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Abstract

This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs

nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of

the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric

regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive

control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the

parameters.

We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second,

we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a

stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize

our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical

control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence

and high accuracy of control.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

From the viewpoint of statistical learning, model-based

adaptive control can be conceived of as a function

approximation process where the objective is to adjust

some parameters of the control system’s model such that a

cost criterion is minimized. Model-based adaptive control is

well-studied if the control system is linear, similarly as

statistical learning is well-understood for linear systems. For

nonlinear systems, a common practice in learning is to
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expand the input space of the original learning data by

means of nonlinear basis functions such that the resulting,

usually higher dimensional representation becomes linear in

the learning parameters again. The same idea has been

explored in nonlinear model-based adaptive control

(Narendra & Annaswamy, 1989; Slotine & Li, 1991) if

the control system’s dynamics are amenable to a trans-

formation where the learning parameters appear linearly in

the equations of motion. For instance, globally stable

model-based adaptive controllers for robot arms have been

proposed which exploit the properties of linear inertial

parameters of rigid-body dynamics (Slotine & Li, 1987;

Whitcomb, Rizzi, & Koditschek, 1993). However, if the

structure of the system dynamics is unknown, learning

methods are needed to approximate the unknown functions.

For this purpose, multi-layer sigmoidal neural networks

(Chen & Khalil, 1995; Levin & Narendra, 1993) were
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suggested. However, nonlinear parameterized neural net-

works make global stability proofs difficult, may contain

local minima, and often require off-line training. Thus,

function approximators that are linear in learning par-

ameters are preferable, as has been demonstrated with radial

basis function (RBF) networks (Sanner & Slotine, 1992;

Seshagiri & Khalil, 2000), and piecewise linear approx-

imators (Choi & Farrell, 2000) in tracking error-based

adaptive control.

To our knowledge, while many publications on nonlinear

adaptive control with function approximation focus on the

control theoretic part of the topic, few of them stress the

problems of function approximation in this context. It is

important, however, to point out that incremental learning

of systems with unknown complexity still remains an open

issue in the statistical learning literature. An ideal algorithm

needs to avoid potential numerical problems from redun-

dancy in the input data, eliminate irrelevant input dimen-

sions, keep the computational complexity of learning

updates low while remaining data efficient, allow for real-

time learning in high dimensional spaces, and, of course,

achieve accurate function approximation and adequate

generalization. Additionally, a particular problem of learn-

ing control is that the domain of operation of the plant is

usually only known in terms of some upper bounds.

Creating a function approximator in such an overestimated

domain can become computationally rather expensive due

to allocating too many learning parameters, and it also bears

the danger of fitting noise in the data if these parameters are

not properly constrained by the learning data. In general,

given that the complexity of the function to be approximated

is unknown, allocating the right number of learning

parameters is a difficult problem, in particular if learning

is to proceed on-line.

In this paper, we will suggest an approach to model-

based nonlinear adaptive control that employs function

approximation with automatic structure adaptation, i.e. the

learning system grows incrementally with the size of the

domain of operation and the complexity of the functions to

be learned. For this purpose, we will employ a learning

framework from the nonparametric statistics literature,

derived from methods of kernel regression and also

discussed under the name of locally weighted learning

(Atkeson, Moore, & Schaal, 1997). The essence of our

learning algorithms is to accomplish function approxi-

mation with piecewise linear models, where local models

are allocated as needed without the danger of over

parameterizing the learning system. Such automatic struc-

ture adaptation of the function approximator is particularly

desirable when the domain of operation and complexity of

the function to be approximated are not known in advance,

as is often the case in high dimensional control systems

where only unrealistic upper bounds of such values can be

derived. Based on this framework, we will propose a

provably stable learning adaptive controller inspired by the

idea of composite adaptive control which uses both
the tracking error and the prediction error to update the

parameters (Slotine & Li, 1989, 1991). Stability analyses

and numerical simulations are provided to illustrate the

effectiveness of the proposed controller and demonstrate

very rapid convergence to accurate tracking performance.

This paper is organized as follows: In Section 2, we

will first discuss statistical learning of nonlinear functions,

and motivate our choice of the locally weighted learning

framework. Second, Section 3.1 introduces theoretical

development of our learning adaptive control framework

for first order SISO systems, and present stability proof

including a parameter projection method that is needed to

avoid potential singularities during adaptation. Then,

Section 5, we generalize our adaptive controller to higher

order SISO systems, and discuss further extension to MIMO

problems in Section 6. Finally, in Section 7, we evaluate our

theoretical control framework in numerical simulations to

illustrate the effectiveness of the proposed learning adaptive

controller for rapid convergence and high accuracy of

control.
2. Statistical learning of nonlinear functions

The general structure of the control system of interest is a

class of nonlinear MIMO systems of the form

_x Z fðxÞCGðxÞu (1)

z Z hðxÞ (2)

where x2R
n is a state, z2R

q is an output, u2R
m is an

input, f: Rn/R
n, G: Rq/R

n!m are unknown functions,

and h: R
n/R

q denotes a mapping from the state to the

output. Our goal in this paper is to design a provably stable

adaptive controller for such a class of nonlinear systems

with on-line learning of the unknown nonlinearities of the

dynamics in order to achieve accurate tracking and rapid

adaptation.

In this section, we first outline the learning algorithm,

receptive field weighted regression (RFWR), which falls

into a class of locally weighted learning framework (LWL)

(Atkeson et al., 1997; Schaal & Atkeson, 1998). LWL

advocates that each local model in the function approx-

imator minimizes the locally weighted error criterion

independently. Then, we discuss function approximation

for the plant dynamics (1). We motivate our choice of this

locally weighted learning framework in comparison to

cooperative learning strategies.
2.1. Receptive field weighted regression

For the development of adaptive learning controllers

herein, we focus on a particular locally weighted learning

(LWL) algorithm, receptive field weighted regression

(RFWR) (Schaal & Atkeson, 1998). RFWR is an
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incremental version of the locally weighted regression

(LWR) algorithm with automatic structure adaptation.3

Nonlinear function approximation in RFWR is accom-

plished by covering the input space of the training data

with locally linear models and by forming a final

prediction from the weighted average of the individual

predictions

ŷ Z

PN
kZ1 wkŷkPN

kZ1 wk

(3)

where

ŷk Z �xT
k q̂k and �xk Z ½ðx KckÞ

T ; 1�T (4)

and ck is the center of the k-th linear model. The weight

wk is a measure of how much a data point x falls into the

region of validity of each linear model, and is character-

ized by a kernel function. In (Schaal & Atkeson, 1998), a

Gaussian kernel

wk Z exp K
1

2
ðx KckÞ

T Dkðx KckÞ

� �
(5)

is used for analytical convenience, where Dk is a positive

definite matrix, called a distance metric. For adaptive

control, the infinite support of the Gaussian is less

suitable. Therefore, we employ a biquadratic kernel

instead, which has compact support4.

wk Z
ð1 Kd2Þ2 if jdj!1

0 otherwise
: biquadratic kernel

(
(6)

where d is the Mahalanobis distance defined by

d2 Z ðx KckÞ
T Dkðx KckÞ: (7)

The biquadratic kernel belongs to a family of possible

kernels for LWL that empirically demonstrate comparable

function approximation performance and only differ in

subtle asymptotic properties (see (Atkeson et al., 1997) for

more the details).

