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Resumo

A localização é, actualmente, um tópico de investigação essencial e premente devido às numerosas
aplicações e sistemas que necessitam de conhecimento relativo à localização. Sistemas do tipo GPS (Global
Positioning System) são actualmente a solução mais popular para o problema da localização, contudo
estes não podem ser usados em ambientes interiores ou sub-aquáticos, uma vez que a propagação do sinal
é bloqueada. Por esta razão, vários sistemas alternativos, baseados em distâncias, ângulos e potência de
sinal têm sido propostos para localização nesses ambientes.
Nesta dissertação propõem-se dois métodos alternativos, h́ıbridos, para paradigmas de fonte única e co-
laborativo, com vista à localização interior usando uma rede de sensores sem fios. Tais métodos conjugam
informação de distâncias (obtida por via acústica ou rádio) e visual (adquirida por uma câmera v́ıdeo),
sendo estes dois tipos de informação usados em sinergia.
Apresenta-se o estado da arte relevante, em particular, trabalhos relativos a sistemas de localização basea-
dos em distância, visão e, ainda, trabalhos recentes que se focam na fusão de ambos.
Neste trabalho são desenvolvidos, implementados e testados métodos de localização h́ıbridos para espaços
interiores e também um procedimento capaz de realizar uma auto-calibração entre duas redes de sensores
separadas. O primeiro método proposto apresenta uma formulação conjunta, não convexa, baseada na
função de máxima verosimilhança para rúıdo gaussiano, para informação de distância e orientação para
a qual uma relaxação convexa semidefinida positiva bastante eficaz é aplicada. Uma extensão deste tra-
balho é a exploração do paradigma colaborativo com a proposta de um algoritmo baseado numa relaxação
para discos que funde, igualmente, distâncias com direcção medida.
Mostra-se que os métodos propostos apresentam uma performance semelhante ou mesmo superior, em al-
guns cenários, aos métodos da literatura. Tal resultado vem sustentar a aposta em sistemas de localização
h́ıbrida de larga escala, potenciando investigação futura com vista a superar algumas das limitações e
evoluir para paradigmas distribúıdos e utilizando novas tecnologias.

Palavras-chave: localização, optimização não convexa, relaxação convexa, rede de sensores sem fios,
visão, distância e orientação.
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Abstract

Location awareness is, currently, a key and urgent research topic due to the various applications and
systems that require localization information. The GPS is the most popular localization system, yet
it is not available in indoor or underwater environments, since its signal is blocked. Hence, alternative
systems, based on distances, angles or signal strength have been proposed to perform localization in such
environments.
In this dissertation, two alternative hybrid methods for single-source and sensor network indoor localiza-
tion using a wireless sensor network are presented. These methods fuse information from range (obtained
acoustically or via radio) and vision (gathered by a video camera), which will be used in synergy.
The relevant state-of-the-art is presented, more specifically, works related to range-based systems (single-
source or cooperative), the use of visual information, and some novel work in fusing both methods.
An indoor hybrid localization method able to perform self-calibration between two detached wireless
sensor networks was fully developed, implemented and tested. The first proposed method performs a
non-convex joint formulation, based on the maximum likelihood functions for range and bearing informa-
tion, for which a tight convex relaxation is applied to obtain a semidefinite program. An extension to this
work is the exploration of the cooperative approach, for which an algorithm based on a disk relaxation
method fusing, again, both range and incident streaks measurements is devised.
It is shown, both in simulation and experimentally, that the two proposed methods have comparable
performance to the state-of-the-art methods, even outperforming them in some scenarios. This result
suggests that investment should be made on large-scale hybrid localization systems, fostering future re-
search not only to surpass current limitations but also to evolve to distributed paradigms and using novel
technologies.

Keywords: localization, nonconvex optimization, convex relaxation, wireless sensor networks, vision,
range and orientation.
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Chapter 1

Introduction

1.1 Motivation

The “Where am I” problem has always been a key issue in the field of technology, both for human
mobility as well as for robots/autonomous vehicles. Currently, the most popular system used to deter-
mine the localization of a target is the Global Positioning System (GPS). With the availability of this
system, there has been, in the past few years, a widespread adoption of mobile and distributed systems
that need precise information on location and positioning. Nonetheless, there are several situations, such
as indoors or underwater environments, in which GPS is not available and where location awareness will
soon become an essential feature. In fact, accurate indoor localization has the potential to transform the
way people navigate indoors in a similar way that GPS transformed the way people navigate outdoors.
However, indoor or subaquatic environments present several issues such as multi-path, diffraction due to
obstacles and interferences, which lead to over-meter accuracy in the majority of existing systems. Such
accuracy might be insufficient for numerous applications such as robot navigation; to overcome this issue
it is claimed, in [39], that the solution lies in exploring hybrid schemes. Thus, alternative systems based
on distances, angles and signal strength have been proposed [7, 15].
In localization systems there is normally an agent whose position we need to determine, called the target,
and a set of anchors (also called beacons) which are sensor nodes that know their coordinates a priori.
Furthermore, in cooperative scenarios, different agents have access to different location information and
will interact in order to jointly estimate their poses in a more precise way than they would do individually,
thus enhancing performance.
This cooperative approach, like the single-source approach, can be used not only for humans, but also
for robot or autonomous vehicles navigation, since location is essential to make control and navigation
decisions.
Focusing on indoor environments, most of the proposed localization systems use only one type of measure-
ment. However, sensor networks are becoming ubiquitous and thus it is commonplace to find different
sensors (e.g. Wi-Fi, acoustic and mobile cameras) in the same scenario/space. Hence, the envisaged
fusing approach has the ability to combine the strongest points of each technique, paving the way to
a more accurate hybrid localization system. This work addresses the use of distances (that can be ob-
tained acoustically or with electromagnetic signals) and visual information (gathered by a video camera)
to localize a target. More specifically, range information can be easily estimated using the duration of
propagation of an acoustic or electromagnetic signal (time of flight) and usually produces more robust
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results for farther regions, whereas the orientation and distance information retrieved by video is more
reliable in a near field situation. Therefore the complementary strengths of these two techniques make
them extremely appealing to be used in synergy.
The recent hype on Google Glass1 and similar gadgets brings more awareness to pose estimation (lo-
calization + orientation) using video and intensifies the motivation for this topic, namely for its use in
augmented reality systems. In fact, Google is working, at the present time, on Project Tango2 which
aims to develop devices for “human-scale understanding of space and motion”. Such new devices will try
to capture the 3D motion of the device while creating a map of the environment, targeting localization,
navigation and gaming in unknown outdoor/indoor places as main applications. Also, new sensors like
Structure3 are being developed in order to add 3D capabilities to existing mobile devices, such as smart-
phones, to enable similar applications to the ones targeted by Project Tango.
Several existing visual localization systems are based on recognizing known patterns, such as artificial
markers spread throughout the world in known reference positions. These markers are also known as tags
and should be fiduciary. However, its use is limiting, thus a method that can recognize natural features
and objects is more appealing and is a possible future direction.
The main topic of this work is, therefore, how to fuse these two (heterogeneous) types of sensor informa-
tion as well as doing so in an efficient way to localize targets and perform self-calibration in an indoor
environment.
Regarding the use of acoustic/electromagnetic signals, the specific localization technique addressed in
this work is based on the Time of Flight (TOF), which allows to estimate distances simply by measur-
ing delay, thus being preferable for acoustic signals. An alternative technique that measures the signal
power, which in ideal propagation conditions has a known mathematical relationship with distance due to
signal attenuation, being able to estimate the distance is Received Signal Strength Indication (RSSI) [3].
Although RSSI measurements can be poor surrogates for range due to non-uniform propagation in real
environments, it is possible to acquire large sets of data for which a position estimation can be efficiently
found, based on the use of Euclidean Distance Matrix (EDM)s (which is an envisaged follow-up to the
work presented in this dissertation).
The localization scenario considered throughout this work is presented in Figure 1.1. The scenario com-
prises wireless and visual anchors, as emphasized in Figure 1.1, in which an individual equipped with a
smart device/wearable such as the Google Glass can take advantage of both range and pose measure-
ments from the electromagnetic signals and from the in-built camera, respectively, to enhance its location
awareness.

Figure 1.1: Envisaged application scenario for single source and network localization
1http://www.google.com/glass/start/ (accessed in October 2014)
2https://www.google.com/atap/projecttango/ (accessed in October 2014)
3http://structure.io/ (accessed in October 2014)
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Figure 1.2 depicts the schematic representation of the proposed localization scenario for the sensor
network problem, detailing the coordinate systems and transformations as well as the available range and
visual pose measurements. Such scenario comprises two different types of anchors: wireless, from which
range or pseudo-range measurements can be obtained; and visual, which can be any pattern or object in
the environment from which a pose (rotation and translation) can be gathered. Moreover, there will be
network nodes with unknown positions. In the paradigm designated as single-source localization only one
node does not know its coordinates a priori (so-called target node), while in the sensor network paradigm
(illustrated in Figure1.2) there may be more than one node with unknown position (also named sensors).
In this case sensors usually exchange information among each other in order to jointly achieve a more
precise localization than would be possible if they operated individually.

R, T from object

Range rij

R, T ?

Global 

coordinates?

Target 1

Wireless sensor nodes (anchors)

Target 2

Figure 1.2: Localization scenario scheme considered in this work

This work also envisages the exploration of cooperative scenarios, for which a direct implementation in
real navigation systems installed in hospitals, factories, warehouses, airports or shopping malls, is foreseen,
as currently such places have already installed various sensors constituting a wireless sensor network.
Considering human use, the strong present-day mobile phone usage would easily allow a generalized
use of this application, since with a mobile phone one can read signal strength (from Wi-Fi), gather
video/images from its camera and communicate over short ranges with low power consumption, thus
enabling collaboration with other humans using their phones in the same environment.

1.2 Main contributions of this thesis

Following up with the extremely active research topic of localization (namely indoors), this the-
sis presents a novel method for single source position estimation based in fusing range and bearing
information from image. For this method named Fusion Localization based on Ranges and Incident
Streaks (FLORIS) a positive semidefinite relaxation for the optimization problem is derived as well as a
self-calibration procedure. The latter procedure stems from the existence of two detached sensor networks
(wireless and visual) which must be referred to the same coordinate system. Such set-up differs from the
previous fusion methods found in the literature, in which both networks overlap. It is emphasized that
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such self-calibration procedure has no precedents in the author’s knowledge and is capable of calibrating
the networks without any a priori information, besides the wireless anchors coordinates.
The proposed method is fully tested with numerical and practical experiments, revealing promising re-
sults in both cases. In fact, it is shown that the new hybrid method outperforms, numerically, other
localization methods, specially when the measurements are quite noisy. Although several physical set-
backs were found, when tested in an experimental set-up, the majority was surpassed, paving the way to
demonstrate the validity of the new method in a real scenario. Hence, the new method is fully developed,
implemented and tested in this dissertation work, which in addition to the auspicious attained results
embodies an important contribution.
Moreover, the work related to the single-source paradigm (FLORIS method) is included in the paper “A
unified framework for Hybrid Source Localization based on ranges and video”, submitted to the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015.
After tackling the single source localization, the sensor network localization problem is also addressed.
This paradigm proves to be even more challenging, as fused measurements from multiple targets must
be combined so that the position estimation is enhanced. Nevertheless, a new algorithm (Collaborative
Localization based on Ranges and Incident Streaks (CLORIS)) based on a disk relaxation method fusing
both range and streaks measurements is devised. The latter algorithm is also tested both in simulation
and in a real application scenario, achieving very good results (both in accuracy and execution time).
It should be noted that in the experimental scenario, the fusion scheme outperforms the single-sensed
variable approach. Hence, the introduced solution for the sensor network problem is another relevant
contribution of this dissertation to this field of work.

1.3 Outline

The remainder of this dissertation is organized as follows: in Chapter 2 the state-of-the-art relevant
to this work is addressed and discussed; Chapter 3 describes the approaches developed and followed in
order to achieve the various proposed goals, namely introducing the new derived algorithms (single-source
and cooperative) and procedures (self-calibration) to perform hybrid localization; in Chapter 4 extensive
simulation and experimental results regarding performance are presented and compared with other state-
of-the art methods. Finally, Chapter 5 states the conclusions of this thesis, pointing also some future
research work directions and further improvements.
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Chapter 2

Related Work

This Chapter provides an overview of the state-of-the-art related to the problems addressed in this
thesis. The main theme is localization, and work associated with range-based positioning, vision, opti-
mization and classification methods is discussed. The remainder of this Chapter is organized in a major
Section about Localization 2.1, which is divided into Ranges and Vision approaches. Inside Range Sub-
section 2.1.1, the optimization based single-source localization methods are addressed and then a special
focus on the use of Euclidean Distance Matrices to solve localization in a collaborative paradigm is made.
Throughout the Vision Subsection 2.1.2, several methods that are found to be useful tools for localization
are discussed. The last Subsection addresses the previous work found in the literature that deals with
the same topic as this work, namely, fusion of sensor data to perform localization.

Notation
Throughout this document, both scalars and individual position vectors will be represented by lower-case
letters. Vectors of concatenated coordinates and matrices will be denoted by boldface lower-case and
upper-case, respectively. The superscript ∗ stands for the conjugate transpose and T for the transpose
of the given real vector or matrix. Im is the identity matrix with dimension m×m and 1m the vector of
m ones. For symmetric matrix X, X � 0 means that X is positive semidefinite.

2.1 Localization

According to Bachrach and Taylor [3], nowadays ad-hoc sensor networks present new trade-offs in
system design, as they use very inexpensive nodes rather than globally accessible beacons or GPS. These
sensor networks should self define a coordinate system and have enabled emerging applications such as
habitat monitoring, smart building failure detection or target tracking. Additionally, GPS is not a valid
alternative, for example to be used indoors since the satellite links are blocked or unreadable inside
buildings [29]. There are several localization schemes, hardware architectures and methods [3, 44]; in this
work only a small part shall be addressed. The diagram in Figure 2.1 shows relevant aspects in localization
systems such as the network scheme, ranging methods, computational organization, localization methods
and algorithms, based on [3, 35] .
Concerning the hardware implementation, an architecture with anchors (also called beacon nodes), which
are simple sensor nodes, is recurrent. These anchors can define relative physical coordinates, known a
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priori, as they represent an arbitrary rigid transformation - rotation and translation - separately from
the global coordinate system.
Localization methods typically comprise two phases [45]: a first phase called measurement phase, in
which the nodes gather information, communicating with neighbouring nodes (a variety of variables can
be used - some of them are addressed in Figure 2.1); and the second phase is the localization phase, where
the localization itself is performed, as nodes infer their positions from an algorithm whose inputs are
the measurements performed and also, in the cooperative paradigm, the state information received from
other nodes.
At an algorithmic level, there are multiple approaches for each paradigm, both heuristic and formal [35].
Although there are beaconless algorithms that suffice when the use of nodes is prohibitive [3], this work
will be focusing on algorithms based on beacons, which determine location once the distance or angle
between the unknown node and the beacon is measured. According to Liberti et al. [26] “the problem
of determining the sensor positions using these data was deemed as an important one from the very
inception of wireless networks”. Hence, this work is specially focused on range-based localization methods
(see Figure 2.1), more precisely, using optimization models such as Least-Square (LS) or Semidefinite
Programming (SDP).
Among the several existing solutions to ranging, due to its simplicity and reduced cost, the Cricket location
system will be used. It uses a clever scheme with mixed radio frequency and acoustic transmissions to
measure one-way travel times (hence distances) between nodes without the need for time synchronization
of the transmitter and receiver clocks.

Localization 

Network Type 

Stationary  Mobile  Mobile 
Swarm  

Computational Organization 

Centralized  Distributed 

Sensed variables 

• Received Signal Strength 
Indication (RSSI) 

• Radio Hop Count 
• Time of Arrival (ToA) 
• Time Difference of 

Arrival (TDoA) 
• Angle of Arrival (AoA) 

Localization Methods 

• Geometric-based 
• Trilateration  
• Multilateration 
• Triangulation 

• Optimization-based 
• Semidefinite Programming (SDP) 
• Least-Square (LS) 

• Multidimensional scaling (MDS) 

Incremental Global 

Paradigm  

Single-source Cooperative 

Figure 2.1: Diagram summarizing some of the most important concepts involved in localization

Referring again to Figure 2.1, mobile networks can be further divided into three types [44]. This work
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will consider the mobile scheme type where the unknown nodes are moving while the anchors are static.
Furthermore, in a non-cooperative sensor network, source nodes (or targets) can communicate only with
anchor nodes, whereas in a cooperative localization paradigm source nodes are able to communicate with
both anchor nodes and other targets [31], improving the accuracy of location information [45].
A few algorithms used for localization for stationary networks are [44]: Simultaneous Localization and
Synchronization (L-S), Large-Scale Hierarchical Localization (LSHL) and Three-Dimensional Underwa-
ter Localization (3DUL), where the last two are applied to underwater scenarios. Regarding mobile
networks, algorithms that rely on prior information, allowing localization to benefit from knowledge of
the dynamics for improved efficiency and accuracy, are frequently used [44], such as the Monte Carlo
Localization (MCL), Scalable Localization with Mobility Prediction (SLMP), Simultaneous Localization
and Environmental Mapping (SLAM). These prediction based algorithms determine the current location
by integrating the prediction from the prior information (prediction phase) with the measurement up-
date from the environment observation (update phase). Filtering methods such as the Extended Kalman
Filter (EKF) or Markov methods are usually applied [44]. As for mobile swarm networks, a scheme
in which both unknown nodes and beacons are moving (usual in ocean environments) presents several
advantages like enhanced coverage and flexibility, efficiency and suitability for cooperation [44]. Some
of the algorithms applied are: Motion-Aware Self Localization (MASL), Collaborative Localization (CL)
and also Monte Carlo Localization (MCL).
Finally, included in the category of centralized algorithms we may find SDP or MDS [3], whilst in the
distributed case algorithms such as Diffusion, Bounding Box or Gradient are used [3]. The design of such
localization algorithms has commonly constraints in resources [3], since usually nodes have to be small
and cheap. Such restraints have lead to the development of systems characterized by weak processing,
sensing and communication capabilities.
In the following Subsections, some algorithms resorting to both distance measurements between nearby
sensor nodes and pose estimation of a target will be addressed in further detail. More specifically, we
will focus on optimization based methods rather than ad-hoc approaches. The previous methods are in-
trinsically more robust when dealing with noisy measurements, which is frequent in the low-cost ranging
systems that are of interest to this work.

2.1.1 Range

One of the more commonly used types of measurement is range. The measurement phase suffers
from several impairments such as noise, multipath blockages, signal interferences, clock drifts and other
environmental effects [45]. Thus choosing the adequate subjacent measurement technique is pivotal.
Range can be directly obtained from Time of Arrival (ToA) and Time Difference of Arrival, which com-
prise two of the most straightforward methods to sense this variable. In fact, the ranges obtained in the
experimental part of this work are computed through the ToA of electromagnetic and acoustic signals,
knowing the propagation velocities.
Among the other techniques to compute range information, RSSI is based on the way that the energy of
a radio signal decreases with distance (following an inverse square law in free space) from the source [3].
Thus, RSSI measurement model is a function of the transmit power of the source node. Knowing this
function of magnitude that depends on the distance and the reported power transmitted at the origin, a
node listening to a radio transmission should be able to use the strength of the received signal to calculate
the range (from the transmitter). Yet, RSSI shows, in practice, some disadvantages, because its ranging
measurements are quite noisy (on the order of several meters) leading to uncertainty, as radio propagation
tends to be highly non-uniform in real environments (walls and objects reflect and absorb radio waves).
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Nonetheless, RSSI is an attractive method mainly because of its low hardware complexity and cost [31].

