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This is the first part of a comprehensive and up-to-date survey

of the techniques for tracking maneuvering targets without

addressing the so-called measurement-origin uncertainty. It

surveys various mathematical models of target motion/dynamics

proposed for maneuvering target tracking, including 2D and 3D

maneuver models as well as coordinate-uncoupled generic models

for target motion. This survey emphasizes the underlying ideas

and assumptions of the models. Interrelationships among models

and insight to the pros and cons of models are provided. Some

material presented here has not appeared elsewhere.
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I. INTRODUCTION

The key to successful target tracking lies in the
effective extraction of useful information about the
target’s state from observations. A good model of
the target will certainly facilitate this information
extraction to a great extent. In general, one can say
without exaggeration that a good model is worth a
thousand pieces of data. This statement has an even
stronger positive connotation in target tracking where
observation data are rather limited. Most tracking
algorithms are model based because knowledge of
target motion is available and a good model-based
tracking algorithm will greatly outperform any
model-free tracking algorithm if the underlying model
turns out to be a good one. As such, it is hard to
overstate the importance of the role of a good model
here.

Various mathematical models of target motion
have been developed over the past three decades.
They are, however, scattered in the literature. Many
of them have never appeared in any periodical in the
public domain. As a result, few people have a good
knowledge of these models. This is partly due to a
lack of a comprehensive survey. The importance of
such a survey for both practitioners and researchers
in the tracking community is evident. The single best
source so far is, in our opinion, the recent book by
Blackman and Popoli [1], which is nonetheless far
from complete. Some more or less standard models
for target motion can be found in established books
on target tracking and/or estimation, such as [2–12].

This paper is the first part of a comprehensive and
up-to-date survey of the techniques for maneuvering
target tracking. The survey is an ongoing project.
The conference versions of its first several parts
have appeared in [13–17]. It is well known that the
so-called measurement-origin uncertainty and target
motion uncertainty are two major challenges in target
tracking. To limit the scope of the work, this survey
deals only with the second uncertainty, leaving the
techniques unique for the data-association problems
untouched.

Target detection, tracking, and recognition are
closely interrelated areas, with significant overlaps.
It is not easy to draw a clear line to separate them. To
be relatively more focused, this part covers mainly
dynamic models of a “point target,” that is, those
of the dynamic (temporal) behaviors, rather than
spatial characteristics, of a target. While many of
these models are also useful for target detection and
recognition, this survey is only concerned with their
value for target tracking. This of course does not
prevent us from developing or applying a model that
describes both the temporal evolution and spatial
characteristics of a target.

Needless to say, target dynamic models
and tracking algorithms have intimate ties. The
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applicability of a target dynamic model for a practical
problem can hardly be evaluated without referring to
the corresponding tracking algorithms used. In other
words, some target models and tracking algorithms
work well jointly. To be more focused and concise,
however, this interdependence is largely ignored
here.
This survey emphasizes the underlying ideas

and assumptions of the models. This should help
the reader understand not only how these models
work but also their pros and cons. It is hoped that
a distinctive feature of this survey is that it reveals
well the interrelationships among various models.
However, the reader should keep in mind that much
of such discussion is based on our personal views and
preferences, not always accurate or unbiased, although
a great deal of effort has been made toward this
goal. In addition to such discussions, some material
included in this survey has not appeared elsewhere.
Regrettably, many important issues associated

with the target dynamic models, particularly those
of implementation, cannot be discussed (at least to
a desirable degree) due to space limitation as well
as our background and experience. Nevertheless, we
would appreciate very much receiving comments and
any missing material that should be covered in this
survey.
This paper is a heavily revised and extended

version of [13]. Its remaining part is organized
as follows. Section II gives briefly state-space
representations of target dynamics and observation
system. Section III describes nonmaneuver models.
The presentation of dynamic models of target
maneuvers breaks down as follows: while Section IV
deals with those that are uncoupled along different
spatial coordinates, 2D and 3D coupled models are
reviewed in Sections V and VI, respectively. The final
section provides concluding remarks.

II. MATHEMATICAL MODELS FOR MANEUVERING
TARGET TRACKING

The primary objective of target tracking is to
estimate the state trajectories of a target—a moving
or movable object. Although a target is almost never
really a point in space and the information about
its orientation is valuable for tracking, a target is
usually treated as a point object without a shape in
tracking, especially in target dynamic models. A target
dynamic/motion model describes the evolution of the
target state with respect to time.
Almost all maneuvering target tracking methods

are model based. They assume that the target motion
and its observations can be represented by some
known mathematical models sufficiently accurately.
The most commonly used such models are those
known as state-space models, in the following form

of additive noise,

xk+1 = fk(xk,uk) +wk (1)

zk = hk(xk) + vk (2)

where xk, zk, and uk are the target state, observation,
and control input vectors, respectively, at the discrete
time tk; wk and vk are process and measurement
noise sequences, respectively; and fk and hk are some
vector-valued (possibly time-varying) functions. Such
a discrete-time model is often obtained1 by discretizing
(sampling) the following continuous-time model [2]2

_x(t) = f(x(t),u(t), t) +w(t), x(t0) = x0 (3)

z(t) = h(x(t), t)+ v(t) (4)

where xk = x(tk) and it is usually assumed
3 that

zk = z(tk),vk = v(tk),hk(xk) = h(x(tk), tk). The control
input is often assumed (approximately) piecewise
constant with uk = u(t), tk t < tk+1 when discretizing
a continuous-time system. In target tracking, the
control input u is usually not known. Note that

wk = w(tk), fk(xk,uk ,wk) = f(x(tk),u(tk),w(tk), tk):

In fact, it is often more appropriate to use the
following mixed-time models for most tracking
problems

_x(t) = f(x(t),u(t), t) +w(t), x(t0) = x0 (5)

zk = hk(xk) + vk (6)

because while observations are usually available
only at discrete time instants, the target motion is
more accurately modeled in continuous time. For
example, target motions should not depend on how
and when samples are taken, which is often the case,
however, for a discrete-time model. For a similar
reason, a discrete-time equivalent model is usually

1One so obtained is referred to as a discretized model regardless
of its equivalence to the continuous-time system. It is termed
a discrete-time equivalent if the discretization is exact and the
effects of the continuous-time and discrete-time noise processes are
equivalent, which is the case for a linear system without the control
input u with the standard discretization (i.e., sample and hold).
Note, however, that not all discrete-time models can be obtained
by discretizing a continuous-time system. A model defined directly
in discrete time following the same principle as one in continuous
time is referred to as a direct discrete-time counterpart here. We use
the term discrete-time version for either or both of discretized and
direct discrete-time models.
2We sacrifice rigor for readability: (3) is not actually well defined
because _x= dx=dt may not exist at all since the “continuous-time
white noise” has infinite variance and is a specter in the cosmos
that represents the nonexistent derivative of a Wiener process and
the like. We warn, however, that formal manipulation of (3) or (8)
may easily lead to incorrect results. That is why in the mathematical
world (3) is replaced by dx(t) = f(x(t),u(t), t)dt+ dw(t), x(t0) = x0
and certain rules must be followed.
3Although discrete-time measurement zk and thus the function hk
and noise vk are in fact from sensors that do integration over time.
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more systematic and consistent, and is in many
cases probably preferable to the corresponding direct
discrete-time counterpart.
The continuous-, discrete-, and mixed-time

linear counterparts of the above models are the
corresponding pairs of the following equations

xk+1 = Fkxk +Ekuk +Gkwk (7)

_x(t) = A(t)x(t) +E(t)u(t) +B(t)w(t), x(t0) = x0

(8)

zk =Hkxk + vk (9)

z(t) = C(t)x(t) + v(t): (10)

One of the major challenges for target tracking
arises from the target motion uncertainty. This
uncertainty refers to the fact that an accurate dynamic
model of the target being tracked is not available
to the tracker. Specifically, although the general
form of the model (1) or (5) is usually adequate,
a tracker lacks knowledge about the actual control
input u of the target, and possibly the actual form
of f, its parameters, or statistical properties of the
noise w for the particular target being tracked. Target
motion modeling is thus one of the first tasks for
maneuvering target tracking. It aims at developing a
tractable model that accounts well for the effect of
target motion.
In this paper, we describe the efforts and

results in modeling the target motion for tracking a
maneuvering target without knowing its true dynamic
behavior. Most of these efforts have been made along
two lines: 1) approximate the actually nonrandom
control input u as a random process of certain
properties, and 2) describe typical target trajectories
by some representative motion models with properly
designed parameters.
Target motions are normally classified into

two classes: maneuver and nonmaneuver. A
nonmaneuvering motion is the straight and level
motion at a constant velocity4 in an inertial reference
system, sometimes also referred to as the uniform
motion. Loosely speaking, all other motions belong
to the maneuvering mode.

III. NONMANEUVER MODELS

It is well known that a point moving in our
3D physical world can be described by its 3D
position and velocity vectors. For instance,5 x=
[x, _x,y, _y,z, _z] can be used as a state vector of such
a point in the Cartesian coordinate system, where
(x,y,z) are the position coordinates along x, y, and

4Note that velocity is a vector and speed is its magnitude.
5In this survey, the regular symbol x and z are used for simplicity
to denote the state and measurement vectors, respectively, while the
positions along the x, y, and z axes are denoted by sans serif font
(x,y,z).

z axes, respectively, and [ _x, _y, _z] is the velocity
vector. When a target is treated as a point object,
the nonmaneuvering motion is thus described by the
vector-valued equation _x(t) = 0, where x= [_x, _y,z] .
Note that z direction is treated differently because a
nonmaneuvering motion is assumed in the horizontal
x–y plane. In practice, this ideal equation is usually
modified as _x(t) = w(t) 0, where w(t) is white
noise with a “small” effect on x that accounts for
unpredictable modeling errors due to turbulence, etc.
The corresponding state-space model is given by, with
state vector x= [x, _x,y, _y,z] ,

_x(t) = diag[Acv,0]x(t) +diag[Bcv,1]w(t) (11)

where w(t) = [wx(t),wy(t),wz(t)] is a continuous-time
vector-valued white noise process with power spectral
density matrix diag[Sx,Sy,Sz], Acv = diag[A2,A2], and
Bcv = diag[B2,B2] with

6

A2 =
0 1

0 0
, B2 =

0

1
: (12)

The direct discrete-time counterpart of the above
model is [2]

xk+1 = Fxk +Gwk = diag[Fcv,1]xk +diag[Gcv,T]wk

= diag[F2,F2,1]xk +diag[G2,G2,T]wk (13)

where

Fcv = diag[F2,F2], Gcv = diag[G2,G2]

F2 =
1 T

0 1
, G2 =

T2=2

T

(14)

wk = [wx,wy,wz]k is a discrete-time white noise
sequence and T is the sampling interval. Note that
wx and wy correspond to noisy “accelerations” along
x and y axes, respectively, while wz corresponds to
noisy “velocity” along z axis. If w is uncoupled across
its components, then the nonmaneuvering motion
modeled by the above models is uncoupled across x,
y, and z directions. In this case, the covariance of the
noise term in (13) is given by

cov(Gwk) = diag[var(wx)Q2,var(wy)Q2,var(wz)]

Q2 =
T4=4 T3=2

T3=2 T2
:

(15)

This model is defined directly in discrete time and is
not entirely equivalent to the above continuous-time
model.

The discrete-time equivalent of the above
continuous-time model is [2]

xk+1 = diag[F2,F2,1]xk +wk (16)

6For convenience, we use the shorthand notation A=
diag[A1,A2, : : : ,An] to denote a block-diagonal matrix A, where Ai
and A are not necessarily square matrices.
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where

cov(wk) = diag
Sx
T
Q̃2,

Sy
T
Q̃2,

Sz
T

Q̃2 =
T4=3 T3=2

T3=2 T2
:

(17)

Note the difference between the discrete-time
equivalent (16) and the direct discrete-time counterpart
(13).
In a 2D scenario where the altitude z is not

considered, the above models take the more popular
form, respectively,

_x(t) = Acvx(t) +Bcvw(t)

xk+1 = Fcvxk +Gcvwk

xk+1 = Fcvxk +wk:

(18)

The above models (11), (13), (16), and (18)
are known as the continuous- and discrete-time
constant-velocity (CV) models, or more precisely,
“nearly-constant-velocity models.” Equation (18)
is in fact a “(small) white acceleration model”
since accelerations along x and y directions are
modeled as (small) white noise. The term “(nearly)
constant-velocity model” emphasizes that these
accelerations are small. Note that the control input
u is zero in the nonmaneuver models, although in
reality an actual thrust of the target may be present
to balance other forces so as to maintain the motion.
Also, inclusion of any unnecessary component
(e.g., acceleration) in the state vector would degrade
tracking performance.

