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We propose a modified multiple model adaptive estimation

(MMAE) algorithm that uses the time correlation of the Kalman

filter residuals, in place of their scaled magnitude, to assign

conditional probabilities for each of the modeled hypotheses. This

modified algorithm, denoted the residual correlation Kalman

filter bank (RCKFB), uses the magnitude of an estimate of the

correlation of the residual with a slightly modified version of

the usual MMAE hypothesis testing algorithm to assign the

conditional probabilities to the various hypotheses that are

modeled in the Kalman filter bank within the MMAE. This

concept is used to detect flight control actuator failures, where

the existence of a single frequency sinusoid (which is highly time

correlated) in the residual of an elemental filter within an MMAE

is indicative of that filter having the wrong actuator failure status

hypothesis. This technique results in a delay in detecting the

flight control actuator failure because several samples of the

residual must be collected before the residual correlation can

be estimated. However, it allows a significant reduction of the

amplitude of the required system inputs for exciting the various

system modes to enhance identifiability, to the point where they

may possibly be subliminal, so as not to be objectionable to the

pilot and passengers.
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I. INTRODUCTION

A multiple model adaptive estimator (MMAE)
[1, 2, 6, 8, 9, 11] consists of a bank of parallel
Kalman filters, each with a different model, and a
hypothesis testing algorithm as shown in Fig. 1. Each
of the internal models of the Kalman filters can be
represented by a discrete value of a parameter vector
(ak; k= 1,2, : : : ,K). The Kalman filters are provided
a measurement vector (z) and the input vector (u),
and produce a state estimate (x̂k) and a residual (rk).
The hypothesis testing algorithm uses the residuals
to compute conditional probabilities (pk) of the
various hypotheses that are modeled in the Kalman
filters, conditioned on the history of measurements
received up to that time, and to compute an estimate
of the true parameter vector (â). The conventional
MMAE computes conditional probabilities (pk) in a
manner that exploits three of four characteristics of
Kalman filter residuals that are based on a correctly
modeled hypothesis—that they should be Gaussian,
zero-mean, and of computable covariance—but
does not exploit the fact that they should also be
white. The algorithm developed herein addresses this
directly, yielding a complement to the conventional
MMAE.
One application of MMAE is flight control

sensor/actuator failure detection and identification,
where each Kalman filter has a different failure
status model (ak) that it uses to form the state
estimate (x̂k) and the residual (rk). The hypothesis
testing algorithm assigns conditional probabilities
(pk) to each of the hypotheses that were used to
form the Kalman filter models. These conditional
probabilities indicate the relative correctness of the
various filter models, and can be used to select the
best estimate of the true system failure status, weight
the individual state estimates appropriately, and form a
probability-weighted average state estimate (x̂MMAE).
A primary objection to implementing an

MMAE-based (or other) failure detection algorithm
is the need to dither the system constantly to enhance
failure identifiability. The MMAE compares the
magnitudes of the residuals (appropriately scaled to
account for various uncertainties and noises) from
the various filters and chooses the hypothesis that
corresponds to the residual that has a history of
having smallest (scaled) magnitude. Large residuals
must be produced by the filters with models that
are incorrect to be able to discount these incorrect
hypotheses. The residual is the difference between
the measurement of the system output and the
filter’s prediction of what that measurement should
be, based on the filter-assumed system model.
Therefore, to produce the needed large residuals
in the incorrect filters, we need to produce a
history of sufficiently large system outputs, so we
need to dither the system constantly and thereby
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Fig. 1. MMAE algorithm.

Fig. 2. MMAE algorithm using RCKFB.

excite the system states. For flight control failure
applications, we would need to move the aircraft
continually in all axes to produce the desired
failure detection performance, to which most pilots
(not to mention passengers) would strenuously
object.
We propose constructing, as shown in Fig. 2, a

Kalman filter bank, denoted the residual correlation
Kalman filter bank (RCKFB), with outputs that are
estimates of the power spectral density of each of
the residuals from the Kalman filters in the bank.
Previous research has shown that, if the Kalman filter
model is correct, the residual is a white sequence
with zero mean, and it is no longer zero-mean if
the model is incorrect [4, 5]. This causes a change
in the residual correlation, but not the covariance
of the residual. If there are model differences in
the control input matrix, the change in mean of the
residual is a summation of input terms [4, 5]. If the
dither input is a sinusoid, then these terms produce a
residual sinusoidal component at the same frequency
as the input. Thus, the appearance of a purposeful
dither in the residual of the filter is indicative of
an incorrect failure status hypothesis in that filter
model, since any dithers in actual sensor outputs