2.1.1.1 Single-Source Localization Problems - optimization based methods

After range information has been collected, source localization algorithms are invoked to compute
the actual position estimates. Within this sort of algorithms, approaches based on the Maximum
Likelihood (ML) location estimation are commonly followed. Although the resultant optimization prob-
lem is nonconvex, which is problematic since the presence of the local minima makes the search of the
global optimal solution hard, several works present in the literature provide exact or fine approximated
solutions to this problem, resorting to Semidefinite Relaxation (SDR), namely [13, 5, 34, 16].
Beck et al. [5] use a Least-Squares (LS) approach for locating a radiating source from either range measure-
ments (creating the method R-LS), and range-difference measurements (RD-LS) collected from a network
of passive sensors. Theses methods are shown to outperform the seminal work in [13]. Another approach,
named SRD-LS applies the same method to the squared range and squared range-difference observations.
The authors focused on an efficient way to compute the LS estimates of the source’s coordinates by using
an assumption that simplifies the problem. The source localization from range measurement problem
in [5] is formulated as follows: considering m sensors, ai ∈ Rn denoting the coordinates of the ith sensor
and letting x ∈ Rn be the source’s location to be estimated. The noisy observations between the source
and the ith sensor are determined by equation (2.1):

ri = ‖x− ai‖+ εi, i = 1, ...,m (2.1)

assuming ri > 0, where ε = (ε1, ..., εm)T is the unknown noise vector.
The R-LS approach to estimate x is via the minimization of the LS criterion (in equation (2.2)), and its
solution is the ML estimator for Gaussian noise:

minimize
x

m∑
i=1

(ri − ‖x− ai‖)2. (2.2)

The problem represented by equation (2.2) is nonconvex, hence finding its exact solution is a difficult task.
A possible simpler solution is to construct a SDR based on (2.2). The obtained SDR for this problem
in [5] can be efficiently solved via, for instance, interior point methods. Although it is not guaranteed
that this SDR has the same optimal solution as the original R-LS problems, numerical results show that
this SDR can provide an “accurate approximation”. Indeed, it is proven, in [5], a Lemma stating that,
for any optimal solution of the SDR, a rank one condition must be verified for both matrices of this
formulation. However this condition might not be verified, leading this relaxation to poor results.
Applying the LS methodology to the squared range measurements results in the Squared-Range Least-
Squares (SR-LS) estimate, which is the solution to equation (2.3).

minimize
x

m∑
i=1

(r2
i − ‖x− ai‖2)2. (2.3)

Like the R-LS case, the SR-LS approach is nonconvex, however, Beck et al. show that a global solution
of (2.3) can be efficiently found by transforming it into a constrained minimization problem. In this last
formulation (that belongs to a class that minimizes a quadratic function subject to a single quadratic
constraint) the least-square problem is solved making possible the computation of the exact solution of
the SR-LS.
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In [23], Gomes et al. consider a weighted variant of the SR-LS cost function that allows differentiating
the wavefronts (direct or reflected) when computing the source location in an underwater environment.
Comparing both methods, R-LS seems to perform better than SR-LS estimate, but no exact method is
known to efficiently calculate R-LS solution. Thus, as even the approximate ML-SDR solution can be less
accurate than the SR-LS, the latter should be preferred (this article provides a computationally efficient
algorithm for this approach).
Supposing now that the range-differences between each sensor i and an additional sensor 0 located at the
origin are measured, [5] proposes the SRD-LS estimate, which, likewise SR-LS is not optimal. Yet, an ef-
ficient algorithm can be devised to find the global solution of this problem, based on the special structure
of the achieved formulation (minimization of a quadratic function subject to two quadratic constraints).
The SRD-LS solution also outperforms the R-LS relaxation approach, and it should be used, similarly to
the SR-LS, in this type of problems.
More recently, Oğuz-Ekim et al. [33, 34] have been focusing on these optimization-based methods, taking
advantage of the optimality properties of ML estimates to increase robustness to noisy range measure-
ments. In [33] and [34] centralized algorithms termed Source Localization in the Complex Plane (SLCP)
and Source Localization with Nuclear Norm (SLNN) for range-based source localization under Gaussian
noise through ML-SDR approach are proposed. SLCP reformulates the classical range-based in an equiva-
lent problem of determining a set of angles for the source-anchors directions. In that work, the framework
of SLCP is expanded to arbitrary dimensions (in which 3D is the relevant case for indoor localization
systems - consisting in the SLNN algorithm). Moreover, the relaxation of the nonconvex problem in
SLCP is “tighter” (ratio of the first to the second eigenvalues is higher) than previous ones, yielding a
matrix solution that will verify more often the rank-1 condition, thus outperforming the aforementioned
R-LS. The squaring of the ranges in the cost function leads to degradation in the SR-LS. Regarding the
SLNN, as an extension to higher dimensions than 2D, it is shown that the nuclear norm (which equals
the sum of the singular values of a matrix) is the appropriate norm to consider in the objective function
of this optimization problem. As in the SLCP case, an SDR is obtained by dropping the rank constraint.
A new approach termed SL−l1 brings robustness to outlier ranges modulated as Laplacian variables, and
performs well even for non-Laplacian distributions, due to the usage of the l1 norm instead of l2, which
reduces large discrepancies between predicted and measured ranges (de-emphasizes the contribution of
observations corrupted by large noise values). Two derived methods from SL− l1 are further proposed:
SL− l1 for multiple dimensions (SL− l1 MD) that outperforms benchmarked algorithms and a simplified
formulation SL− l1 SD that is less complex computationally at the expense of a little worse performance.
The formulation of these methods conducted in [34], under independent and identically distributed noise
(Gaussian or Laplacian), using the same notation of equation (2.1) is in equation (2.4).

minimize
x

m∑
i=1

(rpi − ‖x− ai‖
p)q (2.4)

The SLCP and SLNN algorithms solve (2.4) for the case with p = 1 and q = 2 (the likelihood function
for Gaussian noise), while SL − l1 is used when p = 1 and q = 1 (the likelihood function for Laplacian
noise) [23]. Comparing the case for both p = 2 and q = 2 with equation (2.3), one can notice that it is
equivalent of the formulation of SR-LS by [5].
There is an additional issue posed when q = 1, since in such case the cost function defined by (2.4) is
non-differentiable. This is surpassed transforming this cost function into a weighted sum version of the
Gaussian log-likelihood. The performance of these methods was assessed using the Root-Mean-Square
Error (RMSE) and comparing it to benchmark algorithms. The resultant RMSE of both the proposed
algorithms under Gaussian noise (SLNN) and Laplacian noise (SL− l1 −MD and SD) were lower than
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all the existing methods, the latter specially in the presence of outliers.
The convexity and tightness of SLCP is also evaluated, and it is found out, by simulation results, that
the convexity as well as the tightness of SLCP is superior to the previous SDR. Results seem to indicate
that this convexity behaviour is mostly because SLCP has a higher probability of having a solution with
rank near 1.

2.1.1.2 Cooperative Localization Paradigm - optimization based methods

A complete self-calibration is necessary to know, precisely, the positions of all the elements of a net-
work (sensors and sources), since for large networks it is often impossible to place the sensors in predefined
positions, with precision (sensors may be randomly distributed or its position may vary in time). Hence,
in contrast to the previous approaches that were single-source, in this Subsection, the main methods
proposed in literature under the collaborative paradigm are discussed.
Similarly to the single-source case, centralized methods which estimate all the network positions based
on the minimization of the LS criterion, and also on its weighted version were proposed in [40] and [16],
respectively. Later, methods relaxing the original nonconvex problem applying a convex SDP relaxation
were also developed. Regarding such methods, a special focus is made on the work in [32], under the
localization methods which use EDMs, in Section 2.1.1.4. However, it has been shown that these SDP
relaxations generate large optimization problems, which, for large scale networks, makes the problem
intractable.
Therefore, with the prosperity of large sensor networks, the adoption of a distributed approach (in which
every node performs a similar processing contributing equally to the final result), contrasting with the
former centralized algorithms, becomes extremely important. Such approach solves, in addition, limita-
tions related to privacy or safety issues, enabling, at the same time, the method scalability and failure
resilience [43]. Despite these facts, the majority of the methods found in literature still follow a central-
ized architecture, yet distributed algorithms have been emerging.
The distributed methods can be further divided into two subsets: initialization dependent and initializa-
tion independent. The first set comprises methods which directly solve the original nonconvex problem,
as the work in [12]. In the latter, there is an intermediate convex relaxation step, with a solution that
must approximate the global problem solution, regardless of the given initialization. Such approach sepa-
rated from the initialization includes both sequential, as in [41], and parallel methods, as in [42] and [43],
showing convergence guarantees.
The parallel method proposed in [43] outperforms previous works [32, 42, 22] not just in accuracy but
also in efficiency, since there is a substantially lower complexity owing to a smaller number of inter-node
communications, introducing a faster and more scalable algorithm to solve the distributed sensor net-
work localization. The sensor network, in [43], is represented as an undirected graph with both sensors
(unknown positions) and anchors (known positions) as nodes. The edges of the graph are the noisy
range measurements available between sensors and between each sensor and a subset of the anchors.
This new method minimizes the convex underestimator of the maximum likelihood nonconvex cost func-
tion for the sensor network localization problem (in (2.5)), resorting to the convex envelopes of its parcels.

minimize
x

∑
i j

1
2(‖xi − xj‖ − dij)2 +

∑
i

∑
k∈Ai

1
2(‖xi − ak‖ − rik)2

(2.5)

Where, in (2.5) x denotes the sensors positions and a the anchors positions, similarly to the single source
scenario. As for dij and rik, they denote the noisy range measurements performed between pairs of two
sensors and pairs of one sensor and one anchor, respectively, passed by collaborative messages through
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neighbouring nodes.

2.1.1.3 Euclidean Geometry and Euclidean Distance Matrices

To better tackle the hereinafter presented works, which resort to EDMs to solve localization problems,
one should have a solid knowledge base of convex optimization.
Consider a set of vectors a1, ..., an in Rn, such that their known Euclidean lengths are: l1 = ‖a1‖2, ..., ln =
‖an‖2. The Gram matrix associated to the vectors a1, ..., an is given by, according to the literature [9],
G = ATA, with A = [a1, ..., an] and it expresses lengths, distances and angles (that are invariant under
orthogonal transformations). Furthermore, Gij = aTi aj and the diagonal entries of G are equal to l2i ,
i = 1, ..., n. The Gram matrix is, thus, symmetric and positive semidefinite. These characteristics can be
used to express several geometric problems as convex optimization problems, with G as the optimization
variable. The realizability of such problems imposes G � 0 and Gii = l2i .

The distance between two vectors ai and aj is dij = ‖ai−aj‖2 = (l21 + l2j −2aTi aj)1/2 = (l21 + l2j −Gij)1/2.

In Euclidean Distance (ED) problems the only concern are the distances, dij between the vectors, while
the lengths and the angles are ignored [9]. The distances are invariant not only under orthogonal trans-
formations but also translations. A matrix D is an EDM if and only if its entries are the squares of
the Euclidean distances between any vectors of a configuration. Moreover, an EDM D is characterized
by being negative semidefinite on 1T , i.e., uTDu � 0 for all u with 1Tu = 0, and verify Dij ≥ 0 and
Dii = 0. The previous conditions form a set of linear equalities, inequalities and a matrix inequality in
D. Therefore, any ED problem that is convex in the squared distances can be formulated as a convex
problem with variable D [9].

2.1.1.4 Euclidean Distance Matrices in Localization Problems

The following works [15, 23, 31, 32] adopt the cooperative paradigm exploring EDMs. The first takes
a LS approach while the latter resort to the EDM completion problem.
An approach resorting to Euclidean Distance Matrices (matrix D defined in (2.7) is an EDM), that shows
that exists an approximate solution to the network self calibration problem by transforming the original
nonlinear LS cost function minimization in (2.3) in a bilinear matrix formulation, is proposed in [15].
This algorithm performs automatic 3D localization of a set of sensors in an unknown environment and
can deal, additionally, with the highly probable case of missing data. To the knowledge of the authors
in [15], the previous calibration methods did not present any procedure to handle with missing data.
The 3D positions of both sources and anchors are jointly estimated given a set of time of flight (TOF) of
the transmissions generated at the sources. Any kind of assumption is made on the sensor localization.
The only assumption is that the time of the emission events at the sources must be known (sensors are
synchronized). The events considered may be both acoustic or electromagnetic, since they are signal
propagating in the space as a spherical wave originated in the sources, thus such approach regard various
applications.
In a network with M sources and N sensors, the measured TOF (between emission time of event j and
arrival time at sensor i of the same event) can be expressed according to (2.6):

ti,j = c−1‖xi − aj‖+ ni,j , (2.6)

where c is the signal velocity propagation and ni,j is an i.i.d. Gaussian random variable representing the
error in the measurements. The estimated distance between i and j is, consequently, di,j = cti,j . These

11



estimated distances (di,j) can be organized in a N ×M matrix as follows (2.7):

D =


d1,1 d1,2 ... d1,M

d2,1 d2,2 ... d2,M

... ...

dN,1 dN,2 ... dN,M

 . (2.7)

Following this notation, the maximum likelihood estimation of x (which is the sensor location matrix,
with the coordinates of the ith sensor denoted as (xi, yi, zi)) and a (the event source location matrix,
where (aj , bj , cj) are the unknown coordinates of the jth event) is given by the nonlinear LS problem [15]
in (2.8):

x∗,a∗ = argmin
x,a

N∑
i=1

N∑
j=1

(‖xi − aj‖ − dij)2. (2.8)

Since (2.8) has the unwanted local minima, an algorithm in [15] is devised to find the correct solution.
This algorithm has two steps and estimates the relative 3D position of the sensors providing that, for the
3D case, at least 4 sensors and 4 event sources are spread through the space, in a non coplanar way. In
the first step, the number of unknowns is reduced from 3× (M +N) (M being the number of sources and
N the sensors) to just 9 parameters, regardless the total number of sensors in the network; to achieve
this, a Singular Value Decomposition (SVD) is employed. The second step finds those 9 parameters by
solving the nonlinear least square problems (2.8) resorting to the simpler bilinear approach.
Assuming the TOF measurements with no errors, using the previous notation, in [15] a set of M × N
equations are defined (2.13)

d2
i,j = x2

i + y2
i + z2

i + a2
j + b2j + c2j − 2xiaj − 2yibj − 2zicj . (2.9)

Operations performed over this set of equations (to remove the quadratic terms) lead to a set of (N −
1)× (M − 1) equations. This resulting set can be rewritten in matrix form as in (2.10):

−2x̂âT = D̂, (2.10)

which is the sought bilinear form in the sensors and events coordinate vectors.
The (N − 1) × (M − 1) D̂ matrix verifies rank=3, for the no noise case; in the presence of noise D̂ will
likely have rank higher than 3. In the latter case, only the three higher singular values will be considered
in the SVD of matrix D̂. Hence,

D̂ = UVW and

x̂ = UC, − 2âT = C−1VW.
(2.11)

The relationships in (2.11) are verified for a matrix C, named “mixing matrix” as it mixes the components
obtained by the SVD to form the correct solution, that is 3 × 3 and invertible. Determining the 9
unknowns of C can be casted in a nonlinear LS minimization problem. Although this is a reduced and
simpler problem when comparing to the original, the iterative minimization method can still get trapped
into local minima. Assuming an additional constraint on the geometry of the problem (that an event
position coincides with a sensor position), a closed form solution to the estimation of the components of
C can be derived.
For the more complex case of missing data, matrices D and D̂ contain unknown entries, which impedes
the used of SVD. This is solved using a rank constraint matrix imputation problem. Factorizing D̂ =
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FG and defining the variable m for the missing entries, the following optimization problem is obtained:

minimize ‖D̂(m)− FG‖2. (2.12)

An iterative algorithm to solve (2.12) is presented. This algorithm is said to be general to the numerous
contexts in which rank constraint matrix imputation problems are involved. Moreover, this procedure
shows similarities with the power factorization method used for the Structure from Motion topic (as is
discussed in Subsection 2.1.2 Vision). Once matrices F and G are determined, the coefficients of the
mixing matrix C are found with the same procedure explained in the non missing data situation.

A Wireless Sensor Network Localization (WSNL) is said to be solvable if it has a unique valid realiza-
tion, also known as global rigidity [26]. The network anchors play a pivotal role, as they ensure the global
rigidity in RK , thus the set of anchors should have K + 1 or more elements. These facts are the basis for
the exploration of SDP to solve EDM completion problems, addressed in the next articles [23, 31, 32],
since such relaxation is fundamental as low-dimensional EDM completion is NP-hard [24].
The established methods for determining the positions of sensor nodes and a moving target in a network
(SLAT problem) are based on ML function, as described in the previous Subsection. However, such meth-
ods require an initialization with an approximate solution in order to avoid getting trapped in the local
minima. Since in sensor network localization (SNL) it is frequent that the positions of several nodes have
to be simultaneously computed from pairwise range measurements, Euclidean Distance Matrices provide
a suitable and elegant framework for this topic [23]. Oğuz-Ekim et al. in [32] propose a centralized local-
ization method that uses incomplete and noisy (both Gaussian and Laplacian) range measurements, and
is based on a modified EDM completion problem and SDP, and not in a Bayesian framework as [20] (in
which bearing information is estimated from camera images - see Subsection 2.1.2 Vision). Once solved
the completion problem for a block of range measurements, thus finding the initial sensor and target
positions, the likelihood function is iteratively improved through Majorization-Minimization (MM). Also,
a scheme, in which the current target/node position is estimated from previous locations, is developed
to avoid solving the larger EDMs with time. More specifically, it is proposed a two stage algorithm
composed by a startup and update phases. Startup phase main goal is to obtain an outline of the network
configuration from a batch of measurements, whereas in the update phase new target observations are
incrementally treated as they become available, improving also all previous determined locations. Both
phases include, in its turn, initialization and refinement steps. The first calculates approximate locations
(in startup it is solved an EDM completion problem while in update it is solved a source localization prob-
lem) whilst the second is an iterative step using MM to refine the likelihood function. Besides solving the
SLAT problem with modest prior knowledge on target/sensor positions with moderate complexity, [32]
uses cost functions with plain ranges (non-squared) which improves robustness in the case of high noise.
Suitable cost functions are derived for Gaussian and Laplacian noise, being more robust, in both cases,
than standard EDM methods, due to the use of plain ranges. Under Gaussian noise in the update phase
it is used the SLCP time-recursive method, under Laplacian noise the SL− l1 is applied.
Focusing on the EDM problem formulation with squared ranges, a D matrix (denominated pre-distance
matrix) with elements Dij = d2

ij and diagonal entries zero is used to find an EDM E (satisfying
Eij = ‖yi − yj‖2) that is nearest to D, in the LS sense. Thus, for 2D, this problem is formulated
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according to equation (2.13) [32]:

minimize
E

∑
i,j∈O

(Eij − dij)2

subject to E ∈ EDM, E(A) = A

rank(JEJ) = 2,

(2.13)

where J = (Iρ − 1
ρ1ρ1Tρ ) is a centering operator and ρ = m+ n+ l (m is the number of unknown target

positions, n of unknown sensors and l of anchors) and O is the index set for which range measurements
are available. Matrix E should satisfy the properties listed in the previous Subsection. And the rank
constraint guarantees that the solution is compatible with a configuration of sensor/anchor/targets in
R2. Furthermore, A is the index set of anchor distances and Aij = ‖ai− aj‖2 is the corresponding EDM
submatrix that enforces the a priori information. A convex SDP compact relaxed formulation (since the
rank constraint is ignored), in matrix notation, is presented in (2.14) and is called EDM with squared
ranges

minimize
E

‖W� (E−D)‖2F

subject to E ∈ EDM, E(A) = A,
(2.14)

where W is a mask matrix having zero entries in the free elements of D.
A similar process is performed for the plain ranges case, obtaining the EDM completion formulation in
(2.15)

minimize
E

∑
i,j

(
√

Eij − dij)2

subject to E ∈ EDM, E(A) = A

rank(JEJ) = 2,

(2.15)

and the relaxed SDP (obtained using the epigraph technique, introducing variable T and dropping, again,
the rank constraint) in (2.16)

minimize
E, T

∑
i,j

(Eij − 2Tijdij)

subject to T2
ij ≤ Eij ,

E ∈ EDM, E(A) = A.