In learning, each locally linear model is trained

independently in order to minimize the locally weighted

error criterion

Jk Z
Xp

iZ1

wk;iðyi K ŷk;iÞ
2 (8)

where yi is a target for learning, and ŷk;i and wk,i are given by

(4) and (5) respectively for each input data point xi. When a

given training point (x, y) falls within the support of a local
4 Note that wk(x)Z0 for dO1. The support of wk(x) is

Sk=Cl{x2DjwkðxÞ > 0} where Cl denotes closure. Since Dk is positive

definite, Sk is closed and bounded.

3 The original notion of locally weighted learning (LWL) and locally

weighted regression (LWR) refer to memory based learning techniques,

however, in this paper we refer to a nonmemory based spatially localized

learning technique.
model, i.e. wkO0, the regression parameters q̂k are updated

by weighted recursive least squares, which accomplishes

fast Newton-like learning:

q̂
nC1
k Z q̂

n
k CwkPnC1

k �xkepk (9)

where

PnC1
k Z

1

l
Pn

k K
Pn

k �xk �x
T
k Pn

k
l

wk
C �xT

k Pn
k �xk

 !
and

epk Z y K ŷk Z y K �xT
k q̂

n
k :

(10)

As suggested in standard recursive system identification

(Ljung and Söderström, 1986), we use a forgetting factor

l2[0, 1] such that the sufficient statistics Pk will not retain

old training data for too long a time, as adaptation of Dk (see

Section 3.5) will render older data points contributing to Pk

obsolete.

The distance metric Dk is learned by gradient descent in a

locally weighted leave-one-out cross validation criterion

that approximates the statistical expectation of the cost

function (8) (Schaal & Atkeson, 1998). We will explain this

criterion in more detail in Section 3.5.

Learning in RFWR is initialized with no local model at

all. Whenever a training point x does not activate any local

model by more than a certain threshold wgen, a new local

model is added with cZx. The threshold wgen essentially

determines the overlap between local models and indirectly

regulates how many local models will be maintained.

Increased overlap improves the smoothness of the total

prediction in (3). Whenever a training point falls within the

support of a local model, both distance metric and

regression parameters are updated. We would like to

emphasize that these updates can be computed for each

local model completely independently of all other models,

which creates, as shown in the next section, robustness of

structure adaption towards the total number of local models

in the learning system; for more details, see (Schaal &

Atkeson, 1998).
2.2. Cooperative vs local learning

Before turning to developing an adaptive control

framework with RFWR, we will first focus on motivating

why this particular statistical learning approach offers

several benefits with respect to previous work in the

literature. At the heart of this issue is the difference

between cooperative and local learning, explained in the

following.
2.2.1. Generalized linear function approximation

The standard approach of function approximation using

linear parametrization with nonlinear basis functions can be
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formalized as

ŷ Z f̂ ðxÞ Z
XN

kZ1

fT
k ðxÞq̂k (11)

where ŷ denotes the prediction of the true function f(x) given

the n-dimensional input vector x. fk(x) is a vector of

nonlinear basis functions. The parameters q̂k need to be

estimated from data, either arriving as pairs of (xi, yi) or as

(xi, ei), where yi is a target for learning and ei is an error signal

that approximates the prediction error ep;i Z f ðxiÞK f̂ ðxiÞ: yi

and ei are assumed to be contaminated by mean-zero noise.

A simple choice for fk(x) is a Gaussian function, e.g.

fk(x)Zexp(K0.5(xKck)
TDk(xKck)), as used in radial-

basis function networks. In general, the kernel should be

selected according to the class of function to be approxi-

mated (Vijayakumar & Ogawa, 1999).

For training, the learning system’s objective is to

minimize the least squares criterion

J Z
Xp

iZ1

ðyi K f̂ iÞ
2 (12)

over all p available training data points such that future

predictions are as close as possible to the true target

function5, where f̂ i is the prediction for each data point xi

given in (11). When inserting (11) into (12), one can

recognize that this form of error criterion causes cooperation

among all the basis functions in approximating every f̂ i, i.e.

each basis function contributes a fraction towards reducing

the approximation error. This cooperative strategy needs to

be contrasted with another learning framework, locally

weighted learning (LWL) (Atkeson et al., 1997). As

mentioned in Section 2.1, LWL advocates that each basis

function and its parameters should be conceived of as an

independent local model that minimizes the locally

weighted error criterion

Jk Z
Xp

iZ1

wk;iðyi K ŷk;iÞ
2 where ŷk;i Z fT

k ðxiÞq̂k: (13)

The weight wk,i is computed from a spatially localized kernel

function, often chosen to be a Gaussian kernel (5) although

many alternatives exist (Atkeson et al., 1997). The final

prediction ŷ for a point x is formed from the normalized

weighted average of the predictions ŷk of all local models

(cf. (3)), using (5) to determine the weighting factors. There

appears to be an initial similarity between LWL and the

radial basis function example above as both approaches use

Gaussian kernels and a linear parameterization. However,

there is a crucial difference between cooperative learning and

LWL. In LWL, each local model is trained entirely

independently of all other local models such that the total

number of local models in the learning system does not
5 Note that a statistically precise formulation would be to minimize the

expectation of J, not just the sum squared error of the training data.
directly affect how complex a function can be learned—

complexity can only be controlled by the level of adaptability

of each local model, but not by the total number of local

models. This property avoids over-fitting if a robust learning

scheme exists for training the individual local model (Schaal

& Atkeson, 1998). In contrast, in cooperative learning,

adding a new basis function (equivalent to adding a new local

model in LWL) allows fitting some yi more accurately due to

the increased number of parameters that now contribute to

fitting each yi. Thus, if too many basis functions are added,

the learning system is likely to fit noise in the data.

Importantly, adding a new basis function also affects changes

in all previously learned parameters.

The difference between cooperative learning and LWL is

crucial for structure adaptation during incremental learning,

i.e. the gradual adding of more and more local models as a

function of the complexity of the training data and the size

of the workspace that is encountered as considered in

RFWR. The example in the following section will give an

intuitive illustration of this difference.
2.2.2. Empirical example

This section compares the following four different

learning schemes for a simple function approximation

problem to illustrate the difference of the properties of

cooperative and locally weighted learning methods:
1.
 Locally Weighted Regression (LWR): fk(x)Z[xT1]T in

(8) with wk defined by (5)
2.
 LWR with normalized weights (nLWR): as LWR, but

use the normalized weight �wk Zwk=
PN

kZ1 wk for (8).
3.
 RadialBasisFunctionNetworkswith locally linearmodels

(RBF): fk(x)Zwk[x
T1]T in (11), where wk is computed

from a Gaussian RBF that has the same kernel as (5).
4.
 RBF with normalized weights (nRBF): as RBF, but using

the same normalized weights as nLWR.

RBF and nRBF are both cooperative learning methods,

while LWR and nLWR are typical LWL systems. Learning

algorithms for RBF networks can be found in (Bishop,

1995). For LWL methods, the learning algorithm described

in Section 2.1 is used.

Fig. 1 shows the results of function approximation of the

function yZ2x3C0.5x2K2x using 50 training points

distributed in x2[K1.5, 1.5] with added Gaussian noise

(N(0, 0.16)) in the outputs. Each plot in Fig. 1 compares the

fit for 3, 7, and 13 basis functions—for 3 and 7 basis

functions, the regular and normalized weighting kernels are

shown in Fig. 3. For all four methods, initial approximation

results using three basis functions are not good enough due

to an insufficient number of basis functions; thus, four more

basis functions are added, leading to improved performance

for all algorithms. From the view point of structure learning,

it is interesting to examine how much the individual

learning systems had to change the parameters of the three-

basis-function system when the four additional basis



Fig. 1. Results of function approximation of the function yZ2x3C0.5x2K2x by four different approximation schemes with 3, 7, and 13 local models. (a) locally

weighted regression. (b) locally weighted regression with normalized weights. (c) cooperative learning using a RBF network. (d) cooperative learning using a

RBF network with normalized weights. With three local models, oversmoothing can be seen because of the insufficient number of local models. With seven

local models, fitting is improved in each case. With 13 local models, RBF and nRBF start overfitting while locally linear learning exhibits almost no change.