IV. COORDINATE-UNCOUPLED MANEUVER
MODELS

The control input u responsible for a target
maneuver is primarily deterministic in nature and
most often unknown to the tracker. A natural way
is to model it as an unknown, deterministic process
and estimate this process from measurement data
during tracking. Such deterministic input models are
the basis for the so-called input estimation method
(see, e.g., [16, 18–25]). Due to a lack of knowledge of
its dynamics, this unknown process is often assumed
to be piecewise constant and treated as an unknown
time-invariant parameter over a time window. The
main difficulty then lies in the determination of the
input level and the instants at which the input jumps.
This method is covered in detail in a subsequent part
of this survey, of which [16] is a preliminary version.
An alternative is to model the input u as a random

process, which is in fact much more popular than the
above deterministic modeling. Models in this class
proposed in the literature can be largely classified into
three groups as follows.
1) White noise models: The control

input is modeled as white noise. This includes

constant-velocity, constant-acceleration, and
polynomial models.

2) Markov process models: The control input
is modeled as a Markov process, which has a time
autocorrelation. This includes the well-known Singer
model, its various extensions, and some other
models.

3) Semi-Markov jump process models: The
control input is modeled as a semi-Markov jump
process.

Most target maneuvers are coupled across different
coordinates. For simplicity, however, many maneuver
models developed assume that this coordinate
coupling is weak and can be neglected. This is
particularly the case for those that model the control
input u as a random process. As a consequence, we
need to consider only a generic coordinate direction.

Let x, _x, and ẍ be the target position, velocity, and
acceleration along a generic direction, respectively.
Specifically,

ẍ(t) = a(t): (19)

The models discussed in this section differ in how the
function a(t) is defined.

In this section, the state vector is always taken
to be x= [x, _x, ẍ] along the generic direction, unless
stated otherwise explicitly.

A. White-Noise Acceleration Model

The simplest model for a target maneuver
is the so-called white-noise acceleration model
[2]. It assumes that the target acceleration ẍ(t) is
an independent process (strictly white noise). It
differs from the nonmaneuver model of Section
III only in the noise level: the white noise process
w used to model the effect of the control input u
has a much higher intensity than the one used in a
nonmaneuver model. A maneuver by its very nature
aims at accomplishing a certain task and thus is
rarely independent with respect to time. The main
attractive feature of this model is its simplicity. It is
sometimes used when the maneuver is quite small or
random. It is also used in some maneuvering target
tracking techniques, such as the so-called noise-level
adjustment, discussed in a subsequent part of this
survey (see [16] for a preliminary version).

B. Wiener-Process Acceleration Model

The second simplest model is the so-called
Wiener-process acceleration model [2]. It assumes
that the acceleration is a Wiener process, or more
generally and precisely, the acceleration is a process
with independent increments, which is not necessarily
a Wiener process. It is also referred to simply as the
constant-acceleration (CA) model or more precisely
“nearly-constant-acceleration model.”
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This model has two commonly used versions. The
first one, referred to as the white-noise jerk model,
assumes that the acceleration derivative (i.e., “jerk”)
_a(t) is an independent process (white noise) w(t):
_a(t) = w(t), with power spectral density Sw. The
corresponding state-space representation is _x(t) =
A3x(t) +B3w(t), where

A3 =

0 1 0

0 0 1

0 0 0

, B3 =

0

0

1

: (20)

Its discrete-time equivalent is

xk+1 = F3xk +wk, F3 =

1 T T2=2

0 1 T

0 0 1

(21)

where

Q = cov(wk) = SwQ3, Q3 =

T5=20 T4=8 T3=6

T4=8 T3=3 T2=2

T3=6 T2=2 T

:

(22)

Note that Sw is the power spectral density, not the
variance, of the continuous-time white noise w(t).
The second version can be called Wiener-sequence

acceleration model. It assumes that the acceleration
increment is an independent (white noise) process.
An acceleration increment over a time period is the
integral of the jerk over the period. This model is
most conveniently expressed in discrete time directly,
given by

xk+1 = F3xk +G3wk, G3 =

T2=2

T

1

: (23)

Note that its noise term has a covariance different
from that of the white-noise jerk model:

Q = cov(G3wk) = var(wk)

T4=4 T3=2 T2=2

T3=2 T2=2 T

T2=2 T 1

:

(24)

The above models are simple but crude. Actual
maneuvers seldom have (nearly) constant accelerations
that are uncoupled across coordinate directions.
As explained before, a continuous-time model is

more accurate than its discrete-time versions for most
practical situations since a target moves continuously
over time. The assumption of the direct discrete-time
CA model (i.e., the second version above) that the
acceleration increment ¢ak = ak+1 ak = a(tk+1) a(tk)
is independent across different sampling intervals
is hardly justifiable, except for its simplicity and
mathematical tractability. Were this assumption true

for a sampling period T, it would not be true in
general for any other sampling period T unless it is
a multiple of T: T = nT. Even if such periods exist,
we would not be so lucky that one of them is used by
chance.

C. Polynomial Models

It is well known that any continuous target
trajectory can be approximated by a polynomial of
a certain degree to an arbitrary accuracy. As such, it
is possible to model target motion by an nth-degree
polynomial [2] in the Cartesian coordinates:

x(t)

y(t)

z(t)

=

a0 a1 an

b0 b1 bn

c0 c1 cn

1

t
...

tn=n!

+

wx(t)

wy(t)

wz(t)

(25)

with a certain choice of the coefficients ai,bi,ci, where
(x,y,z) are the position coordinates and (wx,wy,wz)
are the corresponding noise terms. Such an nth-degree
polynomial model amounts to assuming the nth time
derivative of the position is (nearly) constant (i.e., the
position deviation from such a constant nth derivative
motion is equal to the noise w). The CV and CA
models described above are special cases (for n = 1,2,
respectively) of this general nth-degree model with
white noise w(t). Note that this model is coordinate
uncoupled if wx,wy,wz are uncorrelated. Also, an
nth-degree polynomial has (n+1) parameters per
coordinate. That is why a model of an nth-degree
polynomial is often called an (n+1)th-order model.

This model in its general setting does not appear
very attractive for tracking for several reasons. Such
models are usually good for fitting to a set of data,
that is, for smoothing problem; however, the primary
purpose of tracking is prediction and filtering, rather
than fitting or smoothing. It is difficult to develop an
uncomplicated and efficient method to determine the
coefficients ai,bi,ci systematically in a general setting.
Nevertheless, many special polynomial models have
been developed for target tracking. In fact, most of
the models discussed in this section can be viewed as
special cases of this general polynomial model with
different models for the noise w(t).

D. Singer Acceleration Model—Zero-Mean First-Order
Markov Model

In stochastic modeling, a random variable is used
to represent an unknown time-invariant quantity,
while an unknown time-varying quantity is modeled
by a random process. As far as temporal properties
are concerned, white noise constitutes the simplest
class of random processes. The second simplest
class is either the processes with independent
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increments, represented by the Wiener processes, or
the so-called Markov processes, which include the
Wiener processes and white noise as special cases.
White noise is “isolated” in time since its value

at one time is uncoupled of any other time, while a
Markov process is “local” in time because its value
at one time depends on values at other times only
through its nearest neighbors. Consequently, it is
natural to consider a Markov process model whenever
white noise models are not good enough.
The Singer model [26] assumes that the target

acceleration a(t) is a zero-mean first-order stationary
Markov process with autocorrelation Ra(¿) =
E[a(t+ ¿)a(t)] = ¾2e ® ¿ , or equivalently, power
spectrum Sa(!) = 2®¾

2=(!2 +®2). Such a process a(t)
is the state process of a linear time-invariant system7

_a(t) = ®a(t) +w(t), ® > 0 (26)

where w(t) is zero-mean white noise with constant
power spectral density Sw = 2®¾

2. Its discrete-time
equivalent is

ak+1 = ¯ak +w
a
k (27)

where wak is a zero-mean white noise sequence with
variance ¾2(1 ¯2) and ¯ = e ®T. The state-space
representation of the continuous-time Singer model
is

_x(t) =

0 1 0

0 0 1

0 0 ®

x(t) +

0

0

1

w(t): (28)

Its discrete-time equivalent is

xk+1 = F®xk +wk =

1 T (®T 1+ e ®T)=®2

0 1 (1 e ®T)=®

0 0 e ®T

xk +wk:

(29)

The exact covariance of wk is a function of ® and T
and can be found in, e.g., [26, 1, 2].
The success of the Singer model relies on an

accurate determination of the parameters ® and ¾2

[27]. The parameter ®= 1=¿ is the reciprocal of
the maneuver time constant ¿ and thus depends on
how long the maneuver lasts. For example for an
aircraft, ¿ 60 s for a lazy turn and ¿ 10–20 s
for an evasive maneuver, as suggested in [26]. The
parameter ¾2 = E[a(t)2] is the “instantaneous variance”
of the acceleration. It was proposed in [26] to model
the distribution of the acceleration by the following
ternary-uniform mixture (see Fig. 1): the target may
move without acceleration with probability P0;
accelerate or decelerate at a maximum rate amax with

7A stationary Markov process with a rational power spectrum (as is
the case here) is equivalent to the state of an asymptotically stable
linear time-invariant system excited by strictly white noise: Every
such process can be represented as the state of such a system and
the state of such a system is such a Markov process.

Fig. 1. Ternary-uniform mixture pdf.

equal probability Pmax; or accelerate or decelerate at a
rate uniformly distributed over ( amax,amax). It turns
out that

¾2 =
a2max
3
(1+4Pmax P0)

where Pmax, P0, and amax are design parameters. We
emphasize that Singer model is a maneuver model
and thus P0 should be probability of having a zero
acceleration during a maneuver, rather than probability
of a nonmaneuvering motion. Note also that this
ternary-uniform mixture distribution of acceleration
can obviously be used for other maneuver models and
it is used here only to determine ¾2.

It is clear from (28)–(29) that in the limit:
1) As the maneuver time constant ¿ increases (i.e.,

®T decreases), the Singer model reduces to the CA
model [more precisely, to the white-noise jerk model
since cov(wk) reduces to Q of (22) instead of Q of
(24)]. If the following direct discrete-time counterpart
of (28) were set up

xk+1 =

1 T T2=2

0 1 T

0 0 ¯

xk +G3wk (30)

then its limit as ¿ increases would be the
Wiener-sequence acceleration model. This relationship
between the Singer and CA models makes sense since
the deterministic part of the acceleration in the Singer
model becomes constant in the limit as ¿ increases.

2) On the other hand, as the maneuver time
constant ¿ decreases (i.e., ®T increases), the Singer
model reduces to the CV model. In this case, the
acceleration becomes white noise.

Consequently, for a choice of 0 < ®T < , the
Singer model corresponds to a motion in between
of (nearly) constant velocity and (nearly) constant
acceleration. It should thus be clear that the Singer
model has wider coverage than the CV and CA
models.

Many other models have been proposed (see,
e.g., [28–33]) which are equivalent to or are simple
variants of the Singer model. It has been applied
in [33] for angular acceleration as well as linear
acceleration. It is interesting that the same model,
except that ® is data-dependent and time-varying,
was obtained approximately in [34] for the angular
velocity components (pitch and yaw) of the relative
motion between the target and seeker based on
well-known relationships in classical mechanics.
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The Singer acceleration model is a popular model
for target maneuvers (see, e.g., [35–40], [1, 2]). It
was the first model that characterizes the unknown
target acceleration as a time-correlated (i.e., colored)
stochastic process, and has served as a basis for
further development of many effective maneuver
models.
The Singer model is in essence an a priori model

since it does not use online information about the
target maneuver, although it can be made adaptive
through an adaptation of its parameters ®, Pmax, P0,
T, and/or amax. We cannot reasonably expect any
a priori model to have a remarkable effectiveness
for the diverse acceleration situations of actual
target maneuvers. As a consequence of its a priori
nature, the Singer model is also symmetric in that
the assumed ternary-uniform mixture distribution
of the acceleration is symmetric. One of the main
shortcomings of the Singer model stems from this
symmetry; that is, the target acceleration has zero
mean at any moment. Indeed, this is almost the best
one can do a priori without online information about
the target maneuver. Otherwise towards where should
the mean be? However, nothing really prevents us
from using online information if we can withstand a
little more sophistication. Several more sophisticated
acceleration models have been proposed to remedy
this shortcoming. They are described next.

E. Mean-Adaptive Acceleration Model

An acceleration model, called the “current” model
by its authors, proposed in [41], is in essence a Singer
model with an adaptive mean; that is, a Singer model
modified to have a non-zero mean of the acceleration:
a(t) = ã(t) + ā(t), where ã(t) is the zero-mean Singer
acceleration process, defined by (26), and ā(t) is the
mean of the acceleration, artificially assumed constant
over each sampling interval. Such a non-zero-mean
acceleration satisfies

_a(t) = ®ã(t)+w(t) or _a(t) = ®a(t)+®ā(t)+w(t)

(31)

since _a(t) = _̃a(t) over any sampling interval. The
estimate âk of ak from all available online information
(i.e., the sequence zk of observations through time k)
is taken to be the “current” value of the mean āk+1,
hence, the name. It is potentially more effective than
the Singer model.
The state-space representation of this model is

_x(t) =

0 1 0

0 0 1

0 0 ®

x(t) +

0

0

®

ā(t) +

0

0

1

w(t)

(32)

excluding the time instants at which samples are
taken since ā(t) is assumed piecewise constant. The
discrete-time equivalent is

xk+1 = F®xk +

T2=2

T

1

(®T 1+ e ®T)=®2

(1 e ®T)=®

e ®T

āk +wk

(33)
where F® was given in (29). These two equations
differ from the Singer model only in the additional
terms associated with ā(t) and āk, respectively. For
example, the noise w(t) and wk are identical to
those in the Singer model. Note also that this model
corresponds to a Singer model with noise w of a
non-zero adaptive mean.