(2.16)

Since the solution of these problems is a distance matrix, the Gram matrix should be obtained (factorizing
-JEJ) to, afterwards, extract the node coordinates by SVD [24] and solving a Procrustes problem.
Simulation results show that these methods are more robust to outliers than existing ones and are run
reasonably fast for small networks (about 30 unknown positions). Even further, for small Gaussian noise,
the Cramér-Rao lower bound is almost achieved.
Convex formulations (2.15) and (2.16) are equally applied in the underwater scenario, by Gomes et al.
in [23], for which a solution in simulation, for a network with approximately 50 nodes, is reliably found.
In the experiments of [23], it was verified that the formulation (2.16) has better numerical properties
than (2.14), allowing the use of a faster solver.
More recently, however, Soares et. al, in [43], propose an optimal distributed algorithm that outperforms
previous methods based on SDP and on edge-based relaxations. Furthermore the algorithm in [43] also
has superior performance (both in accuracy and in communication volume) than the method based in
EDM completion of [32].
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2.1.2 Vision

This Section includes some relevant work on localization systems based on vision, namely using a
camera network that follows a target in [20], mobile cameras that only recognize markers, whose locations
are known, in [29] or cameras recognizing tags in order to measure ranges and perform mapping in [38].
Feature descriptors, such as the Scale-Invariant Feature Transform (SIFT) method from [27], have been
also used in mapping and localization systems without targets or markers, thus recognizing objects or
natural features, in [18].
Moreover, in parallel to localization based on video images, some important topics from the field of image
processing are discussed since they can be helpful tools to perform such image aided localization. Some
literature on these topics will be addressed afterwards, targeting on image recognition and reconstruction
in [28] and image classification in [11].

Camera networks are perhaps the most common type of sensor network nowadays. However, a key
problem in deploying such networks is their calibration, i.e., determining the location and orientation
of each network sensor, so that the observations in an image can be mapped into locations in the real
world [20]. Furthermore, a camera pose can be represented by 6 parameters: 3 position parameters (X,
Y, Z) and 3 angles (for example: roll, pitch, yaw), therefore the calibration procedure must recover these
parameters. The notation (X, Y, θ), where θ is the rotation around the z-axis, is known as the absolute
parametrization of a camera pose.
For a network with a single type of sensor, Funiak et al. [20] proposed an approach for camera network
calibration addressed by solving a localization and tracking (SLAT) problem, where both the trajectory
of a moving target and all the camera poses are estimated. In such problem, the cameras collaborate to
track a moving object through the environment, reasoning probabilistically (to handle the non-linearities
of the projective transformation and the dense correlations arisen between distant sensors) about which
camera poses are consistent with the observed images of this environment. Therefore, with cameras placed
throughout the environment at unknown locations, with an object moving accordingly to an unknown
(smooth) trajectory, the network can automatically calibrate itself. The main contributions of such work
are a novel representation (named relative over-parametrization - ROP) and hybrid conditional linearisa-
tion techniques that enable the use of a single Gaussian variable to a Kalman Filter solution to the SLAT
problem and a stable and online algorithm that converges always to the same solution as the centralized
approach (contrary to the existing similar approaches that are off-line and centralized, such as [37]). The
authors claim that the performance of their solution is very good, even when the communication is lossy,
as it was experimented on a real camera network with 25 nodes, with relatively low link quality between
nodes (due to packet loss or interference), generating pose estimates within 90% confidence intervals.
The proposed solution also obtains the respective uncertainty of each estimate.
The approach used in [20] (SLAT) is related to SLAM, since SLAT can be understood as a SLAM prob-
lem where the cameras are the landmarks (anchors) and the moving object plays the role of the robot.
Some aspects of SLAT are related also to computer vision topic Structure from Motion (SFM), which
consists in recovering the 3D geometry of a scene as well as the trajectory of the camera motion, making
correspondences between feature points. This is in the line with the 3D scene reconstruction from thou-
sands of images, in [1], accomplished in an very efficient way, due to the use of novel parallel distributed
matching and reconstruction algorithms.
More recently, triggered by the widespread and popularity of RGB-D cameras (a sensor which provides
both color images and dense depth maps), such as the Microsoft Kinect or Asus Xtion Pro, several new
approaches to SLAM algorithms have been proposed. In fact, in [18], a system that simultaneously gen-
erates a dense 3D model of the surrounding environment and estimates the RGB-D camera pose (and
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trajectory) with respect to this model is presented. Endres et al. claim that the approach in [18] is
suitable for online operation and achieves an accuracy of 9.7cm, on average, in an RGB-D benchmarked
dataset.
Another localization system based on vision is presented in [29]. This solution is designed to work indoors
and is based on a low-cost system that relies only on the use of off-the-shelf camera phones to determine
user location in real time, by detecting fiduciary marks, thus helping navigation. This approach opposes
to other existing indoor positioning sensing technologies (ultrasonic, infrared or radio sensors), as it does
not require any permanent electronic infrastructure; it only needs 2D markers spread across the environ-
ment providing a unique ID.
The usage of fiduciary markers is a well-established mechanism in mobile applications, its unnatural
visual appearance makes them noticeable, easing the process of identifying information hot spots. More-
over, there are numerous marker-tracking software libraries that can estimate a camera’s position and
orientation with respect to markers. Yet, these markers raise questions concerning the visual clutter.
The scanning of the environment is continuous and real-time, allowing for a continuous navigation based
on real-time marker tracking, that became available shortly before the publication of the article [29]. In
this work [29], a controlled user study was performed to compare the proposed solution with a GPS-like
localization method and the location awareness of the users was also evaluated. Such experiments re-
vealed that such system (considered the first marker-based navigation running on the user’s own mobile
phones successfully deployed) works well and fits the real-world requirements, providing a substantial
increase of location awareness and satisfactory tracking accuracy for the purpose (around 50cm).
The solution developed by Mulloni et al. [29] was turned into a commercial product for conference guide
indoor navigation system. Such tracking based on computer vision was proven to be cost-efficient, since it
only requires placing some posters with markers at the site, rather than deploying a whole active beacon
system infrastructure.
In the thesis work [38], static tags are used, as well, to measure range and to perform mapping. The
limitation present in this work is that the camera needs to see all the targets and, in particular, observe
two tags simultaneously. Figure 2.2 shows an example of some tags spread in an indoor environment.

Figure 2.2: Tags spread in an environment to perform localization and mapping (from [38])

Beyond the use of markers, [29] reports indoor navigation systems based on the SIFT method [27].
Such systems rely on a server to outsource the actual pose estimation, providing limited scalability and
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long latency (with a processing time approximately 10 seconds per image), thus making the system
unsuitable for large-scale continuous navigation deployment.

Furthermore, image recognition and reconstruction could be an extremely useful tool to devise a
localization method based on objects or natural features rather than unnatural tags or markers.
In this subject, Marques et al. in [28] proposed a solution to the Structure from Motion (SFM) problem
for the case with degenerate data (due to rank deficiency in the measurements) using a new factorization
algorithm enabling the estimation of a unique 3D shape, regardless the data degeneracies. Hence, this
solution can reconstruct a 3D scene captured by a moving camera where the points are not known in
every captured image and when the “full rank” requirement of the feature track matrix, to estimate
missing data, is not satisfied. Prior methods would obtain, in the presence of degenerate data (one single
degenerate frame) which occurs quite often in reality, reconstructed shapes with high errors [28].
This missing data problem has a similar formulation to the one presented in (2.14). In this case, though,
matrix E has rank 4, due to the orthographic camera model assumed, and this is used to estimate the
unknown data. The rigid factorization introduced in [28], which computes shapes and motion under scaled
orthography in one optimization step, is similar to the power factorization, but imposes constraints on
the rank and on the rigid motion, in each step. The latter constraint is essential to make the estimation
of the missing data possible, as the rank condition is not enough. This algorithm is correctly solved in
closed-form and the object’s shape is estimated, in its last step, given by a simple LS solution.

Image classification is another issue that can be of significant importance in localization systems based
on objects and natural features, since correct labels should be assigned to the regions of an image. In this
line of work, Cabral et al. [11] introduce a weakly supervised system for multi-label image classification,
standing out from the standard fully supervised (with manual bounding boxes or pixelwise segmenta-
tions). Identifying correctly the regions of an image and hence the objects present allows to determine
the position of the camera, using the translation obtained between the camera and the known objects.
Weakly supervised algorithms learn using labels without any localization information. This article, [11],
makes use of the additive property of histograms to bypass the combinatorial nature of the existing Mul-
tiple Instance Learning (MIL) methods. According to the additive property, the histogram of a whole
image is a weighted sum of the histograms of all it subparts - Bag of Words. Therefore, the algorithm
proposed in [11] aims to factorize the histogram of an entire image, obtaining the features plus the back-
ground. This approach enables posing this problem as a rank minimization, filling the unknown entries
(in the test set) and correcting known features and labels, thus casting the weakly supervised image clas-
sification under a matrix completion framework (that copes with missing data as well as outliers). The
matrix with the observations is formed by three sub-matrices including the training set, the test set and
the histograms representative of each class found. Each column of this matrix has the image histogram
and the respective label assignment and the entries to be estimated are the labels of the test set and the
histograms in the set of the representative class histograms. Under such framework, two convex rank
minimization algorithms are proposed: MC-Pos and MC-Simplex, for which the convergence is proven.
This work ([11]) stands on the important development (in 2008) of using the nuclear norm as a surrogate
of rank minimization, under broad conditions. Such advance enables the relaxation of a highly nonconvex
and non-differentiable function as rank using its convex envelope, estimating subspace ranks automati-
cally. With this minimization problem a joint classification (assigning labels to features) of all the test
images can be achieved, by completing the entries of the rank deficient matrix. Additionally, to avoid
trivial solutions and add robustness to the matrix completion, the objective function is penalized with a
loss function.
Experiments validate the low rank assumption (that histograms of objects of the same class have a com-
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mon low dimensional subspace) and compare the methods presented in [11], MC-Pos and MC-Simplex,
with a Support Vector Machine (SVM) baseline and diverse state-of-the-art MIL methods. The results
of such experiments show that both MC-Pos and MC-Simplex perform comparably or better than the
existing MIL methods, due mainly to the loss functions and feature error correction. Hence, the class rep-
resentative histograms allow for class localization in a multi-label image problem. One of the limitations
pointed out is that only one representative histogram is captured per class.

2.1.3 Fusing Range and Vision

Coupling different sensors can compensate for the deficiencies of a single modality alone. Hence, in
[7], Biswas et. al use a combination of distance and angle information (Angle of Arrival (AoA)) to solve
the problem of localization in Wireless Sensor Network (WSN). The solution presented in [7] is under the
framework of Euclidean distance geometry and applies, for the first time, the technique of SDP relaxation
to a mixture of sensed variables. Furthermore, this localization method is specially useful in a scenario
integrating heterogeneous sensors, more specifically considering any ranging mechanism (RSSI, TOF or
ultrasonic) as well as image sensor nodes.
The extension of the SDP model for the case where two types of measurements are used is achieved
through trigonometric relations (only valid in R2) that define an optimization problem with quadratic
constraints, which, in turn, can be relaxed into an SDP. Assuming m anchors ak (k = 1, ...,m) and
n targets xj (j = 1, ..., n), with both ak, xj ∈ R2 and also let dkj be the Euclidean distance measure
between anchor ak and target xj and dij the distance between the points xi and xj known. Considering
the case when the distance measures may be corrupted with noise, according to [7], the quadratic problem
can be formulated as in (2.17)

minimize
∑
i,j

|αij |+
∑
k,j

|αkj |

subject to ‖xi − xj‖2 = (dij)2 + αij

‖ak − xj‖2 = (dkj)2 + αkj ,

(2.17)

where the alpha factors are the added noise. Note that, so far, only distance measurements are considered,
the angle integration is achieved with (2.22).
Moreover, if x = [x1 x2 ... xn] is the 2× n matrix that is to be determined, the constraints of the latter
formulation can be then defined as in (2.18)

‖xi − xj‖2 = eTijxTxeij

‖ak − xj‖2 = (ak; ej)T
[
I x

]T [
I x

]
(ak; ej),

(2.18)

where eij is a vector with the ith position equal to 1, the jth position equal to −1 and zero everywhere
else; and ej is a vector of zeros except in the jth position, where it takes the value −1.
Thus, (2.17) can be set in the matrix form, in (2.20). As intermediate steps of this approach, described
in [8], the matrix Y is defined as Y = xTx and a relaxation to Y � xTx is performed, since, once again,
the problem in nonconvex. As previously addressed, this is a rank constraint relaxation which is a key
aspect in the solution of NP-hard problems under SDP. Also, a matrix linear inequality is achieved in
(2.19),

Z =
[

I x
xT Y

]
� 0. (2.19)
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The final SDP formulation is (2.20):

minimize
∑
i,j

|αij |+
∑
k,j

|αkj |

subject to (1; 0; 0)TZ(1; 0; 0) = 1

(0; 1; 0)TZ(0; 1; 0) = 1

(1; 1; 0)TZ(1; 1; 0) = 2

(0, eij)TZ(0; eij) = (dij)2 + αij

(ak, eij)TZ(ak; eij) = (dkj)2 + αkj ,

Z � 0.

(2.20)

The AoA integration is made considering that all angle measurements from each sensor are relative to
its own axis and that the orientation of each axis in the global/world coordinate system is unknown.
Naturally, the field of view must be regarded and specified, depending on the type of sensing technology
used. In [7] it is also considered that the measurement of the angle between 2 sensors (both anchors or
unknown nodes) as seen from another sensor exists.
This work of Biswas et. al [7] presents algorithms for two cases: when both angle and range information
is available and when purely the angle is available.
Regarding the first case, the absolute angle θkj between the pair anchor ak and unknown node xj can be
expressed (assuming that all anchors know their absolute orientation in respect to the world referential)
by:

ak(2)− xj(2)
ak(1)− xj(1) = tan θkj , (2.21)

where ak(1) and ak(2) are the coordinates x and y, respectively, of the position of anchor ak and xj(1)
and xj(2), likewise, of the position of xj . The previous linear constraint (2.21) can be written as in (2.22)
and therefore is in an appropriate form to be reduced to an SDP formulation.

Akjx = tan θkj · ak(1)− ak(2) (2.22)

In (2.22) Akj is a 2× n matrix of all zero except in Ajk(1, j) that is equal to tan θkj and Ajk(2, j) equal
to -1; x is, again, the matrix of the sensor nodes positions that needs to be determined.
Additionally, combined with the distance information, the AoA between an anchor and a sensor (ak and
xi) or 2 sensors (say xi and xl) as sensed by a third node (xj) can be found, respectively, θkji and θijl.
These two previous angles can be expressed as in (2.23)

(xj − ak)T (xj − xi)
djkdji

= cos θkji

⇔ ‖xi − ak‖2 = d2
jk + d2

ji − 2djkdji · cos θkji, and
(xj − xi)T (xj − xl)

djidjl
= cos θijl

⇔ ‖xl − xi‖2 = d2
ji + d2

jl − 2djidjl · cos θijl,

(2.23)

where dij (djl) are the distances measured between sensors i and j (j and l). Similarly to the constraint
in (2.22), the quadratic constraints in (2.23) can be relaxed and expressed in an SDP form.
When only AoA information is available, the followed approach maintain an Euclidean distance geometry
‘feel’, as claimed by the authors, since the quadratic term in the formulation is relaxed into an SDP. Based
on a geometric property concerning circles and angles, it is presented a set of equations in the unknowns
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xi, xj , xk and r2
ijk (radius of the circle) for all sets of points that share angle information. Again, the

devised constraints are quadratic in x = [x1 x2 ... xn] and the SDP relaxation applied in the previous
case can be equally used (that is Y � xTx). Now, the problem has the unknowns Y, x, r2

ijk and the
linear constraints of the anchors angle measurements (presented in (2.22)) can also be included. In [7] it
is also shown that, despite the introduction of the unknowns r2

ijk, a unique feasible solution exists for a
set of equations, if an inequality depending on the number of unknowns and target sensors is verified.
Biswas et. al also raise some practical questions such as how to define the objective function when the
measurements are noisy. Softer SDP models which introduce some slack are a possible alternative, and
the function to be minimized in the resulting SDP can be, for instance, the absolute sum of the errors.
Another objective function, defined as the sum of the squared errors is specially interesting, since the
SDP formulation becomes a relaxation of a nonlinear LS problem, equivalent to SR-LS of [5] and in [15].
Other practical consideration made concerns the anchor placement when the angle information is noisy,
this issue takes on critical importance. More specifically, if the anchors are placed in the interior of the
network, the estimation of points outside the convex hull formed by the anchors are erroneous, as the
estimated positions tend to lie in the interior. Hence, it is suggested that the anchors are placed on the
network’s perimeter and that such placement is a feasible assumption.
The simulations in [7] are performed for 40 nodes, with measurement noise modelled as additive, both for
distances and angles and 4 anchors are placed in the corners of the network region. In these simulations
the combined distance-angle and the pure AoA approaches are compared. The main drawn conclusions,
further explored in [6], are that both methods can provide an accurate localization. Particularly, it is
better to use both range and AoA information when the radio range and measurement noise are low
(since this method uses more information) whereas the pure AoA approach performs better when the
radio range and noise are high. Furthermore, it is addressed the interest and the need to study what
an optimum radio range should be. Another remark done, based on the simulation results, regards the
number of constraints, which grows significantly with the number of nodes and so the computational
solution time. A localization method that is distributed with a constraint selection method is the given
suggestion to make large networks tractable in this context.

Additionally, in networks with more than one type of sensor, and in which the simplifying assumption
of [7] is not made, an accurate separate calibration for each type is normally required. Even with different
set-ups, these calibrations result in the same self-calibration problem, whose goal is to simultaneously
localize the sensors and the targets. In the following, the considered state-of-the-art work developed in
self-calibration with different sensor fusion is presented.
A new closed-form solution to jointly calibrate heterogeneous sensors (video and range sensors) in a
network is proposed by Crocco et al. in [14]. In this fusion approach (that has available range distances
as well as visual information on the target position), it is used a rank constraint for both range and image
data. Specifically, this rank condition allows to find an initial affine solution via bilinear factorization,
as in [15], presented previously in Subsection 2.1.1.1. In this framework, both the positions of the range
sensors, cameras and the target are unknown, apart from the knowledge of the position of some sensor
anchors. Yet, if these anchor positions are not available, this algorithm is still able to provide a solution,
using only the metric constraints from the cameras.
The range sensor calibration follows, in short, the procedure in [15], obtaining, in the end, a bilinear
formulation. As each sensor is supposed to estimate the distance between itself and the target (for
example, using RSSI), a matrix whose entries are the squared of the estimated distances can be built
(matrix D̃). Identically to what is introduced in [15], eliminating the quadratic terms of the equations,
one can reach a set of (M − 1) × (N − 1) linear equations, that in matrix form is −2S̃t̃ = D̃. Then, a
SVD is applied to this matrix bilinear formulation, once again, similarly to what is performed in [15].
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The elements of a mixing matrix can be found by solving a LS problem, which gives the correct solution
to the range calibration. Furthermore, if no anchor positions are available, the relative positions can still
be found for a less than a 3D translation and rotation.
On the other hand, the video camera calibration consists in computing the parameters of an affine camera
and the 3D position of a target, only based in image measurements. The target points (t) are projected
in the image, forming the the image measurement matrix G (2× n):

Gk =
[
uk1 ... ukn

vk1 ... vkn

]
=
[
Rk|zk

]

t11 ... tn1

t12 ... tn2

t13 ... tn3

1 ... 1

 =
[
Rk|zk

] [ t
1T .

]
(2.24)

For a single target moving, observed by c cameras, the bilinear form equation is derived:

G =

G1

...

Gc

 =

[R1|z1]
...

