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~ Abstract—In this paper, the .1 adaptive control theory —adaptive controller ensures that an uncertain linear syste
is used to design a high bandwidth inner loop controller to  has uniformly bounded transient and asymptotic trackimg fo
provide attitude and velocity stabilization of an autonomous system’s input and output signals. The performance bounds

small-scale rotorcraft in the presence of wind disturbances. . . .
The nonlinear model of the vehicle is expressed as a linear of the 1 adaptive controller can be systematically improved

time-varying system for a predefined region of operation, for DY increasing the adaptation rate, without compromising
which an %, adaptive controller is designed. The; adaptive  the robustness of the closed-loop system. The performance
controller ensures that an uncertain linear time-varying system  of the . controller is compared, in a realistic simulation
has uniformly bounded transient response for system's input - opyironment, with that achieved by the nominal controller

and output signals, in addition to stable tracking. The perfor- d in th ificati f th f t hich
mance bounds of.#; adaptive controller can be systematically used In the specrication o e relerence system, whic

improved by increasing the adaptation rate without huring ~ follows from [1]. The wind disturbance, which uses Von
the robustness of the system. The performance achieved with Karman disturbance models and wind gusts, leads the vehicle
the .3 controller is compared with that obtained via a linear  gutside the predefined region of operation. The vehicle mode

state feedback controller for demanding reference signals in the ;s in the simulation is the full nonlinear model of the
presence of wind disturbances. Simulation results show that the

performance of the .7 surpasses that of the linear controller hellcgpter. ) ) ] .
illustrating the advantages of fast adaptation. This paper is organized as follows: Section Il briefly
presents the helicopter dynamic model and the reformulatio
. INTRODUCTION of this model into the standard7 design setup. Section 1l

Within the scope of Unmanned Aerial Vehicles, auformulates the#; adaptive control problem and the main
tonomous rotorcraft have been steadily growing as a majoesults from the.#; theory are presented. In Section IV
topic of research. They have the potential to perform higthe implementation details and the simulation results are
precision tasks in challenging and uncertain operation scpresented and discussed; and finally, Section V summarizes
narios as new sensor technology and increasingly powerfiiie main conclusions and points out directions for further
and low cost computational systems are becoming availablork.

Nonetheless, their highly nonlinear, coupled, unstablé an
fast dynamics represent a challenge for the control enginee Il. HELICOPTER MODEL

ing community. For instance, in [1] a trajectory tracking This section summarizes the dynamical model of the
3 gain scheduling methodology is used to control ameljicopter. A comprehensive coverage of helicopter flight
autonomous rotorcraft subject to wind disturbance. dynamics can be found in [7]. In [8], [9] the model presented
In this paper, theZ; control theory, introduced in [2], pellow is described in further detail.
[3], [4], [5] and generalized for multi-input multi-output  consider the helicopter, modeled as a rigid body, where the
(MIMO) systems in [6], is used to design a high bandwidthegytant force and moment applied to the helicopter'sezent
inner loop controller to provide attitude and velocity stayf mass are the sum of the contributions of the helicopter
bilization of an autonomous small-scale helicopter. Thu%omponents and gravitational force. L{gpg, 5R) € SE(3) 2
the .21 adaptive control theory is applied to a nonlineang3 . SO(3) denote the configuration of the body frame
dynamic model of a small-scale helicopter to achieve veloci {B} (attached to the vehicle’s center of mass) with respect
tracking by adapting to different points of operation. T#e g the inertial frame{l}. Consider also the Z-Y-X Euler
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where m is the vehicle masslg is the tensor of inertia flowfield, usually called induced downwash. The downwash
about the framgB}, ug is the input vectoryy, is the wind can be decomposed in Fourier Series and approximated by
velocity disturbancefe, ne, andfy are the external force, the constant and first-order harmonic terms, yielding an
moment, and gravitational force, respectively, all expeels expression similar to that of the blade pitch anglgim) =
in the body frame,2 is the transformation from angular Ag+rm(A1c COSYm+ A1s SinWm), Wherery, is the rotor radius
1 0 0| ;o integration variable. Also as a consequence of the rotation
0 1 Oof and feathering (blade pitching) motions and interactiothwi
state vectorxg = [vg wg MAg)' € 2 C R™ has dimension the motion of the helicopter, the blades describe flap and lag
ny = 8. The input vectoug € %7 C R™ with n, = 4, defined motions, roughly characterized by pulling up and backwards
asus=[ 6, Oc, O Oy |, COMprises the main rotor respectively, the tip of the blade. In this work, assumirg th
collective input6,, the main rotor cyclic inputée,. and6c,,, the blades are rigid and linked to the hub through flap hinge
and the tail rotor collective inpui, . springs with stiffneskg, the lag motion is neglected and the
The force and moment vectors can be decomposég-as flap motion is approximated by the first three components
fror +fer +frus+ftp+fn @andne = Npy +Ner +Nus+Nep+Nen,  of the Fourier Series expansion of the steady-state salutio
where the subscriptar, tr, fus, tp and fn stand for the that is,