A key underlying assumption of the “current”
model in [41] (but not so stated explicitly) is that
āk+1 = âk, or more specifically,

āk+1
¢
=E[ak+1 zk] = E[ak zk]

¢
= âk (34)

where zk stands for all measurements through time
tk. This is questionable and can actually be avoided.
Since the last equation of (33) reads

ak+1 = e
®Tak + (1 e ®T)āk +w

a
k (35)

we propose to improve the “current” model by
replacing āk+1 = âk with the following recursion

āk+1 = E[ak+1 zk] = e ®TE[ak zk] + (1 e ®T)āk

= e ®Tâk + (1 e ®T)āk: (36)

Such a relationship makes better sense because āk+1
depends on the current estimate âk as well as past
information āk . However, what is resulting is no
longer a purely current model.

In the “current” model, the a priori (unconditional)
probability density f(ak+1) of the acceleration
ak+1 at time k+1 in the Singer model is replaced
by a conditional density f(ak+1 âk). Clearly, this
conditional density carries more accurate information
and is better to be used than the a priori density, as
explained before. The following conditional Rayleigh
density (see Fig. 2) was proposed in [41] for ak+1:

f(a âk) =

c 2
k
(amax a)exp

(amax a)2

2c2
k

1(amax a) âk > 0

c 2
k
(a a max)exp

(a a max)
2

2c2
k

1(a a max) âk < 0

where 1( ) is the unit step function; a max is the
negative acceleration limit, not necessarily equal to
amax; and ck is an âk-dependent parameter. Note

that the ternary-uniform distribution assumption in
the Singer model was made only out of the need
to calculate the error variance of the acceleration.
Similarly, this conditional Rayleigh assumption was
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Fig. 2. Conditional Rayleigh model.

Fig. 3. Asymmetric pdfs of normal acceleration.

made for the sole purpose of obtaining the variance of
the acceleration prediction, which turns out to be

¾2k
¢
=E[(ak+1 āk+1)

2 âk] =

4 ¼

¼
(amax âk)

2 âk > 0

4 ¼

¼
(a max + âk)

2 âk < 0
:

This result is valid only under the simplifying
assumption that E[ak+1 zk] = E[ak+1 âk], which is
the case when âk is a sufficient statistic of z

k for ak+1.
Applications of the “current” model can be found

in the literature, e.g., to a benchmark tracking problem
[42].

F. Asymmetrically Distributed Normal Acceleration
Model

Target acceleration can be decomposed along
two directions: lift (normal to the target velocity and
wing directions for an aircraft) and thrust or drag
(along the velocity direction). Each component can
be modeled by a time-correlated random process.
The nonnormal component can be modeled well by
the Singer model. However, this is often not the case
for lift, which is usually the dominant one, especially
during a maneuver. Its direction is determined by the
target aspect angle and its magnitude can be modeled
as a colored random process with an asymmetrical
distribution. It was proposed in [43] that the normal
acceleration an(t) be modeled as an asymmetric and
deterministic function of a zero-mean first-order

Gauss-Markov process b(t):

an(t) = ®+ ¯e
°b(t) (37)

where ®,¯,° are design parameters, depending on
the particular target type; b(t) satisfies the equation
of the Single model _b(t) = (1=¿)b(t) +w(t), where
¿ is the correlation time constant of b(t), which in
general differs from that of an(t). As shown in Fig. 3,
three typical choices of ®,¯,° and the corresponding
(highly asymmetrical) probability density functions
(pdfs) were given in [43], including one [(®,¯,°) =
(8, 4,0:5)] that is considered typical of modern
piloted aircraft in evasive maneuvers.

Both pros and cons of this model stem from the
fact that the parameters ®,¯,° are target-type specific.
It is more accurate than the Singer model at the
cost of designing these parameters, which requires
knowledge of the target type, obtained either a priori
or a posteriori. The shortcoming of the Singer model
with a symmetric pdf is overcome by the use of
additional information of target type in this model.

Note that the temporal correlation of the
acceleration in this model does not have a rational
power spectrum and is much more complicated
than in the Singer model. It would be interesting
to compare this model with a Singer model of the
normal acceleration an having the initial asymmetric
pdf an(t0) = ®+ ¯e

°b(t0) with the same parameters
®,¯,° as above.
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G. Markov Models for Oscillatory Targets

It is not uncommon in reality that acceleration
along one coordinate direction is oscillatory due to,
e.g., wind sway or platform roll. The Singer model is
not very suitable for such practical maneuvers. The
autocorrelation of such acceleration may be described
by

Ra(¿) = ¾
2
ae

® ¿ cos(!c¿ )

= ¾2ae
³!n ¿ cos(!n 1 ³2¿ )

!2n = ®
2 +!2c ,³ = ®=!n

(38)

where ¾2a , ®, !c, ³, and !n are average power,
damping coefficient, actual (damped) frequency,
damping ratio, and undamped natural frequency of
the target acceleration, respectively.
Such an acceleration process is the response of a

second-order prewhitening system to zero-mean white
noise input w(t) with power spectral density 2®¾2a . It
has transfer function

H(s) =
s+!n

s2 +2³!ns+!2n
(39)

and is described by (see, e.g., [44, 12, 11])

_a(t)
_d(t)

=
0 1

!2n 2³!n

a(t)

d(t)
+

1

(1 2³)!n
w(t)

(40)
where d(t) = _a(t) w(t), which can be called
acceleration drift. The state-space model for x=
[x, _x, ẍ,d] is

_x(t) = Ax(t)+Bw(t) =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 !2n 2³!n

x(t)

+

0
0
1

(1 2³)!n

w(t): (41)

Note that the autocorrelation Ra(¿) is not periodic
anymore if ³ 1. More generally, if the target
acceleration has autocorrelation

Ra(¿) =
¾2a
cos µ

e ³!n ¿ cos(!n 1 ³2 ¿ µ) (42)

then the state-space model [44, 12, 11] is given by
(41) with Bw(t) replaced by [0,0,b,c] w(t), where

b =
2¾2a
cos µ

!n sin(' µ)

c =
2¾2a
cos µ

!3n sin('+ µ)

'= tan 1 ³

1 ³2

(43)

and the corresponding transfer function of the
prewhitening system is

H(s) =
bs+ c

s2 +2³!ns+!2n
: (44)

This model was utilized in a multiple-model tracker in
[45].

The discrete-time equivalent of model (41) is
found to be

xk+1 =

1 T F13 F14

0

0 F(!c,®)

0

xk +wk (45)

where

F(!c,®) =

1
2®!c e ®T(2®!c cos !cT+ (®

2 !2c ) sin !cT)
!c(®2 +!2c )

!c e ®T(!c cos !cT+®sin !cT)
!c(®2 +!2c )

0
e ®T(!c cos !cT+®sin !cT)

!c

e ®T sin !cT
!c

0
(®2 +!2c )e

®T sin !cT
!c

e ®T(!c cos !cT ®sin !cT)
!c

F13 =
!c( 3®2 +!2c +2®

3T+2®!2c T) e ®T[!c( 3®2 +!2c )cos !cT ®(®2 3!2c )sin !cT]
!c(®2 +!2c )2

F14 =
!c( 2®+®2T+!2cT) + e

®T[2®!c cos !cT+(®
2 !2c )sin !cT]

!c(®2 +!2c )2

(46)

and cov(wk) = Sw
T

0 e
A¿BB (eA¿ ) d¿ can be found (e.g.,

by Mathematica) but is too tedious to be given here.
A similar but slightly more sophisticated Markov

model was used in [11, 46] for a target trajectory with
oscillations due to wind-induced bending. Assume that
the bending is modeled by a second-order Markov
system with undamped natural frequency !n and
damping ratio ³, along with a standard model of
winds (i.e., a Singer model with correlation time
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constant ¿ = 1=¹), such that the prewhitening system
has the transfer function

H(s) =
S
1=2
w s2

(s+¹)(s2 + 2³!ns+!2n)
=

S
1=2
w s2

s3 +®s2 + ¯s+ °

(47)

where ®= ¹+2³!n, ¯ = !
2
n +2¹³!n, and ° = ¹!

2
n .

This system is described by [11, 46]

_a

ä
...
a

(t) =

0 1 0

0 0 1

° ¯ ®

a

_a

ä

+

0

0

1

w(t)

(48)

where w(t) has power spectrum Sw = c3¾
2 and ¾2 =

R(0) is the mean-square value of the target trajectory
with the following autocorrelation

R(¿) = c1e
¹ ¿ + c2e

³!n ¿ cos(!n 1 ³2 ¿ µ)

(49)

which is a combination of a first-order term and a
second-order term. Here c1, c2, c3, and µ are constants,
depending on ®, ¯, °, and ¾ [46]. Its discrete-time
equivalent can be found in [46].

H. Markov Acceleration Model for Constant Turns

A typical target maneuver, such as a turn, often
has an approximately constant speed and turn rate.
The original Singer model is not very good for such
motion, referred to as a constant turn in this survey.
Let the acceleration a along the x and y directions of
the Cartesian coordinates be ax and ay, respectively:
a= [ax,ay] . Denote by v the constant speed, Á(t)
the (velocity) heading angle, and ! = _Á the constant
turn rate. Under the assumption that both Á and ! as
random variables have symmetric distributions and
are mutually independent, it can be easily shown
that the zero-mean processes ax(t) and ay(t) are
uncorrelated [47]. Note, however, that while the
symmetry assumption is fairly reasonable in practice
for a priori models, the independence assumption is
questionable since the turn rate ! and the heading Á
are actually related by ! = _Á and thus dependent.
Only the model for ax(t) is considered below

since the model for ay(t) can be obtained similarly.
It can be easily shown from the constant-turn equation
ax = ẍ= ! _y= !v sin Á and Á(t+ ¿) = Á(t) +!¿ that
the autocorrelation of ax(t) is given by

R(t+ ¿ , t)

= 1
2v
2E[!2 cos !¿[1 cos 2Á(t)]+ sin !¿ sin 2Á(t) ]e ® ¿

= ¾2(t,¿)e ® ¿ (50)

assuming that the magnitude of the total acceleration
a(t) obeys the Singer model. Clearly, ax(t) is

nonstationary because its second-order statistics
R(t+ ¿ , t) depend on t as well as ¿ . The major
difference between this model and the Singer model
is that here ¾2(t,¿) is a function of t and ¿ . Simply
put, this model is a modified Singer model for a
typical motion, referred to as constant turn (with
constant speed and turn rate). Its nonstationarity is
a consequence of the constant-turn constraint. It is
possible to be more accurate than the Singer model
for a constant turn. The price paid is that the precise
state-space form of this model is complicated. To
have a time-invariant model of ax(t), it is necessary
to consider only those distributions of Á for which
R(t+ ¿ , t) = R(¿). The uniform distribution of Á
over ( ¼,¼] is one of such distributions. To obtain
a state-space model of ax(t), its power spectrum is
derived, which is, however, not of a rational form
and is dependent on the distribution of !. In [47], it
was assumed that the constant turn rate is uniformly
distributed over a given interval [ !max,!max] and the
heading angle is uniformly distributed over ( ¼,¼],
and they are independent.8 It was proposed in [47]
to approximate the irrational power spectrum of
ax(t) by an nth-order rational spectrum to obtain a
simplified state-space model. This yields an nth-order
Markov model. Such a rational approximation may
be obtained numerically, as in [47]. For instance, if
the power spectrum of ax(t) has the following general
second-order rational approximation

S(s) =H(s)H( s) with H(s) =
¯1s+¯2

s2 +®1s+®2

(51)

then the causal and stable prewhitening system is
given by H(s). The corresponding state-space model
is,9 for x= [x, _x, ẍ,dx] ,

_x(t) =

0 1 0 0

0 0 1 0

0 0 0 1

0 0 ®2 ®1

x(t) +

0

0

¯1

¯2 ®1¯1

wx(t)

(52)

where wx(t) is white noise with unity power spectral
density. Note that a horizontal constant turn is covered

8The assumptions made in [47] for this model are not consistent
with each other. For example, Á(t+ ¿) = Á(t)+!¿ indicates that
if Á(t) [ ¼,¼], ! [ !max,!max] and they are independent,
then Á(t+ ¿ ) has a trapezoidal distribution rather than a uniform
distribution. Note that all simplifying assumptions are actually
incorrect. However, such incorrect assumptions may still be used in
complex situations if it leads to great simplicity, such as that of the
PDAF for approximating a Gaussian mixture by a single Gaussian.
What is important is to exercise care, be reasonable, and to judge by
the final outcomes.
9The model given here appears simpler and more reasonable than
what was given in [47].
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by the use of two uncoupled 4-dimensional models
here, but actually it has a more accurate single
5-dimensional model (see Section V).
The second-order model given by (40) is a special

case of this general second-order model (52) with
¯1 = 1, ¯2 = !n, ®1 = 2³!n, ®2 = !