(z) would be compensated by the (Hx̂(ti )) term
in the residual, (z Hx̂(ti )), if the assumed model
were correct. This effect is clearly evident in Fig. 3
where the residual vector from the Kalman filter
based on a model that assumes a fully functional
aircraft, shows the presence of the elevator dither
input, shown in Fig. 4, when an elevator failure
occurs (note particularly the pitch and pitch rate
residuals).
Since we know the frequency of the input, we

can use the spectral content of the residual at this
particular frequency to indicate the presence of
mismodeling. Fig. 5 is the Fourier transform of
200 data points of the residual for the pitch rate
residual element shown in Fig. 3 (solid line), along
with the same residual element from the same
Kalman filter when there is no failure (dotted line).
The “spike” in the solid line occurs at the elevator
dither input frequency. Note that, at this particular
frequency, the spectral content of the residual with
the mismodeling is significantly greater than the
spectral content for the correctly modeled residual.
This figure shows that the spectral content of the
residual clearly indicates the presence or absence of
the mismodeling.
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Fig. 3. Time history of 9-dimensional residual vector from Kalman filter with fully functional aircraft model in presence of elevator
failure occurring at the initial time (angles measured in rad, rates in rad/s, time in s).

II. THEORY DEVELOPMENT

A. Multiple Model Adaptive Estimation Equations

1) Basic Kalman Filter Equations: We assume
a steady state Kalman filter model (and eventually
a steady state constant-gain Kalman filter for
implementation) associated with a particular
hypothesized failure status, which is denoted with the
subscript k. Thus we have

xk(ti) =©kxk(ti 1) +Bku(ti 1) +Gkwk(ti 1)

zk(ti) =Hkxk(ti) + vk(ti)
(1)

where

xk is the Kalman filter model state vector,
©k is the Kalman filter model state transition

matrix,
Bk is the Kalman filter model control input matrix,
u is the system input vector,
Gk is the Kalman filter model noise input matrix,

wk is an additive white discrete-time dynamics
noise input used in the Kalman filter model, with
zero-mean and

E wk(ti)w
T
k(tj) =

Qk, ti = tj
0, ti = tj

(2)

zk is the Kalman filter model measurement vector,
Hk is the Kalman filter model output matrix,
vk is an additive white measurement noise input

that is used in the Kalman filter model.

This noise input is assumed to be independent of
wk, and zero-mean with

E vk(ti)v
T
k(tj) =

Rk, ti = tj
0, ti = tj

: (3)

Note that the Kalman filter model and the truth model
are both linear models, but the dimensionality of these
two models may not necessarily be the same. In most
cases, the Kalman filter model is a reduced order
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Fig. 4. Time history of dither control inputs (in rad; time in s).

Fig. 5. Fourier transform of pitch rate residual from fully functional Kalman filter with mismodeling (solid line) and no mismodeling
(dotted line).
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version of the truth model (the Kalman filter model
states are often a subset of the truth model states).
The Kalman filter algorithm uses this model to

define time propagation and measurement update
equations of the Kalman filter state estimates and
the Kalman filter state estimate covariance matrix.
The Kalman filter state estimate propagation equation
based on the Kalman filter model is

x̂k(ti ) =©kx̂k(t
+
i 1)+Bku(ti 1)

ẑk(ti ) =Hkx̂k(ti )
(4)

where

x̂k is the Kalman filter state estimate vector,
ẑk(ti ) is the Kalman filter estimate of the

measurement vector before it becomes available,
ti is the time just before the measurement update

at the ith time sample, and
t+i 1 is the time just after the measurement update at

the (i 1) time sample,

and the state estimate covariance matrix propagation
equation:

Pk(ti ) =©kPk(t
+
i 1)©

T
k +GkQkG

T
k : (5)

The Kalman filter state estimates are updated using:

x̂k(t
+
i ) = x̂k(ti ) +Kk(ti)rk(ti) (6)

where the Kalman filter gain is

Kk(ti) = Pk(ti )H
T
kAk(ti)

1 (7)

and the Kalman filter-computed residual covariance
matrix Ak is

Ak(ti) =HkPk(ti )H
T
k +Rk: (8)

The Kalman filter residual vector, shown in (6), is
defined as

rk(ti) = z(ti) Hkx̂k(ti ) = zT(ti) Hkx̂k(ti ) (9)

which is simply the difference between the
measurements (z) and the Kalman filter estimates,
based on its model, of those measurements before
they are taken (Hkx̂k(ti )). Finally, the Kalman filter
state estimate covariance matrix is updated using

Pk(t
+
i ) = Pk(ti ) Kk(ti)HkPk(ti ): (10)