contributions of the main rotor, tail rotor, fuselage, lzorital 1
tail plane and vertical tail fin, respectively. B =Ag"(1)[B1(k) 8 +Ba(H) w+Bs(1) Al ®)

!/ !

A. Main Rotor whereB=[ Bo Pic Pis ], 0=[ 6, 6ic 615 |, and

. . ) the matricesAo(t), B1(u), Bo(u), andBs(u) are defined in

As the primary source of lift, propulsion and control, th8[9]'

main rotor dominates the helicopter dynamic behavior. As a The forces and moments generated by the main rotor are
result of the aerodynamic lift forces that are generateti@t tthe sum of the contributions of each blade expressed in the
surface of its rotating blades, the main rotor is respoesibhyp frame. The main rotor contribution to the total force
for the helicopter’s distinctive ability to operate in lespeed acting on the helicopter can be written &g = B RMf.,,
regimes, which include hovering and vertical maneuveringyjith the expression fof¥f,, given by )

To present the main rotor equations of motion, the follow-
. . Zc Zos
ing frame needs to be introduced: ~Yis ~4ic ~h- 3
hw. ~ N _ n
{hw} — Hub/Wind frame. Non-rotating frame, with its fw =2 22; 2|z % z0-5F P
origin at the hubx-axis aligned with the component of

rates to Euler angle derivatives ahld=

0 0 0

the helicopter linear velocity relative to the fluid that is,yere Ny is the number of bladesy(, and Z, are the

parallel with the hub plane. components of the Fourier Series decomposition of the
Most of the helicopter maneuvering capabilities resultvfro aerodynamic force generated at each blade. Similarly, the
effectively controlling the main rotor aerodynamic loadsmain rotor contribution to the overall moment is computed
This is achieved by means of the swashplate - a mechanisming n,, = E*WRhanr, where the expression f&¥n,, can
responsible for applying a different blade pitch an@lg be rewritten as

at each blade azimuth anglgy, such that Oy (Ym) = e e Nee o Nas
B¢, + 61c COSYm+ B1s SiNYm. The collective comman@y, is " 0 . 1o 0 BT 2

; ; . . My ~np| O |+ o Nas N |
directly applied to the main rotor blades, whereas the cgcli No Nis  —kg+ =" No——
6. and 6;5 result from combining the cyclic commands 0 0 0

6c,. and 6, with the flapping motion of the Bell-Hiller and N, are the components of the Fourier Series decom-
stabilizing bar, also called flybar. This combined motion caposition of the aerodynamic yaw moment generated at each

be described by the first order system blade.
QA, 01+ Q%Ag(1) 01 = Q% (Bg(H) B¢, +Bww+By (U)A)  B. The Other Components

, p @) The tail rotor, placed at the tail boom in order to counteract
where 01 = [ 61 Bis |, O, = [ O 6o |w © = the moment generated by the rotation of the main rotor, pro-