[Rc|zc]

[ t
1T

]
= C

[
t

1T

]
, (2.25)

such form (2.25) implies a rank-4 constraint on matrix G, since the matrix C (that contains the c camera
matrices) has dimensions 2c × 4. In the case of affine cameras, an alignment to the image centroid can
be made such that:

G̃ = C̃t̃. (2.26)

The matrix form in (2.26) is a classical SFM problem formulation, known in Computer Vision since it
leads to efficient closed-form solutions (for both 3D reconstruction and camera calibration). Such method
is based on applying SVD to G̃, similarly to what is made for the range sensors calibration step. The
specificity in this case is the exploration of the constraints imposed by the camera models. The final
solution for the image calibration can be found via a LS problem.
Computing the joint closed solution using the range and visual constraints of the heterogeneous sensors
is possible because both measurement data share a common subspace, defined by the target position t.
Hence, both types of measurement are combined, using (2.26) and the equivalent expression for range,
to form the measurement matrix Y of size (m+ 2c− 1)× (n+ 1) in (2.27).

Y =
[
D̃
G̃

]
=
[
−2S̃
C̃

]
t̃ (2.27)

A single SVD can be applied to this matrix in order to obtain the first factorization, which can be then
upgraded to metric. It is noted that it might be necessary to perform a normalization of the data to
balance the SVD results. Furthermore, the constraints of each of the c cameras are recast to define a LS
problem (according to [14] it is formulated as Ûivech(H) = 0, where the operator vech(H) is defined
as the half-vectorization, obtaining a column vector by vectorizing only the lower triangular part of H).
Also, the range constraints should be embedded into a LS form, so that it is possible to jointly solve both
constraints. In [14], the anchor constraints can be expressed as Âvech(H) = ǎ (where Â has the known
anchor coordinates). The resulting final equation embodying the camera and range sensor constraints is:[

Â
Û

]
= vech(H) =

[
ǎ
0

]
, (2.28)

in which H is a matrix defined as QjQT
j (Qj is a mixing matrix found by using the anchor positions
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and camera models constraints together). To compute H, equation in (2.29) can be solved simply with
a pseudo-inverse:

vech(H) = (FTF)−1FT r, where F =
[
Â
Û

]
and r =

[
ǎ
0

]
. (2.29)

A real test was performed with a RGB-D device (that generates a high number of range measurements
coupled with standard images). In this test, the data matrix Y allowed to obtain the target 3D position,
for each instant, together with the 3D location of the depth sensor and the camera parameters.
As future work, Crocco et al., in [14], mention the extension to the missing data case in order to allow
more complex and larger networks to be also calibrated according to this method.

Discussion of existing hybrid schemes
Although the clear relevance of the work by Biswas et al. in [7] and Crocco et al. in [14], the approach
proposed in this dissertation differs from the previous and goes beyond, since it surpasses the limitations
present in [7, 14]. More specifically, [7] shows a space dimensionality constraint, as the proposed method
can be applied exclusively in 2D and in [14] there is a limitation of the observations, since observations
of the same target points must be performed with the different sensors (range and video). In this
dissertation work, however, two distinct sets of target points (in two different networks) in the 3D space
will be sensed by the heterogeneous sensors: a set of wireless sensor nodes and a set of objects; thus the
vector to be estimated is larger than the one in [14], as the position estimation of both types of targets,
which produce different measurements, is sought. Moreover, a seamless and natural integration of both
types of information is pursued. Range information (either from acoustic or radio signals as Wi-Fi and
from image properties) and pose/shape (from time varying range or pose estimation from vision) are
harmoniously integrated in the same formulation. The fact that range information will depend on the
translation between the source and the sensor while pose will depend not only on the translation but
also on the rotation matrix leads to a formulation with two minimization problems (one related to the
observed objects and the other to the estimated distances) in which the translation vector is the same.
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Chapter 3

Methodologies

This Chapter addresses the approach followed throughout the work in order to solve the proposed
problem for this thesis, describing the new methodologies devised for such purpose. The single-source
hybrid localization was the first issue to be tackled, thus a new method that fuses distance and angle
information to perform a target localization is proposed in Section 3.1, including a novel optimization
based formulation for such hybrid scenarios. Such formulation is presented in detail in Subsection 3.1.1
and a procedure to solve the self-calibration problem of the different sensor networks, which emerged
when implementing the hybrid localization algorithm in a real scenario, is described in Subsection 3.1.2.
An extension of the hybrid localization to a multi-source node scenario, aiming a cooperative paradigm,
is proposed in Section 3.2. The optimization criterion is similar to the one for the single-source case, but
the actual solution algorithm is entirely different and aimed at large problem sizes that often arise in the
collaborative paradigm, even for a relatively modest number of network nodes.

3.1 Single Source Hybrid Localization algorithm

3.1.1 Localization based on ranges and vision - FLORIS

In order to perform the fusion between range measurements from sensor anchor nodes and visual
information gathered from video, a joint formulation was developed and is presented in this Section.
This formulation, named FLORIS from Fusion Localization using Ranges and Incident Streaks, exhibits
some similarities to the SLCP algorithm [34] (described in Subsection 2.1.1) and is extended to 3D space
using a variation of the technique adopted in the SLNN algorithm, also from [34].
Assuming an environment with two sensor networks comprising different types of anchors, namely, (1) sen-
sor nodes that can retrieve the time of flight thus returning range information, and (2) camera-equipped
nodes that can retrieve visual features, it is possible to estimate the current localization of a target, based
on measurements from the hybrid network.
An illustrative example of the assumed configuration/scenario is depicted in Figure 3.1, where a target
node moves in an environment including a wireless sensor network and visual features.
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Zw
Yw

ui

ui
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Figure 3.1: Localizaion scenario assumed for the hybrid single-source formulation

The posed problem is a single-source localization problem, in which ranges can be obtained with the
wireless sensor network and the visual features provide angle information. Therefore, both range and
angle information are encoded in the cost function presented in (3.1)

f(x) =
∑
i∈R

D2
Ci

(x) +
∑
i∈T

D2
Li

(x), (3.1)

where x is the target position to be determined. Furthermore, DCi
represents the euclidean distance

operator to Ci which is a circumference centered at each wireless anchor ai and with radius di, and DLi

denotes the same euclidean distance operator but to the straight line Li originated at the visual anchor
ai and with orientation ui. The intuitive idea behind (3.1) is that this formulation minimizes, on the one
hand, the distance of the target position estimate relative to the circumferences centered at the wireless
anchors with a radius di and, on the other hand, the distance between the target position estimation
and the line, originating at the visual anchor, with orientation ui (see Figure 3.2 with the geometric
representation of the terms in the joint cost function (3.1)). The positions of the m reference points
(anchors) ai ∈ Rn, i = 1, ...,m are known a priori, and of these, the ones whose indices belong to set R
provide range measurement to the source, di, whereas those with indices in the set T measure bearings
represented by the unit direction vector ui in which the target “sees” each visual anchor, obtained using
a visual sensor. In (3.1), while the squared range D2

Ci
(x) is given by (‖x− ai‖− di)2, D2

Li
(x) is given by

(x − ai)T (In − uiuTi )(x − ai) according to [4]. It follows that (3.1) can be equivalently expressed as in
(3.2),

f(x) =
∑
i∈R

(‖x− ai‖ − di)2 +
∑
i∈T

(x− ai)T (In − uiuTi )(x− ai), (3.2)

for a considered space with dimension n (space of interest is Rn).
The formulation related to the ranges (the left component of (3.2)), similarly to [34], is the ML estimate
under i.i.d. Gaussian noise, however, no such interpretation can be given for the component associated
with the angle information (the right term of (3.2)).
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Figure 3.2: FLORIS geometric scheme (depicting target x, one acoustic anchor ai, one visual anchor ai
and the distances DCi(x) and DLi(x) to be minimized)

3.1.1.1 2D formulation - representation in the complex plane

The range parcel of the cost function (3.2) is shown, in [32], to be equivalent to the usual simple (not
squared) range approach (2.2). The approach followed here to minimize (3.2) for the 2D space (n = 2)
is reminiscent from SLCP [34], yet, to include both types of information there are two constraints (one
from range and the other from vision), as in formulation (3.3), where the total number of anchors (m) is
equal to the sum of the sensor nodes and the visual features (m = R+ T ).

minimize
x,yi

m∑
i=1
‖x− yi‖2

subject to yi = ai + die
jφi , i ∈ R

yi = ai + ejϕiti, i ∈ T

(3.3)

In formulation (3.3), the first condition represents the range constraint, since the position of the source can
be interpreted as being on a certain direction, encoded by an angle (ejφi) [34], multiplied by the distance
measured (di) and summed to the position of anchor ai represented in the complex plane. Regarding the
second condition, it represents the visual constraint, as, similarly to the range case, we can encode the
observation of an object using its orientation (ui = ejϕi) times the length (ti). Furthermore, these two
constraints can be presented together in a compact matrix form, with equation (3.4)

y = a + R
[

θ

t

]
, (3.4)
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where a stacks vertically both acoustic and visual anchors coordinates and for the 2D case R is the
diagonal matrix

R =



d1 · · · 0 0 · · · 0

0
. . . 0 0 · · · 0

0 · · · dR 0 · · · 0
0 · · · 0 ejϕ1 · · · 0

0 · · · 0 0
. . . 0

0 · · · 0 0 · · · ejϕT


, (3.5)

and

θ =


ejφ1

...
ejφR

 , t =


t1
...
tT

 . (3.6)

The solution of the problem in (3.3) with respect to x, if yi is fixed, is simply the center of mass of the
configuration (x = 1

m

∑m
i=1 yi). Hence for 2D, in the complex plane, the cost function of the formulation

in (3.3) can be written as y∗Jy1, where J is the projection matrix (J = I − 1
m11T ). Using the latter

formulation, and replacing y by the expression in (3.4), the following formulation is derived:

minimize
θ,t

(
a + R

[
θ

t

])∗
J
(

a + R
[

θ

t

])
subject to |θi| = 1, i ∈ R

ti ∈ R+, i ∈ T .

(3.7)

Expanding the cost function in (3.7) yields the following matrix form, a quadratic formulation in
[
θ t 1

]T
(3.8)

minimize
θ,t

[
θ∗ t∗ 1

] [R∗JR R∗Ja
a∗JR a∗Ja

]θ

t
1


subject to |θi| = 1, i ∈ R

ti ∈ R+, i ∈ T .

(3.8)

Applying the trace of a matrix, whose cyclic nature lets the order of the matrices to be swapped, hence
considering W =

[
θ t 1

]T [
θ∗ t∗ 1

]
, the final formulation can be defined as in (3.9)

minimize
W

tr

([
R∗JR R∗Ja
a∗JR a∗Ja

]
W
)

subject to rank(W) = 1

W � 0

tr(Wi,i) = 1, i ∈ R

Wi,nm+1 ≥ 0, i ∈ T

Wnm+1,nm+1 = 1.

(3.9)

Neglecting the rank-1 constraint and performing a simplifying expansion of the sub-matrices of the cost
function in (3.9) in real and imaginary parts, a relaxed SDP is obtained which can be efficiently solved

1X∗ denotes the conjugate transpose of X.
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using generic solvers. In this way, the goals of finding the phases vector θ as well as the translations
vector t are jointly achieved, through matrix W, provided that its rank is (at least approximately) one.
Finally, the source position x is estimated as the average of the m points of yi, defined according to (3.4),
which are directly obtained from the rightmost column (or bottom row) of W.
Alternatively, it is possible to obtain, in a first step, only the phase vector θ, from the matrix W in the
SDP problem (3.9) and, afterwards, use this vector to minimize the cost function relative to t.
It was verified that the resulting estimated source positions are similar for both approaches.

3.1.1.2 3D formulation

To solve this problem in 3D, only minor changes are applied. More specifically, considering the 3D
space, the variables are no longer represented using the complex plane, therefore the formulation for R3

is in (3.10).

minimize
x,yi∈R3

m∑
i=1
‖x− yi‖2

subject to yi = ai + diθi, ‖θi‖ = 1, i ∈ R

yi = ai + uiti, ti ∈ R+, i ∈ T

(3.10)

Comparing the latter formulation in (3.10) with (3.3), it is possible to notice that the performed 2D
geometric interpretation is now extended to the 3D case, in which θi plays the same role as ejφi and ui

takes the place of ejϕi . Similarly to the 2D case, the cost function in (3.10) can be expressed as yTJy,
which allows to follow the same rationale.
Furthermore, matrix R as well as the projection matrix J are now defined as follows:

R =



d1 0 0 0 0 0 · · · 0 0 0 0 0 · · · 0
0 d1 0 0 0 0 · · · 0 0 0 0 0 · · · 0
0 0 d1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 0 0 d2 0 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 d2 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 0 d2 · · · 0 0 0 0 0 · · · 0

0 0 0 0 0 0
. . . 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · dR 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0 dR 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0 0 dR 0 0 · · · 0
0 0 0 0 0 0 · · · 0 0 0 u1x 0 · · · 0
0 0 0 0 0 0 · · · 0 0 0 u1y 0 · · · 0
0 0 0 0 0 0 · · · 0 0 0 u1z 0 · · · 0
0 0 0 0 0 0 · · · 0 0 0 0 u2x · · · 0
0 0 0 0 0 0 · · · 0 0 0 0 u2y · · · 0
0 0 0 0 0 0 · · · 0 0 0 0 u2z · · · 0

0 0 0 0 0 0 · · · 0 0 0 0 0
. . . 0

0 0 0 0 0 0 · · · 0 0 0 0 0 · · · uTx

0 0 0 0 0 0 · · · 0 0 0 0 0 · · · uTy

0 0 0 0 0 0 · · · 0 0 0 0 0 · · · uTz



, (3.11)
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J = Imn −
1

R+ T
· 1m1Tm ⊗ (In · In) . (3.12)

Since the cost function (3.2) used as the basis for the previously proposed algorithm is not the ML
function (it would be the ML function for the ranges terms only, under Gaussian noise), a study regard-
ing the behaviour of this function becomes both necessary and relevant. Therefore, multiple simulations
comprising randomly generated hybrid networks (with both acoustic and visual anchors) and with no
additive noise were performed, using MATLAB and CVX/SDPT32 as a general-purpose solver. The
contour lines of the cost function in (3.2) were represented, for a grid of 2D coordinates (x and y), in
order to visualize the shape of the resultant function. Figures 3.3 and 3.4 depict the cost function error
obtained for two runs.
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Figure 3.3: Cost function error (in distance units) of FLORIS formulation, for a network of 5 acoustic
anchors and 2 visual tags - 2D and 3D visualizations
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Figure 3.4: Cost function error (in distance units) of FLORIS formulation, for a network of 8 acoustic
anchors and 5 visual tags - 2D and 3D visualizations

Analysing the plots obtained, it is possible to conclude that, despite not being the ML estimate, the
obtained functions are said to be “well-behaved”, as they exhibit a near convex shape, with the estimated
target position at the minimum and without the undesired local minima. Moreover, it was observed that,
as the number of anchors increase, the function becomes even more “well-behaved” (steeper cone) and
similar to a convex shape. Under these conditions, the convex relaxation used in FLORIS is expected to

2http://www.math.nus.edu.sg/ mattohkc/sdpt3.html (accessed in October 2014)
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yield an (approximately) rank-1 solution with high probability.
A thorough set of simulations were performed on randomly generated networks in order to characterize
and test the performance of the previously proposed algorithm. Chapter 4 presents the results of such
simulations. A performance comparison with other two state-of-the-art single-source methods indicates
a leading performance of FLORIS for high noise cases, due to the particular robustness of the estimates
accuracy in such scenarios.
The first experimental set-up developed to implement this hybrid localization algorithm consisted of a
video camera mounted in a solidary way with a Cricket listener node. The most relevant tests performed
and results obtained in this set-up are, also, presented and discussed in Chapter 4. In this case, the
practical feasibility of FLORIS is completely attested, as the results attained surpass in accuracy the
ones provided by the other methods, for the same experimental dataset.

It should be highlighted that the above proposed hybrid localization algorithm differs from the meth-
ods presented in Chapter 2, particularly, [7] and [14], thus making a novel contribution to this field. In the
proposed scenario for this thesis there are two separate networks of heterogeneous sensors which detect
and measure different variables, namely range and angle from vision. However, in the work found in
the state-of-the-art, only one network of sensors that are able to simultaneously measure different types
of variables is explored. Additionally, FLORIS, adopts the same strategy for relaxation used in SLCP
in [34], and thus provides a very tight approximation to the original nonconvex problem, conferring a
better performance when compared to the R-LS method in [5]. Besides the aforementioned aspects, in
such previous works only simulation results are presented yielding neither deployment nor experimental
tests in a real scenario.

3.1.2 Self-calibration process for the two separate sensor networks

From the existence of the two detached sensor networks, which contrasts with the related work found
(more specifically in [7, 14]), emerged the need to calibrate both networks, as a precondition to perform
localization. In fact, in [7] it is assumed that the obtained measurements are the absolute angles, since
all the anchor nodes are aware of their orientation relative to the global coordinate system. This differs
from our scenario, in which the network of sensors measuring angles is detached from the network of
ranging sensors. Hence, such assumption cannot be made and a method to relate and determine the
transformation between the two is required. The present Subsection details the process developed to
achieve such calibration. We highlight that this is another major original contribution of this dissertation.
To fuse the information conveyed by both sensors, which belong to two different sensor networks, both
measurements have to be referenced in a common coordinate system. However, as shown in Figure 3.5,
the acoustic anchors form a network detached from the network of the visual features. As each network
has its own separate coordinate system (coordinate system denoted as c for the sensor network and a

for the visual anchors), it becomes necessary to define a global referential. Furthermore, Figure 3.5
depicts the target (a device comprising a video camera that can measure transformations to the visual
markers attached to an acoustic sensor that can gather range measurements to the wireless sensor nodes)
performing a trajectory in the localization scenario which includes both types of anchor nodes and all
the translations and rotations that can be measured or should be determined through the calibration
process.
In this case, the range measurements obtained acoustically will lead to a target position estimation in
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Figure 3.5: Scheme for the self-calibration of the two detached networks (acoustic and visual)

reference to the coordinate system defined by the acoustic anchors. On the other hand, the orientation
of the camera, relative to the identified visual features, is determined in a coordinate system defined by
such features.
The method that is explained hereinafter succeeds in determining the transformation (rotation matrix and
translation vector) between the two sensor networks, without any prior information, only by using pairs
of estimated acoustic target positions and camera positions. Hence, this process is called self-calibration,
as there is no need for prior information. The massive flexibility and convenience provided by such
assumptions-free process is definitely a decisive advantage regarding the experimental deployment when
compared to previously proposed methods.
Considering a set-up similar to the one presented in Figure 3.5 and a target formed by an acoustic sensor
attached to a camera, an algebraic method for the auto-calibration is derived. Such method derivation
will use the notation of Figure 3.5 throughout.

The unknowns of this process are Rac, which denotes the rotation matrix between the camera ref-
erential and the acoustic referential system, Tac, which represents the translation vector between the
same two networks, and, since the range and orientation are not measured by the same sensor, it is also
necessary to determine Tcc, which is the translation between the focal point of the camera and the center
of the Ultrasound (US) receiver of the acoustic sensor. Additionally, let Rcam and Tcam be the rotation
and translation, respectively, measured by the camera relative to the visual features and Pacoustic be the
acoustic sensor localization computed using the ranges, in the referential defined by the acoustic network.
In the envisaged procedure, sets of range measurements, between the acoustic anchors and the target,
as well as pairs of Rcam and Tcam, from the camera detecting a visual feature, can be collected. With
the first set of data, the position of the acoustic sensor in the acoustic reference system (Pacoustic) can
be estimated using an algorithm based on a Least-Squares methodology such as the SR-LS [5] or on an
SDR approach, such as the SLCP [33]. On the other hand, it is possible to determine the rotation and
translation of a camera relative to a visual feature (Rcam and Tcam), and therefore the camera position
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in the visual features coordinate system is straightforwardly computed.
Using the matrix form, combining the rotation matrices and translation vectors, in accordance to the
scheme in Figure 3.5, the relation in (3.13) follows

MAC MCAM MCC = MACOUSTIC

⇔
[
Rac Tac

] [R(t)
cam T(t)

cam

0 1

][
Rcc Tcc

0 1

]
=
[
I P(t)

acoustic

]
⇔
[
RacR(t)

camRcc Rac(R(t)
camTcc + T(t)

cam) + Tac

]
=
[
I P(t)

acoustic

]
,

(3.13)

where the notation P(t)
acoustic is used in (3.13) to represent a time-dependent variable.

