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Abstract— In this paper, the L1 adaptive control theory
is used to design a high bandwidth inner loop controller to
provide attitude and velocity stabilization of an autonomous
small-scale rotorcraft in the presence of wind disturbances.
The nonlinear model of the vehicle is expressed as a linear
time-varying system for a predefined region of operation, for
which an L1 adaptive controller is designed. TheL1 adaptive
controller ensures that an uncertain linear time-varying system
has uniformly bounded transient response for system’s input
and output signals, in addition to stable tracking. The perfor-
mance bounds ofL1 adaptive controller can be systematically
improved by increasing the adaptation rate without hurting
the robustness of the system. The performance achieved with
the L1 controller is compared with that obtained via a linear
state feedback controller for demanding reference signals in the
presence of wind disturbances. Simulation results show that the
performance of the L1 surpasses that of the linear controller
illustrating the advantages of fast adaptation.

I. INTRODUCTION

Within the scope of Unmanned Aerial Vehicles, au-
tonomous rotorcraft have been steadily growing as a major
topic of research. They have the potential to perform high
precision tasks in challenging and uncertain operation sce-
narios as new sensor technology and increasingly powerful
and low cost computational systems are becoming available.
Nonetheless, their highly nonlinear, coupled, unstable and
fast dynamics represent a challenge for the control engineer-
ing community. For instance, in [1] a trajectory tracking
H2 gain scheduling methodology is used to control an
autonomous rotorcraft subject to wind disturbance.

In this paper, theL1 control theory, introduced in [2],
[3], [4], [5] and generalized for multi-input multi-output
(MIMO) systems in [6], is used to design a high bandwidth
inner loop controller to provide attitude and velocity sta-
bilization of an autonomous small-scale helicopter. Thus,
the L1 adaptive control theory is applied to a nonlinear
dynamic model of a small-scale helicopter to achieve velocity
tracking by adapting to different points of operation. TheL1
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adaptive controller ensures that an uncertain linear system
has uniformly bounded transient and asymptotic tracking for
system’s input and output signals. The performance bounds
of theL1 adaptive controller can be systematically improved
by increasing the adaptation rate, without compromising
the robustness of the closed-loop system. The performance
of the L1 controller is compared, in a realistic simulation
environment, with that achieved by the nominal controller
used in the specification of the reference system, which
follows from [1]. The wind disturbance, which uses Von
Karman disturbance models and wind gusts, leads the vehicle
outside the predefined region of operation. The vehicle model
used in the simulation is the full nonlinear model of the
helicopter.

This paper is organized as follows: Section II briefly
presents the helicopter dynamic model and the reformulation
of this model into the standardL1 design setup. Section III
formulates theL1 adaptive control problem and the main
results from theL1 theory are presented. In Section IV
the implementation details and the simulation results are
presented and discussed; and finally, Section V summarizes
the main conclusions and points out directions for further
work.

II. HELICOPTER MODEL

This section summarizes the dynamical model of the
helicopter. A comprehensive coverage of helicopter flight
dynamics can be found in [7]. In [8], [9] the model presented
bellow is described in further detail.

Consider the helicopter, modeled as a rigid body, where the
resultant force and moment applied to the helicopter’s center
of mass are the sum of the contributions of the helicopter
components and gravitational force. Let

(

IpB, I
BR

)

∈ SE(3) ,

R
3 × SO(3) denote the configuration of the body frame

{B} (attached to the vehicle’s center of mass) with respect
to the inertial frame{I}. Consider also the Z-Y-X Euler
anglesλ B =

[

φB θB ψB
]′

, θB ∈]− π
2 , π

2 [, φB,ψB ∈ R,
representing the orientation of{B} relative to {I} such
that I

BR = R(λ B). In addition, let vB and ωB denote the
linear and angular body velocities, respectively. For the sake
of simplicity, the time dependence of the state, input and
disturbance vectors are omitted within the description of the
helicopter nonlinear model. Using these notations, the state
equations of the helicopter dynamics can be written as






v̇B = −ωB ×vB + 1
m [fe (vB,ωB,uB,vw)+ fg (φB,θB)]

ω̇B = −I−1
B (ωB × IB ωB)+ I−1

B ne (vB,ωB,uB,vw)