[ P q ]’, A= [ Hz—Ao A Ais ]/ andQ = i is the  yjdes yaw control of the helicopter. To model this component
rotor speed. The variables and yi; are the normalized e can use the same principles adopted for the main rotor,
andz-components of the hub linear velocity apdandg are  neglecting the blade flapping and pitching motions, which
the normalizedk andy-components of the angular velocity, hayve little significance due to the small rotor size. The tail

all expressed in the framéhw}. Detailed expressions for yotor contribution to the total force can be approximated by
the matricesAy, Ag(l), Be(l), Bw, and By (u) can be

found in [9]. In the present work, the dynamics of the 0
e : - o fr =BR"f~ | —ny Zo, (4)
pitching mechanism are neglectet}, = 0, considering only r=tr - bto ’

the steady-state equations.
As result of the thrust force generated at the surface of tivehere n,, is the number of blades of the tail rotdfg, is
rotating blades, the air is accelerated downwards creatingthe thrust force produced by the tail rotor afR" is the



rotation from the tail rotor framétr} to the body framgB}.  thatKy(t) = K, +Kj(t), the system equations can be written

Similarly, the moment expression is given by as

0 { X(t) = Anx(t)+B(kuu(t) +Ke(t)X(t) +Kku(t))

Ny = [ —Npy Noy ] +Bpy xfyr (5) yt) = Cx(t) ,  x(0)=xo o

0 wherek, € % stands for the unknown control effectiveness,

whereNy, is the tail rotor generated torque. Kx(t) € Hx andku(t) € . Without loss of generality it is
Accurate modeling of the aerodynamic forces and md@Ssumed that

ments ge_nerated by the flow surroupding the helicopter o= {kg €R | ky € [Ky, K]}
fuselage is a demanding task. In this work these loads
are modeled as functions of the mean flow speeg, [kw()[| <bo, Vt>0,

the incidence anglersys and the sideslip angl@sus. The  \yhere 0< k, < ky are known upper and lower bounds,
horizontal tail plane and vertical tail fin are modeled ag, R+ is a known bound oky(t) and % is a known
normal wings, whose aerodynamic force contributions can h@mpact set. It is further assumed thég(t) and ky(t)
approximated by functions of the angle of attack and sifeslizre continuously differentiable and their derivatives ané
. formly bounded, that is
C. .4 Modd Formulation ) q K 4
Ky(t)]|2 < dky < o, ) <dw <o, Vt>0,

The nonlinear helicopter model presented above and de-H x(t)ll2 < dx kw(®llz < dow _

noted by the nonlinear dynamic equation where||.||2 denotes the 2-norm, artky, dwy can be arbitrar-
ily large.

Xa(t) = f(xa(t), us(t), vw(t)) lIl. % ADAPTIVE CONTROLLER

can be linearized along trajectories, considerixg) = In this section, the¥; adaptive control solution is pre-
xg(t) —Xc, u(t) = ug(t) —uc, with xc anduc as the state and sented for the rotorcraft linearized model. Recall that the
input trimming values, respectively. A trimming traject@f plant model is described by

a helicopter can be described by a vector { () = Amx(t) £ B(keU(t) + Ke(t)X(t) + Ku(t))
&= MeYeWe Y], (6) y(t) = Cx(), X(0) =Xo (10)

that fully parameterizes the set of achievable helicopte-Fhe control objective is to design a state feedback adaptive
trimming trajectories, which correspond to straight limesl controller for the system (10) to ensure tht) tracks a

z aligned helices described by the vehicle with arbitrar@iven bounded reference signat), while all other error
linear speed and yaw angle. Note thiat= ||v| is the linear ~Signals remain bounded. _ _

body speedy: the flight-path anglegs. the angular velocity Th_e 2 adapt|ve_ controller is comprised of the sta_te
along thez-axis and(y the yaw angle difference betweenPredictor, the adaptive laws and the control law, as detaile
the tangent frame to the desired trajectory and the desir@§/0W. The state predictor is defined similar to the plant

orientation. equations, but replacing the unknown variables by their
It can be seen that, for a sufficiently small region opstlmates,
operation, the system can be approximated by a linear time{f X(t) = ApnX(t) +B(Ru(t) u(t) + Ky(t)x(t) +I2W(t))
varying system of the form git) = CX() , X(0) = xo
. A A (12)
{ X(t) = A{t)x(t)+Bww(t) +Bkyu(t) (7) Whereky(t), Ki(t), and ky(t) are the adaptive parameters
yt) = Cx(t) ,  x(0)=xo0 computed using the adaptive laws given by
Wher_e _the matrixA can be decomposed ir_1_nomina| and ;_Ru(t) - yProj(I?u(t)7B/P>”((t)u/(t))
remaining partsA(t) = An+As(t), ky is a positive constant Ket) = yProjRe(t),B' PX()X (1) (12)
and the termByw(t) accounts for uncertainties and wind i Proik B PX
disturbances. Thus, it can be seen that w(t) yProjkw(t), B'PX(1))