6 It should be noted that in the example above, rather small kernels are

used in the RBF systems and we can improve the fit if the kernels are

widened. However, as we increase the kernel size, the change of the

coefficients (cf. Fig. 2) becomes even more drastic and learning becomes

increasingly numerically ill-defined due to an ill-conditioned matrix

inversion in the RBF learning algorithm. Large kernels also entail a large

danger of negative interference during incremental learning (Schaal and

Atkeson, 1998).
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functions were added. This change is depicted in Fig. 2. As

can be seen in this figure, LWR shows virtually no change of

the learned parameters of the initial three basis functions,

nLWR has a modest change, while both RBF methods have

drastic changes. This behavior in cooperative learning and

local learning with normalized weights is not desirable since

it requires too much re-organization of previously learned

parameters during structure learning. Such reorganization

will lead to a transient decrease of performance of the

function approximator, and is particularly dangerous for

on-line learning adaptive control. Moreover, the strong

cooperation of RBF networks can also lead to negative

interference over the domain of the approximator, i.e. the

unlearning of previously useful knowledge, when an outlier

data point is added in some part of the workspace, or when

training data distributions change over time. In LWL, such

negative interference always remains strictly localized

(Schaal & Atkeson, 1998). As a last point, RBF networks

and nLWR make it hard to learn the optimal distance metric

Dk in (5), since in this case the partial derivatives of the cost

functions (8) and (12), respectively, w.r.t. the distance
metric have to be taken through all basis functions—in

LWR, this derivative remains localized to each local model.

When adding six more local models to the learning

systems, i.e. the total number of 13 models, the advantages

of LWR for structure learning become even more apparent

(Fig. 1). RBF and nRBF both start overfitting6, while LWL

methods improve the approximation result slightly due to

averaging over more models. Thus, this empirical example

nicely demonstrates how LWL methods differ from

cooperative learning, and why the properties of LWL are

very useful for structure learning for on-line adaptive

control.



Fig. 2. Comparison of the coefficients of the local models centered at ckZK0.8, 0 and 0.8 before and after adding four new local models. The left bar in each

index shows the coefficient before adding the new local models and the right bar in each index shows the coefficient after doing so. The indices 1–3 correspond

to the slope parameter bk of each local model, while the indices 4–6 correspond to the intercept b0,k. Only LWR (a) shows virtually no changes of coefficients,

while nLWR (b) shows a modest change and RBF (c) and nRBF (d) methods show drastic changes (notice the difference in the scale of the vertical axis).
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3. Nonlinear learning adaptive control

We will now turn to the application of RFWR in learning

nonlinear adaptive control. As we have mentioned, our

objective is to design a provably stable adaptive controller

with on-line learning of unknown nonlinearities of the

system dynamics which achieves accurate tracking and

rapid adaptation.

In this section, we first present locally linear approxi-

mation of the nonlinear functions of the plant dynamics.

Then, we review tracking error-based learning adaptive

control, and finally we generalize to composite learning

adaptive control with the locally weighted learning

framework.
3.1. System dynamics and locally linear approximation

In this section, we present initial mathematical develop-

ments of our learning adaptive control for a class of first

order SISO systems of the form

_x Z f ðxÞCgðxÞu (14)

where x2R is a state and u2R is a control input. In

Sections 5 and 6, we generalize the proposed algorithm to

higher order SISO systems and discuss the application to

MIMO problems, respectively.
Using a linear parameterization, for x2D, f(x) and g(x)

in the system dynamics (14) can be represented as

f ðxÞ Z

PN
kZ1 wkðxÞyf ;kðxÞPN

kZ1 wkðxÞ
CDf ðxÞ (15)

gðxÞ Z

PN
kZ1 wkðxÞyg;kðxÞPN

kZ1 wkðxÞ
CDgðxÞ (16)

where wk(x) is the biquadratic kernel (6) as its compact

support Sk yields computational savings due to the fact that

points outside the support of the local model do not

contribute to the local model. Df(x) and Dg(x) are the

approximation errors for the approximation structure above.

We assume that D is compact and that f and g are smooth on

D: We also assume that the sign of g(x) is positive and g(x)

is lower bounded by a known constant gl such that

gðxÞRglO0 cx2D: (17)

An equivalent assumption for the case when g(x) is negative

can be considered.

The functions yf,k(x) and yg,k(x) are locally linear models

such that

yf ;kðxÞ Z �xT
k qf ;k; yg;kðxÞ Z �xT

k qg;k (18)



Fig. 3. Examples of the weighting functions. (a) three Gaussian weights (DZ20 in (5)) used for LWR. (b) three normalized Gaussian weights (DZ20) used for

nLWR. (c) seven Gaussian functions (DZ10) used for RBF fitting. (d) seven normalized Gaussian functions (DZ10) used for RBF fitting with normalized

weights.
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where

�xk Z
x Kck

1

" #
; qf ;k Z

bf ;k

b0f ;k

" #
; qg;k Z

bg;k

b0g;k

" #
: (19)

For future notational convenience, f(x)Cg(x)u can be

reformulated as

f ðxÞCgðxÞu Z

PN
kZ1 wkð �x

T
k qf ;k Cu �xT

k qg;kÞPN
kZ1 wk

CDf CDgu

Z

PN
kZ1 wkcT

k QkPN
kZ1 wk

CDf CDgu ð20Þ

where

ck Z
�xk

u �xk

" #
; qk Z

qf ;k

qg;k

" #
: (21)

With the definition of the normalized weights �wk

�wkðxÞ Z
wkðxÞPN

kZ1 wkðxÞ
; (22)
the function f also can be expressed as

f ðxÞ Z

PN
kZ1 wkðxÞyf ;kðxÞPN

kZ1 wkðxÞ
CDf ðxÞ

Z
XN

kZ1

�wkðxÞyf ;kðxÞCDf ðxÞ; (23)

f ðxÞ Z f
T ðxÞqf CDf ðxÞ (24)

where f is the vector of normalized weighted basis

functions defined by

fðxÞ Z

�w1ðxÞ �x1

«

�wNðxÞ �xN

2
64

3
75; (25)

and qf Z ½qT
f ;1;.;qT

f ;N�
T : Similar definitions apply to

g(x) and its corresponding components. If we define

the augmented basis function and parameter vector,

respectively, by

F Z
f

uf

" #
; and q Z

qf

qg

" #
(26)
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then f(x)Cg(x)u in (20) can be further expressed as

f ðxÞCgðxÞu Z FT Q CDf CDgu: (27)

For the following analyses, it will be useful to derive an

error bound on the locally linear approximation of each

model. We define the approximation error that we would

like to achieve asymptotically as

3f ;kðxÞ Z
f ðxÞKyf ;kðxÞ on Sk

0 otherwise

(
(28)

where

qf ;k Z argmin
q̂f ;k

ðCN

KN
wkðxÞkf ðxÞK �xT

k q̂f ;kk
2 dx

� �
: (29)