Πλ̇ B = ΠQ (φB,θB) ωB
(1)



where m is the vehicle mass,IB is the tensor of inertia
about the frame{B}, uB is the input vector,vw is the wind
velocity disturbance,fe, ne, and fg are the external force,
moment, and gravitational force, respectively, all expressed
in the body frame,Q is the transformation from angular

rates to Euler angle derivatives andΠ =

[

1 0 0
0 1 0

]

. The

state vectorxB = [v′B ω ′
B Πλ ′

B]′ ∈ X ⊂ R
nx has dimension

nx = 8. The input vectoruB ∈U ⊂ R
nu with nu = 4, defined

asuB =
[

θc0 θc1c θc1s θc0t

]′
, comprises the main rotor

collective inputθc0, the main rotor cyclic inputsθc1c andθc1s ,
and the tail rotor collective inputθc0t .

The force and moment vectors can be decomposed asfe =
fmr + ftr + f f us + ft p + f f n andne = nmr +ntr +n f us +nt p +n f n,
where the subscriptsmr, tr, f us, t p and f n stand for the
contributions of the main rotor, tail rotor, fuselage, horizontal
tail plane and vertical tail fin, respectively.

A. Main Rotor

As the primary source of lift, propulsion and control, the
main rotor dominates the helicopter dynamic behavior. As a
result of the aerodynamic lift forces that are generated at the
surface of its rotating blades, the main rotor is responsible
for the helicopter’s distinctive ability to operate in low-speed
regimes, which include hovering and vertical maneuvering.

To present the main rotor equations of motion, the follow-
ing frame needs to be introduced:

{hw} – Hub/Wind frame. Non-rotating frame, with its
origin at the hub,x-axis aligned with the component of
the helicopter linear velocity relative to the fluid that is
parallel with the hub plane.

Most of the helicopter maneuvering capabilities result from
effectively controlling the main rotor aerodynamic loads.
This is achieved by means of the swashplate - a mechanism
responsible for applying a different blade pitch angleθmr

at each blade azimuth angleψm, such that θmr(ψm) =
θc0 +θ1c cosψm +θ1s sinψm. The collective commandθc0 is
directly applied to the main rotor blades, whereas the cyclics
θ1c and θ1s result from combining the cyclic commands
θc1c and θc1s with the flapping motion of the Bell-Hiller
stabilizing bar, also called flybar. This combined motion can
be described by the first order system

ΩAθ̇ θ̇ 1 +Ω2 Aθ (µ)θ1 = Ω2 (Bθ (µ)θ c1 +Bω ω +Bλ (µ)λ )
(2)

where θ 1 =
[

θ1c θ1s
]′

, θ c1 =
[

θc1c θc1s

]′
, ω =

[

p̄ q̄
]′

, λ =
[

µz −λ0 λ1c λ1s
]′

and Ω = ψ̇m is the
rotor speed. The variablesµ and µz are the normalizedx
andz-components of the hub linear velocity and ¯p and q̄ are
the normalizedx and y-components of the angular velocity,
all expressed in the frame{hw}. Detailed expressions for
the matricesAθ̇ , Aθ (µ), Bθ (µ), Bω , and Bλ (µ) can be
found in [9]. In the present work, the dynamics of the
pitching mechanism are neglected,θ̇ 1 = 0, considering only
the steady-state equations.

As result of the thrust force generated at the surface of the
rotating blades, the air is accelerated downwards creatinga

flowfield, usually called induced downwash. The downwash
can be decomposed in Fourier Series and approximated by
the constant and first-order harmonic terms, yielding an
expression similar to that of the blade pitch angleλ (ψm) =
λ0+rm (λ1c cosψm +λ1s sinψm), whererm is the rotor radius
integration variable. Also as a consequence of the rotation
and feathering (blade pitching) motions and interaction with
the motion of the helicopter, the blades describe flap and lag
motions, roughly characterized by pulling up and backwards,
respectively, the tip of the blade. In this work, assuming that
the blades are rigid and linked to the hub through flap hinge
springs with stiffnesskβ , the lag motion is neglected and the
flap motion is approximated by the first three components
of the Fourier Series expansion of the steady-state solution,
that is,

β = A−1
0 (µ) [B1(µ)θ +B2(µ)ω +B3(µ)λ ] (3)

whereβ =
[

β0 β1c β1s
]′

, θ =
[

θc0 θ1c θ1s
]′

, and
the matricesA0(µ), B1(µ), B2(µ), andB3(µ) are defined in
[9].