whereX = X — x is the prediction error state that results from
X(t) = Anx(t) +Bkyu(t) +Baw(t) +As(t)X(t) . (8) the difference between the system (10) and the predictdr (11
. . . . y> 0 is the adaptation gaif,= P’ > 0 is the matrix solution
Assumptlon 1. [Matching Assumption] '_I'here F.,'XIStS a of the Lyapunov equatiod\, P+ PAm = —Q, with Q > 0,
control matrixKy such thatAn = Ay —BKy is Hurwitz. and Proj.,.) denotes the projection operator, as defined in
Assumption 2: There exist a time varying vector [10], generalized to parameter matrices.
kw(t) and a time varying matrixKs(t) such that ~ The control lawu(t) is generated as follows
B(Ks(t)x(t) +kw(t)) = Bww(t) +As(t) X(t). —
Given the previous assumptions, and adding the zero valued Y (S) —kaD(9)R(s) (13)
term B (K, — Kp)X(t) to the state equation and considering r(t) Kx(8) X (1) + k(1) u(t) + kw(t) — Kgr (t)



whereky € R, Kg € R"*" and D(s) is anny x ny transfer  for the stability of this closed-loop reference system &gd i
function matrix that leads to a stable and strictly propeproof can be found in [6].

transfer function matrix (s) defined by Lemma 1. The reference system (20)-(23) is stablejf
_1 andD(s) satisfy the conditions (15)—(17).
F(s) = (I+kikaD(s)) " kuka D(s) , (14) 2) Guaranteed Transient Performance: The transient per-

whereI denotes the identity matrix of appropriate dimenformance bounds for the; adaptive closed loop system are

sions. Note thatR(s) = .#{r(t)} stands for the Laplace 9iven in the following theorem.

transform of the signal(t), as well asU(s) = Z{u(t)}. Theorem 1 (Transient Performance): Given the system
To ensure the stability of the closed loop system with th€l0), the reference system (20)-(23) and ti¢ adaptive

% adaptive controller, the following conditions have to becontroller (11), (12) and (13), subject to (15)-(17), we dav

satisfied by proper design @f(s) andky:

Xz =< w (24)
(i) F(s) is strictly proper and stable arfl(0) =1 (15) IX—=Xretllze, < W1 (25)
(ii) F(s)Ho'(s) are proper and stable; (16) ly=Yretlz < [Clawn (26)
(i) [[GllnL <1, an JUu—Uretllz, < ¥ @7)
where the transfer functioB(s) is defined by where
— 1
G(s) = H(s) (I-F(9)), (18) o = ( Bm )2 (28)
Ho(S) = CH(s), H(s) = (SI— An) B and A“mi(ng)m
On = 472020, 1+6, 29
L= Krpea;)é I[Kxll.2, - (19) " Amin(Q) ' )
Remark 1 (Design of the control law): The simplest way 6 = 4 (KfTéa}} ||Kx||2> O + 400 Ay (30)
of choosingD(s) is to considerD(s) = Di(s)I and conse- e
quently, F(s) = R(s)I with F(s) = %’%. Moreover, 6 = 4< max [|Kx|[2+ max ||ku2+Ao> (31)
. . ! KxeHx kue A
depending on the relative degreeHf(s) one can have, for F
instanceD; (s) = £ with relative degregp = 1, orDi(s) = 3 o= FRlleye (32)
andDi(s) = 252 with p = 2. I
Remark 2: It can be seen that the problem of finding(s) Voo = Ik Fllglvi+(Fllz v (33)
to generater(s) is a root locus problem, that always yields Fi(s) = H(s)F(s) Hglc (34)
real and stable closed loop polespgf=1 and stable poles Fo(s) = kglF(s) H(;lC. (35)

