least squares fitting yielding a family of continuously parameter dependent
controllers, corresponding to (21), whose describing matrices are quadratically parameter
dependent, for example

Ack(α0) = Ac1k + α0A
c2
k + α2

0A
c3
k

The disadvantage of this technique is that by the interpolation process there is no guarantees
that, even for fixed parameter values, the controller obtained by interpolation stabilizes the
closed loop system. An a posteriori analysis showed that for a dense grid of fixed values of α0

the closed loop system is stabilized. In this particular case, this would not happen if we had
used a simpler linear interpolation instead of a quadratic interpolation. Note also that using
a piecewise linear interpolation would not comply with the assumption that the scheduling
controller is a continuously differentiable function of the scheduling variable.

Having designed the family of controllers C(α0), the non-linear controller K(αk) can be
implemented as in (23), where αk = γk becomes a time-varying parameter computed according
to (28). The final implementation scheme is shown in Figure 5. Notice that system CI in this
particular case degenerates into simple integrators CI = 1

1−z−1 I4 since the actuators were
considered synchronous and updated at a sampling rate of 50 Hz.

Non-Linear
Dynamics

CD1

1−z−1

Reference Path

Error
Computation

u(t) y(t)uk yk

K(αk, k)

αk
Computation

SH

yem

yer

αk

Multi-rate system

Gain-Scheduled
Implementation

Figure 5. Block diagram with the final implementation scheme
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Some additional features of this implementation are worthwhile emphasizing. The placement
of the integrators at the plant’s input, has the following advantages: i) the implementation
of anti-windup schemes is straightforward ii) auto-trimming property- the controller
automatically generates adequate trimming values for the actuation signals. Though in the
present case simple integrators are being used, the same advantages would hold if the inputs
were updated at different rates and the integrators took the form of ΩI , (14).

5.5. Simulation Results

We start with a simple example that compares the performance of a multi-rate guidance
and control law with that obtained using a standard single-rate H2 compensator designed
using equivalent weighting matrices. First, we compare the values of the closed-loop H2

norms while changing the rate of the linear position measurement and keeping the sampling
periods of the other outputs and of the input at ts = 0.02 s. The periodic H2 controllers

were synthesized for a single operating condition, characterized by ξ0 =
[
VC γC ψ̇C ψCT

]T

=[
1 m.s−1 0 rad 0 rad.s−1 0 rad

]T

. The results are shown in Table I.

Notice that when the sampling rate of the linear position measurement equals the sampling
rate of the other outputs (ts = 0.02 s), the multi-rate set-up particularizes to the single-rate
case and the periodic H2 controller is equivalent to a standard discrete-time H2 controller.
As expected the performance of the closed-loop system, given in terms of the H2 norm,
deteriorates as the sampling period for the linear position increases. In order to assess the
impact of this performance loss on the tracking response of the vehicle, a simple maneuver
task is set up for the rotorcraft. During the maneuver the vehicle is required to follow a
path with constant velocity VC = 1 m.s−1 and constant orientation with respect to the
path, consisting of: i) a level flight segment along the x axis, ii) a climbing ramp with
a flight path angle of γC = π

6
rad, iii) a level flight segment along the x axis. A gain-

scheduled controller was synthesized following the procedure given in Section 5.5.4 for constant
parameters ϕ0 = (VC , ψ̇C, ψCT ) = (1 m.s−1, 0 rad.s−1, 0 rad). For the single-rate case, all the
outputs are measured at a sampling rate of ts = 0.02 s, and for the multi-rate case, the sampling
rates are given according to Section 5.5.3. The results comparing these two cases, which include
the temporal evolution of the actuation, dynamic variables v and ω, and kinematic errors
pE = pB − pC = [xE yE zE]T and λE = λB −λC = [φE θE ψE]T , are shown in Figures 6 and 7.

As expected, we can notice some degradation in the actuation and error responses for
the multi-rate case in comparison with the single-rate case. Nevertheless, while the proposed
method takes into account the multi-rate characteristics of the sensors, it also achieves good
tracking performance and displays a smooth behavior throughout the different stages of the
trajectory. Notice also that, as desired, steady-state is achieved after the transitions between
trimming trajectories, with zero-steady state value for yer = [pe ψe], and that the trimming
values for the actuation are naturally acquired.