2
n . It follows from

(44) that if ¯1 = b, ¯2 = c, ®1 = 2³!n, ®2 = !
2
n the

target acceleration of this second-order Markov
model has an oscillatory yet stationary autocorrelation
given by (42), but the “exact” autocorrelation is
given by (50), which is nonstationary. Note also
that the above uniform distribution assumption of
the turn rate is better replaced by those of [48],
the Singer’s ternary-uniform mixture or its variants
(e.g., a binary-uniform mixture or a single-point and
uniform mixture) in many practical situations with
additional information of the turn rate.

I. Semi-Markov Jump Process Models

The Singer model approximates the target
acceleration as a continuous-time zero-mean Markov
process. In practice, many target maneuvers involve
an acceleration of a non-zero mean that may be
reasonably assumed piecewise constant. However, the
difficulty here is that neither the time intervals over
which the acceleration mean is piecewise constant
nor the corresponding constant levels of the non-zero
mean are known to a tracker.
One of the simplest piecewise-constant random

processes, known as jump processes, is the so-called
semi-Markov jump process (see [49] for an
engineering-oriented description). It differs from a
Markov jump process only in that it has the Markov
property10 if we consider only time instants of a jump,
but not necessarily at other times, while a Markov
jump process has the Markov property at all times.
In other words, the past and the future states of a
semi-Markov process may be coupled through the
time interval it stays in a state (called sojourn time)
as well as the present state—its value at one time may
depend on values at other time instants through not
only its nearest neighbor state but also the sojourn
time in the state.
Several Markovian jump-mean acceleration

models have been proposed. The first was the one
given in [50–53]. In this method, the unknown
input u(t) (assumed equal to the non-zero mean
of the acceleration a) is modeled as a finite-state
semi-Markov jump process. Specifically, it was
assumed that the possible mean values of the
acceleration are quantized into n known levels
ā1, : : : , ān, and the sequence u(tk) of the input

10That is, the past and future states are independent given the
present state.

among these levels is a semi-Markov process (a
sojourn-time dependent Markov chain) with known
transition probability P u(tk) = āj u(tk 1) = āi ,
i,j = 1, : : : ,n, and sojourn-time probability distribution
function Pij(¿) = P ¿ij ¿ , where ¿ij = tk tk 1 is
the sojourn time at level āi before it jumps to level
āj . Although the concept of such a semi-Markov
jump process formalism was introduced in [50, 51],
only exponentially distributed sojourn time was
considered therein. Note that if the sojourn time has
an exponential distribution, the input process u(t)
is in fact Markov—the semi-Markov formulation
is not needed.11 Moreover, the following model
of the acceleration a(t) as a combination of the
above jump-mean model and the Singer model was
proposed:

a(t) = ¯v(t) + u(t) + ã(t) (53)

where ã(t) is the Singer acceleration of (26), v is
the velocity, u(t) is the unknown acceleration mean,
and ¯ is a drag coefficient. The corresponding
continuous-time state-space representation is, for
x= [x, _x, ẍ] ,

_x(t) =

0 1 0

0 ¯ 1

0 0 ®

x(t) +

0

1

0

u(t)+

0

0

1

w(t):

(54)

In other words, the target acceleration is modeled
as the Singer acceleration with non-zero mean
that is intended to be a semi-Markov (but actually
Markov) jump process. This model can be referred
to as a Markovian jump-mean acceleration model.
The unknown acceleration mean u(t) is estimated
by a weighted sum of the quantization levels:
û(t) = n

i=1 āiP u(t) = āi z(s), s t , where as
in a multiple-model formulation, the weight is the
posterior probability of each level being the correct
one, using all online measurements z(s),s t, as well
as the initial model probabilities, model transition
probabilities, and the sojourn time distribution.
Fig. 4 depicts some representative random processes
as models of the target acceleration. Note that a
semi-Markov jump process model for the acceleration
is more effective than a white noise model with a
mean of random jumps.

Three important issues associated with this model
are the design of the input quantization levels, the
transition probabilities, and the sojourn time. This is

11A semi-Markov process with exponentially distributed sojourn
time in each state is actually a Markov process. This is a
consequence of the unique memoryless property of the exponential
distribution—knowledge of time already spent in a state does
not alter distribution of a future state. Similarly, a discrete-time
semi-Markov process is Markov only if the sojourn time has a
geometric distribution.
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Fig. 4. Representative random acceleration process models. (a) Zero-mean white noise. (b) Zero-mean colored noise. (c) Jump-mean
white noise. (d) Jump-mean colored noise.

Fig. 5. Gamma densities with unity mean value.

similar to model-set design for the multiple-model
method [54]. This should not be a surprise because
this jump-mean model actually amounts to multiple
models of the (quantized) input in a degenerated form.
The model proposed in [50, 51] for the unknown

input u is a discrete-time, finite-state (semi-)Markov
process. A continuous-time counterpart was proposed
in [55]. A sojourn-time dependent Markov chain
model for target motion was proposed in [56] in the
context of the multiple-model approach (see [17]
also).
For simplicity, the sojourn time in a state is oft

modeled as having an exponential distribution in
the above “semi-Markov” formalism. The point (or
counting) process associated with such an independent
sojourn time process is a Poisson process. Such
a sojourn time ¿ has a monotonically decreasing
probability density. This implies that very small ¿
would occur most frequently of all ¿ within a time
interval of the same length. This is not consistent with
the distribution of the durations of practical target
motions. To correct this deficiency, it was proposed in

[57] that the sojourn time be assumed an independent
process having a gamma distribution (see Fig. 5),
which includes exponential as a special case with
®= 1. Such a semi-Markov process and its embedded
point process are both known as gamma-renewal
processes [58] and are generalization of the above
Markov process with exponential sojourn time and
its embedded Poisson process. The word “renewal”
was coined in stochastic processes with regard to
the failure times of certain equipment (i.e., sojourn
times in our case), and thus the value of the counting
process models the number of renewals that must be
made to keep the equipment in working order.

Although it appears more representative of
the actual maneuvers, the renewal model is rather
complicated due to its non-Markovian nature.
However, similar to modeling of the non-Markov
state process of a system driven by colored noise, the
prewhitening technique can be used here. The transfer
function of this (usually first- or second-order)
prewhitening system or its approximation can be
obtained from the equilibrium power spectrum of
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the semi-Markov maneuver process. This leads to
an (approximate) state-space representation of the
renewal model. Simulation results of an application
of the renewal model to an agile target that executes
constant turns indicates that the performance
improvement is not commensurate with the model and
algorithm complexity [57], but is significant for an
image-enhanced tracking system based on the fusion
of a microwave radar and an infrared imaging sensor
[59].
The renewal model was proposed in [57] for

the turn rate. It can clearly be applied for target
acceleration, its mean value, etc. In fact, following the
idea of [50, 51] for an acceleration process, the turn
rate can be modeled as the sum of its mean that obeys
the above renewal model and a zero-mean first-order
Markov process that obeys the Singer model. It would
be interesting to compare its applicability with that of
the renewal model above.

J. Jerk Models

Acceleration Models versus Jerk Models:
Jerk is the derivative of acceleration. In most
coordinate-uncoupled models, it is the target
acceleration that is chosen to be the descriptor of a
target maneuver and modeled as a random process.
This is most natural from mechanics, kinematics, and
vehicle dynamics since acceleration is directly related
to the force acting on the target. That is why target
acceleration is usually taken to be the control input u.
However, for some targets, particularly agile targets, it
may be more convenient to use a random jerk process
to model the target maneuvers. A jerk model differs
from an acceleration model usually in simplicity,
depending on whether the target motion is better
described by a random process model of the jerk or
the acceleration. On the other hand, however, jerk in a
jerk model must be estimated, the accuracy of which
is usually by far poorer than acceleration estimates
since only position (and Doppler) measurements are
usually available.
First-Order Markov Jerk Model: The first-order

Markov model as proposed by Singer is for target
acceleration. However, the same modeling method can
be applied to other target functions, e.g., target jerk.
This method was indeed applied in [60, 61] to the jerk
process as the maneuver forcing function; that is, the
jerk is modeled as a zero-mean first-order Markov
process, exactly in the same manner as the Singer
model for acceleration. The derivation is in a manner
completely analogous to that of the Singer model.
This model has a higher dimension than the Singer
acceleration model and the performance improvement
shown in [60, 61] is not convincing because the test
scenario does not appear realistic.

Non-zero-Mean Jerk Model: Note first that
although the Singer model is usually regarded as
a model for the target acceleration, it can also be
interpreted as a zero-mean jerk model in which the
target jerk _̃a(t) is defined by _̃a(t) = ®ã(t) +w(t)
with ã(0) = 0, which is a zero-mean process. A
non-zero-mean jerk model was proposed in [62] by
introducing an additional term in the Singer-model
equation

_a(t) = ®a(t)+w(t) + _̄a (55)

where _̄a is a non-zero expected jerk. Note that this
is not equivalent to assuming _a(t) = _̃a(t) + _̄a directly,
where _̃a(t) is the zero-mean Singer jerk process. It
was proposed in [62] to determine the mean jerk
_̄a adaptively from the most recent estimates of the
target velocity and acceleration under an assumed
coordinated-turn maneuver, as discussed in detail in
Section VIC. The noise level of w was also proposed
to be determined adaptively from the most recent
estimate of target orientation and expected maneuver
level. This model and the “current” model are the
same in spirit—they aim at improving the Singer
model by adding a non-zero-mean term to equations
that describe the acceleration. As is clear from a
comparison of (32) and (55), they would be equivalent
if _̄a= ®ā(t), where ā(t) is the assumed piecewise
constant mean of the acceleration. Consequently, their
difference lies mainly in how mean jerk _̄a and mean
acceleration ā are obtained.

The above model was refined in [63] for the
coordinated-turn maneuvers by removing the
acceleration mean to yield

_a(t) = ®[a(t) ā(t)]+w(t) + _̄a: (56)

On the other hand, since mean jerk is equal to the
derivative of the expected acceleration, the noiseless
part of this equation also follows from taking
derivative on both sides of a(t) = ã(t) + ā(t), where
ã(t) is the Singer acceleration. Thus, this model and
the “current” model differ only in that the expected
acceleration ā(t) here is not assumed constant over
each sampling interval.

V. 2D HORIZONTAL MOTION MODELS

Most 2D and 3D target maneuver models are
naturally turn motion models. These models are
usually established relying on target kinematics, in
contrast to those of the previous section that are based
on random processes. This is understandable since
random processes are more natural for modeling time
correlation than describing spatial trajectories where
kinematics is a more appropriate tool.

2D horizontal motion models are described in this
section generally in an order from the simplest to the
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Fig. 6. Geometry of 2D target motion.

most sophisticated. 3D motion models, including those
for (nonhorizontal) planar motion in the 3D space, are
described in the next section.
Coordinate-coupled target models are highly

dependent on the choice of the state components.
The choice of the state components (and implicitly
the respective kinematic model) is not a trivial
problem [64], where target dynamics, accuracy of
approximations, sensor coordinate system, among
others, must be taken into account.
Various (noiseless part of) kinematic models

proposed for tracking of a target moving in the
horizontal plane can be comprised from the following
standard curvilinear-motion model from kinematics
(see Fig. 6):

_x(t) = v(t)cos Á(t) (57)

_y(t) = v(t)sin Á(t) (58)

_v(t) = at(t) (59)

_Á(t) = an(t)=v(t) (60)

where (x,y),v,Á are the target position in Cartesian
coordinates, ground speed (airspeed plus wind speed),
and (velocity) heading angle, respectively, and at and
an are the target tangential (along-track) and normal
(cross-track) accelerations in the horizontal plane,
respectively. This model is fairly general—it accounts
for along- and cross-track accelerations, and reduces
to the following special cases:
1) an = 0, at = 0—rectilinear, CV motion,
2) an = 0, at = 0—rectilinear, accelerated motion

(CA motion if at = constant),
3) an = 0, at = 0—circular, constant-speed motion

(CT motion if an = constant).
The last case above with a constant an, which

has a constant speed and a constant turn rate, is
referred to as a constant turn (CT) in this survey
but is often referred to as a coordinated turn (CT)
in target tracking, due to an abuse of terminology in
our opinion. The motion referred to as a coordinated
turn in aviation is in fact not so simple and limited,
which refers to certain constraints in terms of flight
dynamics, rather than this purely kinematic model.
(This is addressed in more detail in Section VIC,
including a more reasonable definition in target
tracking.) Such motion is preferably specified in terms
of the turn rate ! = _Á.