By the asymptotic properties of locally weighted

regression (Schaal & Atkeson, 1997), the upper bound

of the asymptotic locally linear fitting error (28) can be

derived under the assumption that terms higher than of

quadratic order in a Taylor series expansion of f(x)

around xZck can be locally neglected in Sk: This upper

bound can be kept small if the shape and size of local

model is chosen to be narrow relative to the local

curvature the function (second derivative). As we will

discuss in Section 3.5, the shape and size of the local

models is optimized on-line according to the local

curvature of the function to be approximated, i.e. the

shape of the receptive field becomes narrow in

the direction of high second derivatives (Hessian) of

the function. Solving (23) for the approximation error

and exploiting the property
PN

kZ1 �wkðxÞZ1 of the

normalized weights results in

jDf ðxÞj Z f ðxÞK
XN

kZ1

�wkðxÞyf ;kðxÞ

�����
�����

Z
XN

kZ1

�wkðxÞðf ðxÞKyf ;kðxÞÞ

�����
�����

%
XN

kZ1

�wkðxÞj3f ;kðxÞj ð30Þ

jDf ðxÞj%max
k

ðj3f ;kjÞZ
def

�3f : (31)

Thus, if each local linear model has accuracy 3f,k, then

the global fit on D also achieves at least accuracy �3f

(Choi & Farrell, 2000), and let �Df denote the upper

bound of jDfj. Similar definitions and properties presented

above apply to g(x) and a corresponding 3g,k and �3g:

3.2. Tracking error-based learning adaptive control

3.2.1. Control law

Tracking error-based learning control solely employs

the tracking error eZxKxd as the means to adjust
the parameters of the adaptive controller, where xd(t)

denotes a desired trajectory that is smooth and also has a

smooth derivative _xd. If the function f(x) and g(x) in the

nonlinear dynamics (14) were known, the control law

u Z
1

gðxÞ
ðKf ðxÞC _xd KKðx KxdÞÞ (32)

could achieve asymptotic perfect tracking, with tracking

error dynamics

_e ZKKe (33)

where K is a positive constant. Our goal is to design an on-

line approximation-based controller capable of accurate

tracking when nonlinearities in the dynamical system are

unknown. The following development of a tracking error-

based learning adaptive controller follows (Choi & Farrell,

2000; Slotine & Li, 1991).

When f and g are unknown, consider the control law

u Z
1

ĝðxÞ
ðKf̂ ðxÞC _xd KKðx KxdÞÞ (34)

where f̂ and ĝ are estimates of f and g, respectively, defined

by

f̂ ðxÞ Z

PN
kZ1 wkðxÞŷf ;kðxÞPN

kZ1 wkðxÞ
; ĝðxÞ Z

PN
kZ1 wkðxÞŷg;kðxÞPN

kZ1 wkðxÞ

(35)

and

ŷf ;kðxÞ Z �xT
k q̂f ;k; ŷg;kðxÞ Z �xT

k q̂g;k (36)

where

q̂f ;k Z
b̂f ;k

b̂0f ;k

" #
; q̂g;k Z

b̂g;k

b̂0g;k

" #
: (37)

Define an estimate of the augmented parameter vector of

(21) and (26), respectively, as

Q̂k Z
q̂f ;k

q̂g;k

" #
and Q̂ Z

q̂f

q̂g

" #
(38)

for future use. Note that the adaptation law must ensure that

ĝðxÞRglO0 to avoid ĝðxÞZ0: This issue will be discussed

in Section 3.3.2. With the choice of the control law (34), the

tracking error dynamics for eZxKxd become

_e ZKKe C ðf K f̂ ÞC ðg K ĝÞu

ZKKe KfT ð ~qf C ~qguÞCDf CDgu (39)

where ~qf is the parameter error vector defined as
~qf Z q̂f Kqf ; and a similar definition applies to ~qg:
3.2.2. Tracking error based adaptation law

If we select the tracking error-based adaptation law

_̂
Q Z GFðxÞeðtÞ (40)
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where G is a positive definite adaptation gain matrix, and the

Lyapunov function

V Z
1

2
e2 C

1

2
~Q

T
GK1 ~Q (41)

where ~Q is the parameter error vector ~QZQ̂KQ, it is

possible to prove the following desirable properties:7
1.
7

conffiÐq
uni

(Kh
If Df(x) and Dg(x) are identically zero, then e2L2

with e, Q̂; ~q2LN.
2.
 When Df(x) and Dg(x) are not the zero function, then e is

uniformly ultimately bounded with a small bound

determined in part by �3f and �3g: When there is

approximation error, (40) must be modified by a

deadzone, epsilon or sigma modification (Choi & Farrell,

2000) to maintain stability.
3.
 The parameter KO0 determines the rate of decay of the

tracking error (e.g. due to initial conditions or

disturbances).
4
 The uniform ultimate bound on jej is inversely related to

K. Note that the designer can decrease the bound on jej

by (a) increasing K or (b) decreasing Df and Dg.

Increasing K is not necessarily desirable as this increases

both the closed loop bandwidth and the magnitude of

control signal. Decreasing Df and Dg can be achieved by

on-line adaptation of the approximator structure, which

will be discussed in Section 3.5. This measure effects

neither the closed loop bandwidth or the magnitude of

the control signal.

The proof of these comments is a special case of the

proof presented in Section 3.4; therefore, it is not included

here. Note that the adaptation law must ensure that ĝðxÞR
glO0 to avoid ĝðxÞZ0: For this purpose, we discuss how to

constrain the parameter update law using the parameter

projection method in Section 3.3.2. If G is block diagonal,

with blocks denoted by Gk, then the tracking error

adaptation law becomes a local update:

_̂
QZGFðxÞeðtÞ/ _̂

Qk ZGkFkðxÞeðtÞZGk �wkckeðtÞ: (42)

where Fk Z fk
fku

� �
: In this case, the Lyapunov function is

equivalently given by

V Z
1

2
e2 C

XN

kZ1

1

2
~Q

T
k GK1

k
~Qk; (43)

where ~Q
T
k ZQ̂k KQk, which yields the same properties

listed above.
Given a function u: [0, N)/R, L2 denotes the space of piecewise

tinuous, square-integrable functions with the norm kujjL2
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
0 uT ðtÞuðtÞdt!N and LN denotes the space of piecewise continuous,

formly bounded functions with the norm kujjLN
ZsuptR0kuðtÞk!N

alil, 1996).
3.3. Composite learning adaptive control

While tracking error-based learning adaptive control is a

theoretically sound and successful technique, it does not

take full advantage of the power of a modern statistical

learning framework such as RFWR: the previous section

had no component that distinguished using an RFWR

approach from a cooperative learning approach (cf. Section

2). The main thrust of this paper is to make use of some

additional statistical information that can be collected

during learning such that convergence of the adaptive

controller is accelerated and structure adaptation of the

learning system can be accomplished in a stable and

principled way. For this purpose, we need to turn to a

composite learning adaptive control approach (Slotine & Li,

1991) where, besides the tracking error, the prediction error

is explicitly incorporated in the parameter update law of

the controller.
3.3.1. Continuous time parameter estimation with RFWR

The key idea of composite adaptive control is to augment

the parameter update law of the tracking error-based

controller with a term that is explicitly driven by the

prediction error. For the purpose of stability proofs, we will

first develop a continuous time parameter update for RFWR

in this subsection, before incorporating this result in the final

adaptive control law in the next subsection. We will assume

that both the state and state derivative are measurable,

which could be relaxed by some pre-filtering or identifier

techniques (Narendra & Annaswamy, 1989; Slotine & Li,

1991) in future work.