From the last step of (3.13), it follows thatRacR(t)
camRcc = I

Rac(R(t)
camTcc + T(t)

cam) + Tac = P(t)
acoustic.

(3.14)

Taking the difference between two generic time instants, t1 and t2, for the second equation of the system
(3.14), one can obtain the expression (3.15):[

Rac(R(t2)
camTcc + T(t2)

cam) + Tac

]
−
[
Rac(R(t1)

camTcc + T(t1)
cam) + Tac

]
= P(t2)

acoustic −P(t1)
acoustic. (3.15)

The expression (3.15) can be simplified into (3.16), according to the auxiliary scheme in Figure 3.6, which
has the same notation of the algebraic derivation performed below.

Wireless sensor nodes (anchors)

Visual tags
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Xc
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Xa
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Ya

t = t1

t = t2Tcc 

Tcc 

Rdiffk
, Tdiffk

Pdiffk

Figure 3.6: Auxiliary scheme for the derivation of equation (3.16)

P(t2)
acoustic −P(t1)

acoustic︸ ︷︷ ︸
Pdiffk

= Rac

(R(t2)
cam −R(t1)

cam)︸ ︷︷ ︸
Rdiffk

Tcc + (T(t2)
cam −T(t1)

cam)︸ ︷︷ ︸
Tdiffk

 (3.16)

In (3.16) the translation vector between the acoustic and the visual network (Tac) is cancelled, leaving
just two unknown variables Rac and Tcc.
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Appending/stacking horizontally all the N (number of measurements −1) pairwise differences measured,
equation (3.16) can be expressed as in (3.17)

[Pdiff1 · · ·PdiffN]︸ ︷︷ ︸
Pdiff

= Rac

[Rdiff1Tcc · · ·RdiffNTcc]︸ ︷︷ ︸
Rdiff(IN ⊗Tcc)

+ [Tdiff1 · · ·TdiffN ]︸ ︷︷ ︸
Tdiff

 , (3.17)

where IN denotes an identity matrix of N × N , Rdiff is formed by horizontally stacked differences of
rotations matrices (which no longer hold the properties of a rotation matrix) and Tdiff includes the
pairwise differences of translation vectors.
According to (3.17), the error function can be defined as

E = [Pdiff −Rac (Rdiff(IN ⊗Tcc) + Tdiff)] . (3.18)

With this formulation, Rac can be estimated by solving an orthogonal Procrustes problem3, which deter-
mines the closest orthogonal rotation matrix that best fits two sets of points. Here, one set of points is
given by Pdiff (which are the pairwise differences of the position estimations obtained through the acous-
tic sensor network, alone) and the other by Rdiff(IN ⊗Tcc) + Tdiff, hence the solution of the Procrustes
problem will give an estimate of Rac.
In order to reduce the complexity of the algebraic calculations in such cases, the Frobenius norm is usu-
ally applied. Since one of the ways in which this norm can be defined is ‖A‖2F = tr(A∗A) , we apply
the trace operator to E∗E, thus tr{E∗E}. Taking the trace truly simplifies the calculations, since the
expression is transformed in an inner-product (element-wise computation), while no information is lost,
as the eigenvalues hold all the matrix information. This can also be regarded as computing the average
of the error covariance matrix.
After some algebraic manipulation, a new expression for the error function is obtained in (3.19)4.

E(Tcc,Rac) = tr{PT
diffPdiff − 2PT

diffRac (RdiffIN ⊗Tcc + Tcam) + (IN ⊗Tcc)TRT
diffRdiff(IN ⊗Tcc)+

2TT
camRdiffIN ⊗Tcc + TT

camTcam}
(3.19)

To determine the unknown Tcc, we should minimize the error, thereby, using the function E(Tcc,Rac),
defined in (3.19) to form the cost function, yields the following optimization problem in (3.20).

minimize
Rac,Tcc

tr{PT
diffPdiff − 2PT

diffRac (RdiffIN ⊗Tcc + Tcam) + (IN ⊗Tcc)TRT
diffRdiff(IN ⊗Tcc)

+ 2TT
camRdiffIN ⊗Tcc + TT

camTcam}

subject to RT
acRac = I3

(3.20)
The problem in (3.20) is a constrained optimization problem, since the matrix Rac has to belong to the
space of rotation matrices. Consequently, the method to minimize this objective function consists in using
the Lagrange multipliers so that this problem is converted into an unconstrained optimization problem
(the restriction is incorporated in the same equation as the cost function). The auxiliary function given
by the Lagrangian method is shown in (3.21)

L(Tcc,Rac, λ) = E(Tcc,Rac) + tr(λ(RT
acRac − I3)), (3.21)

3http://en.wikipedia.org/wiki/Orthogonal Procrustes problem (accessed in October 2014)
4As all the values are real (positions in the 3D space and rotation matrices), the conjugate transpose notation

(X∗) is replaced, simply, by the transpose (XT ).
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where λ is a constant called the Lagrange multiplier.
In accordance with this method, to estimate Tcc we need to solve the constraint-free problem in (3.22)

maximize
Rac,λ

(
maximize

Tcc
L(Tcc,Rac, λ)

)
. (3.22)

To determine the extreme of the previous objective function, its partial derivative with respect to Tcc

(the unknown variable) is computed and set to zero, yielding

∂L(Tcc,Rac, λ)
∂Tcc

= −2
∑
i

RT
diffi

RT
acPdiffi + 2

(∑
i

RT
diffi

Rdiffi

)
Tcc + 2

∑
i

RT
diffi

Tcami = 0. (3.23)

Algebraically manipulating the expression in (3.23), results in the the following expression (3.24) to
compute Tcc:

Tcc =
(∑

i

RT
diffi

Rdiffi

)−1(∑
i

RT
diffi

RT
acPdiffi −

∑
i

RT
diffi

Tcami

)
. (3.24)

Additionally, following the computation of Rac and Tcc, the translation vector between both networks’
referential systems Tac is computed as:

Tac = Pdiff −Rac
(
RcamTcc + Tcam

)
. (3.25)

In light of the above algebraic derivation of the formulation to self-calibrate two separate sensor networks,
an iterative method can be devised to estimate both Rac and Tcc.
A workflow summarizing the preceding newly proposed self-calibration method can be found in Figure
3.7. Since Tcc is considerably smaller when compared with Tcam, a first estimate for Rac (Rac(k)) can be

Initializing Tcc

Input

Pairwise differences of

Pacoustic
(obtained from ranges rij)

Rcam, Tcam
(obtained from visual features)

Rac obtained by solving Procrustes 

problem (3.18)

Computing  Tcc (3.24)

Computing  Tac (3.25)

Output

Rac, Tac, Tcc,

Tcc

While ||Rac(k-1) – Rac(k)||F > thresh

Figure 3.7: Outline of the proposed self-calibration procedure workflow

obtained neglecting Tcc (Tcc = 0) or, alternatively, with an initialization of the value of Tcc, if available.
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3.2 Sensor Network Hybrid Localization algorithm

3.2.1 Collaborative Localization based on ranges and vision - CLORIS

In respect to non-cooperative techniques, the cooperative localization paradigm can notably improve
the performance of localization, not just in terms of accuracy but also in increased coverage [45]. In
fact, with numerous sensors exchanging position information it is possible to achieve higher accuracy in
location estimates for a larger fraction of the network nodes.
In such collaborative paradigm, the envisaged scenario comprises, as illustrated in Figure 3.8, several
targets roaming in the same environment communicating among them, transmitting the ranges measured
(to the beacons and to the other targets) and incident streaks (again, to the visual anchors and to the
other targets), in this way enhancing localization.

r1k

d12

Xw

Zw

Yw

u1k

u1k

Sensor 1

r1k

Sensor 2

r2k

r1k

u12

r2k

u2k

u21

Wireless sensor nodes (anchors)

Figure 3.8: Localizaion scenario assumed for fusion sensor network localization approach

The methodology used in this collaborative approach is an extension of FLORIS scheme to this new,
more complex, paradigm. More specifically, the cost function formulation is in line with our previous
formulation for the single-source case. However, the algorithm relaxation to obtain the cooperative
solution follows a distinctive strategy. Effectively, it has not a SLNN flavour, instead it follows the
approach presented by Soares et. al in [43], introducing the necessary modifications to accommodate
the component regarding the orientation measured between nodes, here represented by the presence of
straight line sets. Thus, this approach constitutes the newly proposed CLORIS method.
In order to ease the understanding of the upcoming problem formulation notation, we reformulate the
single-source problem of FLORIS in (3.1) as

minimize
x

f(x) =
∑
k∈A

D2
Sk

(x− ak) +
∑
k∈A

D2
Lk

(x− ak) , (3.26)

where D2
Sk

(x− ak) is the squared euclidean distance operator (defined as D2
W (x) = infy∈W ‖x− y‖2) of

point x− ak to the set formed by a sphere centered at the origin and with radius rk and D2
Lk

(x− ak) is
the squared euclidean distance of point x− ak to the straight line passing the origin with orientation uk.
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The sensor network localization problem differs from the previous problem since range and angles
between sensors are also measured. Thus, in the cooperative paradigm two new terms, associated with
the measurements between pairs of sensors, are added to the cost function, which can be written as

f(x) =
∑
i∼j

D2
Sij

(xi − xj) +
∑
i

∑
k∈Ai

D2
Sik

(xi − aik) +
∑
i∼j

D2
Lij

(xi − xj) +
∑
i

∑
k∈Ai

D2
Lik

(xi − aik) ,

(3.27)
where, similarly to (3.26), Sij is the sphere generated by noisy range measurement (dij) between sensors
i and j and Lij the set formed by the straight line passing in sensor i and j with measured unit vector
uij . Moreover, for each sensor i, Ai is the subset of anchors whose distance to i is available as a noisy
range measurement and i ∼ j denotes an edge (∈ E , the set of edges) between the sensors i and j, if there
is a noisy range measurement between them and both nodes can communicate with each other.
Further, to obtain a convex function, the components of (3.27) which represent distances to a sphere
(D2

Sij
and D2

Sik
) can be relaxed by distances to a ball, according to (3.28):

D2
Sij

(z) = inf
‖y‖=dij

‖z − y‖2 is replaced by D2
Bij

(z) = inf
‖y‖≤dij

‖z − y‖2. (3.28)

Such relaxation is illustrated by Figure 3.9.

Feasible region
Feasible region

Disk relaxation

Wireless sensor node (anchor)

Sphere with radius equal to the distance measured between the anchor and one of the sensors  

Figure 3.9: Scheme illustrating the disk relaxation performed, showing the feasible region after the
relaxation

And an identical replacement is performed for the terms associated with anchor measurements. The
obtained balls Bij and Bik are the convex hulls of the respective spheres. Furthermore, the distances
D2
Bij

and D2
Bik

are the convex envelopes of D2
Sij

and D2
Sik

, respectively.
Replacing the terms in (3.27) by the relaxation performed in (3.28) and the respective for the anchor
dependent measurements yields the final convex cost function for the fusion approach of the disk relaxation
based method CLORIS.

f(x) =
∑
i∼j

D2
Bij

(xi − xj) +
∑
i

∑
k∈Ai

D2
Bik

(xi − aik) +
∑
i∼j

D2
Lij

(xi − xj) +
∑
i

∑
k∈Ai

D2
Lik

(xi − aik) ,

(3.29)
This resultant cost function (3.29), inspired in [43] is not the convex envelope of (3.27), indeed it is
an underestimator of the primary problem. Yet, Soares et. al [43] present a discussion, for range-only
collaborative localization, in which is concluded that this type of underestimator can provide very good
approximations with quantifiable sub-optimality.
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At this point it is important to make the following remark regarding a comparison between the relax-
ation strategy followed in CLORIS and the EDM approaches discussed in the state-of-the-art. Although
cooperative only range EDM based methods can dispense, up to a certain point, the a priori knowledge
of anchors positions, that is not the case for the present disk relaxation. Indeed, the knowledge of the
anchor coordinates is crucial for this approach. Nevertheless, and as a positive feature of this disk re-
laxation, while in the SDP relaxations carried out in EDM based methods a factorization, without any
rank guarantees, has to be necessarily performed, the present approach circumvents such inconvenient
complexity. Thus, while in the EDM case we have to optimistically expect, with no guarantees, a rank-1
solution, in the CLORIS case we work directly with the anchors coordinates, as discussed bellow.
Now that a suitable cost function was found, the method addressed in this dissertation to obtain the
solution follows the distributed sensor network localization algorithm via the accelerated Nesterov’s gra-
dient descent, introduced in [30].
Following [43] and adding the terms related to the angle information, the cost function (3.29) is expressed
as

minimize
x

f(x) =
∑
i∼j

D2
Bij

(Adx) +
∑
i∼j

D2
Lij

(Alx)︸ ︷︷ ︸
g(x)

+
∑
i

∑
k∈Ai

D2
Bik

(xi − aik) +
∑
i

∑
k∈Ai

D2
Lik

(xi − aik)︸ ︷︷ ︸
h(x)

,

(3.30)
in which matrices Ad and Al perform the coordinate differences for the acoustic and the visual anchors,
respectively. These matrices are computed as Ad = Cd⊗Ip and Al = Cl⊗Ip (p is the space dimension and
this method is valid for both practical cases of p = 2 and p = 3), where Cd is the arc-node incidence matrix
with the distances of the network and Cl is the arc-node incidence matrix relative to the orientations
measured. The division into the sum of two functions g(x) and h(x) is useful for computing the gradient
of the cost function.
The function D2

Bij
(z) is convex and differentiable, with gradient

∇D2
Bij

(z) = z − PBij
(z) , (3.31)

where PBij
(z) denotes de orthogonal projection of point z onto the convex set (ball) Bij . Likewise, the

gradient of D2
Lij

(z) is
∇D2

Lij
(z) = z − PlLij

(z) , (3.32)

PlLij
(z) is the orthogonal projection of point z onto the set formed by the straight line Lij .

Hence, by (3.31), (3.32) and applying the gradient operator rules, the gradient of g(x) is obtained as in
(3.33).

∇g (x) = ∇D2
B (z) +∇D2

L (z)

= AT
d∇D2

B (Adx) + AT
l ∇D2

L (Alx)

= AT
d (Adx− PB(Adx)) + AT

l (Alx− PlL(Alx))

= Ldx−AT
d PB(Adx) + Llx−AT

l PlL(Alx)

(3.33)

In expression (3.33) B and L denote the Cartesian product of the balls Bij and the straight lines Lij ,
corresponding to the edges with range or bearing information, respectively. Furthermore, Ld(l) is defined
as Ld(l) ⊗ Ip, being Ld(l) the Laplacian matrix related to the distance (angles) graph.
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Regarding h(x), let ∇h(x) = (∇h1(x1), ...,∇hn(xn)), where each term is:

∇hi (xi) =
∑
k∈Ai

∇D2
Bik

(xi − aik) +∇D2
Lik (xi − aik)

=
∑
k∈Ai

(xi − aik)− PB(xi − aik) +
∑
k∈Ai

(xi − aik)− PlL(xi − aik).
(3.34)

From (3.33) and (3.34), the overall gradient of cost function f(x) can be computed according to expression
(3.35).

∇f (x) = Ldx−AT
d PB(Adx) + Llx−AT

l PlL(Alx)

+


∑
k∈A1

(x1 − a1k)− PB(x1 − a1k) +
∑
k∈A1

(x1 − a1k)− PlL(x1 − a1k)

...∑
k∈An

(xn − ank)− PB(xn − ank) +
∑
k∈An

(xn − ank)− PlL(xn − ank)


(3.35)

As both ∇g(x) and ∇h(x) are Lipschitz continuous functions, it is possible to compute the Lipschitz
constants, which according to [43]5 are Lg = 2δmax (δmax is the maximum sensor node degree) and
Lh = max |Ai| : i ∈ V (which denotes the maximum degree of the anchors nodes); for this fusion case
the graph includes both range and orientation anchors of the network. Such constants, resulting in the
Lipschitz constant Lf̂ = 2δmax + max |Ai| : i ∈ V, together with the gradient of f̂ enables the use of the
parallel algorithm to minimize this cost function described below. Parallelizability is a crucial concern in
the development of distributed inference algorithms for sensor networks, but is beyond the scope of this
work. Therefore, no advantage is taken here of the specific form of (3.35).
To find the minimum of f̂ the followed approach is the Nesterov’s optimal method [30], as in [43], since
the cost function has a Lipschitz continuous gradient in (3.35). The choice of Nesterov’s over conventional
descent gradient methods allows for a tremendous speed increase at almost no additional computational
complexity cost. At a high level, in this approach each node estimate is given an arbitrary initial value
and its position estimate (xi(k)) is updated resorting to a combination (wi) of the two previous iterations
estimates (xi(k − 1) and xi(k − 2)). The previous loop can be performed up to a predefined maximum
number of iterations or it can stop when the gradient is smaller than a preset threshold. The pseudo-code
of this algorithm is presented in detail in Algorithm 1.

5The expressions for the Lipschitz constants in [43] were originally derived under the assumption that all sets
were balls, but they still hold true even when some of these sets become lines.
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Algorithm 1 Parallel method based on accelerated Nesterov’s optimal method
Input: Lf̂ , {dij : i ∼ j ∈ E}, {rik : i ∈ V, k ∈ A}, {uij : i ∼ j ∈ E}, {uik : i ∈ V, k ∈ A};
Output: x̂;
1: k = 0;
2: xi(0) and xi(−1) is randomly assigned, for each node i;
3: while stopping criterion is not achieved, each node i do
4: k = k + 1;
5: wi = xi(k − 1) + k−2

k+1 (xi(k − 1)− xi(k − 2));
6: wi is broadcast to the neighbours of node i;
7: ∇g(wi) = δdiwi −

∑
j∈Ni

wj +
∑
j∈Ni

Cd(i∼j,i)
PBij

(wi − wj) + δliwi −
∑
j∈Ni

wj +∑
j∈Ni

Cl(i∼j,i)
PlLij

(wi − wj);

8: ∇h(wi) =
∑
k∈Ai

wi − PBik
(wi)− PlLik

(wi);

9: xi(k) = wi − 1
Lf̂

(∇gi(wi) +∇hi(wi));
10: end while
11: return x̂ = x(k)

In Algorithm 1 δdi is the degree of a node i to which range is measured and δli is the same for a
node i from which orientation can be obtained. Considering, for the illustrative range case example,
PB(Adx) = {PBij (xi − xj)}i∼j∈E the concatenated projections onto a ball, multiplying it by AT

d will
perform simultaneously all the projections relative to the edges of each node i. All these simultaneous
operations are denoted by Cd(i∼j,i)

, defined as the entry (i ∼ j, i) of the arc-node incidence matrix Cd.
The previous notation yields the expressions in line 7 of Algorithm 1:∑

j∈Ni

Cd(i∼j,i)
PBij (xi − xj) =

(
AT
d PB(Adx)

)
i

and
∑
j∈Ni

Cl(i∼j,i)
PlLij (xi − xj) =

(
AT
l PlL(Alx)

)
i
.

Having introduced the newly proposed CLORIS method, a note regarding the reasons for adopting
such methodology over an EDM approach seems convenient. Though the outlined plan was to modify
the EDM formulation to incorporate angles, we could not succeed in that line of work. At the same time,
this disk relaxation set-up proved to be highly attractive due to the natural and seamless fit that it could
provide for the extension of the single source (FLORIS) cost function, regardless the distinct relaxation
performed afterwards.