The steady state values of the Kalman filter
estimate of the state covariance matrix can be
precomputed by iterating (5), (7), (8), and (10) until
steady state of the covariance and gain matrices is
reached. Once this value for the state covariance
matrix is found, the steady state Kalman filter gain Kk
and the steady state Kalman filter residual covariance
matrix Ak are computed using (7) and (8). With this
steady state implementation, the state covariance
matrix, the steady state Kalman filter gain, and the
steady state Kalman filter residual covariance matrices

therefore do not need to be computed in real time.
The steady state Kalman filter equations become

x̂k(ti ) =©kx̂k(t
+
i 1) +Bku(ti 1) (11)

for propagating the state estimates and

x̂k(t
+
i ) = x̂k(ti ) +Kkrk(ti) (12)

for updating the state estimates..
2) Hypothesis Testing Algorithm: The hypothesis

testing algorithm (HTA) simultaneously tests the
residuals of the Kalman filter bank under multiple
hypotheses. Previous research [12] has shown
that, if the Kalman filter model matches the true
system model, the residual has a mean of zero and a
precomputable covariance matrix Ak. Therefore, this
Kalman filter residual is a white Gaussian sequence of
mean zero and covariance

Ak =HkPk H
T
k +Rk: (13)

Therefore we get that the conditional density function
of the measurement (z) at ti for the kth Kalman filter,
conditioned on the measurement history (Z(ti 1) =
[zT(t1) zT(ti 1)]

T), is

fz(ti) h,Z(ti 1)(zi hk,Zi 1) = ¯k exp

where

¯k =
1

(2¼)m=2 Ak 1=2
and

= 1
2r
T
k(ti)A

1
k rk(ti) :

(14)

The scalar likelihood quotient is defined as

qk(ti) = r
T
k(ti)A

1
k rk(ti): (15)

We define the conditional probability for a
particular hypothesis as

pk(ti) = Pr h= hk Z(ti) = Zi : (16)

We can compute the conditional probability for a
particular hypothesis by [10, 13]:

pk(ti) =
fz(ti) h,Z(ti 1)(zi hk,Zi 1) pk(ti 1)
K
j=1fz(ti) h,Z(ti 1)(zi hj,Zi 1) pj(ti 1)

:

(17)
In this equation we use the prior conditional
probabilities, pk(ti 1), to weigh the conditional
densities of the current measurements, assuming each
hypothesis, and then normalize it over the complete
set of such numerator terms. For failure identification
applications, where we usually want to choose the
most likely hypothesis out of the set of possible
hypotheses, we can choose the hypothesis with the
largest conditional probability. These conditional
probabilities can also be used to weight and blend
the various hypotheses, depending on the particular
application.
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In practice, these conditional probabilities will
fluctuate rapidly from one time sample to the next.
If the hypothesis testing algorithm is choosing the
hypothesis with the highest conditional probability,
these fluctuations could cause momentary incorrect
hypothesis declarations. To alleviate this phenomenon,
the conditional probability calculations are modified
and compared with a decision threshold. The decision
threshold is defined such that a hypothesis is chosen
only if its conditional probability is greater than the
threshold. The threshold is set to avoid momentary
incorrect hypothesis declarations while hopefully
providing adequate hypothesis testing performance.
The performance is usually measured by the time it
takes to detect and declare the correct flight control
failure for the failure identification application.

B. Residual Correlation Kalman Filter Bank

1) Periodogram Equations: Kay develops several
spectral estimation techniques; we have chosen to
use the periodogram [7] for this research since its
characteristics are well researched and it is used as
a conceptual basis for many other spectral estimation
techniques. One version of the periodogram utilizes
the fast Fourier transform, which could greatly aid in
implementing this technique because this transform
is available on commercial chip sets. Other spectral
estimation techniques still need to be researched to
determine which one or ones produce the desired
performance. The periodogram is based on estimating
the autocorrelation of the residual and then taking the
discrete Fourier transform of the autocorrelation to
produce an estimate of the power spectral density.
We must first make some assumptions to be

able to estimate the autocorrelation of the residual.
We assume that the residual sequence is a series of
samples of a stationary process, so that the probability
distributions do not change with time. We also assume
that the residual is ergodic in the autocorrelation
function, which implies that the expected value of the
time-averaged autocorrelation function is the same
irrespective of the length of time averaging.
For a multidimensional sequence, the ergodic

estimate of the autocorrelation is

Âk(p) =
1
N

N 1 p

n=0

rk(ti n)r
T
k(ti n p ): (18)

The periodogram is the discrete Fourier transform of
this sequence, thus:

ª̂k(f; ti) =
N 1

p= (N 1)

Âk(p)exp( j2¼fp)

=
N 1

p= (N 1)