The basic idea of RFWR is to minimize the individual

weighted squared prediction error for each locally linear

model as given in (8). In a continuous time formulation, this

cost function becomes

Jk Z

ðt

0
wkðxðtÞÞkyðtÞK ŷkðxðtÞ; uðtÞÞjj

2dt;

for k Z 1;.;K;

(44)

where, yðtÞZ _xðtÞZ f ðxðtÞÞCgðxðtÞÞuðtÞ and ŷk ZQ̂
T
k ck: For

notational compactness, we will avoid writing the explicit

time or state dependence of variables in the following unless

needed.

The minimization of Jk yields a gradient

vJk

vQ̂k

ZK2

ðt

0
wkðtÞðyðtÞKQ̂

T
k ðtÞckðtÞÞc

T
k ðtÞdt: (45)

By setting vJk=vQ̂k Z0 and rearranging the equation, we

obtainðt

0
wkðtÞckðtÞ

T yðtÞdt Z Q̂
T
k ðtÞ

ðt

0
wkðtÞckðtÞc

T
k ðtÞdt

(46)
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Defining PK1
k ðtÞZ

Ð t
0 wkðtÞckðtÞc

T
k ðtÞdt, one can write8 an

update law for P as

_Pk ZKwkðtÞPkckðtÞc
T
k ðtÞPk (47)

where we used

d

dt
ðPK1

k Þ Z wkðtÞckðtÞc
T
k ðtÞ: (48)

Finally, taking the transpose and the time derivative of (46)

and solving for
_̂

Qk yields the parameter update

_̂
Qk Z wkPkckðy K ŷkÞ Z wkPkckepk (49)

where epk is the prediction error of the k-th linear model

defined by

epk Z y K ŷk (50)

which, as mentioned before, assumes that yZ _x is explicitly

measured.

Exponential forgetting as in (10) can be locally

incorporated by using the modified update law

_Pk Z lPk KwkPkckcT
k Pk; where lO0; (51)

applied only when x falls in the support of the local model,

i.e. wk(x)O0. Thus, Eqs. (49) and (51) form the continuous

time equivalent of Eqs. (9) and (10), respectively.

Using the Lyapunov function

V Z
1

2

XN

kZ1

~Q
T
k PK1

k
~Qk; (52)

we can show the following important properties:
1.
8

imp
In the case that Df and Dg are identically zero, the total

prediction error epZ
PN

kZ1 wkepk=
PN

kZ1 wk approaches

zero asymptotically and ~Qk 2LNck:
2.
 In the case where D is not identically zero, the prediction
Projftg Z

t if Q̂k

I KcðQ̂kÞPk

ðVQ̂k
§kÞðVQ̂k

§kÞ
T

ðVQ̂k
§kÞ

T PkðVQ̂k
§kÞ

 !
t if Q̂k

8>><
>>:
error asymptotically converges to a region of uniform

boundedness. This bound is determined in part by �3f

and �3g:

These claims are provable as a special case of the proofs

included in the next section.
3.3.2. Composite adaptation law with parameter projection

We are now equipped to formulate the parameter

update law for a composite learning adaptive controller

using RFWR and to present its stability analysis. Consider

a parameter update for the control law (34) in which
Note the following identity: d
dt
ðPPK1ÞZ _PPK1 CP _PK1 Z0, which

lies that _P
K1 ZKPK1 _PPK1:
the tracking error-based adaptation (42) and RFWR-based

adaptation (49) and (51) are combined.

_̂
Qk Z Pkckð �wke CwkepkÞ (53)

_Pk Z lPk KwkPkckcT
k Pk (54)

Note that forgetting in (54) is localized, i.e. Pk in (54) is

updated only when wk(x)O0.

The parameter update needs to be constrained within the

following convex set, Pk, for each locally linear model to

satisfy the assumption for g(x) in (17)

Pk Z Q̂kj§kðQ̂kÞZ
def

gl K K
jb̂g;kjffiffiffiffiffiffi

Dk

p C b̂0g;k

 !
%0

( )

(55)

where §kðQ̂kÞ is a convex function, and Dk is the

distance metric for a scalar state x in our SISO system.

This set is derived considering the minimum of each

locally linear model at the boundary of the local model by

solving the constrained optimization problem outlined in

Appendix A where gðxÞZ b̂g;kðxKckÞC b̂0g;k and mZ1 in

(A1). Let us denote the interior of Pk by �P k and the

boundary by vPk. In order to ensure that ĝðxÞRglO0, the

update law is modified by the parameter projection

(Krstić, Kanellakopoulos, & Kokotović, 1995) as

_̂
Qk Z ProjfPkckð �wke CwkepkÞg (56)

where the standard projection operator Proj{t} projects

the vector t onto the hyperplane tangent to the (vPk at Q̂k

when Q̂k is at the boundary with t pointing outward.

Since this standard projection operator is generally

discontinuous, we specifically use the smooth parameter

projection (Krstić et al., 1995) defined by

2 �P k or ðVQ̂k
§kÞ

T t%0

2P3;kn �P k and ðVQ̂k
§kÞ

T tO0
(57)

cðQ̂kÞ Z min 1;
§kðQ̂kÞ

3

( )
(58)

where

P3;k Z fQ̂kj§kðQ̂kÞ%3g (59)

which is a union of the set P and an O(3)-boundary layer

around it. Note that ðVQ̂k
§kÞ represents an outward

normal vector at Q̂k 2vPk:

By the properties of the projection operator (Krstić et al.,

1995) (see Lemma E.1 (iii) on page 512), the solution of
_̂

Qk ZProjftg is guaranteed to remain in P3,k assuming that

Q̂kð0Þ is chosen to be in P3,k. The complete proof requires

that these update laws be modified by appropriate deadzones

to prevent parameter adaptation when the prediction
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and tracking errors become sufficiently small as discussed

the next section.

3.4. Stability analysis

For our stability analyses, we choose the Lyapunov

function

V Z
1

2
e2 C

XN

kZ1

1

2
~Q

T
k PK1

k
~Qk: (60)

which makes it clear that there are NC1 terms in the Lyapunov

function, one for the tracking error and one for each local

model The weights wk appear in the parameter update law, but

not in the Lyapunov function. The weights ensure that the

parameter update law adjusts only those linear models

appropriate to the present operating point so that only the

corresponding terms in the Lyapunov function are decreasing.

All the remaining terms of the Lyapunov function ~Q
T
k PK1

k
~Qk

for which wk(x)Z0 will be held constant.

The following provides a stability analysis of our RFWR-

based composite learning controller for the case where the

state derivative is directly measured. Using the parameter

adaptation law with projection (56) and (54) (outside the

deadzone defined in (63)), the time derivative of the

Lyapunov function is9

_VZe_eC
XN

kZ1

~Q
T
k PK1

k
_~Qk C

1

2

XN

kZ1

~Q
T
k
_P

K1
k

~Qk

Ze_eC
XN

kZ1

~Q
T
k PK1

k ProjfPkckð �wkeCwkepkÞg

C
1

2

XN

kZ1

~Q
T
k
_P

K1
k

~Qk

%e_eC
XN

kZ1

~Q
T
k PK1

k Pkckð �wkeCwkepkÞ

C
1

2

XN

kZ1

~Q
T
k
_P

K1
k

~Qk

ZKKe2 K
1

2
l
XN

kZ1

~Q
T
k PK1

k
~Qk K

1

2

XN

kZ1

wke2
pk

C
1

2

XN

kZ1

wkð3f ;k C3g;kuÞ2 CeðDf CDguÞ2

%K
K

2
e2 K

1

2
l
XN

kZ1

~Q
T
k PK1

k
~Qk K

1

2

XN

kZ1

wke2
pk

C
1

2

XN

kZ1

wkð3f ;k C3g;kjujÞ
2 C

1

2K
ðDf CDgjujÞ

2 ð61Þ
9 The proof uses the identities 2eDZKðaeK 1
a

DÞ2 Ca2e2 C ð1
a
Þ2D2,

cas0, and a2ZK.
We can summarize these stability results as follows:

Perfect approximation. When perfect approximation is

assumed such as �3f Z �3gZ0, the time derivative of

the Lyapunov function simplifies to

_V %K
K

2
e2 K

1

2
l
XN

kZ1

~Q
T
k PK1

k
~Qk K

1

2

XN

kZ1

wke2
pk: (62)

Thus, we have _V %0, which implies that e and ep converge

to zero and that e, ep2L2 by Barbalat’s Lemma (Slotine &

Li, 1991).