38



Chapter 4

Results

In this Chapter the main simulation and experimental results attained for both FLORIS and CLORIS
are presented, in Sections 4.1 and 4.2, respectively.
Extensive tests were run, in simulation, in order to analyse the performance of the hybrid localization
methods proposed in this dissertation. All the conditions in which such tests were run, as well as the
outcomes, are detailed in Subsections 4.1.1 and 4.2.1.
As an experimental testbed for indoor localization was also developed in the scope of this thesis, findings
from applying the new hybrid algorithms on a real scenario are addressed in Subsections 4.1.2 and 4.2.2.
Moreover, is included a quantitative performance analysis, benchmarking FLORIS and CLORIS against
methods found in the literature, aiming to demonstrate the improvements introduced by the contributions
given in this work.
Regarding the experimental implementation, some hardware details as well as physical limitations (some
overcome, while others not) are also discussed.

4.1 Single Source Localization - FLORIS

4.1.1 Simulation

4.1.1.1 Preliminaries

In order to assess the performance of the hybrid localization algorithm proposed in this thesis, several
simulation tests were performed. Both the position estimation error and the rank of matrix W were
studied. The analysis of the rank of W allows to assess the formulation in (3.9) and its relaxation, since
when rank(W) = 1, the relaxed solution coincides with the optimal one for the non-relaxed and original
problem.
The following experiments were run using MATLAB R2013a and the general-purpose SDP solver CVX/S-
DPT31. Networks of acoustic and visual anchors were randomly generated in a [0, 5] × [0, 5] × [0, 5] cube
with white Gaussian noise added both to the distances obtained for the ranging part and to compute
the orientations in the visual part. Such measurements (of range and orientation) were modeled to be
noisy according to the expression d = d̂(1 + w), where d and d̂ are, respectively, the corrupted by noise

1http://www.math.nus.edu.sg/ mattohkc/sdpt3.html (accessed in October 2014)

39



and the actual range (or orientation) measurements and w ∼ N (0, η2) denotes a normally distributed
random variable with zero mean and variance equal to the square of the noise factor. This noise model
intends to make the simulations as similar as possible to the real scenario and is supported by the studies
(discussed in Section 4.1.2) analysing the distance and the angle measurements distribution, in the real
set-up. Additionally, we can find in the literature authors also claiming that the position estimates noise
increases with the magnitude of the real measured distances.
The accuracy is evaluated computing the RMSE, for every set of MC Monte Carlo runs, which is defined
as in (4.1)

RMSE =

√√√√ 1
MC

MC∑
i=1
‖xi − x̂i‖2, (4.1)

where xi and x̂i are the true and the estimated source positions for the ith run.
Furthermore, regarding analysis of execution times, the following simulations were conducted on a ma-
chine equipped with an Intel i5 1.7 GHz CPU and 6 GB of RAM.

4.1.1.2 Results

Firstly, the position estimation error and the rank of W were analysed for different noise factors. The
considered noise factor values were η = (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1). MC = 500 Monte Carlo runs
were executed for each value of noise factor and for the same anchor network configuration. Thus, with
these tests it is possible to assess the performance of the algorithm relative to the noise factor.
Results for two different network configurations are presented. The first configuration comprises 6 acoustic
anchors and 4 visual anchors, these values match the real installed set-up and, for that reason, the study of
such configuration was considered relevant. Additionally, the minimal configuration necessary to perform
localization in R3, totalizing 4 anchors (3 acoustic and 1 visual), is also addressed. In this way, the
algorithm is characterized for the extreme minimum nodes case. It should be stressed that the latter case
refers to a situation in which resorting to the hybrid algorithm it is still possible to estimate a position,
even though the number of acoustic anchors is insufficient for pure range-based localization (3 or less for
3D and 2 or less for 2D). To that purpose is enough that one single additional pattern is detected. This
is relevant since it might be a common situation in real application scenarios.
Tables 4.1a and 4.1b show that the percentage of resultant matrices W with rank-1 property (matrix
W was considered rank-1 when performing SVD the first singular value was 16 times greater than the
second) is substantially high, thus the relaxation performed (according to what is discussed in Subsection
3.1.1) is valid as the optimal value for the original nonconvex problem is very frequently found.

In Figure 4.1 the RMSE obtained for 500 runs for two fixed networks (with 6 acoustic and 4 visual

Noise Factor Rank(W)=1 (%)
0.001 100
0.005 83.0
0.01 72.4
0.05 62.6
0.1 72.6
0.5 88.6
1 88.4

(a) Network with 6 acoustic and 4 visual anchors

Noise Factor Rank(W)=1 (%)
0.001 100
0.005 100
0.01 97.0
0.05 72.6
0.1 75.4
0.5 94.6
1 98.2

(b) Network with 3 acoustic anchors and 1 visual anchor

Table 4.1: Rank-1 percentage solutions of FLORIS algorithm for fixed configuration networks, for different
noise factors
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anchors and 3 acoustic anchors and 1 visual anchor), in the considered range of noise factors, is presented.
As expected, when the number of anchors is higher the position estimates are more accurate, since more
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Figure 4.1: Performance of FLORIS algorithm, for two configuration networks, for several noise factors

information is used. Nevertheless, this result shows that the FLORIS is able to perform reasonably
accurate localization with 4 anchors (when only 3 acoustic nodes are available).
For comparison with the fixed configuration case (shown in Figure 4.1), 500 Monte Carlo runs were
executed for each value of noise factor, yet, this time for varying network configurations in every run,
keeping the number of both acoustic and visual anchors constant. With these tests we aim to observe
the algorithm performance under configuration diversity.
Tables 4.2a and 4.2b report the relative frequency for rank(W)=1 and Figure 4.2 depicts the RMSE for
the same range of noise factors, but now for varying network configurations.

Noise Factor Rank(W)=1 (%)
0.001 88.2
0.005 75
0.01 75
0.05 65.4
0.1 71.2
0.5 82
1 67.8

(a) Network with 6 acoustic and 4 visual anchors

Noise Factor Rank(W)=1 (%)
0.001 45.6
0.005 39.2
0.01 42.4
0.05 53.2
0.1 64.4
0.5 88.8
1 91.8

(b) Network with 3 acoustic anchors and 1 visual anchor

Table 4.2: Rank-1 percentage solutions of FLORIS algorithm for different network configurations, for
different noise factors
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Figure 4.2: Performance of FLORIS algorithm, for different configurations networks of 6+4 and 3+1
anchors, for several noise factors

From Tables 4.2a and 4.2b and Figures 4.1 and 4.2 it is possible to conclude that the fixed configuration
networks seem to be favourable to the hybrid algorithm as the rank-1 percentages are higher and the
RMSE lower than for the varying case. Nonetheless, for the variable configurations with 6+4 anchors,
the percentage of rank and the RMSE are not far from the values obtained for the fixed case. Considering
the 3+1 anchors configuration, the values show larger discrepancy, being, less frequently, the achieved
relaxed solution equal to the optimal solution. This can be explained as such configuration is the minimal
one in which 3D localization is plausible, and, being a corner case, it can generate quite adverse situations
for the method.

Aiming at a more detailed analysis of behaviour in individual runs, Figures 4.3 and 4.4 present,
respectively, the histograms of the rank of W and the norm of the error for each Monte Carlo run, for a
configuration with 6 acoustic and 4 visual anchors, and a noise factor values fixed at η = (0.01, 0.1).
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Figure 4.3: Histogram of the rank of matrix W for a configuration with 6 acoustic and 4 visual anchors,
for noise factors 0.01 and 0.1
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Figure 4.4: Histogram of error norm for a configuration with 6 acoustic and 4 visual anchors, for noise
factors 0.01 and 0.1

From Figures 4.3 and 4.4 it is possible to conclude that the error norm is clustered around the low
values (up to 0.1 for η = 0.01 and 0.6 for η = 0.1), which is associated with the tightness of the relaxation
depicted in the first histograms.

With a constant noise factor (of 0.1) and varying the number of anchors of the configuration it is
possible to analyse the evolution of the estimation error depending on the total number of anchors and
also on their type. Figure 4.5 shows the RMSE obtained for 500MC trials for each network formed by
the combination of 5 to 15 acoustic and visual anchors. From this simulation we can state that the ideal
configuration within this node range, i.e. the network for which the RMSE reaches the minimum, was
found to be 15 acoustic and 13 visual anchors.
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Figure 4.5: RMSE for network configurations combining different number (between 5 and 15) of acoustic
and visual anchors

Regarding the running time of FLORIS, it was observed that a 3D position estimate is, usually, ob-
tained in approximately 1 second (for networks of approximately 10 nodes), using a machine with the
characteristics described in 4.1.1.1. Furthermore, the running time slightly increases with higher noise
factors and the same trend is observed for higher number of anchors, as shown in Figures 4.6 and 4.7.

43



These behaviours are consistent to what was expected, as higher noise factors make the convergence to
the solution harder and higher number of network nodes increase the number of variables of the opti-
mization problem, thus augmenting the complexity of the algorithm.
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Figure 4.6: Average running time, for different
noise factors, for a network of 3 acoustic anchors
and 1 visual anchor
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Figure 4.7: Average running time versus number
of anchors (with 2 visual anchors from the total)

In order to assess the newly proposed FLORIS, a comparison in terms of accuracy is performed
regarding other state-of-the-art algorithms, namely SR-LS from [5] and SLNN from [34]. The latter
methods were chosen due to the performance analysis made in [34], which shows that the SLNN method
has (for 3D space) higher accuracy than the previous proposed methods with similar formulations, while
SR-LS provides less accurate but much faster results. Therefore, if an accurate estimate, under uniform
Gaussian noise, is pursued then SLNN is claimed to be the preferred, yet if the time constraints prevail,
the chosen method should be SR-LS.
Figure 4.8 depicts RMSE values, for several values of noise factor η ∈ [0.001, 1], and for 500 randomly
generated network configurations, comprised by 6 acoustic and 4 visual anchors, for each factor.
Naturally, for the 3+1 network configurations such comparison shall not be conducted, as, due to the
ambiguity in 3D space in such instances, the non-hybrid algorithms fail to produce a correct position
estimate.
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Figure 4.8: 3D source localization performance; comparison among the RMSE of the three methods, for
various networks of 6 acoustic and 4 visual anchors and for several Gaussian noise factors

In this case there is a significant improvement in the position estimation accuracy induced by the
addition of the bearing to the range information, through the proposed formulation. Therefore, we can
state that, under the usual random conditions, FLORIS outperforms, for all noise factors, the other two
state-of-the-art methods, found to be the most accurate for this scenario.
Nonetheless, it can be claimed that the latter comparison might be somewhat unfair, as SLNN and SR-LS
take into account less information (the 6 acoustic anchors alone) than the hybrid method (which adds
information from other 4 anchors). Thus, Figure 4.9 depicts the simulation results of comparing the
RMSE of SLNN and SR-LS with FLORIS for an equal number of anchors. In this case, a network of 6
acoustic anchors was generated to test SLNN and SR-LS and a network in which 3 of the latter acoustic
anchors were converted into visual ones is used to test the hybrid approach.
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Figure 4.9: 3D source localization performance; comparison of the RMSE among three methods, for
various networks of 6 acoustic or 3 acoustic + 3 visual anchors, for several Gaussian noise factors

Under these conditions, the performance of FLORIS is closer to the other methods. In fact, it can
be noticed that for very low noise factors, the accuracy of FLORIS is slightly lower than for SLNN and
SR-LS. On the other hand, the proposed method seems to be consistently more robust for noisier measure-
ments. This is a very interesting and important finding, specially since this work aims at experimentally
implementing the hybrid localization method in real cases scenario, which inherently corresponds to a
situation with high noise factor.

Furthermore, an analysis of the running times for this group of algorithms is executed, in order to
demonstrate the practical feasibility of the newly proposed localization algorithm.

46



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
un

ni
ng

 ti
m

e 
(s

ec
)

Noise Factor

Comparing Running Time of algorithms versus noise factor

 

 

SLNN
SR−LS
FLORIS

Figure 4.10: Running times comparison, for networks of 6 acoustic or 3 acoustic + 3 visual anchors for
FLORIS, for varying noise factor values
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Figure 4.11: Running times comparison, for networks of different number of anchors (for FLORIS 2 of
the acoustic anchors were converted into visual)

It can be observed in Figures 4.10 and 4.11 that the complexity of FLORIS seems to be comparable
to the SLNN’s, since the running times are similar (showing a fairly constant behaviour). As for the
SR-LS, it shows a very high speed when compared with the former, which corroborates the discussion
in [34] about the tradeoff between speed and accuracy for this method. In summary, given its RMSE,
SR-LS should be chosen only when time or computational resources are constrained.
It should be noted that the discrepancy between the obtained values and the ones presented in [34] stems
from the different CPUs in which the experiments were conducted.
In Figure 4.10 there is a small increment of the hybrid method running times for higher noise factors
however, for such cases the new algorithm provides better position estimates than the other methods.
Thereby, if resources are not severely constrained, FLORIS should be preferred in such cases. Such
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conclusion can be inferred by looking at Figure 4.12, which compares the achieved RMSE with the
execution speed of the algorithms, for a noise factor of 0.2.
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Figure 4.12: 3D single-source localization performance comparison: RMSE versus speed for the three
addressed algorithms

In the same way, the running times of FLORIS, in Figure 4.11, depict an evolution similar to the
SLNN case, with increasing number of anchors. According to [34] there is a fixed overhead due to software
implementation which is substantial for configurations with up to around 10 anchors. Above 15 anchors
the variable component becomes more meaningful and, for that reason, the study of the running time as
a function of the number of anchors is done only up to 11 anchors.
Looking at Figure 4.11 we can infer that introducing visual anchors, and hence a visual constraint, carries
a certain time overhead, as the running time of FLORIS appears larger than the SLNN running time for
an approximate constant amount.
Additionally, the case in which the majority or even all acoustic anchors are coplanar, is addressed and
studied. Although this extreme case reflects a reasonably likely real system configuration, since these
sensors tend to be placed on a single plane, commonly the ceiling, the proposed algorithm, similarly
to what already occurred for SLNN (3D version of SLCP), determines poor estimations of the target
positions; this is due to the fact that under such circumstances the rank of matrix W will not be 1 so
frequently. However, since it is highly likely that visual anchors will be placed in different planes, with
this fusion approach, such problem can be now alleviated.
Indeed, this problem was observed in the experimental set-up, where, initially, all the acoustic beacons
were placed in a single plane. In order to be able to compare the proposed method with existing ones,
namely SLNN, the experimental scenario had to be adapted, moving the anchors to non-coplanar positions
(as is discussed in Subsection 4.1.2).
Besides the 3+1 anchors and the coplanar cases, there is, yet, another situation for which FLORIS
algorithm provides a good solution for a formerly problematic configuration. Effectively, when the target
lies outside the convex hull formed by the acoustic anchors, the position estimates obtained by the
previous methods present lower accuracy. If simply one visual anchor is placed outside the convex hull,
FLORIS can, immediately, compute a better estimate of the target position. Again, this is a very realistic
assumption, which adds more value to the proposed hybrid method.
Generating networks under such conditions (where a visual tag is placed outside the convex hull as well
as the source) for 500 Monte Carlo runs with a noise factor equal to 0.1, resulted in the RMSEs presented
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in Table 4.3, which substantiates the aforementioned claims.

SR-LS [5] SLNN [34] FLORIS
RMSE (m) 0.0060 0.0064 0.0012

Table 4.3: 3D source localization accuracy comparison, for configurations with 6 acoustic anchors, where
the target and the tag are placed outside the acoustic anchors convex hull, for noise factor equal to 0.1

In a nutshell, this Section demonstrates, supported by thorough experiments, that FLORIS is a lo-
calization method with very high potential, as it compares favourably with state-of-the-art methods.
Moreover, it is verified that adding the orientation information captured through vision is a valuable
asset/benefit. Experiments adding just one visual anchor to the acoustic constellation resulted in very
significant improvements in the accuracy of the position estimates.
Although there are cases for which FLORIS is less accurate than SLNN and presents similar running
times, other cases are identified for which FLORIS should be clearly preferred.

4.1.2 Experimental Results - Tests with the Cricket system and tags

4.1.2.1 Cricket system and ARUCO library

Cricket is a location support system for mobile and location dependent applications [36], where dis-
tances are estimated based on the difference between the time of arrival (ToA) of radio and ultrasonic
signals. The radio runs at a 433MHz frequency and these devices are designed for indoor localization, as
the maximum US range is approximately 10 m, when the listener and the beacons are facing each other
with no obstacles in the way. In the Cricket v2 User Manual 2 it is claimed that Cricket provides an
accuracy on the order of 1 cm for measurements up to 3.5 m and 2 cm for larger distances. Due to the
simplicity of setting up and operating with such system, it was used in the prototype to prove this thesis
concept. Therefore, the first prototype consisted in a listener Cricket node mounted solidary with a video
camera, that could roam in the area covered by the Cricket beacons and with visual tags. In this way,
both range measurements to the multiple acoustic anchors, deployed as Cricket beacons, and orientations
between the camera and the tags or objects could be, simultaneously, acquired.
The first tests and experiments were performed using the prototype previously described as the moving
target, as shown in Figure 4.13. The environment created for the target localization included tags (from
the ARUCO library [21] - an Augmented Reality applications library based on OpenCV3) spread through
the space and Cricket beacons. According to Figure 4.14, the beacons were, likewise, spread through the
space, the majority attached to the ceiling (for practical reasons, such as permanent fixation, since it is
extremely important that the anchors maintain a fixed and known position). Yet, not all beacons could
be coplanar due to the relaxation limitation of SLNN for these cases.

2http://cricket.csail.mit.edu/v2man.pdf (accessed in October 2014)
3http://www.uco.es/investiga/grupos/ava/node/26 (accessed in October 2014)
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Figure 4.13: Testing the first prototype, consisting of a Cricket listener mounted on a camera

Figure 4.14: Cricket beacons attached to the ceiling in the first experimental set-up

In order to obtain the rotation of the tag, so that the orientation required as input for the fusion
localization algorithm can be determined, the referential and corners in the tag were considered according
to Figure 4.15. The detection of the tag and the determination of its rotation matrix is performed using
the ARUCO library, which is based on OpenCV 4.

Y

X

Z

1 2

34

Figure 4.15: Aruco tag with referential used and corners numbered
4http://opencv.org/ (accessed in October 2014)
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4.1.2.2 Practical setbacks and solutions

Initially, according to the plan outlined, the experimental set up only had Cricket nodes whose mea-
surements should be sufficient to compute the camera position and tags to provide the orientation.
However, during the first experiments, the Cricket system exhibited a practical limitation which jeop-
ardized the tests. More specifically, the ultrasonic US signal was found to be highly directional and,
consequently, measuring the ranges between a beacon and the listener node was almost impossible unless
the US transmitter and the receiver were properly aligned.
Such limitation from the hardware proved to be a restriction to the outlined experiments. The solution
found for this practical problem was the installation of a parabolic reflector, as shown in Figure 4.16,
in each Cricket beacon attached to the ceiling aiming to scatter the ultrasounds. Although the reflector
creates a small multi-path, this is a minor issue considering that with this alteration the listener is, con-
trary to what happened previously, able to receive the ultrasonic impulses from several beacons in almost
every position within the limits of the set-up.