1
N

N 1 p

n=0

rk(ti n)r
T
k(ti n p )

exp( j2¼fp) (19)

where N is the number of data samples that are
collected over time.
Note that by dividing by N instead of (N 1) or

(N p 1) in (18), we are using a biased estimate of
the autocorrelation. We need the 1=N factor to make
this a viable estimate of the power spectral density.
If the residual sequence is a scalar sequence, then

(19) can be shown to be equivalent to

ª̂k(f; ti) =
1
N

N 1

n=0

rk(ti n) exp( j2¼fp)

2

(20)

which is simply the squared absolute value of the
N-point Fourier transform of the residual sequence.
This is much easier to implement and executes
much faster than (19), since it exploits the fast
Fourier transform routines. If the residual sequence
is multidimensional, we can approximate (19) as a
diagonal matrix with components given by (20) if
the cross-correlation terms between elements of the
residual vector are negligible. For the specific flight
control application that we are studying, most of these
cross terms are negligible. Since we are attempting
to find practical implementations of the MMAE
algorithm, and (19) is computationally intensive,
we chose to implement (20) for this research. For
the remainder of this paper, ª̂k(f; ti) will denote an
m-vector of scalar components given by (20) where m
is the number of elements of the residual vector.
2) Modified Hypothesis Testing Algorithm: We

propose altering the Kalman filter bank by estimating
the spectral content of each of the residuals using
(20). This structure is shown in Fig. 2, where the
HTA is a slightly modified version of the HTA in
Fig. 1. Kay [7] shows that this can be interpreted as
filtering the residual with a bandpass filter centered
at f and a 3 dB bandwidth of 1=N , sampling the
output, and computing the squared magnitude. The
1=N factor is needed to make the estimate a power
spectral density. Clearly, as more data samples are
used (N increases) the filter bandwidth narrows and
more of the out-of-bandwidth noise is rejected. To
use this estimate of the power spectral density in the
hypothesis testing algorithms that are commonly used
in MMAE, namely (9) and (13)–(17), we consider
ª̂k(f; ti) to play the role of z(ti), and then must
subtract its conditional mean to form the analog
of rk(ti) in (9), compute its covariance (the analog
of (13)), and justify the Gaussian form of (14).
The conditional mean of ª̂k(f; ti), denoted here as
ª̂k(f; ti), can be computed analytically as in [4], but
this is computationally burdensome. Alternatively,
each of its scalar components can be approximated
with the value corresponding to the average “floor”
value obvious in Fig. 5 (or its point value at f)
computed a priori in performance analyses assuming
no mismodeling or computed adaptively in real time.
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The covariance of ª̂k(f; ti) can similarly be evaluated
analytically [4] at significant computational expense,
or approximated with sample statistics; unlike Ak in
(14), it may be time varying rather than constant.
To justify the Gaussianness of ª̂k(f; ti), note that

in (19) and (20) we are multiplying two Gaussian
random variables together, which will yield a
generalized chi-squared distributed random variable,
and then summing several of the chi-squared random
variables together (we used N = 100 for this research).
Since the samples of the residual are independent (if
the kth hypothesis is assumed correct) and identically
distributed (Ak given by (13) is assumed constant), we
can use the Lindeburg–Levy Theorem [18] to show
that the distribution of ª̂ converges in distribution
to a normal distribution. We generated histograms
of ª̂ using 120 data points and observed that, for
the case where the residual has a non-zero mean
(when a failure occurs), this approximation works
well. However, when the residual is zero-mean (when
the Kalman filter model is based on the correct
hypothesis), then ª̂ appears to be more chi-squared
distributed. Further research needs to be accomplished
to characterize the distribution of ª̂ properly for a
small number of data samples.
In this particular application, we can evaluate

ª̂k(f; ti) at f = f0, where f0 is the known frequency
of the input, which gives us the modified version of
(14):

fÃ(f0;ti) h,Z(ti 1)(Ãi hk,Zi 1) = ¯kÃ exp (21)

where

¯kÃ =
1

(2¼)m=2 AkÃ 1=2
,

= 1
2r
T
kÃ(f0; ti)A

1
kÃrkÃ(f0; ti)

and rkÃ(f0; ti) = ª̂k(f0; ti) ª̂k(f0; ti)

and (15) becomes

qÃ(ti) = r
T
kÃ(f0; ti)A

1
kÃ rkÃ(f0; ti) (22)

with the power spectral density estimate covariance
matrix denoted AkÃ .
We observed that, for the dither input levels that