Imperfect approximation. When �3f s0 or �3g s0, we

have ultimate boundedness of the prediction and tracking

errors. The region of ultimate boundedness can be

decreased either by increasing K or by decreasing �3f and

�3g: Since K is related to the bandwidth of the control law,

there can be undesirable consequences (e.g. exciting

unmodelled dynamics) if it is increased. Alternatively, �3f

and �3g are decreased by improving the structure of the

approximator. This can be accomplished on-line, as

described in Section 3.5.

In the Lyapunov analysis in (61), there are terms

associated with the approximation error of g(x) multiplied

by the control input such as 3g,ku and Dg,ku. In (Choi &

Farrell, 2000), this is treated by sliding mode control with a

sufficiently large gain. However, we prefer not to use the

sliding control since it could cause a chattering problem.

Alternatively, we can design a time varying adaptation

deadzone such that the parameter is updated only when

Ke2C
XN

kZ1

wke2
pkO

XN

kZ1

wkð�3f C�3gjuðtÞjÞ
2C

1

K
ð �Df C �DgjuðtÞjÞ

2:

(63)

3.5. Structure adaptation of the function approximator

Given that both the input domain and the complexity

of the function to be learned are unknown, we will exploit

RFWR’s automatic structure adaptation mechanisms to

improve the quality of function approximation (Schaal &

Atkeson, 1998), thus decreasing �3f and �3g above in order

to tighten the bounds on the tracking error. Two

mechanisms of structure adaptation are available, either

by adding new local models or by adjusting the distance

metric Dk of existing models. A new locally linear model

is added if the input of a training point x does not activate

any of the existing local models more than a threshold

wgen, and the center of the new receptive field is set to

ckZx.

The distance metric Dk of each local model, which is

decomposed as the inner product of the upper triangular

matrix Mk (i.e. Dk ZMT
k Mk) to ensure positive definiteness,

can be optimized independently of all other local models on-

line by minimizing the penalized weighted mean squared
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error criterion

Jk Z
1

Wk

ðt

0
wkky K ŷkjj

2 dt Cg
Xn

i;jZ1

D2
k;ij; (64)

by gradient descent

_Mk ZKa
vJk

vMk

(65)

where Wk Z
Ð t

0 wk dt: The penalty term is introduced to

avoid the problem of continuously shrinking receptive fields

as the number of training data increases—while this

shrinking property is statistically useful to approach zero

error function approximation, it is computationally too

expensive in practical implementations as an infinite

number of local models would have to be maintained. As

a result of distance metric adaptation, the shape and size of

the receptive field is adjusted according to the local

curvature of the function to be approximated, i.e. the

shape of the receptive field becomes narrow in the direction

of high second derivatives (Hessian) of the function. See

(Schaal & Atkeson, 1997) for the details of the asymptotic

properties.

By following (Schaal & Atkeson, 1998), the gradient

descent derivative can be approximated as

vJk

vMk

z
vw

vM

ðt

0

vJk;1

vw
dt C

w

W

vJk;2

vM
(66)

where

Jk;1 Z
1

Wk

ðwkky K ŷkjj
2Þ and Jk;2 Z g

Xn

i;jZ1

D2
k;ij: (67)

With memory traces Wk, Ek and Hk

Wk Z

ðt

0
eKlðtKtÞwk dt (68)

Ek Z

ðt

0
eKlðtKtÞwke2

pk dt (69)

Hk Z

ðt

0
eKlðtKtÞwk �xkepk dt (70)

the derivative terms in (66)—under a biquadratic weighting

kernel—become

vwk

vMk;rl

ZK2
ffiffiffiffiffiffi
wk

p
ðxk KckÞ

T vDk

vMk;rl

ðxk KckÞ;

vJk;2

vMk;rl

Z 2g
Xn

i;jZ1

Dk;ij

vDk;ij

vMk;rl

(71)

vDk;ij

vMk;rl

Z drjMk;il CdirMk;jl ðd is the Kronecker operatorÞ

(72)
andðt

0

vJk;1

vw
dtzK

Ek

W2
k

C
1

Wk

ðe2
pk K2 �Pk �xkepk5HkÞ (73)

where the operator 5 denotes an element-wise multipli-

cation of two homomorphic matrices or vectors with a

subsequent summation of all coefficients such as

Q5VZ
P

QijVij, and �Pk denotes the inverted covariance

matrix associated with the input �xk: The update equations

for the memory terms result from integrating the following

first order differential equation:

_Wk ZKlWk Cwk (74)

_Ek ZKlEk Cwke2
pk (75)

_Hk ZKlHk Cwk �xkepk (76)

Structure adaptation affects the stability proofs of the

previous section in different ways, depending on which kind

of structure adaptation is considered: adding new local

models or adapting distance metric of existing local models.

Adding new local models can simply be regarded as starting

to update some of the model parameters in a Lyapunov

function (60) that has all possible local models allocated in

advance—as mentioned in the previous section, due to the

compact support of the local models, the Lyapunov function

is only decreased in very few terms at a time, depending on

where the current operating point of the control system is;

all other terms are unchanged. Structure adaptation in terms

of the distance metric is a nonlinear parameter optimization

process, and only convergence of gradient descent to a local

optimal solution may be shown with a local quadratic

approximation of the cost function around its minimum. As

noted in (Schaal & Atkeson, 1998), it is necessary to choose

an appropriate initial distance metric such that the receptive

field does not grow to span the entire input domain, which is

an undesirable local minimum from the viewpoint of local

learning. We prefer to consider structure adaptation due to

the distance metric as a disturbance to the control system

that happens on a much slower time scale than the

adaptation of the parameters Qk—gradient descent in Dk

is usually much slower than the second order recursive least

squares methods for learning Qk.
4. Discrete-time formulation for practical

implementation

So far, we have been concerned with the continuous-time

formulation and theoretical analyses of the proposed

learning adaptive controller. In continuous-time domains,

the parameter update law is derived in the form of

differential equations. Given that actual implementations

are usually in discrete time, we will briefly present the

discrete-time adaptation law.
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The error criterion for locally weighted regression in

continuous-time

Jk Z

ðt

0
wkky K ŷjj2 dt (77)

can equivalently be written in terms of a summation as

Jk Z lim
Dt/0

Xp

iZ1

wk;ikyi K ŷk;ijj
2Dt; where Dt Z

t

p
: (78)

Note that p/N as Dt/0.