Another simulation is presented in order to test the proposed methodology in other flight
conditions as well as analyze the impact of noise in the sensors. In this simulation the vehicle
is required to follow a path with constant velocity VC = 5m.s−1 and constant orientation
with respect to the path, consisting of i) a level flight segment along the x axis, ii) a
climbing helix with a flight path angle of γC = 0.29 rad and yaw rate ψ̇C = 0.26 rad.s−1,
iii) a level flight segment along the x axis. The controller is synthesized according to the
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Figure 6. Results for the first simulation- Errors

methodology presented in Section 5.5.4 for constant parameters ϕ0 = (VC , ψ̇C, ψCT ) =
(5 m.s−1, 0 rad.s−1, 0 rad) and the weights of the H2 controller synthesis problem, described
in (32) are changed to accommodate for the different operating conditions. We have
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Figure 7. Results for the first simulation- Actuation

considered additive white gaussion noise for all the measurements with autocorrelations
matrices (Rvv(τ), Rωω(τ), Rpp(τ), Rλλ(τ) = (σ2

vIδ(τ), σ
2
ωIδ(τ), σ

2
pIδ(τ), σ

2
λIδ(τ)) , where

(σv, σω , σp, σλ) = (0.02 m.s−1, 0.3o.s−1, 0.1 m, 0.5o). The results presented in Figure 8 show
that good sensor noise rejection is achieved and that the helicopter performs the required task
keeping the actuation within the limits of operation. A 3-D view of both maneuvers is shown
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in Figure 9.
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Figure 8. Results for the second simulation
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Figure 9. Rotorcraft Maneuvers

6. CONCLUSIONS

A new method was proposed for the design and implementation of gain-scheduled controllers
for multi-rate systems with application on the field of integrated guidance and control for
autonomous vehicles. In contrast to previous approaches, where the multi-rate characteristics
of the sensors are handled by the navigation system, this approach provides an alternative
framework that directly takes into account these characteristics in the control system.

A theoretical formulation was presented to tackle the problem of designing and implementing
gain-scheduled controllers for non-square multi-rate systems. The formulation is valid for a
wide class of non-linear plants and its application to other control problems is an interesting
topic for future work.

The proposed technique was applied to provide a solution to the design of integrated
guidance and control systems that address the trajectory tracking problem for small-
scale rotorcraft. Simulation results illustrate the effectiveness of the controller along simple
maneuvers when the vehicle linear position is measured at a lower rate than that of the
remaining state variables.
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Appendix

Proof 6. (of Theorem 1) The system Ga described by (17), can be seen as the series connection
of two systems Ga = Ga2Ga1, where

Ga1 =

⎧⎪⎨
⎪⎩
xk+1 = Fxk +GΩkuk

yk =

[
ymk
yrk

]
= Γk

[
Hm

Hr

]
xk =

[
Γmk 0
0 Γrk

] [
Hm

Hr

]
xk

, (34)

F =

[
Ad Bd
0 I

]
, G =

[
Bd
I

]
, Hm =

[
Cdm 0

]
, Hr =

[
Cdr 0

]
, (35)

and

Ga2 =

⎧⎪⎨
⎪⎩
xD

k+1 = (I − Γmk)x
D

k +
[
Γmk 0

]
uD

k

yD

k = −

[
Γmk
0

]
xD

k +

[
Γmk 0
0 Γrk

]
uD

k

.

By Lemma 1 it suffices to establish that the lift Ḡa of system Ga is detectable and stabilizable.
This LTI sytem Ḡa can be determined by computing separately the lifts of Ga1 and Ga2 and
using the fact that the lift of the series of two systems is the series of the lifts of each one,
i.e., Ḡa = Ḡa2Ḡa1. For simplicity, we restrict u, yr and ym to be 1-dimensional signals, i.e.
u, yr, ym ∈ l(Z+,R). The proof for the general case follows the same ideas but the algebra is
more cumbersome.

Let P be a permutation matrix such that[
yml
yrl

]
= P

[
ȳml
ȳrl

]

where

[
yml

yr l

]
=

[
yml yr l yml+1 yr l+1 . . . yml+h−1 yr l+h−1

]T

,

ȳml =
[
yml yml+1 . . . yml+h−1

]T

and ȳr =
[
yr l yr l+1 . . . yr l+h−1

]T

, and define the
matrices

H̄m =

⎡
⎢⎢⎢⎣

Hm

HmF

...
HmF h−1

⎤
⎥⎥⎥⎦ H̄r =

⎡
⎢⎢⎢⎣

Hr

HrF

...
HrF h−1

⎤
⎥⎥⎥⎦ (36)

D̄m =

⎡
⎢⎢⎢⎢⎢⎣

0 . . . . . . . . . 0
HmG 0 . . . . . . 0

HmFG HmG 0 . . . 0
...

...
...

. . . 0
HmF h−2G HmF h−3G . . . HmG 0

⎤
⎥⎥⎥⎥⎥⎦ D̄r =

⎡
⎢⎢⎢⎢⎢⎣

0 . . . . . . . . . 0
HrG 0 . . . . . . 0

HrFG HrG 0 . . . 0
...