The following variant of (60) was used in [65, 66]:
_Á= an=v, where an = an sin( Ã) is the projection of
the actual normal acceleration an on the horizontal
plane and Ã is the roll (i.e., bank) angle. This variant
makes explicit the relationship between the normal
acceleration in the horizontal plane and the actual
normal acceleration in a bank-to-turn horizontal
motion.

A. CT Models with Known Turn Rate

These models presume that the target moves with
(nearly) constant speed v and (nearly) constant angular
(turn) rate !. Assuming ! is known leads to (only
four-dimensional) state vector, e.g., x= [x, _x,y, _y] , in
the Cartesian coordinates. It follows immediately from
(57)–(60) that such a circular motion is described by
(5) with f(x,u, t) = [ _x, ! _y, _y,! _x] ; that is,

_x(t) =

_x(t)

! _y(t)

_y(t)

! _x(t)

+Bw(t) = A(!)x(t) +Bw(t)

(61)

A(!) =

0 1 0 0

0 0 0 !

0 0 0 1

0 ! 0 0

, B =

0 0

1 0

0 0

0 1

where white noise w = [wx,wy] has the power
spectral density diag[Sw,Sw]. This CT model is linear
since ! is known. Its discrete-time equivalent is
found to be

xk+1 = Fct(!)xk +wk

=

1
sin !T
!

0
1 cos !T

!

0 cos !T 0 sin !T

0
1 cos !T

!
1

sin !T
!

0 sin !T 0 cos !T

xk +wk

(62)
where

Q = cov(wk) =

Sw

2(!T sin !T)
!3

1 cos !T
!2

0
!T sin !T

!2

1 cos !T
!2

T
!T sin !T

!2
0

0
!T sin !T

!2
2(!T sin !T)

!3
1 cos !T

!2

!T sin !T
!2

0
1 cos !T

!2
T

:

(63)
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Its direct discrete-time counterpart (see [67, 1, 2]) is
better known, given by (62), where wk is replaced by
diag[G2,G2]wk with G2 defined in (14) and a directly
defined cov(wk). The (zero-mean, Gaussian, white)
noise w in the above is used to model the perturbation
of the trajectory from the ideal CT motion.
An approximation12 of the noiseless part of (62) is

[68, 69]:

Fct(!)xk

1 T 0 !T2=2

0 1 (!T)2=2 0 !T

0 !T2=2 1 T

0 !T 0 1 (!T)2=2

xk

(64)

=

x+[_x (1=2) _y!T]T
_x _y!T (1=2) _x(!T)2

y+[_y+ (1=2) _x!T]T
_y+ _x!T (1=2) _y(!T)2

which is a second-order polynomial in !. It provides
a simple but less accurate alternative to the exact CT
model. It is of certain value when a nonlinear tracker
(e.g., extended Kalman filter (EKF)) is designed with
a state vector that includes the (unknown) turn rate.
However, it is valid only for !T 0, which may be
violated in many cases with large sampling interval T,
such as in an air traffic control (ATC) system.
In the rare cases where the constant turn rate is

(approximately) known a priori, the above CT model
gives good tracking performance. The necessity of
an exact knowledge about the value of the turn rate
makes the direct use of this model unrealistic for most
practical applications. A natural idea is to replace
the above ! by its estimate, based on, e.g., the latest
velocity estimates, as used in [70, 67, 4]. However,
this may inject unacceptably large errors into the
system. Additional efforts are obviously requisite to
model the motion with an unknown turn rate within
this framework.
Multiple Known Turn-Rate Models: Another

natural solution is based on the use of multiple
models with different, fixed turn rates. This approach
alleviates the effect of the uncertainty in the turn rate
and takes advantage of the simple and linear form of
the dynamic model (73) given the turn rate. In this
approach, the sequence of turn rates !k is modeled
as a Markov (or semi-Markov) chain taking values
in the set !1,!2, : : : ,!n , governed by the transition
probabilities P !k = !i !k 1 = !j , i,j = 1, : : : ,n, as
well as initial probabilities. This approach has been
well established (see, e.g., [67, 4], and [68, 69]),
mostly for ATC tracking applications. Therefore,
a main application of this CT model with known
turn rate is serving as one or more (with different !
values) models in a multiple-model architecture.

12By expanding sin µ and cos µ up to the second-order terms:
sin µ µ and cos µ 1 µ2=2 for µ 0.

B. CT Models with Unknown Turn Rate

These models differ from the above CT models
only in that the turn rate is included as a state
component, to be estimated. As such, they are
described by (61) in continuous-time or (62) in
discrete-time plus an additional equation for !. The
two most popular models for ! are the Wiener process
model

_!(t) = w!(t), in continuous time (65)

!k+1 = !k +w!,k, in discrete time (66)

and the first-order Markov process model

_!(t) =
1
¿!
!(t)+w!(t), in continuous time

(67)

!k+1 = e
T=¿!!k +w!,k, in discrete time (68)

where ¿! is the correlation time constant for the turn
rate, and w is zero-mean white noise of a suitable
level, which can be determined exactly the same
way as for the corresponding models for acceleration
described in the previous section. Some other models
described in the previous section can also be used for
the turn rate. For example, the renewal model of [57]
is one of them.

Discretization of a continuous-time model here
has a unique issue: which discrete-time ! should be
used in Fct(!) of (62)? The most popular way is to use
!k here. Alternatively, it was proposed in [71] to use
!k+1 in Fct(!) instead. This implicit method is more
stable. The difference of the two schemes is somewhat
similar in spirit to that of approximating a derivative
by the forward difference and backward difference
in the finite difference method. With this rough
analogy in mind, it appears that replacing ! in (62)
by !̄ = 1

2(!k +!k+1) would further improve accuracy
since the center point is usually a better approximation
than either of the end points, more or less like the
central difference is more accurate than the forward
difference and backward difference at the cost of more
computation (and possibly numerical instability). For
the current problem, however, no extra computation
is required by this new scheme if the procedure of
solving the linearized equation as proposed in [71] is
used, although possible numerical problems should be
checked. These three schemes lead to the following
three different linearized models by the first-order
Taylor series expansions at [x,!] = [x̂k k, !̂k k] :

Fct(!k)xk = Fct(!̂k k)xk +F!(!̂k k)x̂k k(!k !̂k k)

Fct(!k+1)xk = Fct(!̂k k)xk +F!(!̂k k)

x̂k k(!k+1 !̂k k)

Fct(!̄)xk = Fct(!̂k k)xk +F!(!̂k k)x̂k k(!̄ !̂k k)

(69)
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where F!(!̂k k) = (@=@!)Fct(!) !=!̂k k . If (66) is
used, however, these models have an identical state
prediction because

E[xk+1 zk] = E[Fct(!)xk zk] = Fct(!̂k k)x̂k k (70)

where zk stands for all measurements through time
tk. This follows from E[!̄ zk] = E[!k+1 zk] =
E[!k zk] = !̂k k, a consequence of (66). Nevertheless,
the corresponding covariances differ because different
models are used. That is why these models result
in very similar tracking performance, as reported
in [72] without explanation, for two IMM-EKF
(interacting multiple model) algorithms using the first
two schemes above with real ATC data. The state
prediction would also be different if model (68) is
used.
We point out that it is theoretically more appealing

to obtain a discrete-time model for state vector
x= [x, _x,y, _y,!] by discretizing the following
continuous-time equations jointly:

[ _x, ẍ, _y, ÿ] (t) = ( _x, ! _y, _y,! _x) (t) +w(t) (71)

_!(t) = ®!(t) +w!(t) (72)

where ®= 0 or 1=¿!. It is reasonable to expect an
improvement in performance with this alternative at
the price of an increased complexity.
A continuous-time model is more accurate

than its discrete-time versions, but the latter are
needed for most applications. In the case where
the continuous-time model is nonlinear, such as
the CT models with unknown turn rate, there are
in general at least two approaches to acquiring its
discrete-time linear approximate models. Such models
are needed in the application of a linear (e.g., Kalman)
filter based nonlinear filtering technique. The first
is to linearize the nonlinear equation for the state
first and then discretize the linearized differential
equation (by finding the solution via integration).
This approach is more commonly used because it
is easy. An alternative is to discretize the nonlinear
state-space equation first and then linearize the
discrete-time model. These two approaches are
referred to as discretized linearization and linearized
discretization, respectively, in [73, 64]. The second
approach appears more accurate in general than the
first since linearization usually lose more accuracy
than discretization and thus should be done later.
However, the second approach may not be tractable
in general because discretization requires solving
the nonlinear differential equation, which is often a
great challenge. Fortunately, for the CT motion with
an unknown turn rate, the corresponding differential
equations for the state are simple and the solution
can be readily obtained [73, 64]. The equations of the
nearly CT model, obtained by the first approach, and
some performance comparison results are also given
in [73, 64].

As stated before, the choice of the state vector is
not trivial for the turn models. Essentially two classes
have been proposed. They differ in the representation
of the velocity vector: in the Cartesian and polar
coordinates, respectively.

1) CT Models with Cartesian Velocity: In
this model, the state vector is chosen to be x=
[x, _x,y, _y,!] ; that is, the velocity vector ( _x, _y)
is represented in the Cartesian coordinates.
Consequently, a direct discrete-time version of the
model is given by (see [67, 2]):

xk+1 =
Fct(! ) 0

0 ¯
xk +diag[G2,G2,1]wk (73)

where ¯ = e ®T, ! = !k, !k+1, !̄, or something
similar, G2 was given in (14), wk = [wx,wy,w!]k is
zero-mean white noise with suitable statistics—they
are noise terms for acceleration in the x and y
directions and for turn rate.

This model is known to be used successfully
as one of models in numerous multiple-model
configurations (see, e.g., [74, 67, 2, 75, 4]).

2) CT Models with Polar Velocity: Obviously, the
velocity vector can also be represented in the polar

coordinates as [v,Á] in terms of speed v = _x
2
+ _y

2

and (velocity) heading angle Á= tan 1( _y= _x). The state
vector is thus x= [x,y,v,Á,!] . The corresponding
differential equation is given by (5) with f(x,u, t) =
[v cos Á, v sin Á, 0, !, 0] ; that is

_x(t) = [v cos Á,v sin Á,0,!,0] +w(t) (74)

which follows immediately from (57)–(60) by setting
! and v constant. By linearization first and then
discretization, its discrete-time linearized model is
given in [76] (see also [1]):

xk+1 =

x+(2=!)v sin(!T=2)cos(Á+!T=2)

y+(2=!)v, sin(!T=2)sin(Á+!T=2)

v

Á+!T

! k

+wk

(75)
where wk is white noise with covariance

Q = diag
0 0

0 0
,T2¾2_v ,

T3¾2_!=3 T2¾2_!=2

T2¾2_!=2 T2¾2_!
:

(76)

This model was successfully used as a building block
of a multiple-model algorithm for aircraft tracking
application in an air defense system [77, 78].

The above model uses (65) for the turn rate
per se. Instead, it may be better to use (67). The
corresponding discrete-time model need be modified
accordingly.
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The discretized linearization (i.e., discretization
after linearization) alternative of this model can be
found in [73, 64], along with a comparison of its
performance with that of the linearized discretization
based on a theoretical error analysis13 and Monte
Carlo simulations. It was concluded therein that
whenever possible linearized discretization is
preferable to discretized linearization. For the two
CT models with polar velocity, the former slightly
outperforms the latter. It was also claimed therein that
the CT model with polar velocity outperforms the CT
model with Cartesian velocity.
The use of the following variant of the above

CT model with polar velocity was reported in [79].
Let the state vector be x= [x,y,v,Á,an] ; that is,
replace the turn rate ! in the above model with the
normal (transversal) acceleration an. Then, it follows
immediately from (57)–(60) that the continuous-time
state-space model for the CT motion is given by
(5) with f(x,u, t) = [v cos Á, v sin Á, 0, an=v, 0] . A
discrete-time linear approximation of this model was
obtained based on a refined Euler-Cauchy scheme as
[79]

xk+1 = xk +Tf(xk +
1
2Tf(xk)) +wk (77)

followed by the standard EKF linearization, where
wk is white noise, obtained by a backward difference
of (the derivative of) the continuous-time white
noise. Note that xk+1=2 xk +

1
2Tf(xk). A set of

such unknown acceleration models was included
in a tracker for ATC in [79] to account for possible
horizontal motions.