When Dt is nonzero, the solution of locally weighted

regression is given by

Q̂
n
k Z Pn

k

Xp

iZ1

wk;ick;iyi (79)

where

Pn
k Z

Xp

iZ1

wk;ick;ic
T
k;i

 !K1

(80)

Note that Dt does not appear in these equations as it is

canceled out. When a given sampled training data point

(x, y) at time t falls with in the support of a local model, i.e.

wkO0, the incremental update law can thus be shown to

yield

Q̂
nC1
k Z Q̂

n
k CwkPnC1

k ckepk (81)

where

PnC1
k Z

1

l
Pn

k K
Pn

kckcT
k Pn

k
l

wk
CcT

k Pn
kck

 !
and epk Z y KQ̂

nT
k ck

(82)

with the inclusion of a forgetting factor l2[0, 1]. Not

surprisingly, these formulae exactly correspond to the

RFWR parameter update law given by (9) and (10) in

Section 2.1. For distance metric adaptation, we use the

leave-one cross validation error criterion with a penalty

term

Jk Z
1

Wk

Xp

iZ1

wk;ikyi K ŷk;ijj
2

ð1 Kwk;ic
T
k;iPkck;iÞ

2
Cg

Xn

i;jZ1

D2
k;ij; (83)

for statistical reasons so that overfitting can be avoided for

finite sampling frequencies Dt when training data contain

measurement noise (Schaal & Atkeson, 1998).

In summary, the following adaptation law should be used

for discrete-time implementations with time step Dt when

a training data point falls in the support of the local model,

i.e. wk(x)O0:

Parameter update

Q̂
nC1
k Z Q̂

n
k CPnC1

k ckð �wke Dt CwkepkÞ (84)
Inverted covariance matrix update

PnC1
k Z

1

l
Pn

k K
Pn

kccT Pn
k

l
wk

CcT Pn
kc

 !
(85)

Distance metric update

MnC1
k Z Mn

k Ka
vJk

vMk

(86)

using the penalized leave-one-out cross validation error

criterion (83). (see (Schaal & Atkeson, 1998) for the

derivation of the gradient equations for the discrete-time

case.) Note that the parameter update law and inverted

covariance matrix update law above need to be modified by

a deadzone introduced in (63) when the prediction and

tracking errors become sufficiently small.
5. nth order SISO systems

This section briefly presents the generalization to higher

order SISO systems. Consider the nth order SISO system

with relative degree n (input-state linearizable) of the form

_x1 Z x2

«

_xnK1 Z xn

_xn Z f ðxÞCgðxÞu

(87)

where xZx1, xZ[x1,., xn]T 2R
n, and u2R. We assume

that f and g are smooth on the domain D3<n; and also

assume that the sign of g(x) is positive and g(x) is lower

bounded similar to (17). Note that a general class of input-

state linearizable SISO systems

_x0 Z f0ðx0ÞCg0ðx0Þu (88)

where x02R
n, can be transformed into (87) with a

nonlinear state transformation xZT(x0). Our results can

be generalized to a class of SISO systems having relative

degree r!n with a minimum-phase assumption (Choi &

Farrell, 2000).

5.1. Control law

Consider a control law

u Z
1

ĝðxÞ
ðKf̂ ðxÞCxðnÞd KKeÞ (89)

where x(n) denotes the nth time derivative of x, KZ[K1,

K2,., Kn] is the feedback gain row vector, chosen such

that the polynomial sn C
Pn

iZ1 Kis
iK1Z0 has all roots in

the left half of the complex number plane, and eZ
½e; _e;.; eðnÞ�T is the tracking error vector with eZxKxd.

When a perfect approximation is assumed such as DfZ
DgZ0 and 3f,kZ3g,kZ0, the tracking error dynamics can be

expressed in the controllable canonical form of the state
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space representation as:

_e Z Ae Cbðf K f̂ C ðg K ĝÞuÞ

Z Ae CbðKfT ð ~qf C ~qguÞÞ (90)

where

A Z

0 1 / 0

0 0 1 0

0 0 / 1

KK1 KK2 / KKn

2
66664

3
77775and b Z

0

«

0

1

2
66664

3
77775 (91)

Note that A is Hurwitz. Define the sliding surface

e1 Z ce (92)

where cZ ½L1;.;Ln� is chosen such that (A, b, c)

is minimal (controllable and observable) and H(s)Z
c(sIKA)K1b is strictly positive real. This filtered tracking

error will be used in the tracking error-based parameter

update (Choi & Farrell, 2000) and the strictly positive real

assumption will be necessary in the Lyapunov stability

analysis.

5.2. Composite parameter update law with projection

The composite parameter adaptation law with projection

for the nth order SISO system becomes:

_̂
Qk Z ProjfPkckð �wke1 CwkepkÞg (93)

_Pk Z lPk KwkPkckcT
k Pk (94)

Note that the complete proof with imperfect approximation

requires that (93) and (94) be modified by appropriate

deadzones to prevent parameter adaptation when the

prediction and tracking errors become sufficiently small.

5.3. Stability analysis

Consider the Lyapunov function

V Z
1

2
eT Se C

1

2

XN

kZ1

~qkPT
k
~qk: (95)

By the Lefschetz-Kalman-Yakubovich lemma (Tao &

Ioannou, 1990), with the controllability and strictly positive

real assumption of (A, b, c), there exist real symmetric

positive definite matrices S and L, a real vector q, and mO0

such that

AT S CSA ZKqqT KmL (96)

Sb Z cT (97)
Similar to the derivation in Section 3.4, the time derivative

of V can be calculated as

_V %Kb1eT e K
1

2
l
XK

kZ1

~q
T
k PK1

k
~qk K

1

2

XK

kZ1

wke2
pk (98)

where

b1 Z
1

2
lminðqqT CmLÞO0:

This implies asymptotic convergence of the tracking error

and the approximation error. With imperfect approximation,

we need to treat the magnitude of u and the terms associated

with the function approximation error by introducing a

deadzone.
6. MIMO Systems

This section sketches a further generalization of the

proposed learning adaptive controller to a class of MIMO

systems of the form:

_x Z fðxÞCGðxÞu (99)

z Z hðxÞ (100)

where x2R
n, z2R

q, u2R
m, f:Rn/R

n, G:Rn/R
n!m,

and h:Rn/R
q

Our ideas presented in this paper can be generalized if the

system is square (having as many inputs as outputs such that

mZq), minimum phase, can be transformed into a

decoupled linear system via static state feedback (Sastry

& Bodson, 1989; Sastry & Isidori, 1989), and the Lie

derivative of the output function, h(x) is linearly para-

meterizable. Under similar conditions, our results also

extend to mRq.
7. Empirical evaluations

We present two numerical simulations to demonstrate the

effectiveness of the proposed learning controller. First, we

apply the proposed control algorithm to a second order SISO

system, and evaluate the tracking performance and on-line

function approximation with structure adaptation. Then, we

illustrate an application to a planar 2-DOF robot arm as an

example of a nonlinear MIMO system.
7.1. SISO example

First, we consider a second order SISO system which was

used in (Choi & Farrell, 2000; Sanner & Slotine, 1992):

_x1 Z x2; _x2 Z f ðxÞCu (101)
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where xZ[x1, x2]T and

f ðxÞ Z 4
sinð4px1Þ

px1

� �
sinðpx2Þ

px2

� �2

: (102)

This is an interesting plant since the nonlinear function f(x)

has a sharp peak at the origin while the remaining function is

relatively flat as plotted in Fig. 7 (left). On-line learning of a

function with such nonlinear complexity is a difficult

problem without prior knowledge of the nonlinearity. The

plant dynamics are integrated using the Runge-Kutta

algorithm with a time step of 0.001s, and the parameters

of local models are updated every 0.02s without deadzone.