...
...

. . . 0
HrF h−2G HrF h−3G . . . HrG 0

⎤
⎥⎥⎥⎥⎥⎦ .

Then, the lift of system Ga1 is given by

Ḡa1 =

⎧⎪⎨
⎪⎩
x̄l+1 = F̄ x̄l + ḠΩ̄ūl

ȳl = P (

[
Γ̄m 0
0 Γ̄r

] [
H̄m

H̄r

]
x̄l +

[
Γ̄m 0
0 Γ̄r

] [
D̄m

D̄r

]
Ω̄ūl)

.
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where F̄ and Ḡ are defined as in (13), and Γ̄m and Γ̄r are defined as in (6). Defining the
matrices

B̄l =
[
0 . . . 0 1

]
ΠΓm

C̄l = ΠT

Γm

⎡
⎢⎢⎣
−1
0
. . .
0

⎤
⎥⎥⎦ D̄l = ΠT

Γm

⎡
⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0
...

. . .
. . .

. . . 0
0 0 . . . −1 1

⎤
⎥⎥⎥⎦ΠΓm

(37)
where ΠΓm

, ΠΓr
are the projection matrices defined at the end of Subsection (2.2.2), we can

show that the lift of system Ga2 is described by

Ḡa2 =

⎧⎪⎪⎨
⎪⎪⎩
x̄D

l+1 =
[
B̄l 0

] [
Γ̄m 0
0 Γ̄r

]
P−1ūD

l

ȳD

l+1 = P

[
Γ̄mC̄l

0

]
x̄D

l + P

[
Γ̄mD̄lΓ̄m 0

0 Γ̄r

]
P−1ūD

l

Computing the series of Ḡa1 and Ḡa2 yields

Ḡa =

⎧⎪⎪⎨
⎪⎪⎩

[
x̄l+1

x̄D

l+1

]
= M̄

[
x̄l
x̄D

l

]
+ N̄ūl

ȳD

l = K̄

[
x̄l
x̄D

l

]
+ L̄ūl

where

M̄ =

[
F̄ 0

B̄lΓ̄mH̄m 0

]
, N̄ =

[
Ḡ

B̄lΓ̄mD̄m

]
Ω̄,

K̄ = P

[
ΠT

Γm
0

0 ΠT

Γr

] [
ΠΓm

D̄lΓ̄mH̄m ΠΓm
C̄l

ΠΓr
H̄r 0

]
and

L̄ = P

[
ΠT

Γm
0

0 ΠT

Γr

] [
ΠΓm

D̄lΓ̄m 0
0 ΠΓr

] [
D̄m

D̄r

]
Ω̄

To establish detectability of the pair (M̄, K̄) and stabilizability of the pair(M̄ , N̄), we start
by determining the unstable eigenvalues Λ = {λ : λ is eigenvalue of M̄ and ‖λ‖ ≥ 1} and
corresponding left and right eigenvector P = {p : M̄p = λp, λ ∈ Λ} and Q = {q : qTM̄ =
λqT , λ ∈ Λ}, respectively. From the structure of M̄ , Λ coincides with the unstable eigenvalues

of F̄ and P and Q can be written as, P = {p : p = [vT ((B̄lΓ̄m
H̄m

λ
)v)T ]T , F̄ v = λv, λ ∈ Λ}

and Q = {q : qT = [wT 0], wT F̄ = λwT , λ ∈ Λ}, respectively. As stated in [5], assumption
iii) implies that v is an eigenvector of F associated with an unstable eigenvalue μ if and only
if it is an eigenvector of F̄ associated with λ = μh, i.e.,

Fv = μv ⇔ F̄ v = μhv and wTF = μwT ⇔ wT F̄ = μhwT .

Taking into account the structure of F defined in (35), we can partition the unstable eigenvalues
of M̄ into Λ = ΛA ∪ ΛI , where ΛI are m unitary eigenvalues and

ΛA = {λ : λ = μh, μ is an eigenvalue of Ad and ‖μ‖ ≥ 1}
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and partition accordingly the associated eigenvectors, P = PA ∪ PI and Q = QA ∪QI , where

PA = {p : p = [vT ((B̄lΓ̄m
H̄m

μh
)v)T ]T , v = [vT

a 0]T , Adva = μva μh ∈ Λ}

PI = {p : p = [vT ((B̄lΓ̄m
H̄m

μh
)v)T ]T , v = [vT

a vT

b ]T , [Ad − I Bd] [v
T

a vT

b ]T = 0}

QA = {q : qT = [wT 0], wT = [wT

a

wT

aBd
μ− 1

] wT

aAd = μwT

a , μh ∈ Λ}

QI = {q : qT = [wT 0]T , wT = [0 wT

b ], wb ∈ R
m\{0}}.