C. Circular Motion Models

For a circular motion of a target, if its center were
known, the simplest model would be to represent the
circle in the polar coordinates and place the origin at
the circle center. In this coordinate system, the target
dynamic model is linear for x= [½,µ, _µ]

xk+1 = diag[1,F2]xk +diag[1,G2=T]wk (78)

where F2 and G2 were given by (14) and wk is white
noise. The corresponding measurement equation
is pseudo-linear because the noise covariance is
actually state dependent, described in detail in a
subsequent part (see [15] for a preliminary version).
As a result, the Kalman filter is not optimal but
can be nonetheless implemented straightforwardly.
This maneuver-centered CT model was introduced
in [80]. While the idea underlying this model is
intuitively appealing, the inherent nonlinearity of
the problem is not avoided. It obviously relies on
an accurate determination of the center of the turn

13Based on estimation of the Frobenius norm of the neglected terms
in the approximations.

in terms of the sensor coordinate system, which is
inherently a nonlinear problem. The following simple
geometrically oriented procedure of estimating the
center was proposed in [80]. Assume that each target
position measurements are points on the circle; replace
the chord between any two consecutive measurement
points with the straight line segment connecting them;
the center can then be determined from the (average)
intersection of the perpendicular bisectors of two or
more such straight line segments. An essentially the
same procedure was used in [81] for estimating the
center. Note that using the center estimates injects
additional nonlinearities into the system, which are
not accounted for in the above linear model.

D. Curvilinear Motion Model

This model, proposed in [82], is more general than
those considered so far in this section. It accounts
for possibly non-zero normal (cross-track) and
tangential (along-track) target maneuver accelerations
simultaneously. For the Cartesian state vector x=
[x, _x,y, _y] , it follows from the standard equations
of curvilinear motion (57)–(60)14 that this model in
continuous time is given by

_x(t) = Acvx(t) +B(x(t))a(t) +w(t) (79)

where a= [at,an] is the acceleration for the maneuver,
Acv was given by (11), and

B(x(t)) =

0 0

_x(t)
_x(t)2 + _y(t)2

_y(t)
_x(t)2 + _y(t)2

0 0

_y(t)
_x(t)2 + _y(t)2

_x(t)
_x(t)2 + _y(t)2

:

(80)

Pretending the solution formula for the linear system
works for this actually nonlinear case, its discretized
version (by the standard discretization) in the form

xk+1 = Fcvxk +Gk(x)ak +wk (81)

is highly nonlinear because of its dependence on the
target state via matrix B:

Gk(x) =
T

0
eA(T ¿)B(x(kT+ ¿))d¿ (82)

and the integration involved in Gk(x) is hard to
evaluate exactly. It was shown in [82] that Gk(x) can
be found approximately to be, with 'k+1

¢
=Ák +!kT,

14The heading angle Á defined in [82] differs from the traditional
one, which is adopted here.
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Fig. 7. Curvilinear motion trajectories.

Gk(x) Ga(Ák,!k) = Gat(Ák ,!k),

1
!2k
sin 'k+1

1
!2k
sin Ák

1
!k
Tcos Ák

1
!k
cos 'k+1

1
!k
cos Ák

1
!2k
cos 'k+1 +

1
!2k
cos Ák

1
!k
T sin Ák

1
!k
sin 'k+1

1
!k
sin Ák

(83)

Gat(Ák,!k) =

1
!2k
cos 'k+1 +

1
!2k
cos Ák

1
!k
T sin Ák

1
!k
sin 'k+1

1
!k
sin Ák

1
!2k
sin 'k+1 +

1
!2k
sin Ák +

1
!k
Tcos Ák

1
!k
cos 'k+1 +

1
!k
cos Ák

(84)

under the following simplifying assumptions: 1)
the acceleration a is piecewise constant over each
sampling interval [kT, kT+T) and 2) the speed
change over a sampling interval is much smaller than
the speed itself: atkT vk . An analytically equivalent
form15 of (81) is, with at being the only explicit
forcing term,

xk+1 = Fct(!k)xk +Gat(Ák,!k)atk +wk: (85)

Note that while in (81) the maneuver acceleration
term Ga(Ák,!k)ak is “added” to the CV motion,

15It can be obtained by using _xk = (an=!k)cos Ák and _yk =
(an=!k)cos Ák:

in (85) the effect of the tangential acceleration at
[i.e., the Gat(Ák,!k)atk term] is “added” to the CT
(constant-speed constant turn-rate) motion. Equation
(85) makes it clear the capability of this model to
account for “relatively small” tangential accelerations
as well as the normal accelerations, while the
popular CT model accounts only for the latter (see
Fig. 7). Both forms are applicable to tracking targets
performing maneuvers with concurrent non-zero
along- and cross-track accelerations, but attention
should be paid to the approximating assumptions of
the models.

This model, combined with a suitable model
for turn rate, is one of the most sophisticated target
maneuver models for 2D horizontal motions.
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E. Ship Models

The maneuver models surveyed in this paper,
especially those for 2D horizontal motions and
all 3D models of the next section, are particularly
suitable for aircraft. These models were developed for
target tracking purposes. For other (e.g., navigation)
purposes, numerous, more precise dynamic models
can be found in the literature on vehicle dynamics
(see, e.g., [83–86]), which is beyond the scope of
this survey. These models, however, require better
knowledge about the vehicle than what is available
to a tracker. A few of these models have been adapted
to tracking applications, resulting in vehicle dynamics
based models. An example is those for aircraft based
on flight dynamics described in Section VID. Note,
however, that they are not really point-target models.
Likewise, a number of precise ship motion models

based on ship dynamics are available in the literature,
which depend on the particular ship’s form and
size. There exist also less precise but more generally
applicable models. The following model from [87] is
one in the latter class

_x= v sin(Á ¯) (86)

_y= v cos(Á ¯) (87)

_Á= ! (88)

! = K­ (89)

_­ =
v20
2pL2

qL

v0
­+ s31± (90)

_̄ =
v0
2pL

[q¯+ s21±] (91)

v = Kv0 (92)

K = 1+
1:9­2L2

v20

1

(93)

where model noise is not included for simplicity.
Here (x,y), Á, !, ­, ¯, ± are ship position, heading,
(heading) turn rate, velocity vector turn rate,
drift angle, and control ruder angle deviation,
respectively;16 v = v(­) and v0 = v(0) are ship speeds
at turn rate ­ and ­ = 0 (i.e., at the onset of the turn),
respectively; the hydrodynamic constants p,q,s21,s31
depend on ship geometry and size, in particular, ship
length L. The main feature of this model of a ship,
which is a sizable object, is revealed by (89) that
relates two turn rates and by (92) that relates two
speeds. The discretized version of this model with

16Heading is the angle of the longitudinal axis and velocity heading
is the angle of the velocity vector. We use either term if they
coincide or one does not exist (strictly speaking, a point target
without a shape has no heading). Turn rate is usually defined as the
heading change rate.

¯ = 0 is given by [88, 89, 66]

xk+1 = xk +Tvk sin Ák (94)

yk+1 = yk +Tvk cos Ák (95)

Ák+1 = Ák +Tvk[­k +
1
2(­k ­0)Tvk¿e

Tvk¿ ] (96)

­k+1 = ­ke
Tvk¿ +­0(1 eTvk¿ ) (97)

vk = Kv0 = v0(1+1:9­
2
k L

2) 1 (98)

where ¿ = ( p=2+ p2=4 q)=L and ­0 = ­=v0.
The time constant ¿ was set to zero in [88, 90],
resulting in a constant turn rate (i.e., ­k+1 = ­k),
to eliminate the dependence of the model on the
ship-specific hydrodynamic constants. However,
the ship length L was actually treated as known
therein. The unknown ­k was assumed to take on
one of the three possible values 0,­c, ­c with a
preset constant ­c, representing rectilinear, left-turn,
and right-turn motions, respectively, and the tracker
presented therein was based on a multiple-model
algorithm using these three models for ­k.

The above nonlinear model has been proposed for
ship tracking [88, 89, 66]. Other ship dynamic models
are available (see, e.g., [91, 33, 92]), some of which
appear simpler and more popular.

VI. 3D MOTION MODELS

Many of the 2D horizontal models reviewed
above have been considered for application to 3D
tracking of civilian aircraft in ATC systems. Such
targets maneuver mostly in a horizontal plane with
nearly constant speed and turn rate and have little
or limited vertical maneuver, usually performed not
at the time of a horizontal turn. Thus, the altitude
changes are most often modeled independently by a
(nearly) CV model or a random walk model along
z direction, leading to an acceptable accuracy in
practice. However, when the task is to track agile
military aircraft, capable of performing “high-g”
turns in the 3D space (e.g., for tracking in air defense
systems) rather than just horizontally, decoupled
models may be inadequate. Many efforts have been
devoted to solving this problem, and more accurate
models have been developed, which are surveyed next.

A. Basic Kinematic Relations

Let p=OP, v= _p, a= _v= p̈ be target position,
velocity, and acceleration, respectively, in the inertial
(Cartesian) frame =Oxyz, where P is the target
center. Denote = P»´³ as the target body frame.

The angular velocity vector of the target is defined
in the body frame as ­ = (p,q,r) and in an arbitrary
frame (e.g., the inertial frame ) as [93, 86]

­ = p»+ q´+ r³

with p= _́ ³, q= _³ », r = _» ´
(99)
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where », ´, ³ are expressed in that arbitrary frame.
The fundamental relation of kinematics (FRK) [86,
94] states that for any time-varying vector u(t) we
have

du
dt

=
du
dt

+­ u (100)

where u and u are u expressed in the inertial frame
and the body frame , respectively, and ­ is the

angular velocity vector of with respect to . This
relation holds true in all frames. For example,

du
dt

=
du
dt

+­ u (101)

du
dt

=
du
dt

+­ u (102)

where superscripts and denote quantities
expressed in and frames, respectively. In the
sequel, for simplicity we drop superscript and
write _u and ü for du =dt and d2u =dt2, respectively.
However, we maintain the less compact notations
du =dt and d2u =dt2, rather than the misleading _u
and ü because the latter are likely to be incorrectly
interpreted as (du=dt) and (d2u=dt2) , respectively.
Note that since the target body frame rotates as the
target does, we have ­ =­ , where ­ is the angular
velocity vector of the target in the inertial frame .
In what follows, we consider only the important

case where the »-axis of the body frame is aligned with
the velocity vector, that is, » = v=v, where v = v is
the target speed. Then by the Poisson’s formula [93]
_» =­ », we have

_vv v _v
v2

=­
v
v

that is,

_v= _v
v
v
+­ v=

v _v
v2
v+­ v (103)

meaning that the total acceleration is the vector sum
of a linear acceleration (v=v) _v and an acceleration
­ v responsible solely for turning. This relation also
follows directly from FRK (100) with u= v and » =
v=v. Further, it follows from (103) by straightforward
calculus17 that

­ =
­ v
v2

v+
v a
v2

: (104)

It turns out that (103) and (104) are equivalent.
It is clear from (104) that the angular velocity is

given by

­ =
v a
v2

(105)

if and only if ­ v= 0, that is, ­ v. It follows
from (105) that ­ a and that v and a are in a plane
(known as the maneuver plane) orthogonal to ­
and thus the motion is planar, but not necessarily
horizontal, if ­ has a constant direction. Note that

17v a= v _v= v (­ v) = (v v)­ (­ v)v= v2­ (­ v)v.

Fig. 8. Geometry of a 3D orthogonal-velocity motion.

this is the case even if _­ = 0 (i.e., turn rate is not
constant) provided ­ has a constant direction.

Equation (105) plays a central role in most 3D
kinematic models. Virtually all models in the literature
(e.g., [95, 10, 96, 97, 70, 6, 98, 1, 99]) presume
explicitly or implicitly that (105) holds. As shown
above, a necessary and sufficient condition for its
validity is the orthogonality between the linear and
angular velocity vectors. In this sense, models that
obey (105) are orthogonal-velocity models, although
they are widely referred to as “coordinated turn”
models, which is actually a misnomer. The geometry
of these models is illustrated in Fig. 8.

The FRK (100), (103), and (104) (or (105)) are
the key to understand various 3D maneuver models
proposed in the literature.