we used for this research, the mean for the no-failure
hypothesis is very small when compared with the
mean of the spectral density estimate for an actuator
failure hypothesis. This is clearly seen in Fig. 5,
where the no-failure case has a mean of about 1,
while the failed case has a mean of about 40. For
this application, we found that the change in mean
effects of ª̂ was much greater than the effect of using
an incorrect distribution. This was determined by
first modeling the power spectral density estimate as

a zero-mean process, the ª̂k(f; ti) in (21) is set to a
zero vector, and then modeling it as a non-zero mean

process whose mean, ª̂k(f; ti) in (21), is estimated
using sample statistics. In both cases the power
spectral density estimate covariance matrix, denoted
AkÃ, was assumed constant and also computed
using 400 samples of the fully functional residual
power spectral density estimate. Many software
packages, such as MATLAB, have an intrinsic sample
covariance computation available, which makes this
method quite easy to implement. We found the failure
detection performance, to be described in Section
IIIB, for each of these cases was indistinguishable,
thus demonstrating that the change in mean effects
of ª̂ was much greater than the effect of using an
incorrect distribution.
At this point, the development of the HTA for the

RCKFB, (21) and (22), parallels the development of
the HTA for the standard Kalman filter bank (SKFB),
(13)–(17). Other research [14] has described several
modifications to the HTA, such as ¯ stripping, lower
bounding of the conditional probabilities, filter tuning,
smoothing of the conditional probabilities, exponential
penalty increase, and propagating several time samples
before updating. The same modifications used for the
HTA were applied to the RCKFB, however, further
research is needed to define the specific effects of
each of the modifications on the performance of the
MMAE using the RCKFB.

III. SIMULATION RESULTS

We present a comparison of the failure
identification performance of two MMAE structures,
one that uses the SKFB, shown in Fig. 1, and the
other using the RCKFB, shown in Fig. 2, that was
developed in Section IIB. The failure identification
performance of the SKFB is presented in Section IIIA
and the RCKFB performance in Section IIIB. Section
IIIC is a comparison of the failure identification
performances for these two structures.
Previous research [4, 5] has found that the mean

of the residual will have elements of the input for the
case of an actuator failure, and for a sensor failure
the residual will have elements of the state estimates.
If we use a sinusoid for the input, then the sinusoid
input elements cause the residual in a filter with the
incorrect hypothesis to be a sinusoid. This sinusoid
appears as a spike in the power spectral density at the
frequency of the input, which was shown in Fig. 5.
Therefore, since we can stipulate the frequency of
the system input (since we can generate the dither
input ourselves), we can use the spectral content
at that frequency to indicate the presence of an
actuator failure, which was the basis for developing
the RCKFB. However, we cannot readily stipulate
the frequency of the state estimates, unless extensive
simulation is done to find the particular input that
causes sinusoidal state estimates. Since the state
estimates are not necessarily sinusoidal, we might
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Fig. 6. Overall failure identification of SKFB: conditional probability for each hypothesized failure, vs. time (s).

need to estimate the power spectral density across
the entire spectrum to try to find indications of the
presence of a sensor failure. Therefore, we believe that
this technique would not work well for sensor failures
unless the appropriate input is used that causes the
states estimates to become strongly correlated in a
readily distinguishable manner. For this reason, we
implemented the RCKFB structure using only actuator
failure models and restricted the SKFB structure
to actuator failure hypotheses only, to make a fair
comparison of failure identification algorithms. The
usual implementation of these structures includes
sensor failure hypotheses [3, 14–17].
Previous research [14] found input levels, shown

in Fig. 4, that worked well for flight control failure
identification. Such a nonsubliminal input dither is
very objectionable, so we investigated the failure
identification performance of the SKFB and RCKFB
for several different input levels. We used several
multipliers, ranging from 0.01 to 1.0, to generate these
various input levels.

A. SKFB Failure Identification Performance

The failure identification performance of the
SKFB structure for this particular application was

previously researched [14] and some enhancement
through the modifications listed in Section IIB2
was accomplished. We present a summary of these
results to facilitate performance comparisons with the
RCKFB structure.
We found, in the previous research [14], that the

results from all of the failure cases can be summarized
by observing only the conditional probability of the
particular failure that is actually occurring, because the
fully functional hypothesis mirrors this probability
and all other hypothesized failures are near zero
throughout the simulation. The overall performance
of the SKFB failure identification performance can be
summarized by showing the conditional probabilities
for each of the failure hypotheses on a series of plots,
shown in Fig. 6, where each plot shows the SKFB
failure identification performance for a particular
failure occurring at 1.0 s into the simulation.
Detection of sensor failures occurs quite rapidly

with the exception of the forward velocity sensor.
This was due to the large measurement noise of that
particular sensor when compared with the small
change in forward velocity of the aircraft during the
simulation time [14]. This caused the conditional
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probabilities for this hypothesis to grow very slowly,
as reflected in Fig. 6.
At this point we restricted our research to actuator