Notice that QA is well-defined since by assumption iii) μ 	= 1. We are then in conditions
to apply the standard PHB test to prove stabilizability and detectability of Ḡa, i.e. qTM̄ =
λqT =⇒ qT N̄ 	= 0, and M̄p = λp =⇒ K̄p 	= 0, respectively.

Stabilizability

For qT = [wT 0] = [[wT

a
wT

a Bd

μ−1
] 0] ∈ QA, wT

aAd = μwT

a we have

qT N̄ = wT ḠΩ̄ = (1 +
1

μ− 1
)
[
μh−1wT

aBdΩ0 μh−2wT

aBdΩ1 . . . wT

aBdΩh−1

]
	= 0

where we used assumption i) (wT

aBd 	= 0) and assumption ii).
For qT = [wT 0] = [[0 wT

b ] 0] ∈ QI

qT N̄ = wT ḠΩ̄ =
[
wT

b Ω0 . . . wT

b Ωh−1

]
	= 0

by assumption ii).

Detectability

For p = [vT ((B̄lΓ̄m
H̄m

μh )v)T ]T ∈ PA, v = [vT

a 0]T Adva = μva we have

K̄p = P

[
ΠT

Γm
0

0 ΠT

Γr

] [
ΠΓm

D̄lΓ̄mH̄m ΠΓm
C̄l

ΠΓr
H̄r 0

] [
v

(B̄lΓ̄m
H̄m

μh )v

]

and thus it suffices to prove that[
ΠΓm

D̄lΓ̄mH̄m ΠΓm
C̄l

ΠΓr
H̄r 0

] [
v

(B̄lΓ̄m
H̄m

μh )v

]
	= 0. (38)

From the definitions of H̄m, B̄l, C̄l and D̄l and from assumption ii) it is easy to see that
B̄lΓ̄mH̄mv = μi [Cdm 0] v for some i ∈ {0, ..., h− 1}, and that

[
ΠΓmD̄lΓ̄mH̄m ΠΓm C̄l

ΠΓr H̄r 0

]
=

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0
.
..

. . .
. . .

. . . 0
0 0 . . . −1 1

⎤
⎥⎥⎥⎦ ΠΓmH̄m

⎡
⎢⎢⎢⎣
−1
0
.
..
0

⎤
⎥⎥⎥⎦

ΠΓr H̄r 0

⎤
⎥⎥⎥⎥⎥⎦ (39)
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One can also verify that

[1 0 . . . 0] ΠΓm
H̄mv = [Cdm 0]μjv for some j ∈ {0, ..., h− 1}

and
[1 0 . . . 0]ΠΓr

H̄rv = [Cdr 0]μkv for some k ∈ {0, ..., h− 1}

from which two of the lines of the left-hand side of (38) are given by[
(Cdmμ

j − Cdm
1

μh−i ) 0

Cdrμ
k 0

]
v =

[
(μj − 1

μh−i ) 0

0 μk

]
Cdva.

This establishes (38), since by assumption iii) μ 	= 1 and by assumption i) Cdva 	= 0.

For p = [vT ((B̄lΓ̄m
H̄m

μh )v)T ]T ∈ PI , [Ad − I Bd]v = 0, it can be verified that the first rows

of (38) are zero ΠΓm
D̄lΓ̄mH̄mv+ΠΓm

C̄l(B̄lΓ̄m
H̄m

μh )v = 0. However, the last rows are different

from zero ΠΓr
H̄rv 	= 0, since otherwise the condition ΠΓr

H̄rv = 0 would imply [Cdr 0] v = 0

and we would have

[
Ad − I Bd
Cdr 0

]
v = 0 which contradicts assumption iv) of the theorem.

Proof 7. (of Lemma 3) Suppose that the expression for the controller CK that asymptotically
stabilizes (17) is given by

CK =

{[
xK

k+1

yC

k

]
=

[
AK

k BK

k

CK

k DK

k

] [
xK

k

yA

k

]
It is straightforward to check that the equilibrium values for the feedback connection of CK and
Ga are

xK = 0 , yC = 0 , yA = 0,

x = x0 , xI = u0 , xD = ym0

and that these values yield the steady-state value y0 = Crx0 = r0 for yr. Due to linearity and
asymptotic stability the system trajectories will tend to this unique equilibrium point even in
the presence of disturbances that do not affect asymptotic stability.
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Table I. H2 closed-loop values for different position sampling rates

Linear position sampling period tsp(s) 0.02 0.04 0.1 0.2 0.4
Closed loop H2 norm ‖Gcl‖2 10.40 11.08 12.18 13.15 14.27
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