Since the target tracking community is more
familiar with the matrix language than the vector
analysis and we are more concerned with state-space
models, in the sequel we use the following
relationship repeatedly. Let ­ = [­x,­y,­z] and
v= [_x, _y, _z] . Then

­ v=M­

_x
_y
_z

, M­ =

0 ­z ­y

­z 0 ­x

­y ­x 0

:

(106)

B. Constant-Turn Models

1) 3D Constant-Turn Models: It is clear from
(103) that a constant speed (i.e., _v = 0) motion
corresponds to a v= 0 (i.e., a v) and is described
equivalently by

a=­ v: (107)

Since ­ is unknown in general, one of the simplest
possible way is to augment the state vector by its
components ­x,­y,­z in the inertial frame, to be
estimated. That is, let x= [x,y,z, _x, _y, _z,­x,­y,­z] .
Then (107) becomes

ẍ

ÿ

z̈

=

­x

­y

­z

_x
_y
_z

=M­

_x
_y
_z

=

­y _z ­z _y

­z _x ­x _z

­x _y ­y _x

:

(108)
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If, in addition, ­ is modeled as nearly constant
(i.e., _­ is white noise), then the continuous-time
3D (nearly) CT model—which has (nearly) constant
angular velocity and speed in the 3D space—is given
in the state space by

_x(t) =

0 I3 3 0

0 M­ 0

0 0 0

x(t)+

0

0

I3 3

w(t): (109)

This model is nonlinear since M­ of (106) depends on
the state components ­x,­y,­z.
Note the difference between this model and

those based on (105): while ­ v under (105), ­
of (109), albeit nearly constant, is not necessarily
orthogonal to v, although v and a are orthogonal to
each other under (107). ­ a is true for both models.
To our knowledge, this simple 3D-CT model has not
been considered in the tracking literature, despite
its generality: it can describe constant-speed motion
along non-zero torsion (nonplanar) curves.
This model has a (nearly) constant speed and

angular velocity. An even more general model can
be developed by replacing _­ = 0 with _! = 0, where
! = ­ , resulting in a general constant-turn (constant
speed and constant turn rate) model.
2) Planar Constant-Turn Models: Under an

additional assumption ­ v [or equivalently, (105)]
as well as _­ = 0, it follows from differentiation of
(107) that

_a=­ a=­ (­ v) = (­ v)­ (­ ­)v= !2v

(110)
where the turn rate ! is given by

!
¢
= ­ =

v a
v2

=
v a
v2

=
a

v
: (111)

Therefore, the CT motion can be modeled by a
second-order Markov process

_a= !2v+w (112)

where w is white noise. As explained in footnote
21 right after (123), this motion is (nearly) planar
for small w. This fact, along with _­ = 0 and (105),
implies that this is a planar constant speed and
constant turn rate (or angular velocity) motion. Hence,
(112) is a (nearly) planar CT model.

This popular model can be traced back to [95, 100].
A discussion of the vector models (107) and (110),
along with an analysis and comparison with similar
models, can be found in [99]. These models, along
with several implementations, were reviewed in [1].

The state-space form of this model in the Cartesian
coordinates is clearly given by, with state x=
[x,y,z, _x, _y, _z, ẍ, ÿ, z̈] ,

_x(t) =

0 I3 3 0

0 0 I3 3

0 !2I3 3 0

x(t) +

0

0

I3 3

w(t)

(113)
or with state x= [x, _x, ẍ,y, _y, ÿ,z, _z, z̈] ,

_x(t) = diag[A(!),A(!),A(!)]x(t) +diag[B,B,B]w(t)

(114)

A(!) =

0 1 0

0 0 1

0 !2 0

, B =

0

0

1

(115)

where the white noise w(t) has power spectral density
matrix diag[Sx,Sy,Sz]. Its discrete-time equivalent
model [70] with state x= [x, _x, ẍ,y, _y, ÿ,z, _z, z̈]
is18

xk+1 = diag[F(!),F(!),F(!)]xk +wk (116)

F(!) =

1
sin !T
!

1 cos !T
!2

0 cos !T
sin !T
!

0 ! sin !T cos !T

, cov(wk) = diag[SxQ(!),SyQ(!),SzQ(!)] (117)

Q(!) =

6!T 8sin !T+sin 2!T
4!5

2 sin4(!T=2)
!4

2!T+4 sin!T sin 2!T
4!3

2 sin4(!T=2)
!4

2!T sin 2!T
4!3

sin2!T
2!2

2!T+4 sin !T sin 2!T
4!3

sin2!T
2!2

2!T+sin 2!T
4!

: (118)

18The covariance cov(wk) given here appears more reasonable than
what was suggested in [70, 1].
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The motions in the x,y,z directions in this model
are coupled only through the common turn rate !.
This model specifies a constant-turn motion in the
so-called maneuver plane,19 defined by the velocity
and acceleration vectors.
This model relies on knowledge of !. If ! is

unknown, a straightforward way is to augment the
state vector by ! and estimate ! (see Section VB).
This, however, increases the state dimension and
makes the model highly nonlinear. An alternative is
to compute ! from the best speed and acceleration
estimates by (111) so as to take advantage of the
linear structure of (116) at a given !. The use of
speed and acceleration estimates will, however,
inject additional errors into the model and result
in accuracy degradation, especially when the
orthogonality property a v= 0 is severely violated
for a constant-speed motion. A possible rescue
is to impose a v= 0 as a kinematic constraint,
which, however, turns the dynamic model into a
highly nonlinear one if it incorporates the constraint
directly. Mainly to avoid this nonlinearity, an
alternative approach was adopted in [101, 70, 102,
103] where the constraint was incorporated into a
pseudomeasurement model, described in detail in the
subsequent part of this survey on measurement models
(its conference version is [15]).

C. Variable-Turn Models

The above models based on the constant-speed
condition (107) and the constant turn-rate assumption
are restrictive in describing the variety of possible
maneuvers. More sophisticated and potentially more
accurate models are surveyed next. They do not
assume that a target moves with a constant turn
and are thus capable of describing more complex
maneuvers.
1) Planar Variable-Turn Model: By applying the

FRK to the target velocity vector v, we have

_v=
dv
dt

+­ v: (119)

Differentiation and applying the FRK again yield

v̈=
d2v
dt2

+ _­ v+2­ _v ­ (­ v):

(120)

This equation describes a general motion of a rigid
body in space [96]. Under the orthogonal-velocity

19In the special case where the maneuver plane is horizontal, this
model simplifies greatly and it is more commonly used than (the
more general) model (57)–(60) for the derivation of some horizontal
CT models [1]. In this case (i.e., at = 0 and ! = an=v), however,
both models are essentially equivalent.

condition ­ v, the angular velocity vector ­ is
given by (105). Substituting it in (120) results in
modeling the target acceleration as a second-order
Markov process with state dependent coefficients20

in the inertial frame

_a= 2®a (2®2 +!2)v+w, w=
d2v
dt2

+ _­ v

(122)
where

!
¢
= ­ =

v a
v2

, ®=
v a
v2
: (123)

This model, along with one in a slightly different
form in rotating line-of-sight (LOS) coordinates, was
proposed in [96]. Both forms were utilized therein for
two highly accurate trackers.

The noise term w in (122) reflects the effect of
the forces and moments applied to the target. It was
modeled in [96] as zero-mean (Gaussian) white noise
with power spectral density matrix diag[Sx,Sy ,Sz]
that is to be designed. The damping coefficient ® is
a normalized target drag (i.e., the ratio of negative
tangential acceleration to target speed). Both ® and
turn rate ! can be interpreted as unknown model
parameters. As stated in [96], it can be shown that
(122) defines zero-torsion (planar) trajectories (see
Fig. 9) if and only if w= 0, that is, non-zero noise
components w account for out-of-plane motion.21 As
such, (122) is a (nearly) planar variable-turn model if
its noise term w is small.

A possible enhancement of this model would be to
model w in the body frame, which more accurately
reflects the nature of the acting forces, and then
transform it to the inertial frame.

This planar variable-turn model is more general
and perhaps more accurate than the planar CT model
of (112). It reduces to the model (112) [with ! given
by (111)] for a CT motion under the constant-speed
condition (i.e., a v= 0). When the speed is not
constant, the damping term due to non-zero ® allows
the model to automatically adapt itself to target
maneuvers. Both ® and ! vanish for an unaccelerated
motion.

It is straightforward from (122) to obtain the
following continuous-time state-space form of
this model in the inertial frame with state x=

20The formulation given here follows from [96, (5a) and (5b)] in
view of the identity

a2

v2
=

va

v2

2

(cos2 µ+sin2 µ) =
v a
v2

2

+
v a
v2

2

= ®2 +!2:

(121)
21This implies that as a special case with ®= 0, (112) with w= 0
describes a planar motion.
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Fig. 9. 3D planar variable-turn trajectories.

[x, _x, ẍ,y, _y, ÿ,z, _z, z̈]

_x(t) = diag[A(!c,®),A(!c,®),A(!c,®)]x(t)

+diag[B3,B3,B3]w(t) (124)

A(!c,®) =

0 1 0

0 0 1

0 (®2 +!2c ) 2®

=

0 1 0

0 0 1

0 !2n 2³!n

(125)

B3 =

0

0

1

where !2n = ®
2 +!2c , !

2
c = ®

2 +!2, and ³ = ®=!n, and
the white noise w(t) has power spectral density matrix
diag[Sx,Sy,Sz].
It can be seen by comparing (124) with (40) that

if the white noise term of this model were replaced
by that of (40), the velocity component along each
Cartesian coordinate would be implicitly modeled as
a random process having an oscillatory exponentially
decaying autocorrelation

R _x(¿) = R _y(¿) = R _z(¿) = ¾
2e ® ¿ cos(!c¿)

= ¾2e ³!n ¿ cos(!n 1 ³2¿) (126)

Note that both the actual oscillation frequency !c and
the undamped natural frequency !n of the velocity
autocorrelation functions increase with the damping
coefficient ® for a given physical turn rate ! of the
target; the frequencies and the turn rate are equal
(i.e., !c = !n = ! ) only if there is no damping; the
autocorrelations R _x(¿) = R _y(¿) = R _z(¿) are not periodic
when damping is large (i.e., ³ 1). This makes good
sense in view of the physical meanings of ®, !, !c,
and !n.

Like the planar CT model (116), motions in
different coordinates in this model are coupled only
through the common ® and !c. This is another
difference from that of (40) with acceleration replaced
by velocity, where motions in different coordinates are
not coupled (i.e., different values of ® and !c may be
involved).

We found the discrete-time equivalent model as

xk+1 = diag[F(!c,®),F(!c,®),F(!c,®)]xk +wk (127)

Q = cov(wk) = diag[SxQ(!c,®),SyQ(!c,®),SzQ(!c,®)]

(128)

where F(!c,®) was defined by (46) and Q(!c,®) is
given by

q11 =
A+B+C

4®!2(®2 +!2)3

A= e 2®T[(®2 3!2)c+ (!2 3®2)s (®2 +!2)2]

B = 8e ®T®![2®!c0 + (®
2 !2)s0]

C = ®2!2(4®T 11)+!4(1+4®T)

q12 =
e 2®T(!c0 +®s0 e ®T!)2

2!2(®2 +!2)2

q13 =
e 2®T(c s ®2 +!2) + 4e ®T®!s0 !2

4®!2(®2 +!2)

q22 =
e 2®T(c s ®2 !2) +!2

4®!2(®2 +!2)

q23 =
e 2®Ts20
2!2

q33 =
e 2®T(c+ s ®2 !2) +!2

4®!2

c = ®2 cos 2!T, s= ®! sin 2!T

! = !c, c0 = cos !T, s0 = sin !T:
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2) Coordinated-Turn Models: By the FRK (100)
with u= ag

¢
=a g, where g stands for the constant

gravitational acceleration in the inertial frame, we
have in the body frame

( _ag) =
dag
dt

+ (­ ag) : (129)

Let T be the thrust (minus drag) and L the lift, along
» and ´ directions, respectively. Then, we have ag =
[T, L, 0] , ­ = [p, q, r] , and

(­ ag) =M­

T

L

0

, M­ =

0 r q

r 0 p

q p 0

:

(130)

Since ( _ag) = T
BF
IF _ag, where T

BF
IF is the transform from

the inertial frame to the body frame, (129) becomes

TBFIF _ag =

_T
_L

0

+

0 r q

r 0 p

q p 0

T

L

0

: (131)

An equivalent version of this general model in the
body frame for the so-called coordinated turn motion
was used in [62] to derive an equation for mean jerk.
A class of motion in the 3D space, known as

coordinated turn, is defined (for aircraft) by the
following conditions, introduced originally in [62]
and refined in [98]: 1) (mean) thrust T (minus
drag)—acceleration along the velocity direction—and
(mean) lift L (acceleration normal to the aircraft
wing plane) are constant; 2) (mean) roll angle Ã
(angle around the longitudinal axis) is constant; and
3) (mean) angle of attack and sideslip22 are zero.
These conditions confine the (average) target motion
to a plane, known as the maneuver plane. They are
consistent with the bank-to-turn characteristics of
fixed-wing aircraft. Clearly such an (average) motion
does not necessarily have a constant turn rate or
constant speed.
Under these coordinated turn conditions, we have

_T = 0, _L= 0, p= _́ ³ = (­ ´) ³ = 0 (because ­,
´, ³ are in the same plane orthogonal to »), and thus
(131) becomes

_a= _ag = T
IF
BF

rL

rT

qT

, TIFBF = (T
BF
IF )

1 = (TBFIF ) :

(132)
The expectation of this model is the mean
jerk equation obtained in [62]. Its state-space
representation can be obtained straightforwardly.

22The angle of attack is the angle between the heading and the
velocity vector projected onto the longitudinal symmetric plane
and the sideslip is the angle between the velocity vector and the
longitudinal symmetric plane.