failures due to reasons that were mentioned earlier.
This slightly changed the actuator plots of Fig. 6
by removing the small “ripples” that are evident in
the aileron and rudder plots, which was due to some
bleeding of the conditional probabilities into the
sensor failure hypotheses. However, removing the
sensor failure hypotheses did not perceptibly change
the point where the conditional probabilities started
to grow. Thus the conditional probabilities shown
in the top part of Fig. 6 are a good representation
of the actuator failure detection performance for
the SKFB MMAE structure. One simple method of
declaring a failure is to choose a probability threshold
that is used as a declaration trigger. For example, if
the threshold was set to a probability of 0.5 and a
left elevator failure occurred, when the left elevator
conditional probability exceeds 0.5, then a failed
left elevator would be declared. Fig. 6 shows that
this would occur at about 1.5 s into the simulation,
or about 0.5 s after the failure actually occurred.
Using this threshold, we averaged the actuator failure
performance of this MMAE structure over 5 Monte
Carlo runs, and then averaged the left and right
actuator failure performance results to get an average
over 10 test samples. We averaged the left and right
actuator failure performances because we assume
that they are independent. This assumption is based
on the orthogonal system input (Fig. 4), where the
left actuator input is almost exactly out-of-phase
with the right input (a slight offset from exactly
out-of-phase was needed to allow some excitation of
the sensors).
Several simulations were accomplished using

different control input strengths which were generated
by multiplying the original control input, shown in
Fig. 4, by various multipliers ranging from 1.0 to
0.01. This maintained the frequency and phase of
the original control input, but reduced the amplitude
to the point where it could possibly be considered
subliminal. The results of these simulations are
graphically shown in Figs. 7, 8, and 9, for failures
of the elevators, ailerons, and rudders, respectively.
Note that the vertical axis is a logarithmic (base 10)
scale, and that the SKFB results are given by the locus
demarked with x’s, on each of these figures.
The identification time is the amount of time from

the occurrence of the failure to when the conditional
probability crosses the probability threshold at 0.5. At
very small inputs, the conditional probability grew
so slowly, that the randomness of the probabilities
would cause it to cross the threshold a few times.
For these cases, the identification time is the amount
of time from the occurrence of the failure to when
the conditional probability crosses the probability
threshold for the last time and stays there.

Fig. 7. Comparative failure identification performance for
elevator failure.

Fig. 8. Comparative failure identification performance for aileron
failure.

Fig. 9. Comparative failure identification performance for rudder
failure.
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Fig. 10. Left elevator Kalman filter residual for left elevator failure at 1 s (angles in rad, rates in rad/s; versus time in s).

Note the dashed line portion of the plots in Figs.
7, 8, and 9. These indicate where false alarms were
observed, with an increase in the number of false
alarms as the input was decreased. The dashes are
to show where the performance may be deemed
unacceptable due to the increase in the false alarm
rate.
These figures show that failure performance drops

off dramatically as the input magnitude decreases.
This is particularly evident for the elevator and aileron
failures (Figs. 7 and 8), where identification times are
beyond the termination of the simulation (7 s after
the failure) for input multipliers of less than 0.025.
These results make good sense, because stronger
inputs would cause larger residuals from the incorrect
Kalman filters when the failure occurs. Likewise,
smaller inputs will produce relatively smaller residuals
when the failure occurs, so the conditional probability
of the failure hypothesis requires more time to grow.
In particular, note that the rudder failure identification

(Fig. 9) is still viable at an input multiplier level of
0.025, but drops off quickly after that.
Note in Fig. 9 that, as the rudder input is

increased, the failure identification time actually
increases, which does not correspond to the
anticipated results of better identification performance
for stronger inputs. Other research [14] found that
this algorithm had trouble identifying rudder failures,
possibly because of cross-coupling between axes
causing misidentification of a sensor failure. This is
not the case here, since, at this point, we have limited
the SKFB to actuator failure hypotheses to make a fair
comparison with the RCKFB structure.
There are two reasons that the failure identification

time increases with increasing rudder inputs, one is
the relatively stronger rudder input (Fig. 4), compared
with the elevator and aileron inputs, and the other
is the timing of the failure. Fig. 3 shows that a
mismodeled actuator causes the input of that particular
actuator to be reflected in the residuals. A relatively
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Fig. 11. Actual failure identification performance of RCKFB: conditional probabilities for each hypothesized failure vs. time (s).

stronger rudder input, compared with the elevator and
aileron inputs, would cause much larger residuals in
the residuals of the Kalman filter that mismodeled the
rudder actuators. These larger residuals take longer
to decay once the rudder actuators are appropriately
modeled. Likewise, the timing of the failure also
influences the failure identification performance.
Fig. 10 shows that a rudder failure at 1 s into the
simulation occurs when the pitch rate and pitch angle
residuals are close to their peak. This requires more
time for the residual to decay than would have been
required if the failure occurred when the residuals
were near a zero-crossing. If the Kalman filter
residual with the correct model takes longer to decay,
the failure identification time will correspondingly
increase.