The forces and moments generated by the main rotor are
the sum of the contributions of each blade expressed in the
hub frame. The main rotor contribution to the total force
acting on the helicopter can be written asfmr = B

hwR hwfmr,
with the expression forhwfmr given by

hwfmr ≃
nb
2





−Y1s
−Y1c
2Z0



+ nb
2









−Z1c −Z0−
Z2c

2
−

Z2s

2
Z1s

Z2s

2
Z0−

Z2c

2
0 0 0









β

where nb is the number of blades,Y(.) and Z(.) are the
components of the Fourier Series decomposition of the
aerodynamic force generated at each blade. Similarly, the
main rotor contribution to the overall moment is computed
using nmr = B

hwR hwnmr, where the expression forhwnmr can
be rewritten as

hwnmr ≃ nb





0
0

N0



+ nb
2









−N1c −N0−
N2c

2
−kβ −

N2s

2
N1s −kβ +

N2s

2
N0−

N2c

2
0 0 0









β

and N(.) are the components of the Fourier Series decom-
position of the aerodynamic yaw moment generated at each
blade.

B. The Other Components

The tail rotor, placed at the tail boom in order to counteract
the moment generated by the rotation of the main rotor, pro-
vides yaw control of the helicopter. To model this component
we can use the same principles adopted for the main rotor,
neglecting the blade flapping and pitching motions, which
have little significance due to the small rotor size. The tail
rotor contribution to the total force can be approximated by

ftr = B
trR

trf ≃





0
−nbt Z0t

0



 , (4)

where nbt is the number of blades of the tail rotor,Z0t is
the thrust force produced by the tail rotor andB

trR
tr is the



rotation from the tail rotor frame{tr} to the body frame{B}.
Similarly, the moment expression is given by

ntr =





0
−nbt N0t

0



+ Bptr × ftr , (5)

whereN0t is the tail rotor generated torque.
Accurate modeling of the aerodynamic forces and mo-

ments generated by the flow surrounding the helicopter
fuselage is a demanding task. In this work these loads
are modeled as functions of the mean flow speedv f us,
the incidence angleα f us and the sideslip angleβ f us. The
horizontal tail plane and vertical tail fin are modeled as
normal wings, whose aerodynamic force contributions can be
approximated by functions of the angle of attack and sideslip.

C. L1 Model Formulation

The nonlinear helicopter model presented above and de-
noted by the nonlinear dynamic equation

ẋB(t) = f(xB(t),uB(t),vw(t))

can be linearized along trajectories, consideringx(t) =
xB(t)−xC, u(t) = uB(t)−uC, with xC anduC as the state and
input trimming values, respectively. A trimming trajectory of
a helicopter can be described by a vector

ξ = [Vc γc ψ̇c ψct ]
′ , (6)

that fully parameterizes the set of achievable helicopter
trimming trajectories, which correspond to straight linesand
z aligned helices described by the vehicle with arbitrary
linear speed and yaw angle. Note thatVc = ‖vc‖ is the linear
body speed,γc the flight-path angle,̇ψc the angular velocity
along thez-axis andψct the yaw angle difference between
the tangent frame to the desired trajectory and the desired
orientation.

It can be seen that, for a sufficiently small region of
operation, the system can be approximated by a linear time-
varying system of the form

{

ẋ(t) = A(t)x(t)+Bw w(t)+Bku u(t)
y(t) = C x(t) , x(0) = x0

(7)

where the matrixA can be decomposed in nominal and
remaining parts,A(t) = An +Aδ (t), ku is a positive constant
and the termBw w(t) accounts for uncertainties and wind
disturbances. Thus, it can be seen that

ẋ(t) = Anx(t)+Bku u(t)+Bww(t)+Aδ (t)x(t) . (8)

Assumption 1: [Matching Assumption] There exists a
control matrixKn such thatAm = An −BKn is Hurwitz.