Figure 4.16: Custom-made reflector installed in the Cricket beacons

When a position estimate was, finally, obtained, another question was raised, related with the quan-
titative evaluation of the obtained estimate: “How can we know the true position?” To tackle this issue
a new prototype was devised. This time, the set camera plus Cricket was attached to a structure covered
by tags, equally from the ARUCO library. This device is showed in Figure 4.17.
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Figure 4.17: Prototype with camera and Cricket listener attached to a parallelepiped covered by tags,
whose position can be determined

In this way, in addition to the prototype position determined using the ranges given by the hybrid
method, it is now possible to have another estimate for this position, that can be used as the ground
truth, based on the rotation and translation of the structure’s tags. To do so, the box should be observed
in the different positions by a static camera. Primarily, a 3D map of the layout of the tags on the box was
generated using functions, which resort to RANSAC [19], developed in the work [38] and kindly provided
by the author. With this map it is possible to determine the position of a camera observing the box,
relative to a referential defined using one of the tags as reference, since all the rotations and translations
among the tags are computed. Hence, even when this second camera cannot see the reference tag, it is
still possible to determine the camera position relative to the referential (which in this case is not directly
observed) using the map with the transformations of the observed tags to the reference one.
This is also extremely useful for the sensor network localization paradigm, in which a second sensor must
obtain the angle to this first sensor. The procedure followed in such approach in Subsection 4.2.2 uses
precisely this method, in which a second sensor can be referred in the referential system of the prototype
shown in Figure 4.17.
Another improvement implemented was the replacement of single tags by boards of tags. These boards
lead to better and more accurate tag detection, as failures from environmental conditions (such as lighting
conditions) are less probable with multiple tags and more points (corners of the tags) are available to
compute the camera extrinsic parameters. Such improvements were experimentally confirmed, comparing
the angle variance, at several distances, when a single marker or a board is used. Figure 4.18 illustrates
a typical distribution of angles measured to a board of 4 ARUCOS from a specific distance, all under
the same environmental conditions. The resulting histogram resembles a Gaussian distribution. On the
other hand, under different environmental conditions the angle variance is larger and the histogram is
more different from a normal distribution, as shown in Figure 4.19.
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Figure 4.18: Histogram of measured angle distri-
bution for a board 1.53 m away and under the same
environmental conditions
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Figure 4.19: Histogram of measured angle distri-
bution for a board 2.78 m away and under different
environmental conditions

Table 4.4 summarizes the angle variance found for three different distances when only one tag and a
board (with 4 tags) were detected, under uniform and non-uniform environmental conditions.

1 tag Board
Same Cond Diff Cond Same Cond Diff Cond

1.53 m 0.0403 0.0669 0.0090 0.0401
2.10 m 0.1069 8.0474 0.0023 0.0238
2.78 m 31.9533 20.6532 0.0052 0.0286

Table 4.4: Variances of the measured angle (in degrees) from one tag and from a board of tags, for
different distances and both with uniform and non-uniform environmental conditions

It can be observed that using a board causes a smaller dispersion of angle values, particularly when the
distance increases. Additionally, the variance when the environmental conditions, such as illumination
(light or shadow) vary is always larger than when the conditions are maintained, but when the board is
used this effect is substantially lower.
This study also excludes the need of a possible parametric formulation of FLORIS algorithm (with
a parameter affecting the angle parcel depending on the distance), considering that, in this way, the
reliability of the orientation detected is not affected by the distance (up to approximately 5m of distance).
Consequently, a 3D map of the board of ARUCOS on the wall was built, similarly to what is performed
for obtaining the ground truth position. In this way, it is not necessary to detect the tag defined as
reference conferring more flexibility to the camera movements.
Figure 4.20 shows the final experimental set-up used to acquire range and angle information to perform
the tests of the new FLORIS algorithm.
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Figure 4.20: Final experimental set-up, with Cricket beacon nodes, visual tags and the target comprising
a Cricket listener and a camera

After some experiments with the testbed it was noted that the ranges between the anchors and the
moving target provided by the Cricket system had lower accuracy than the one claimed by the manufac-
turer (1 cm for measurements up to 3.5 m and 2 cm for higher distances). In some cases, the measured
distance would have more 10 cm than the real one, thus hindering the position estimation performance.
This issue was also impacted by the reflectors mounted on the ceiling beacons, which add a small multi-
path, affecting the sensed range.
In order to tackle this problem a Cricket calibration was performed. This calibration consisted in col-
lecting, for each single anchor, several pairs (25) of real and measured ranges, covering the whole set-up
area, in order to be representative for all distance measurements.
A preliminary statistic study was performed, in order to characterize each beacon (since, contrary to
what is claimed, the beacons show non-uniform behaviours among them concerning the range accuracy,
as it was confirmed by this study). Aspects such as measurements distribution and beacon clustering
(according to minimum within cluster variance) were considered and are shown in Figures 4.21 and 4.22.
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Figure 4.21: Box plots of the distance measure-
ments collected for each of the 6 beacons of the
network

Figure 4.22: Clustering obtained for the 6 beacons,
minimizing within cluster variance

It is interesting to note that the attachment of the reflector to the beacons is reflected in the similarity
identified by the clusters in Figure 4.22. More precisely, Beac2 and BN6 do not have a reflector, since
they are oriented vertically to the floor, directly to the target. That is also the case of BN1, however this
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was mounted with a horizontal orientation, possibly causing the disparity relative to the other beacons.
On the other hand, the signal from Beac1, Beac3 and BN2 is transmitted up to the target using the
reflector. We may conclude that the introduction of the reflector somehow affects the measurement
accuracy, however this can be minimized performing the beacon calibration.
Furthermore, to perform the Cricket system calibration itself, a linear regression using the data collected
was performed for each beacon. This way, we can model each beacon separately and then correct/rectify
the obtained range. Even though the method applied was straightforward, the localization results showed
a reasonable improvement when the measurements were corrected according to the calibration performed.
The quantitative analysis is presented and discussed in Subsection 4.1.2.4.
Despite all these efforts and improvements, the obtained measurements in the experimental set-up are
still quite noisy. Yet, as it is discussed in Subsection 4.1.2.4, the fusion algorithm handles this type
of noisy data quite well, including obtaining higher accuracy position estimation than state-of-the-art
algorithms, in the same conditions.

4.1.2.3 Sensor Networks Self-Calibration

Necessarily, prior to performing tests in this environment, with both Cricket nodes and visual tags,
a calibration must be conducted so that the transformation between both networks (of Crickets beacons
and visual tags) is known and hence the collected data and results are meaningful and valid.
Prior to performing the self-calibration in the experimental set-up, the devised method introduced in
Subsection 3.1.2 was validated, both with entirely numerical data and with numerical data for the ranges
mixed with real data for the visual information (the notation used below is the same as introduced in
3.1.2).
Regarding, in the first place simulated data, a fixed translation between the two sensors (Tcc) and
translation vectors and rotation matrices between the acoustic and the visual networks (Rac and Tac) were
randomly generated in a [0, 10] × [0, 10] × [0, 10] cube. For the k-th observation random camera positions
(Rcamk and Tcamk) were synthesized so that acoustic node positions could be computed, following the
model Pacoustick = (Rac (RcamkTcc + Tcamk) + Tac) (1+w), where w ∼ N (0, η2). Given an initialization
for Tcc (which is admissible as its dimension tends to be an order of magnitude smaller than the other
two unknowns), the self-calibration method iterates through estimating Rac and Tcc, until the difference
between two consecutive estimates of Rac is smaller than a predefined threshold. When the latter stopping
criterion is verified, Tac is computed, using the previously obtained Rac and Tcc estimates. Performing
1000 Monte Carlo runs of such procedure, making k = 100 observations and noise factor 0.01, the errors
obtained for the estimated unknowns were computed as ERac = 1

MC

∑MC
i=1 ‖Raci − RacGTi‖F for the

rotation matrix and ET = 1
MC

∑MC
i=1 ‖Ti −TGTi‖ for the translation vectors, were found to be:

ERac = 0.0076 ETac = 0.0448 m ETcc = 0.1810 m.

The previous results validate the derived self-calibration method, obtaining highly accurate estimates.
Furthermore, to better model this process to the real case, the self-calibration procedure was performed
with camera positions (Rcamk and Tcamk) acquired in the experimental set-up, using the ARUCO library.
Again, 1000 Monte Carlo runs were executed with η = 0.01 for simulating with partial real data.

ERachalf-real = 0.1027 ETachalf-real = 0.3361 m ETcchalf-real = 0.4359 m.

The latter results show lower accuracy when compared to the totally simulated case. This may be partially
explained by the total number of observations, since simulation with half experimental data comprised
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28 pairs of observations and decreasing number of observations leads to a degeneration of the estimations
(the Procrustes problem suffers from ill approximations for small datasets).

With the latter set up (in Figure 4.20), the procedure to determine both the rotation matrix and
translation vector between the two detached networks follows, once more, the self-calibration method
presented in Subsection 3.1.2. Thus, it is possible to determine the transformation between the two
detached networks (Rac and Tac) as well as the translation between the listener and the camera (Tcc),
as there are two different sensors assembled together, using only the data acquired regarding the listener
and the camera positions. Particularly, to perform this pre-step both ranges from the acoustic anchors
and rotations and translations from the visual tags detection are collected. Single-source localization
methods from the state-of-the art, such as the SLNN [34] or the SR-LS [5] can be applied to estimate
the Cricket listener position from the range information (in this case the SR-LS approach was used). As
for the information relative to the camera, ARUCO library provides the rotation and the translation of
the camera relative to the markers (Rcam and Tcam), which are used to determine the camera positions.
The Cricket positions estimated in the Cricket referential (Pacoustic) and the camera positions estimated
in the camera referential (Tcam) for one self-calibration test conducted are depicted in Figures 4.24 and
4.23. Some target position estimations (namely positions number 9 and 10), seen in Figure 4.24, are
clearly outliers, probably due to exceedingly noisy range measurements. Nevertheless, as it will be shown
hereinafter, the outcomes of the self-calibration procedure are robust to the presence of such position
estimates.
Figure 4.23 also depicts the map created for the board of ARUCOS on the wall. The origin of the visual
anchors referential was defined to be the center of the tag with ID 0.
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Figure 4.23: Camera positions in the tags coordinate system, collected for the self-calibration input
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Figure 4.24: Cricket target positions in the Cricket coordinate system, collected for the self-calibration
input

The Cartesian coordinates forming the acoustic anchor constellation were obtained from centering
and averaging matrix D (an EDM consisting of all the pairwise Euclidean distances measured between
the Cricket beacon nodes), resulting in D̃ and then applying a SVD to this new projected and averaged
matrix (D̃ = UΣV∗). The reconstructed beacon coordinates (x) are computed as x = UΣ 1

2 . Later, this
constellation will have to be synchronized, so that the results can be evaluated.
Taking pairwise differences of both target and camera position estimates results in vectors Pdiff and
Tdiff, respectively. Additionally, the differences of rotation between the camera and the markers (Rdiff)
are also determined from the obtained rotations of the ARUCO library. The totality of the inputs of
the self-calibration process are, then, computed, and hence the transformation between the two sensor
networks (consisting in Rac and Tac) and the translation between the listener and the camera (Tcc) can
be readily computed for this experimental set-up.
In order to maximize the accuracy of Rac and Tac estimates in this practical case, and since Tcc was
easily available, the value measured with a tap measure between the acoustic sensor and the focal point
of the camera was assigned to Tcc =

[
0.0800 − 0.0435 − 0.0180

]
m.

The analysis and validation of the achieved results for Rac and Tac proved to be difficult, as no ground
truth or intuitive reference could be obtained. Therefore, in order to facilitate the evaluation of the
outcomes, the Cricket network referential was aligned with the visual network referential, by performing
the synchronization of the aforementioned beacon constellation. For this purpose, one of the Cricket
beacons was chosen to be the origin of the coordinate system and the coordinates of other 3 beacons,
relative to the new referential (defined in order to be aligned with the origin of the visual tags coordinate
system), were measured. Such measured coordinates were taken as reference and used as input, alongside
the Cricket positions of the same 4 beacons in the previous non-aligned referential, to solve a Procrustes
problem. In this way, rotating all the constellation with the resultant rotation matrix leads to the
alignment of the Cricket coordinate system and with the Cricket positions estimates (Pacoustic) obtained
in this new aligned referential, the Rac and Tac computed can now be compared with a reference and
thus evaluated.
For this case, the computed rotation and translation between the Cricket network and the visual tags
coordinate systems were
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Rac =

−0.0241 −0.9977 0.0640
0.0941 −0.0660 −0.9934
0.9953 −0.0179 0.0954

 , Tac =
[
0.7495 2.0781 1.8151

]
m.

If the two coordinate systems are considered to be perfectly aligned (which is an assumption that cannot
be completely confirmed), Rac can be obtained by inspection. Moreover, Tac was measured manually
with a laser distance meter. These two quantities ground truths were found to be:

RacGT =

0 −1 0
0 0 −1
1 0 0

, TacGT =
[
0.82 1.97 1.84

]
m.

This alignment assumption (a physical limitation) is an important issue since a small misalignment causes
changes in the rotation matrix, introducing high sensitivity to the system (as the orientations used for
all the position estimates are multiplied by Rac).
To evaluate the error of the first self-calibration Rac estimate, the Frobenius norm of the difference
between the experimentally obtained and the ground truth rotation matrices was computed:

ERac = ‖Rac −RacGT‖F = 0.1655. (4.2)

Moreover, the error of the resultant Tac (computed as ‖Tac −TacGT‖) is 0.1314 m.
Although such results can be further improved, since they derive from noisy range measurements from
the Cricket system, they demonstrate that the derived self-calibration method is correct.
An improvement to this calibration results was accomplished by obtaining the Cricket position estimates
(Pacoustic) from directly measuring the ranges between the listener to the beacons with a laser distance
meter and not synchronizing the Cricket constellation (as the aligning rotation performed can introduce
additional error, due to possible errors in the reference position measurements). The results obtained
with this procedure were

Raclaser =

−0.0788 −0.9955 0.0517
0.0292 −0.0541 −0.9981
0.9965 −0.0772 0.0333

, Taclaser =
[
0.7405 1.9884 1.8310

]
m,

reflecting an improvement of the estimation of Rac of 15%, as ERaclaser is now 0.1406. Likewise, the error
norm of the translation vector estimation using the laser is smaller by 37.5%, when compared with the
first estimate, as the error norm obtained for this case is 0.0821 m.
This procedure was performed with the intention of not jeopardizing the ensuing hybrid localization
performance due to a less accurate calibration. It is emphasised that this does not, in any way, undermine
the calibration process as previously proposed, as a self-calibration can always be performed using the
Cricket system similarly to what happens in the hybrid localization procedure; however, it is natural that
the achieved accuracy is somewhat lower.

Figure 4.25 shows the final target position estimations obtained by FLORIS algorithm during a walk
through the installed experimental scenario. Such positions are estimated based both on the ranges
measured to the acoustic anchors and the orientations measured to the visual tags mounted on the set-
up. As can be observed, the experimental scenario installed covers a volume of approximately 50 m3,
showing an appropriate considerable size/extension, given the envisaged end applications.
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Figure 4.25: Target localization using the proposed FLORIS algorithm, during a walk through the ex-
perimental scenario

4.1.2.4 FLORIS Performance analysis

In order to support the hybrid localization approach, developed in this thesis, relative to the traditional
single sensed variable approaches, comparisons between the new fusion algorithm (FLORIS) and existing
state-of-the-art algorithms, which are based solely on range information are performed. In this way, it
is possible to thoroughly evaluate the performance of FLORIS. Such performance analysis is presented
below.
It should be stressed that the proposed hybrid localization algorithm is less stringent than other single
sensed variable methods, as in this case a combination of anchors is used to perform localization. More
specifically, the hybrid approach is able to successfully localize a node in certain situations where other
algorithms are not. For example, in the 3D space, when information from only 3 acoustic anchors is
received, it is not possible to estimate a correct position. Yet, if an object is recognized the new algorithm
produces a valid position estimation. Furthermore, and contrary to previous methods, a valid position is
estimated even if the target is placed outside the convex hull formed by the acoustic anchors, provided
that one tag, minimum, is located outside that hull. The two previous scenarios were not only duly tested
in simulation (in Subsection 4.1.1) but also experimentally verified. Hence, the method proposed in this
thesis conveys further flexibility and scalability to localization systems.
Several datasets (including range and orientation measurements) were incrementally acquired in the
experimental scenario shown in Figure 4.20 and used to both test the fusion approach proposed in this
dissertation and perform comparisons with previous localization algorithms from the literature. Table 4.5
compares the RMSE obtained for the newly proposed fusion algorithm with SR-LS from [5] and SLNN
from [34], for a set of experimental data acquired in the deployed set-up. Additionally, with the purpose
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of maximizing the position estimation accuracy of these methods, a further post-processing refinement
step was applied to the solutions found by the three methods. Such step was implemented using a generic
minimization function (fminseacrch from MATLAB), which attempts to find the local minimizer of
the ML functions (expressions (2.3) for the SR-LS and (2.4) for the SLNN), given the estimated position
as a starting point. The RMSE results for the latter methods with the application of this minimization
step are referred to as the method name with the suffix min.
As aforementioned, the experimental set-up is formed by 6 Cricket beacons, a board of ARUCO tags
and the target, which comprises a Cricket listener node attached to a camera. Range (from the detected
beacons) and angle measurements were collected for several positions (27) within the scenario, also the
ground truth coordinates for each position were measured. The obtained bearings suffered a geometric
transformation (using Rac and Tac) in order to be described in the beacon coordinate system. This
was performed following the self-calibration procedure previously introduced and described in Subsection
4.1.2.3.

SR-LS [5] SR-LS-min SLNN [34] SLNN-min FLORIS FLORIS-min
RMSE (m) 0.22 0.22 0.23 0.22 0.23 0.20

Table 4.5: 3D source localization performance comparison, for a set of experimental data

For this case in Table 4.5, it can be observed that FLORIS provide better accuracy estimations, when
compared with the existing methods, confirming the good performance already found in simulation re-
sults. Particularly, such results reveal the quality of the proposed convex relaxation, which can provide
a good starting point so that the desired minimum is reached with the post-refinement step (as in the
value obtained for FLORIS-min).
This is a very fine and encouraging result, showing that although several practical limitations were found
in the deployment of the experimental set-up (noisy measurements given by the Cricket System and the
calibration issue) they were successfully overcome.
Globally the variance of the 3D positions computed by FLORIS for this dataset is not very different
from the other methods, as σ2

FLORIS = 0.2490 m, σ2
SLNN = 0.2106 m and σ2

SR−LS = 0.2340 m. Hence
the shape of the position estimate distribution is similar for all methods. The RMSE achieved by the
fusion approach reflects an improvement in localization accuracy when compared to the other two state-
of-the-art algorithms, thus not only validating this newly proposed method but also pointing to a leading
performance of FLORIS. These findings support that the hybrid method proposed in this thesis is a
significant contribution to the area, outperforming the previous works in the case of practical noisy data.
Moreover, FLORIS has proved to be a solid localization method, fully working in a real scenario and
providing very good accurate estimates, including for special cases not covered by the state-of-the-art
algorithms.
Applying the additional step of Cricket calibration, performed accordingly to what is described in Subsec-
tion 4.1.2.2, reduces the obtained RMSE for all methods. Furthermore, in order to maximize the possible
obtained accuracy, this Cricket calibration was combined with the extra refinement step. The resulting
values are presented in Table 4.6 and legitimize this calibration procedure.

SR-LS SR-LS SLNN SLNN FLORIS FLORIS
calib calib-min calib calib-min calib calib-min

RMSE (m) 0.17 0.17 0.20 0.17 0.20 0.16

Table 4.6: 3D source localization performance comparison, for a set of experimental data with Cricket
calibration
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Figure 4.26 shows the histogram of the absolute error for the FLORIS estimates, from which the low
error of the majority of the position estimates can be perceived.
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Figure 4.26: Histogram of the absolute error of target positions estimated by FLORIS during a walk
through the experimental set-up

Figure 4.27 depicts the target positions estimated by FLORIS algorithm versus the ground truth
positions. It can be observed that the estimated positions are, globally, very close to the ground truth,
indicating a reasonable and promising accuracy.

Figure 4.27: Target position estimations given by FLORIS algorithm, during a walk through the experi-
mental scenario, versus the ground truth positions
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Examining one of the cases in which the position estimate accuracy is higher than for the other
methods, the improvement in localization due to the introduction of another sensed variable (specifically,
the orientation information) is clearly illustrated in Figure 4.28.