(possibly imaginary) fop = 2. However, wherp > 2 there  The proof for this result can be found in [6]. Thus, if the

is always a constant such that if the gairkuks > ¢ the  aqaptation ratg is selected sufficiently large, the closed-loop
function F(s) is unstable. Moreover, fop <2, it can be gystem follows the reference system not only asymptoyicall
seen that if the gailykq tends to infinity, then the poles of pyt aiso during the transient phase. This reduces the design
the closed loop systerfi(s), although stable, also tend t0 yroblem to that of findingd(s) and kg, such that the con-
infinity, yielding implementation problems. ditions (15)-(17) hold and the closed-loop reference sgste

A. Analysis of the .41 Adaptive Controller (20)-(23) has the desired response.

With the introduction of the input filteF (s), the predictor B. Design Guidelines

can no longer be used to evaluate the performance of theBearing in mind that the reference system and its control
resultant closed |00p system. The fO“OWing reference&yst law Uref (t) depend upon the ideal values of the unknown pa-
is introduced in order to provide the tools for performanceameters and are therefore not implementable, it is importa
analysis. to understand how the bounds established in Theorem 1 can

1) Sability of the Reference System: For performance pe used to ensure the desired closed loop system response.
evaluation of the.#; adaptive controller, the following  Notice that the ideal control law is given by

closed-loop reference system is considered, which depends

upon the ideal parameteks, Ky(t) andkiy(t): kuUig(t) = Kgr (t) — Kx(t) Xia (t) —kw(t) (36)
Xef(t) = AmXref (t)+B(ku Uref (t) +r1(t)) (20) which leads to the closed loop ideal system
Yref(t) = Cxrer(t) ,  Xret(0) =Xo (21) Xid(t) = AmXig +B(kyUiq(t) — Kx(t) Xia(t) — kw(t))
Uref(S) = —kaD(S)Rret(S) (22) = AmXig +BKgr(t) (37)
Mref(t) = Kulref (t) +r1(t) —Kgr(t) (23) Yia = CXd , Xid(0)=Xo, (38)

wherer 1 (t) = Ky(t) Xref (t) +kw(t) andKg € R™*™ js a con- by canceling the uncertainties exactly. Conversely, inctise
stant matrix. The following Lemma establishes the condgio of the closed-loop reference system (20)-(23), the cotdvel



is a low-pass filtered version afig. As in [11], it can be
seen that the response of the closed loop reference system
can be made arbitrarily close to the one of the ideal system
by increasing the bandwidth &f(s), i. e., asF(s) — I then R s

[lyret —Vidll., — O. Increasing the bandwidth &f(s) may _ o _ o _
affect the robustness of the closed loop, as proven in [5],%- 16ner\1,¥|ir;ds\r:§m)ty disturbance in the inertial frame (orthe z-axis
and therefore a trade-off must be found to obtain the desired '
performance and robustness bounds, which can be addressed

using well-known tools from classical and robust control

theory. 1

IV. SIMULATION RESULTS .

In this section the implementation details and the simula- T
tion results obtained with the inner loagp; controller, along
a typical rotorcraft maneuver, are presented and discussed
The main implementation aspects focused hereafter are
the definition of the bounds fok,, Ky« and ky, and also
the design of the filtef=(s). For the computation of the
projection bounds for the adaptive parameters, the region o
operation for the helicopter is considered to be defined by
the set= = {£ € R*&1 € [€,,&4],& = & = 0,& = m/2},
where & = VeyePeWa|, & = 0.75 and & = 1.25. The 3
control effectiveness parametéy(t) was initialized with and [|Gz[|¢ L = 0.975. The adaptive gairy was set to
k,(0) =1 and its adaptation interval for projection was set toy = 10000.
o= {ky €R |k, <ky<Kk,}, wherek, =0.75 andk, = 1.25, The simulation results herein presented were obtained
which correspond to a loss/gain of 25% of controller effecusing the full nonlinear dynamic model SimModHeli, pa-
tiveness. The adaptive parameter maltjxt) was initialized rameterized for the Vario X-Treme model-scale helicopter,
at Ky(0) = Ky, while its bounds were defined by the setwithin the Matlab/Simulink simulation environment. The
Hy = {Ky € Rnuxnx|KXij < Kyj < kx; » Vie1..ny.j=1..n}, rotorcraft is required to track the following trajectoryi) (

where ky; and k, are the lower and upper bounds ford straight line moving sideways/{= 1 m/s, Yy = 11/2

each element ofy(t). These bounds are computed from thd@d andwe = ye = 0); (ii) followed by a helix keeping the
nominal controlleiK,, which is a stabilizing controller for all "0S€ Of the helicopter pointing to the center of the helix
plants within the region of operation, by settiﬁg = _L(xu = a}nd doubllngd/the linear speelsi’c(d:.Z mdls];_w“”: 7_1__/2hrad,
2|ky;|. Also, the upper bound for the adaptation paramete“"C = 0.24 rad/s andy. = 0.34 rad); and finally (iii) hover