This coordinated turn model involves unknown
parameters T, L, q, r, which can be obtained as
follows [62]. By the FRK (100) with u= v, we have
_v= dv =dt+­ v, which in the body frame is

dv
dt

=

_v

0

0

+

0 r q

r 0 p

q p 0

v

0

0

(133)

where v is the target speed. On the other hand,
(dv=dt) is the total acceleration a in the body frame,
that is,

dv
dt

= a =

T

L

0

+

g»

g´

g³

(134)

where g = [g»,g´,g³] is the gravitational acceleration
in the body frame. It thus follows that

r = (L+ g´)=v, q= g³=v

T = _v g» , L= a g T:
(135)

The target body frame is determined by the
(estimated) velocity—to which the thrust T is
parallel—and lift vector L.

Modeling the target accelerations in the body
frame is simpler than in the inertial frame. However,
the fact that it is in a frame different than the sensor
inertial frame induces difficulties. In essence, all
ways around these difficulties involve explicitly or
implicitly conversion from one frame to the other,
which can be done accurately in general only if
accurate knowledge of the target position and model
parameters is available. In addition, while this model
is intuitive appealing, its implementation is rather
complicated due to, e.g., its dependence on thrust, lift,
and other parameters.

Furthermore, for the purpose of predicting target
position in an antiaircraft fire control application
(not as part of any filter), the following model in
the maneuver plane was employed in [62]. The
aircraft motion is described by a standard curvilinear
motion model of (57)–(60) in the maneuver plane with
acceleration (at,an) determined by the thrust, lift, and
gravity as

at = T+ gt, an = Lcos Ã+ gn (136)

where Lcos Ã is the projection of the lift along the
normal direction and Ã is the roll angle. Here, gt and
gn are the gravity components along target velocity
and normal directions, respectively, given by

gt = g» cos Á+ g´ sin Á, gn = g» sin Á+ g´ cos Á

(137)

where Á is the target velocity heading in the fixed
Cartesian frame in the maneuver plane. Likewise, the
target position (x,y) (and speed v) in (57)–(60) are all
in the fixed Cartesian frame in the maneuver plane.
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Clearly, the approximate curvilinear model
of Section VD in the state-space form can be
used here in the maneuver plane. However, the
small speed-change assumption as well as the
piecewise-constant acceleration assumption on which
this approximate model is based should be kept in
mind. These assumptions are not valid for a large
thrust and sampling interval.
3) Generalized Coordinated-Turn Model:

Applying the FRK (100) to the target acceleration
(with the gravity subtracted) ag = a g gives

_a=
dag
dt

+­ (a g): (138)

Under the orthogonal-velocity condition ­ v
[i.e., (105)] and the constant acceleration condition
dag =dt = 0, (138) becomes

_a=
v a
v2

(a g) (139)

which is the kinematic equation of [98]. It can be
verified that the curvilinear trajectories generated by
(139) have zero torsion, that is, they are confined to
the maneuver plane.
If the gravity were not extracted, then the

orthogonal-velocity condition (105) and the constant
acceleration condition da =dt = 0 (not equivalent to
dag =dt = 0) would lead to the following second-order
model in terms of the damping coefficient ® and turn
rate !

_a=
v a
v2

a=
v a
v2
a

a2

v2
v= ®a (®2 +!2)v

(140)
which is similar to (122).
The conditions ­ v and dag =dt = 0 are closely

related with coordinated turns. The constant thrust
and lift condition validates assumption dag =dt= 0;
the zero angle of attack and sideslip condition aligns
the »-axis of the real body frame (as defined in flight
dynamics) with the assumed velocity-based body
frame; and the constant roll angle condition validates
assumption ­ v= 0 since the roll angular rate is
the projection of the angular velocity to the heading
direction: _Ã =­ (v=v). As such, a coordinated turn
motion can be readily described by (139) and thus
(139) is a generalized model for coordinated turn and
quasi coordinated turn motions.
This model was originally proposed in [98],

implemented in [104], and later analyzed and
validated in [99] by using real data of aircraft
trajectories.
It was proposed in [104] to use a (vector-valued)

Singer process u to model the perturbations in
acceleration in the body frame. As a result, the
state-space representation of this generalized
coordinated turn model for the state vector x =

[p ,v ,a ,u ] is [104]

_x=

v

a
v a
v2

(a g) +T(v,a)u

°u

x+

0

0

0

I3 3

wb (141)

where p, v, a are the position, velocity, and
acceleration vectors, respectively, in an inertial frame
and T(v,a) = [t, b, n] is the coordinate transformation
matrix from the target body frame to the inertial
frame, where t= v=v, b= (a g) v= (a g) v ,
n= b t are the unit tangential, normal, and binormal
vectors, respectively.

In this model, the (unperturbed) motions in the
three spatial directions are coupled and confined to
the maneuver plane, but not necessarily at a constant
speed. The time-correlated perturbation u accounts for
the (mostly out-of-plane) unmodeled motions and is
modeled in the body frame to be more precise. This,
however, necessitates a coordinate transformation.
This in turn introduces a dependency of the model on
velocity and acceleration estimates, which may lead
to a model error and thus accuracy degradation. This
generalized coordinated turn model does not estimate
the turn rate explicitly and is highly nonlinear.

While the constant-turn models of Section VIB
and the coordinated-turn models of Section VIC are
similar, they are based on two quite different ideas.
The former are of kinematic type, which aim at fitting
typical target trajectories during a maneuver, while
the development of the latter models relies on flight
dynamics explicitly.

The generalized coordinated turn model (139) is
more convenient than the coordinated turn model
(e.g., without the need to determine the thrust and
lift). However, the planar VT model (122) is even
more convenient for most applications. The underlying
assumptions for the constant-turn models of Section
VIB are that (105) holds and that the turn rate or
the angular velocity vector is constant. Note that it
follows from (107) and _­ = 0 that _a=­ a. It differs
from the generalized coordinated turn model only in
the lack of the ­ g term, which is constant if ­ is
constant. In particular, the two models coincide when
the maneuver plane is horizontal.

Some other 3D target maneuver models are hard
to be grouped into the above classes. For example, the
maneuver model b̈ = 0, ë= 0 was proposed in [97]
with a state x= [x,y,z,v,b, _b,e, _e] , where (x,y,z) and v
are target position and speed, respectively, and b and
e are the bearing and elevation of the velocity vector,
respectively.

D. Flight Dynamics Based Models

An analysis of real trajectory data presented in
[99] reveals that a target motion is not necessarily
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confined to a plane in reality, but all the above models
are exclusively or primarily for planar motions
and may be inadequate for more sophisticated
target motions. Models that incorporate sufficient
out-of-plane motions may be more desirable in such
situations. A class of more sophisticated models,
based on flight dynamics, appears to be a better
alternative in this regard. The price is, however, a
dramatic increase in nonlinearity, state dimension,
and number of design parameters largely uncertain
in a noncooperative tracking environment. Also, they
are not really point-target models. We review these
models next.
The basic idea of these models is to enhance

the modeling accuracy by not only exploring more
detailed flight-dynamics relationships but also
explicitly accounting for the aircraft’s controls. Were
the controls known to trackers, these models would
describe an aircraft motion more accurately than other
models. So a fundamental issue here is the uncertainty
in the pilot’s control actions in a noncooperative
environment. Modeling these controls as random
processes is again a “standard” means to account for
this uncertainty. We consider the model of [105] to
illustrate features of these models.
The basis for this model is the rigid-body flight

dynamics model of aircraft motion [83], given in the
form

_p= v (142)

_v= (c+ c®®+ c¯¯+C±±)v
2 + cTT+ g (143)

_­ = f(­) + (d®®+d¯¯+D­­+D±±)v
2 +dTT

(144)

_©=G(©)­ (145)

with

f(­) =

(Ixx Iyy)qr=Ixx
(Ixx Izz)rp=Ixx
(Iyy Ixx)pq=Ixx

G(©) =

1 sin Á tanµ cos Á tanµ

0 cos Á sin Á

0 sin Á cos 1 µ cos Á cos 1 µ

(146)

where p= [x,y,z] is the position in the inertial frame,
­ = [p,q,r] the angular velocity in the body frame,
® the angle of attack, ¯ the sideslip, ± = [±A,±R ,±E]
the angles of aileron, rudder, and elevator deflections,
respectively, ©= [Ã,µ,Á] an attitude vector of the
Euler angles: roll (bank angle) Ã, pitch µ, yaw
(heading) Á, T the thrust, g the gravity, I the moment
of inertia, and c, c®, c¯ , C±, cT, d®, d¯ , D±, dT are
coefficients. Equations (142)–(143) describe the
aircraft body translational motion in the inertial frame,
(144) is a moment equation describing the angular
acceleration in the body frame, and (145) provides

the relationship between the Euler angles and the
angular velocity. The aircraft body rotational motion
((144)–(145)) strongly affects the translational motion
((142)–(143)) through the dependence of the model
coefficients c(©), c®(©), c¯(©), C±(©), cT(©) on the
attitude angles © [105].

Given all the model coefficients, the uncertainty
of a maneuver boils down to that of the control input:
thrust T and control angles ±. A state-space model
can be developed in a trivial manner. For example,
augment the state vector by T and ± and model their
variations as zero-mean white noise processes [105].
The resulting state vector x= [p ,v ,­ ,© ,± ,T] is
16-dimensional and the state-space model is given
by (142)–(145), with white noise added to (143) and
(144), plus

_T = wT,
_± =w± : (147)

The model (142)–(147) is quite general. What
is crucial here is the determination of the model
coefficients c(©), c®(©), c¯(©), C±(©), cT(©) and d®,
d¯ ,D­ , D±,dT. This was done in [105] heuristically
based on an analysis of a particular real trajectory
of a given aircraft. Caution has to be exercised in the
application of such results to other situations.

A more rigorous model, albeit not general,
was proposed in [106]. Under some simplifying
assumptions essentially the same as those for the
coordinated turn, an analytical expression of the lift as
a function of the attitude angles © was derived, which
explicitly describes the dependence of the acceleration
_v on © in (143). The effects of the zero-mean thrust
(minus drag) term T D and deflection angles were
collectively modeled as a first-order Markov (Singer)
process °, governed by _° = (1=¿)°+w° , in place of
(147) as above. The state vector x= [p ,v ,­ ,© ,° ]
is 15-dimensional.

In general, prediction accuracy of these models
for a target state can be dramatically improved
by accounting for the impact of the target attitude
angles on the target acceleration. In fact, these
models are clearly unobservable under position-only
measurements. Estimating the attitude angles is
possible if, in addition to the standard position (and
possibly velocity) measurements, direct attitude
measurements are available. The use of attitude
measurements was first suggested in [43] and further
developed in [107, 106, 108, 105], and others.

VII. CONCLUDING REMARKS

The target maneuver models developed for target
tracking can be classified into 1D, 2D, and 3D
categories, according to the coupling between motions
along different coordinates.

The 1D models have no (or weak) coupling among
coordinates. Most of them are based on modeling
the driving force (usually acceleration) of the target
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maneuver as a random process without recourse to the
actual target dynamics or kinematics directly. These
models form three families, corresponding to three
classes of random processes: white noise, Markov
processes, and semi-Markov jump processes. The
simplest white-noise family models the target position
derivative (or difference) of a certain order as white
noise. It includes the classical CV and CA models.
In the simple and widely used family of Markov
processes, the target acceleration or jerk is modeled
as a Markov process of various degrees of complexity.
The most well-known representative of this family
is the Singer model. The semi-Markov jump process
models are the most sophisticated family of the three.
It has quite good potential, but the intricacy involved
in these models makes it hard for the practitioners to
apply them.
The 2D and 3D models differ from the 1D models

by not only their correlation across coordinates, but
also their explicit dependence on the target kinematics
and possibly dynamics. These models try to capture
the important characteristics of the target behavior
during maneuvers, which typically involve various
turning motions. Many versions of (nearly) CT models
have been developed. Few models are available that
are valid for other maneuver motions. Apart from the
popular CT models, it seems that the 2D approximate
curvilinear motion model and the planar variable-turn
model of (122) deserve more attention than they have
received due to their attractive simplicity, applicability,
and flexibility.
More accurate models are intuitively appealing, but

they also pose problems and challenges. For example,
they are usually highly nonlinear and thus require
effective nonlinear filtering algorithms; they may lead
to poor tracking performance due to their dependence
on target state in the case of inaccurate state estimates,
particularly for agile targets at a low data rate. That
is partly why simple but less accurate models have
their values and reasons to exist. While the choice of
a particular model depends certainly on the particular
application, a good understanding of pros and cons of
each model is nonetheless extremely helpful.
Most of the models developed in the literature,

especially 2D and 3D models, are particularly
suitable for aircraft, although they are more or less
applicable to many other targets. Many of these
aircraft models are fairly accurate, but they have a
common omission—wind effect is not considered
explicitly. A reasonably large number of dynamic
models have also been developed for ballistic targets
(e.g., missiles), which will be covered separately in
a subsequent part of this survey, of which [14] is
a preliminary version. To our knowledge, however,
few models have been developed that are particularly
suitable for other targets, such as submarines, ships,
and ground targets. This deserves more effort.
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