B. RCKFB Failure Identification Performance

We implemented the RCKFB with a modified HTA
shown in Fig. 2. We used the form of the RCKFB,
shown in (20), that exploits the fast Fourier transform,
but ignores the cross-coupling terms of the residual.
These cross-coupling terms are not small in many
cases. For example, the residual for a left elevator
failure (Fig. 3) shows that both the pitch rate and
pitch angle strongly reflect the elevator input. Note
that the pitch rate is clearly a sinusoid, and would
be strongly correlated in time with itself. The pitch
angle is also a sinusoid at the same frequency, so
the cross-correlation between these two sinusoids
would be quite strong. By ignoring these cases of
strong cross-correlations, we are implementing an
algorithm that does not exploit any of the information
available from these cross terms. We considered the
computational cost of exploiting these cross terms to
be unacceptable, so we implemented the algorithm

using only the autocorrelation of the individual
elements of the residual.
A summary of the failure detection performance,

following the format of Fig. 6, is presented in Fig. 11.
As previously noted, sensor failure detection and
identification was not investigated.
In Section II we noted that Kay [7] shows that

this algorithm essentially filters the residual with a
bandpass filter, centered at the frequency of interest
and with a bandwidth of 1=N . If the bandwidth of
this filter is small, the other input frequencies will
not have spectral content in the bandwidth of this
bandpass filter. Thus, we need to collect enough data
samples so that the bandwidth of the filter will not
have any spectral content from the other inputs. The
more data samples that we need to collect, the longer
the delay will be from the time when the sinusoid
is present (when the failure occurs) to when we can
compute the spectral estimate of this filter and detect
the sinusoid. Thus, there is a tradeoff between the
number of data samples needed to distinguish between
the input sinusoids and the failure detection time. This
would dictate a wide spacing of the input sinusoids, to
allow the bandpass filters to have larger bandwidths,
so fewer data samples are needed. Unfortunately, most
mechanical system (like aircraft) have very narrow
low pass system response bandwidths (the bandwidth
was about 2.2 Hz for this particular aircraft). The
system response to the input must be seen in the
residual for any failure identification scheme to
work, thus we need to specify input frequencies
that are within the system response bandwidth. This
requires that the inputs be located close together in the
frequency spectrum, which requires narrow bandpass
filters for this structure, which in turn requires more
data samples to be collected. Our inputs were at 0.5,
1, and 2 Hz, which, when normalized by dividing
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by the sampling frequency, become 0.01, 0.02, and
0.04, respectively. The two closest frequencies were
0.5 Hz away from each other, or 0.01 in normalized
frequency. The bandpass filter would need to have a
bandwidth of less than 1 Hz (0.5 Hz on each side of
the center frequency), which is 0.02 in normalized
frequency, to be able to distinguish these input
frequencies from each other. This requires 100 data
samples (2=N = 0:02 N = 100) for the required
bandpass filter bandwidth, which is the value of N
chosen for this research. This value caused a delay in
the detection of the failure because at least half of the
100 data samples (which translates to 1 s) had to show
strong correlation at the input sinusoid frequency
for the spectral estimator even to start to identify the
presence of the sinusoid. Fig. 11, when compared with
Fig. 6, shows that this delay caused this algorithm to
take about 1 s longer to identify the actuator failures.
The aircraft model that we used for this simulation

assumed complete axis decoupling. If this assumption
is correct, we can increase the bandwidth of the
bandpass filters, thus decreasing the number of
required data samples. The elevator input was at a
frequency of 1 Hz, while the rudder input was at
0.5 Hz and the aileron input was at 2 Hz. Since the
pitch axis would not affect the roll and yaw axes,
the elevator input would not appear in the spectra
for the longitudinal elements of the residual (roll
and yaw). Thus the elevator input frequency did
not need to be considered when we were designing
the bandwidth of the bandpass filter. Thus, the two
closest frequencies were actually 1.5 Hz apart, which
means that we could have used only 34 data samples
to distinguish between the rudder and aileron input
frequencies. Time constraints prevented testing the
failure identification performance using other values
of N .
We tested the failure performance of this structure