Figure 4.28: Comparing the position estimation given by FLORIS and by the SLNN with the ground
truth position

Figure (4.28) depicts the two networks of the experimental set-up, spheres with radius equal to the
ranges measured between each anchor and the target. Due to the highly noisy measurements acquired by
the Cricket system, the five spheres (associated with the distances measured to the five anchors detected
at that instant) do not intercept in a single point. Therefore, the position estimation based solely on
ranges (using the SLNN algorithm and depicted with a red cross) has lower accuracy than FLORIS po-
sition estimation (depicted with a blue cross). What this picture shows is that the orientation measured
between the target and the visual tag (depicted by the blue line) is quite reliable, since it intercepts
the ground truth position, hence causing FLORIS position to typically have a higher accuracy than the
SLNN estimate, in such noisy situations.
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4.2 Sensor Network Localization - CLORIS

4.2.1 Simulation

4.2.1.1 Preliminaries

Similarly to the single source case, a set of simulation tests was conducted to evaluate the proposed
sensor network fusion method CLORIS. In this case, performance will be evaluated based on the accuracy,
using the RMSE (which for the sensor network localization problem is defined as in (4.3)) and the running
time.

RMSE =

√√√√ 1
MC

1
N

MC∑
k=1

N∑
i=1
‖xi − x̂ik‖2 (4.3)

In (4.3) N is the total number of nodes with unknown positions, i.e., the sensor nodes, xi is the true
position of node i and x̂i

k is its position estimate in the k-th Monte Carlo run.
The following experiments were run using MATLAB R2013a and a machine powered by an Intel Xeon
E5-2620 2.0GHz CPU and 64GB of RAM. The measurement noise (both for ranges and orientations) was
modeled in the same way as in the single source case.
In the sensor network localization paradigm there may be networks which can not be solved, the so-called
non-localizable networks, in which a unique set of sensor positions consistent with the data can not be
determined [2]. Such issue can be identified in 2D applying a result from graph theory, in [2], whereby the
generic global rigidity of the graph is necessary and sufficient for the network to be localizable. However,
as an extension for the planar result to 3D does not exist, the proposed fusion algorithm was tested on
fixed localizable networks in a [0, 1] × [0, 1] × [0, 1] cube, and not on randomly generated ones. Hence,
sets of MC = 500 Monte Carlo trials were run for the fixed network for each measurement noise factor
(η) ∈ (0.001, 0.005, 0.01, 0.05, 0.1).

4.2.1.2 Results

In this Subsection the simulation results obtained for CLORIS, introduced in Section 3.2, and its
comparison with the range-based method of [43], are presented. The RMSE versus the noise factor for
a 3D localizable network comprising 13 acoustic anchors and 4 sensors is shown in Figure 4.29. For
CLORIS case, 5 anchors were converted into visual ones, so that a more equitable comparison between
the two methods can be performed.
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Figure 4.29: 3D Sensor Localization performance; comparison of the RMSE between CLORIS and the
range-based disk relaxation method, for a fixed network of 13 acoustic or 8 acoustic + 5 visual anchors,
for several Gaussian noise factors

It is interesting to note that the robustness for high noise factors demonstrated by the single-source
FLORIS method in Subsection 4.1.1.2 seems to prevail in this paradigm as well with the fusion disk relax-
ation formulation. In fact, up to a noise factor of 0.01 the accuracy of CLORIS algorithm is surmounted
by the range-based method, yet for higher noises the fusion approach achieves better results. Thus, by
incorporating bearing information the network position estimations can be improved in noisy scenarios.
Figure 4.30 depicts the average running times of the 500 Monte Carlo runs for each noise factor for the
two methods, for the previous network.
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Figure 4.30: Running times comparison between CLORIS and the range-based disk relaxation method,
for a fixed network of 13 acoustic or 8 acoustic + 5 visual anchors, for several Gaussian noise factors

Figure 4.30 shows that CLORIS algorithm has a larger cost in terms of time when compared with
the original one. From the analysis of the simulations performed this reduction in the speed seems to be
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caused by the larger number of iterations of the algorithm when including also bearing than when only
considering range measurements. This gap in the number of iterations was sometimes found to be of
nearly one order of magnitude. A more detailed analysis of this observed slow-down in convergence rate
is deferred to future work.
Moreover, a study of the proposed algorithm performance depending on the number of anchors is presented
through Figures 4.31 and 4.32.
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Figure 4.31: 3D Sensor Localization performance; comparison of the RMSE between CLORIS and the
range-based disk relaxation method, for a fixed network with varying number of anchors (for the fusion
case 2 of the acoustic anchors are converted into visual)

5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
un

ni
ng

tim
e

(s
ec

)

Number of Anchors

Comparing Running Time of algorithms versus number of anchors

CLORIS
Range-based Sensor Network Localization

Figure 4.32: Running times comparison between the fusion and the range-based disk relaxation method,
for a fixed network with varying number of anchors (for the fusion case 2 of the acoustic anchors are
converted into visual)

As expected, increasing the number of anchors makes the localization algorithms estimations, gradu-
ally, more accurate. The high value found for the RMSE of CLORIS for the 5 anchors network case leads
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to the conclusion that such configuration is non localizable with the visual anchors. This fact seems to
be supported by the average running time depicted in Figure 4.32, which is a peak indicating an odd
behaviour for this specific case.

The previous simulations were performed for a constant noise factor of 0.01. When performing similar
tests (for the same network configurations) but for a higher noise factor (0.1), both CLORIS RMSE and
running times are lower (this contradicts the trend in Figure 4.30), demonstrating, again, the feasibility
and robustness of CLORIS towards high noise situations.
The same simulation tests were executed for another localizable 3D network, comprising a larger number
of anchors (18 acoustic anchors, from which 6 were converted into visual for testing the fusion approach)
and fewer sensors (3). The global relative behaviour of the RMSE and running times are congruent with
the results found for the previous network configuration. However, and as expected due to the increase of
the total number of anchors, the accuracy is moderately improved (the fusion approach suffers less impact
from high noise factors) while the speed deteriorates. The number of iterations CLORIS algorithm was,
once more, considerably higher, noting a peak again at noise factor 0.5. Such result definitely calls for
a more profound study regarding this escalation of the number of iterations when angles are included.
Tables 4.7a and 4.7b display the quantitative results.

Noise Factor Range-based CLORIS
0.001 0.0082 0.0819
0.005 0.0695 0.1213
0.01 0.1117 0.1514
0.05 0.1976 0.1770
0.1 0.1330 0.1328
0.2 0.1800 0.1783

(a) RMSE (in distance units) versus noise factor

Noise Factor Range-based CLORIS
0.001 0.6269 1.3000
0.005 0.3289 2.4749
0.01 0.2100 3.6567
0.05 0.1815 4.6106
0.1 0.3942 0.8778
0.2 0.1992 0.3027

(b) Execution time (s) versus noise factor

Table 4.7: Performance comparison for a second 3D network configuration (with 2 sensors and 18 acoustic
anchors, or 12 acoustic and 6 visual for the fusion case) between the CLORIS and the range-based disk
relaxation approach for sensor network localization

4.2.2 Experimental Results - Fusion Sensor Network Localization

After confirming the experimental operability of FLORIS for the localization of a single target, the
cooperative approach CLORIS, based on the disk relaxation, was also tested in the previously installed
experimental set-up.
For that purpose, two targets, consisting, similarly to the single source scenario, on a listener cricket
node mounted on a camera were deployed in the area covered by the acoustic and visual anchors. In
this set-up one of the nodes whose position is unknown (called sensor 1) measures distances to a subset
of available acoustic beacons (depending on the position and directionality) and the pose to the visual
anchor; a second unknown node (sensor 2) measures distances to the subset of beacons available to it
and also the poses to sensor 1 (which has tags enabling such measurement) and to the visual anchor, if
the latter is in the field of view of the camera. Figure 4.33 illustrates such scenario, showing the image
seen by sensor 2 (including sensor 1 and the tags).
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Figure 4.33: View from sensor 2 camera, showing sensor 1 and the visual tag

The following Subsection 4.2.2.1 features the performance analysis of the implementation of the fusion
network localization algorithm introduced in Subsection 3.2.1, comparing it with the same disk relaxation
based solely on range information.

4.2.2.1 CLORIS Performance analysis

A dataset comprising, as described above, range measurements from the Cricket system and angles
among the acoustic and visual anchors and the sensors in the set-up in Figure 4.20 was collected. Prelim-
inary results showed that using both the experimental range and bearing measurements to estimate the
network positions led to reasonably high error when compared to the ground truth positions. Hence, to
find the source of error, datasets reproducing the experimental set-up and the instances of the networks
(different sensor positions) were synthetically generated. With these exclusively synthetic datasets it was
possible to reject the possibility of non-localizable networks among the instances, since the sensor position
estimates obtained by CLORIS matched the ground truths. The next step was to replace the synthetic
distances (with no noise) by the distances measured by the Cricket system between the sensors and the
anchors as well as between the two sensors, applying the calibration accomplished for each Cricket bea-
con. In this case, CLORIS was still able to provide quite accurate sensor position estimates, as can be
seen in Table 4.8 and Figure 4.34. This “debug” process allowed to conclude that the visual component,
i.e., the computation of the angles, is a source of error. Indeed, this could be expected, since the incident
directions have to be expressed in the global coordinate system and the computations to perform such
operation imply several transformations (“hops”) between coordinate systems, which are error prone (for
instance, a small deviation in a Rotation matrix between two systems may have a significant impact on
the resultant direction described in the global reference).
The incident directions on sensor 1 are computed exactly in the same way as in the single-source paradigm,
resorting to the self-calibration procedure discussed in Subsection 4.1.2.3, applying equation (4.4) to
translate sensor 1 to the defined global reference.

Pcam1 c = Rac (Tcam1 a + Tcc) + Tac (4.4)

67



The notation Pcam1 c designates the position of camera 1 in the Cricket (global) coordinate system and
Tcam1 a the translation vector of camera 1 referred in the ARUCO coordinate system.
For sensor 2 the procedure is more complex. The incident directions in sensor 2 have to be intermediately
translated into the sensor 1 tags and subsequently to sensor 1 camera coordinate systems, so that in
the end they can be translated to the global coordinate system. Only when they are expressed in the
global coordinate system may they be inserted in the fusion algorithm. The following transformation is
performed:

Pcam2 c = Rac (Rcam1 a (Ras1 cam1 (Tcam2 as1 + Tcc) + Tas1 cam1) + Tcam1 a) + Tac (4.5)

Similarly to (4.4), Pcam2 c denotes camera 2 position in the Cricket referential, Ras1 cam1,Tas1 cam1 are
the rotation matrix and translation vector between camera 1 and the sensor 1 tags and Tcam2 as1 is the
translation between camera 2 and sensor 1 tags coordinate system.
According to the previous explanation, and to circumvent the constraints imposed by the practical set-
up, the results addressing the mixed case are also presented. In such case the range measurements are
the ones obtained experimentally using the Cricket system, yet the incident directions are synthetically
generated from the visual anchor and sensor real positions. It is believed that such assumption, in no
way, diminishes the strength of this novel fusion method for sensor network localization.
The experimental results attained when two targets roamed in the set-up area are summarized in Table
4.8. These results are particularly interesting as the networks configurations obtained from the experimen-
tal dataset happen to be non-localizable when considering only acoustic anchors and range information,
whereas when the bearing is added the sensor positions are estimated with good accuracy. Hence, this
experimental test demonstrates the practical operability and feasibility of the new CLORIS method. It is
also verified that the integration of the experimentally measured angles increases the error, nevertheless
it is a quite acceptable degradation considering the practical deployment and the previous discussion.
Furthermore, from Figure 4.34 it can be observed that the sensor 1 position estimates tend to be much
more accurate than sensor 2 estimates, in fact the RMSE considering only sensor 1 is 0.0204 m while the
RMSE for the sensor 2 position estimates is 0.3895 m. Further analysis shall be conducted in order to
understand and explain such fact.

RMSE (m)
Range-based Disk Relaxation 1.43

CLORIS - Synthetic Directions 0.50
CLORIS - Totally Experimental 0.55

Table 4.8: 3D sensor network localization performance for a walk through the experimental scenario.
Comparison among the solely range based and CLORIS algorithm with both experimental range mea-
surements and synthetic directions and all experimental measurements
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Figure 4.34: Estimated sensors positions by CLORIS (with experimental ranges and synthetic angles)
versus the ground truth positions during a walk through the experimental set-up

The results achieved presented in both Figure 4.34 and Table 4.8 show a practical case in which the
cooperative fusion approach developed in this dissertation provides good position estimates surpassing
the previous method based on a single sensed variable. Such result is extremely encouraging regarding a
further development of CLORIS method for cooperative localization.
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Chapter 5

Conclusions

This Chapter presents the major contributions and attained results of this dissertation (in Section
5.1) and discusses, in further detail, some foreseen directions for future research on this topic (in Section
5.2).

5.1 Achievements

The work presented in this dissertation successfully addressed the growing need for solutions and ap-
plications for large scale heterogeneous sensor networks, taking advantage of the distinct sensing devices.
More precisely, this work provides accurate indoor localization methods that can use different types of
proximity information, namely ranges and incident directions estimated from video images, in a totally
integrated fashion.
A new formulation based on a nonconvex LS joint formulation fusing information from ranges and an-
gles and a tight convex relaxation for this problem were devised. The single-source method was called
FLORIS, owing to the geometry of the formulation.
Additionally, a procedure to derive the observation model and its parameters - a key component for in-
formation fusion that expresses spatial data acquired from the two separate sensor networks in a common
reference frame - is proposed. This calibration procedure was analytically and experimentally tested
enabling integration of the localization system in the deployed experimental set-up.
In the same vein, this dissertation also targeted the collaborative scenario (i.e., the sensor network local-
ization problem) for heterogeneous measurements. The proposed CLORIS algorithm is an extension of
a previous sensor network localization method developed in-house and based on a convexification mech-
anism by disk relaxation.
The results obtained show that the both methods can provide accurate localization. More quantitatively,
FLORIS method achieves, in numerical results, lower RMSE (thus higher accuracy) than state-of-the-art
range-only methods, specially for high noise scenarios, while the running times are comparable with the
former preferred method (SLNN). In this way it can be claimed that the newly proposed FLORIS has a
similar performance or even outperforms, in some cases, the previous existing localization methods.
Simulation results for the collaborative scenario were extremely promising too. Again, the algorithm’s
most salient feature is high accuracy in the presence of strong observation noise, thus presenting a good
performance trade-off when compared to the range-only methods.
Moreover, an experimental set-up was deployed leading to a validation of the feasibility and robustness of
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the algorithms in real application scenarios for the two localization paradigms. Although several physical
setbacks were found, most of them were surpassed, allowing for an entirely integrated implementation
of FLORIS and CLORIS. Both methods showed very good behaviour in the real scenario, with better
accuracy than benchmark algorithms in the conducted tests. The experimental findings clearly motivate
further implementations, using higher performance technologies and devices.

5.2 Future Work

As multiple future work directions were identified during this dissertation work, this Section is divided
into topics, detailing, for each, the further improvements foreseen.

5.2.1 Range

The variables sensed to obtain distance information for the proposed hybrid localization method are an
important practical concern, thus alternative technologies to acoustic based sensors, such as the Cricket
system which was shown to provide noisy range measurements, shall be addressed.
Received Signal Strength Indication (RSSI) is one technique that measures pseudo-ranges (since the range
is computed using a function that relates the power magnitude with distance) and that can be advan-
tageous. In fact, although the resulting range measurements can be quite noisy, they can be obtained
using low complexity hardware and in an inexpensive way. Furthermore, this technology can provide
large datasets, which can be most convenient to an EDM approach (discussed in 5.2.4), in which the
localization problem is formulated as an EDM completion.
Another technology that should be taken into account is Wi-Fi, mainly due to its ubiquitousness in the
envisaged practical application scenarios. As the majority of smart devices have Wi-Fi receptors, an hy-
brid system relying on such technology to obtain the distance measurements would be easy to implement
with widespread acceptance.
Lastly, in challenging environments such as indoors, owing to interferences, occlusions and multi-path, [45]
suggests ultra-wideband (UWB) transmission technology, albeit being currently expensive, as a promising
alternative for localization. Thus, exploring (low-cost) UWB nodes is another future prospect.

5.2.2 Vision

The method developed in this work can be seen, regarding the vision component, as a first step/phase
to the exploration of objects/patterns present in the environment. Effectively, an evolution from the
use of (augmented reality) markers/tags as visual anchors to general known objects spread throughout
the surroundings is a natural evolution for this work. Thus, object/pattern detection and recognition
algorithms should be applied in order to obtain the bearing from visual anchors. This final phase would
resort to the Bag of Words image representation and use methods such as SIFT (Scale-Invariant Feature
Transform) [27], following the work developed by Lampert et al. [25], which allows the use of classifiers
for object localization that were previously considered too slow for this task, since the convergence to the
global solution is in sub-linear time.
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5.2.3 Cooperative paradigm

In regard to the sensor network localization problem, although the attained results both in simulation
and experimentally were positive, there is still room for improvement. Namely, one of the identified
issues concerns the large number of iterations executed by the disk relaxation algorithm when angles are
considered, which degrades the retrieved running times. Thus, a deeper analysis of the computations
associated with the incident directions and their projections onto lines, performed during Nesterov’s
gradient descent method, is pertinent.
Furthermore, a potential formulation with fine tuned weights for the range and angular components shall
be assessed. Effectively, exploratory tests suggest that varying the weights assigned to the heterogeneous
measurements, rather than considering an equal influence in the cost function, may have a positive impact
in the obtained results.
Another aspect that was proven to have impact in the experimental localization performance is the
procedure to translate between the coordinate systems for the various types of nodes. Certainly this
has also impact in the single-source localization paradigm, yet it has more negative consequences in
the cooperative case since more poses from the multiple sensors must be expressed, via the known
transformations, in the global referential system. A robust method to execute such transformation to a
common coordinate system shall be devised, as such procedure has high sensitivity to small fluctuations
of the entries of rotation matrices. Additionally, a flawless calibration of the cameras is mandatory for
any devised procedure. In fact, the general underperformance found for the experimental results should
be partly consequence of physical limitations and constraints of the available hardware.

5.2.4 Exploring other constraints

Parallel to the line of work followed in this dissertation, based on ML/LS approaches, an innovative
approach exploring the low rank properties of EDM is foreseen. With the ranges available, the distance
estimation should be formulated as an EDM completion problem, as found in the literature [32, 31, 23].
Furthermore, the completion problem will use the rank constraint, as the matrix rank is given by the
subspace where localization is being performed (most commonly 3D). A matrix (D) comprising all the
EDM (per column, using the vectorization operation) related to each instant of the target trajectory
will be built and a decomposition in a matrix with the correct “clean” distances (Dr) added with the
error (E) is pursued. A formulation consisting in a cost function with both matrices, penalizing the
error matrix and a low rank constraint imposed to the “clean” matrix will be sought. To obtain such
decomposition from a matrix built from batches of measurements, dealing with the outliers, a technique
called Sparse Subspace Clustering (SSC) [17] could be applied. This method [17] proposes a convex
relaxation to represent data points from a high-dimensional space as a sparse linear affine combination
of the remaining points from a low-dimensional subspace.
Also, a more theoretical approach may be explored regarding the use of the rank constraint in the EDM
completion problem. In this topic the rank evolution in several EDMs formed by the moving target in a
wireless network for each time instant will be studied. With this secondary approach we will try to devise
a new formulation for the problem of localizing and tracking a single moving source (not addressed in
this Thesis). In this scenario a dependence of the position estimation on prior estimates combined with
the target trajectory information may be established.
Under this EDM completion approach the case in which not all distances between the sensors and anchors
are available, i.e., the missing data case, is inherently addressed.
Moreover, it should be stressed that promising cues regarding a unified fusion using EDMs have been
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found. In fact, low rank constraints are used not only in WSN localization (via EDMs), as aforementioned,
but also, more recently, in several traditional vision methods/problems [10]. Such fact paves the way to
further research in this topic, strongly suggesting that a common methodology, integrating both ranges
and orientations can be devised. This approach could be applied together with 3D reconstruction maps
as in [1].
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