Assumption 2: There exist a time varying vector
kw(t) and a time varying matrix Kδ (t) such that
B(Kδ (t)x(t)+kw(t)) = Bw w(t)+Aδ (t)x(t).
Given the previous assumptions, and adding the zero valued
term B(Kn −Kn)x(t) to the state equation and considering

that Kx(t) = Kn +Kδ (t), the system equations can be written
as

{

ẋ(t) = Am x(t)+B(ku u(t)+Kx(t)x(t)+kw(t))
y(t) = C x(t) , x(0) = x0

,

(9)
whereku ∈Ku stands for the unknown control effectiveness,
Kx(t) ∈ Kx andkw(t) ∈ Kw. Without loss of generality it is
assumed that

Ku = {ku ∈ R | ku ∈ [ku,ku]} ,

‖kw(t)‖ < ∆0 , ∀ t ≥ 0 ,

where 0< ku < ku are known upper and lower bounds,
∆0 ∈ R

+ is a known bound ofkw(t) and Kx is a known
compact set. It is further assumed thatKx(t) and kw(t)
are continuously differentiable and their derivatives areuni-
formly bounded, that is

‖K̇x(t)‖2 ≤ dKx < ∞ , ‖k̇w(t)‖2 ≤ dkw < ∞ , ∀ t ≥ 0 ,

where‖.‖2 denotes the 2-norm, anddKx,dkw can be arbitrar-
ily large.

III. L1 ADAPTIVE CONTROLLER

In this section, theL1 adaptive control solution is pre-
sented for the rotorcraft linearized model. Recall that the
plant model is described by

{

ẋ(t) = Am x(t)+B(ku u(t)+Kx(t)x(t)+kw(t))
y(t) = C x(t), x(0) = x0

.

(10)
The control objective is to design a state feedback adaptive
controller for the system (10) to ensure thaty(t) tracks a
given bounded reference signalr(t), while all other error
signals remain bounded.

The L1 adaptive controller is comprised of the state
predictor, the adaptive laws and the control law, as detailed
below. The state predictor is defined similar to the plant
equations, but replacing the unknown variables by their
estimates,
{

˙̂x(t) = Am x̂(t)+B
(

k̂u(t)u(t)+ K̂x(t)x(t)+ k̂w(t)
)

ŷ(t) = C x̂(t) , x̂(0) = x0
(11)

where k̂u(t), K̂x(t), and k̂w(t) are the adaptive parameters
computed using the adaptive laws given by











˙̂ku(t) = γ Proj(k̂u(t),B′ P x̃(t)u′(t))
˙̂Kx(t) = γ Proj(K̂x(t),B′ P x̃(t)x′(t))
˙̂kw(t) = γ Proj(k̂w(t),B′ P x̃(t))

, (12)

wherex̃ = x̂−x is the prediction error state that results from
the difference between the system (10) and the predictor (11),
γ > 0 is the adaptation gain,P = P′ > 0 is the matrix solution
of the Lyapunov equationA′

m P + PAm = −Q, with Q > 0,
and Proj(., .) denotes the projection operator, as defined in
[10], generalized to parameter matrices.

The control lawu(t) is generated as follows

U(s) = −kd D(s) R̄(s) (13)

r̄(t) = K̂x(t)x(t)+ k̂u(t)u(t)+ k̂w(t)−Kg r(t)



wherekd ∈ R, Kg ∈ R
nu×nu and D(s) is an nu × nu transfer

function matrix that leads to a stable and strictly proper
transfer function matrixF(s) defined by

F(s) = (I+ ku kd D(s))−1 ku kd D(s) , (14)

where I denotes the identity matrix of appropriate dimen-
sions. Note thatR̄(s) = L {r̄(t)} stands for the Laplace
transform of the signal̄r(t), as well asU(s) = L {u(t)}.

To ensure the stability of the closed loop system with the
L1 adaptive controller, the following conditions have to be
satisfied by proper design ofD(s) andkd :

(i) F(s) is strictly proper and stable andF(0) = I ;(15)

(ii) F(s)H−1
0 (s) are proper and stable ; (16)

(iii) ‖Ḡ‖L1 L < 1 , (17)

where the transfer function̄G(s) is defined by

Ḡ(s) = H(s)(I−F(s)) , (18)

H0(s) = C H(s), H(s) = (sI−Am)−1 B and

L = max
Kx∈Kx

‖Kx‖L1 . (19)

Remark 1 (Design of the control law): The simplest way
of choosingD(s) is to considerD(s) = Di(s)I and conse-
quently, F(s) = Fi(s)I with Fi(s) = ku kd Di(s)