L t a specific point g = 11/2 rad andV; = (. = ¥ = 0).
matrix is given byL = max ||K =2||K —0.2306. & e . .
9 y Kxe 7 1Kl Knll.24 The initial state vector isg = 0. To evaluate the behavior of

The uncertainty adaptation parameksy was initialized as the closed-loop system in realistic operation scenariosiwi
kw(0) =0 and its bounds were defined by the s&f = {ky €  disturbances were included in all linear velocity channels
R||ky|<05,Vi=1,...,n,}}. The matrices\, andBwere The disturbances were generated using the Von Karman
computed for the central point of the region of operationvind model and also a discrete wind gust with amplitude
defined above. The choice 8f, B andK, follow from the 1 m/s, rising time of 1s, applied at tinte= 22s (see [7] and

W [mis]

Fig. 2. .23 controlled trajectory.

methodology described in [1]. references therein for further insight). Tha@xis component
The output signal was defined asy(t) = of wind disturbance is displayed in Figure 1.
[ VE(t) e,y (t) | € RY, the reference signar(t) = O The trajectory described by the rotorcraft nonlinear simu-

and Ho(s) yields a 4x 4 stable and proper transfer |ation model in closed-loop; adaptive system is depicted
function matrix with stable transmission zeros. Notingn Figure 2. The remaining simulation results, presented
that ||H| ¢ = 26368, to satisfy condition (17), the in Figure 3, compare the performance obtained with the
filter F(s) can be defined by considerin®(s) = 11 &, adaptive controller with that obtained with the fixed
and taking into account the setr|, vyielding two nominal state feedback controllés, computed as in [1].
different  filters: F(s) = (I+k,kaD(s)) "k,kaD(S) It can be seen that theZs adaptive controller displays
and F(s) = (H+Eude(s)):1EuI<dD(s), from which considerably smaller errors than the nominal contralgr
Gi(s) = H(s)(T—FE(s)) and Gy(s) = H(s)(I— F(s)) can The nominal controller has an acceptable performance in the
be obtained. Thus, the value &f from which condition first part of the trajectory (that would belong to the prededin
(17) is _satisfied can be computed by evaluatjf@s| « L region of operation if there was no wind disturbance), but
and ||Gz|| # L yielding the conditionky > 273, obtained in the rest of the reference trajectory, its performance is
iteratively using Matlab. In the simulation results thepoor failing to follow the reference signals and rejecting

value ky = 280 was used, for which|Gy|| 4 L = 0.606 the wind gust. TheZ; adaptive controller is able to reject



the wind induced disturbances, keeping the vehicle close to
the reference velocities, even when it operates far form the
design conditions. From the figures it can be easily condude
that the performance of th&) surpasses that of the linear
controller showing the clear advantages of fast adaptation

V. CONCLUSIONS

This paper presented the design and performance evalua-
tion of a high bandwidth inner loog”, adaptive controller to
provide attitude and velocity stabilization of an autonaisio
rotorcraft in the presence of wind disturbance.

The nonlinear dynamic model of the rotorcraft was written
as a linear time-varying system for a predefined region of
operation, for which aZ; adaptive controller was designed.
The effectiveness of the proposed control laws was assessed
in the MATLAB/Simulink simulation environment with the
full nonlinear model of the rotorcraft using demanding
reference signals and wind disturbances, generated using
Von Karman models and wind gusts. The results obtained
indicate that the proposed methodology can provide better
performance than that achieved by the controller used to
specify the reference system, following demanding refezen
signals while rejecting the wind disturbances.

Further research effort shall focus on the position control
of the autonomous rotorcraft.
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Fig. 3. Simulation results.