at the various input strengths that were used for the
SKFB testing. These results are graphically presented
in Figs. 7, 8, and 9 by the loci demarked with o’s.
Note that the results are an average of only two Monte
Carlo runs with both left and right actuators, for a
total of four test samples. We observed a large drop
in failure identification time for the strong rudder
inputs. The reason for this phenomenon is illustrated
in Fig. 10. Note, when the failure occurs at 1 s, the
pitch rate and pitch angle elements of the residual are
at their peak and take about 0.5 s to die out. During
this decay, these waveforms appear to be part of the
sinusoid that was clearly present before the failure
occurred. The sinusoid in the fully functional Kalman
filter residual (Fig. 3) is also delayed by about 0.5 s.
Thus, the left elevator failure Kalman filter residual
will show a slowly decaying spectral content at the
elevator input frequency, and the fully functional
Kalman filter residual will show a slowly building
spectral content at that frequency. Thus, the HTA

will not identify the failure until the decay is nearly
complete.

C. Comparative Failure Identification Performance

The simulation results for both the SKFB and the
RCKFB are graphically shown in Figs. 7, 8, and 9
to facilitate a comparison of the failure identification
performance of the two structures. Note that, for
a strong input level, the RCKFB structure took
longer to identify the flight control actuator failures
because 100 data samples had to be collected and the
spectral estimate computed, which delayed the failure
identification. Collecting a smaller number of data
samples at these high input levels might produce faster
failure identification times.
As the input decreases, the failure identification

performance generally decreases for the SKFB
structure, and seems to remain fairly constant for
the RCKFB structure. The exception to the general
rule is the decrease in rudder failure identification
performance as the input strength increases for both
the SKFB and RCKFB structures. This was caused by
both the relative strength of the rudder input, which
caused a larger residual amplitude, and the timing of
the failure, which occurred just as the residual peaked,
so the residual took longer to decay.
Both structures have a minimum input level below

which their performance diminishes rapidly. As the
input strength is decreased, the approach of this
minimum input level for good failure identification
performance is signaled by an increase in the number
of false alarms. This suggests that the false alarm rate
could be monitored (by using statistical testing for
estimating the false alarm rate) and this could be used
as feedback to set the input level appropriately. Note
also, that the minimum failure time identification for
the SKFB, particularly for a rudder failure, could be
obtained by setting the input level just above the point
where the false alarm rate begins to increase and the
failure identification performance starts to deteriorate.
The important feature to notice in Figs. 7, 8,

and 9 is that the RCKFB provides the best failure
identification performance at low input levels. In
particular, only the RCKFB structure still provided
failure identification performance for input levels
below 1/20 of the original input used for this research.

V. CONCLUSIONS

We developed a new kind of multiple model filter
bank structure in Section IIB, in which an estimation
of the spectral content of the residuals is used by
the hypothesis testing algorithm. The actuator failure
identification performance of this RCKFB was tested
and the results were presented in Section IIIB, and a
comparison of this performance against the standard
MMAE structure was made in Section IIIC. When
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an actuator failure occurs, elements of the control
input are added to the residual of a filter with an
incorrect hypothesis. If the control input elements
are sinusoids, then the residual includes a sinusoid,
with the same frequency as the control input elements.
Therefore, we can use the spectral content of the
residual, at the input frequencies, to indicated the
presence of an actuator failure. We found that, when
the control input is fairly strong, this technique takes
longer than the standard MMAE to make the correct
failure identification, due to the time used to collect a
sufficient number of samples to generate an adequate
spectral estimate. However, this technique provides
failure identification performance at small input levels
where the standard MMAE no longer functions.
This technique looks quite promising as a method to
provide good failure identification with subliminal
input dithers, which could be used in conjunction
with the standard MMAE structure to provide failure
identification performance at low input levels and
to corroborate the failure identification of the SKFB
structure at higher input levels.
These results strongly suggest a combined SKFB

and RCKFB MMAE. The same filters in the SKFB
MMAE structure, Fig. 1, would be used as the
filters in the RCKFB MMAE structure in Fig. 2.
Thus a single bank of Kalman filters would be
implemented with the residuals used as a direct input
to the standard HTA and to the spectral estimators
with a modified HTA. The outputs of these two
structures would be combined so that at strong input
levels the fast failure identification of the SKFB
structure would be exploited, and at low input levels
the complementary RCKFB performance would
be exploited. This suggests that the SKFB MMAE
structure would provide good failure identification
during maneuvers and the RCKFB MMAE structure
could corroborate the failure detection of the SKFB
and provide good flight control actuator failure
identification, using a subliminal dither, during
nonmaneuvering flight profiles. Further research needs
to accomplished to determine how to combine these
structures appropriately.
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