1+ku kd Di(s)
. Moreover,

depending on the relative degree ofH0(s) one can have, for
instance,Di(s) = 1

s with relative degreeρ = 1, or Di(s) = 1
s2

andDi(s) = 3a2 s+a3

s3+3as2 with ρ = 2.
Remark 2: It can be seen that the problem of findingDi(s)

to generateFi(s) is a root locus problem, that always yields
real and stable closed loop poles ifρ = 1 and stable poles
(possibly imaginary) forρ = 2. However, whenρ > 2 there
is always a constantc such that if the gainku kd > c the
function Fi(s) is unstable. Moreover, forρ ≤ 2, it can be
seen that if the gainku kd tends to infinity, then the poles of
the closed loop systemFi(s), although stable, also tend to
infinity, yielding implementation problems.

A. Analysis of the L1 Adaptive Controller

With the introduction of the input filterF(s), the predictor
can no longer be used to evaluate the performance of the
resultant closed loop system. The following reference system
is introduced in order to provide the tools for performance
analysis.

1) Stability of the Reference System: For performance
evaluation of theL1 adaptive controller, the following
closed-loop reference system is considered, which depends
upon the ideal parametersku, Kx(t) andkw(t):

ẋre f (t) = Am xre f (t)+B
(

ku ure f (t)+ r1(t)
)

(20)

yre f (t) = C xre f (t) , xre f (0) = x0 (21)

Ure f (s) = −kd D(s) R̄re f (s) (22)

r̄ re f (t) = ku ure f (t)+ r1(t)−Kg r(t) (23)

wherer1(t) = Kx(t)xre f (t)+kw(t) andKg ∈R
nu×nu is a con-

stant matrix. The following Lemma establishes the conditions

for the stability of this closed-loop reference system and its
proof can be found in [6].

Lemma 1: The reference system (20)-(23) is stable ifkd

andD(s) satisfy the conditions (15)–(17).
2) Guaranteed Transient Performance: The transient per-

formance bounds for theL1 adaptive closed loop system are
given in the following theorem.

Theorem 1 (Transient Performance): Given the system
(10), the reference system (20)-(23) and theL1 adaptive
controller (11), (12) and (13), subject to (15)-(17), we have

‖x̃‖L∞ ≤ γ0 (24)

‖x−xre f ‖L∞ ≤ γ1 (25)

‖y−yre f ‖L∞ ≤ ‖C‖L1 γ1 (26)

‖u−ure f ‖L∞ ≤ γ2 (27)

where

γ0 =

(

θm

γ λmin(P)

)
1
2

(28)

θm = 4
λmax(P)

λmin(Q)
θ1 +θ2 (29)

θ1 = 4

(

max
Kx∈Kx

‖Kx‖2

)

dkx +4∆0 dkw (30)

θ2 = 4

(

max
Kx∈Kx

‖Kx‖2 + max
ku∈Ku

‖ku‖2 +∆0

)

(31)

γ1 =
‖F1‖L1 γ0

1−‖Ḡ‖L1 L
(32)

γ2 = ‖ku
−1 F‖L1 Lγ1 +‖F2‖L1 γ0 (33)

F1(s) = H(s)F(s)H−1
0 C (34)

F2(s) = k−1
u F(s)H−1

0 C . (35)
The proof for this result can be found in [6]. Thus, if the
adaptation rateγ is selected sufficiently large, the closed-loop
system follows the reference system not only asymptotically,
but also during the transient phase. This reduces the design
problem to that of findingD(s) and kd , such that the con-
ditions (15)-(17) hold and the closed-loop reference system
(20)-(23) has the desired response.

B. Design Guidelines

Bearing in mind that the reference system and its control
law ure f (t) depend upon the ideal values of the unknown pa-
rameters and are therefore not implementable, it is important
to understand how the bounds established in Theorem 1 can
be used to ensure the desired closed loop system response.

Notice that the ideal control law is given by

ku uid(t) = Kg r(t)−Kx(t)xid(t)−kw(t) (36)

which leads to the closed loop ideal system

ẋid(t) = Am xid +B(ku uid(t)−Kx(t)xid(t)−kw(t))

= Am xid +BKg r(t) (37)

yid = C xid , xid(0) = x0 , (38)

by canceling the uncertainties exactly. Conversely, in thecase
of the closed-loop reference system (20)-(23), the controllaw



is a low-pass filtered version ofuid . As in [11], it can be
seen that the response of the closed loop reference system
can be made arbitrarily close to the one of the ideal system
by increasing the bandwidth ofF(s), i. e., asF(s) → I then
‖yre f − yid‖L∞ → 0. Increasing the bandwidth ofF(s) may
affect the robustness of the closed loop, as proven in [5],
and therefore a trade-off must be found to obtain the desired
performance and robustness bounds, which can be addressed
using well-known tools from classical and robust control
theory.

IV. SIMULATION RESULTS

In this section the implementation details and the simula-
tion results obtained with the inner loopL1 controller, along
a typical rotorcraft maneuver, are presented and discussed.

The main implementation aspects focused hereafter are
the definition of the bounds for̂ku, K̂x and k̂w, and also
the design of the filterF(s). For the computation of the
projection bounds for the adaptive parameters, the region of
operation for the helicopter is considered to be defined by
the setΞ = {ξ ∈ R

4|ξ1 ∈ [ξ
1
,ξ 1],ξ2 = ξ3 = 0,ξ4 = π/2},

where ξ = [Vc γc ψ̇c ψct ]
′, ξ1 = 0.75 and ξ1 = 1.25. The

control effectiveness parameterk̂u(t) was initialized with
k̂u(0) = 1 and its adaptation interval for projection was set to
Ku = {ku ∈R | ku ≤ ku ≤ ku}, whereku = 0.75 andku = 1.25,
which correspond to a loss/gain of 25% of controller effec-
tiveness. The adaptive parameter matrixK̂x(t) was initialized
at K̂x(0) = Kn, while its bounds were defined by the set
Kx = {Kx ∈ R

nu×nx |kxi j
≤ Kxi j ≤ kxi j , ∀i=1,...,nu , j=1,...,nx},

where kxi j and kxi j
are the lower and upper bounds for

each element of̂Kx(t). These bounds are computed from the
nominal controllerKn, which is a stabilizing controller for all
plants within the region of operation, by settingkxi j =−kxi j

=

2|kni j |. Also, the upper bound for the adaptation parameter
matrix is given byL = max

Kx∈Kx
‖Kx‖L1 = 2‖Kn‖L1 = 0.2306.

The uncertainty adaptation parameterk̂w was initialized as
k̂w(0) = 0 and its bounds were defined by the setKw = {kw ∈
R | |kwi | ≤ 0.5 , ∀ i = 1, . . . ,nu}}. The matricesAn andB were
computed for the central point of the region of operation
defined above. The choice ofAn, B andKn follow from the
methodology described in [1].

The output signal was defined asy(t) =
[ v′B(t) ωB3(t) ]′ ∈ R

4, the reference signalr(t) = 0
and H0(s) yields a 4× 4 stable and proper transfer
function matrix with stable transmission zeros. Noting
that ‖H‖L1 = 263.68, to satisfy condition (17), the
filter F(s) can be defined by consideringD(s) = 1

s I

and taking into account the setKu, yielding two
different filters: F(s) = (I+ ku kd D(s))−1 ku kd D(s)
and F(s) =

(

I+ ku kd D(s)
)−1

ku kd D(s), from which
Ḡ1(s) = H(s)(I − F(s)) and Ḡ2(s) = H(s)(I − F(s)) can
be obtained. Thus, the value ofkd from which condition
(17) is satisfied can be computed by evaluating‖Ḡ1‖L1 L
and ‖Ḡ2‖L1 L yielding the conditionkd ≥ 273, obtained
iteratively using Matlab. In the simulation results the
value kd = 280 was used, for which‖Ḡ1‖L1 L = 0.606

Fig. 1. Wind velocity disturbance in the inertial frame (onlythe z-axis
component is shown).
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Fig. 2. L1 controlled trajectory.

and ‖Ḡ2‖L1 L = 0.975. The adaptive gainγ was set to
γ = 10000.

The simulation results herein presented were obtained
using the full nonlinear dynamic model SimModHeli, pa-
rameterized for the Vario X-Treme model-scale helicopter,
within the Matlab/Simulink simulation environment. The
rotorcraft is required to track the following trajectory: (i)
a straight line moving sideways (Vc = 1 m/s, ψct = π/2
rad andψ̇c = γc = 0); (ii) followed by a helix keeping the
nose of the helicopter pointing to the center of the helix
and doubling the linear speed (Vc = 2 m/s, ψct = π/2 rad,
ψ̇c = 0.24 rad/s andγc = 0.34 rad); and finally (iii) hover
at a specific point (ψct = π/2 rad andVc = ψ̇c = γc = 0).
The initial state vector isx0 = 0. To evaluate the behavior of
the closed-loop system in realistic operation scenarios wind
disturbances were included in all linear velocity channels.
The disturbances were generated using the Von Karman
wind model and also a discrete wind gust with amplitude
1 m/s, rising time of 1s, applied at timet = 22s (see [7] and
references therein for further insight). Thez-axis component
of wind disturbance is displayed in Figure 1.

The trajectory described by the rotorcraft nonlinear simu-
lation model in closed-loopL1 adaptive system is depicted
in Figure 2. The remaining simulation results, presented
in Figure 3, compare the performance obtained with the
L1 adaptive controller with that obtained with the fixed
nominal state feedback controllerKn computed as in [1].
It can be seen that theL1 adaptive controller displays
considerably smaller errors than the nominal controllerKn.
The nominal controller has an acceptable performance in the
first part of the trajectory (that would belong to the predefined
region of operation if there was no wind disturbance), but
in the rest of the reference trajectory, its performance is
poor failing to follow the reference signals and rejecting
the wind gust. TheL1 adaptive controller is able to reject



the wind induced disturbances, keeping the vehicle close to
the reference velocities, even when it operates far form the
design conditions. From the figures it can be easily concluded
that the performance of theL1 surpasses that of the linear
controller showing the clear advantages of fast adaptation.

V. CONCLUSIONS

This paper presented the design and performance evalua-
tion of a high bandwidth inner loopL1 adaptive controller to
provide attitude and velocity stabilization of an autonomous
rotorcraft in the presence of wind disturbance.

The nonlinear dynamic model of the rotorcraft was written
as a linear time-varying system for a predefined region of
operation, for which anL1 adaptive controller was designed.
The effectiveness of the proposed control laws was assessed
in the MATLAB/Simulink simulation environment with the
full nonlinear model of the rotorcraft using demanding
reference signals and wind disturbances, generated using
Von Karman models and wind gusts. The results obtained
indicate that the proposed methodology can provide better
performance than that achieved by the controller used to
specify the reference system, following demanding reference
signals while rejecting the wind disturbances.

Further research effort shall focus on the position control
of the autonomous rotorcraft.

REFERENCES

[1] B. Guerreiro, C. Silvestre, R. Cunha, and D. Antunes, “Trajectory
trackingH2 controller for autonomous helicopters: and aplication to
industrial chimney inspection,” in17th IFAC Symposium on Automatic
Control in Aerospace, Toulouse, France, June 2007.

[2] C. Cao and N. Hovakimyan, “L1 adaptive controller for systems with
unknown time-varying parameters and disturbances in the presence
of non-zero trajectory initialization error,”International Journal of
Control, vol. 81, no. 7, pp. 1148–1162, 2008.

[3] ——, “L1 adaptive output feedback controller for systems of unknown
dimension,”IEEE Transactions on Automatic Control, vol. 53, no. 3,
pp. 815–821, 2008.

[4] ——, “Design and analysis of a novelL1 adaptive control architec-
ture with guaranteed transient performance,”IEEE Transactions on
Automatic Control, vol. 53, no. 2, pp. 586–591, 2008.

[5] ——, “Stability margins of L1 adaptive controller: Part ii,” inIn
Proceedings of American Control Conference, New York City, USA,
July 2007.

[6] ——, “L1 adaptive controller for multi-input multi-output systems
in the presence of unmatched disturbances,” inAmerican Control
Conference, Seattle, WA, June 2008, pp. 4105–4110.

[7] G. D. Padfield,Helicopter Flight Dynamics: The Theory and Ap-
plication of Flying Qualities and Simulation Modeling, ser. AIAA
Education Series. Washington DC: AIAA, 1996.

[8] R. Cunha, “Modeling and control of an autonomous robotic he-
licopter,” Master’s thesis, Department of Electrical and Computer
Engineering, Instituto Superior Técnico, Lisbon, Portugal, May 2002.
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Fig. 3. Simulation results.