We use the same PD gain KZ[K1, K2]TZ[100, 20]T and

filtered error e1Zce where cZ[15, 1]T as in (Choi & Farrell,

2000). Initial conditions of the dynamical system are set to

zero.
7.1.1. Tracking performance

This section presents the tracking performance of the

proposed learning adaptive controller in comparison to a

(nonadaptive) PD controller and the tracking error-based

adaptive controller of Section 3.2. We use the same desired

trajectory xd(t) as in (Choi & Farrell, 2000; Sanner &

Slotine, 1992), which is generated from an output of a third

order prefilter with a bandwidth of 10 rad/s

_xr Z Arxr Cbrur (103)

xd Z Crxr (104)

where

Ar Z

0 1 0

0 0 1

Ka3 K3a2 K3a

2
664

3
775; br Z

0

0

1

2
64
3
75;

cr Z ½1; 0; 0�; a Z 10

(105)
Fig. 4. The desired trajectorie
and

urðtÞ Z 0:5sgnðsinð2pftÞÞCumean (106)

where fZ0.4 and umeanZ0.5. Fig. 4 depicts the desired

trajectories for two periods.

For the tracking error based adaptive controller, the

location of the centers of the kernels are predetermined on a

grid over the region of [K0.5, 1.5]![K3, 3] with mesh size

0.5. Thus, 65 local models are used. For the RFWR

composite learning adaptive controller, a new local model is

added on-line as necessary if a training point does not

activate any local model by more than a threshold wgenZ
0.2. Pk is initialized with PkZ250I. As a result, for the

specified desired trajectory 18 local models are created. In

both cases, the initial distance metric for the kernel is chosen

to be MZ2.3I and, all the initial parameters of the locally

linear models q̂k are set to zero.

Fig. 5 compares the tracking error of the (nonadaptive)

PD controller, the tracking error-based adaptive controller

with two different adaptation rates, GkZ10I and 250I, and

the proposed RFWR composite learning adaptive controller.

The convergence rate of the tracking error based adaptive

controller largely depends on the adaptation rate Gk: a larger

Gk yields faster convergence. Ideally, well-tuned tracking

error based adaptive controllers could perform comparable

to the proposed RFWR composite adaptive controller in

terms of convergence rate and tracking error bound as can

be seen in Fig. 5 (GkZ250I case). However, there is a

practical limitation on the magnitude of Gk due to finite

sampling times and danger of exciting unmodelled

dynamics in the presence of measurement noise, which

may lead to instability of the control system. For example,

when a Gaussian noise of N(0, 0.01) is added to the

measurement, the performance of the tracking error based

adaptive controller with GkZ250I is much degraded while
s, xd over two periods.



Fig. 5. Comparison of the tracking errors among (nonadaptive) PD controller (dotted), tracking error based adaptive controller with GkZ10I (dash-dot),

GkZ250I (dashed), and the RFWR composite adaptive controller (solid).
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the RFWR composite adaptive controller achieves stable

and rapid learning (see Fig. 6).
7.1.2. On-line function approximation with structure

adaptation

We now turn to RFWR composite learning control with

structure adaptation of the function approximator. This

property is particularly useful when the input domain and

complexity of the function to be approximated are not

known. As mentioned before, a new receptive field is added

as necessary and the distance metric of the receptive field is

optimized by minimizing a leave-one-out cross validation

error criterion.

In the following example, we use the same square wave

to drive the desired trajectory generator, but its mean, umean

in (106), is varied randomly between K1.0 and 1.0 every
Fig. 6. Comparison of the tracking errors among different controllers in the presenc

based adaptive controller with GkZ10I (dash-dot), GkZ250I (dashed), and the RF

tracking error based adaptive controller with GkZ250I is much degraded.
2.5 s to collect training data distributed over the region

which roughly covers [K2, 2]![K2, 2]. The parameters

wgenZ0.2, PkZ250I, are used for the RFWR update. For

distance metric optimization, second order gradient descent

(Schaal & Atkeson, 1998) is incorporated to accelerate the

distance metric adaptation speed. Penalty gZ10K7 is used

in (83). The first local model is initialized with the distance

metric MZ2.3I, and when a new local model is added, its

initial distance metric is set to be the same value as that of

the closest existing local model.

Fig. 7 shows the target function to be approximated (left)

and its approximation after 400 s of training (center). As a

result of distance metric adaptation, the number of local

models grew to 99, and initially large receptive fields were

adjusted during learning according to the local curvature of

the function, i.e. they became narrow in the region of
e of measurement noise: (nonadaptive) PD controller (dotted), tracking error

WR composite adaptive controller (solid). Note that the performance of the



Fig. 7. Left: the true function f(x). Center: the approximated function, f̂ ðxÞ; after 400 s of learning. Right: Organization of the receptive fields around the origin

after 400 s of training given by contour lines of 0.1 isoactivation and a 4 mark denotes the centers. Size and shape of the receptive fields are adjusted according

to the local curvature of the function.
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the bump at the origin and remained large where the

function was flat (see Fig. 7, right).

Note that for the tracking error based adaptive controller,

the structure of the function approximator (center allo-

cation, and size and shape of receptive fields of local

models) needs to be predetermined prior to on-line

adaptation. For this simulation, the tracking error based

adaptive controller would require 207 local models to cover

the estimated region of operation [K2, 2]![K3, 8]

distributed on a grid with mesh size 0.5. In contrast, the

proposed RFWR composite adaptation does not require

prior information of the size of the domain of operation.
Fig. 8. 2-DOF planar arm and Figure 8 task.
7.2. MIMO example: 2-DOF robot arm

As a second example, we present numerical simulations

of the proposed algorithm on a planar 2-DOF arm as an

application to a nonlinear MIMO system. The plant

dynamics take the form of a standard two-link planar

manipulator:

MðqÞ €q CVðq; _qÞCkðqÞCD _q Z t (107)

where qZ[q1, q2]T, tZ[t1, t2]T is the torque input, M(q) is

the inertia matrix, Vðq; _qÞ is the Coriolis/centrifugal vector,

k(q) is the gravity vector, and D denotes the viscous friction

coefficient matrix.

M Z
m11 m12

m21 m22

� �

m11 Z m1l2
c1 C I1 Cm2ðl

2
1 C2l1lc2 cos q2 C l2

c2ÞC I2;

m12 Z m21 Z m2ðl
2
c2 C l1lc2 cos q2ÞC I2;

m22 Z m2l2
c2 C I2

Vðq; _qÞ Z
V1

V2

" #
ZKm2l1lc2 sin q2

2 _q1
_q2 C _q

2
2

K_q
2
1

2
4

3
5

kðqÞ Z
k1

k2

" #

Z
m1glc1 sin q1 Cm2gðl1 sin q1 C lc2 sinðq1 Cq2ÞÞ

m2glc2 sinðq1 Cq2Þ

" #

D Z diagfdig

mi and Ii are the mass and the moment of inertia of each link,

respectively, and li is the link length. The center of mass of

each link is located on the center line, which passes through

adjacent joints at a distance lci. di is the coulomb friction

coefficient. The link parameters used in the simulation are

m1Zm2Z1, l1Zl2Z1, lc1Zlc2Z0.5, I1ZI2Z0.02 and

d1Zd2Z0.01.

The task is to draw a periodic Figure 8 pattern in

Cartesian space at a 1 Hz base frequency under the influence

of gravity as depicted in Fig. 8. Both links of the arm are 1 m

long as specified above, and the Figure 8 had a height of

0.8 m and width of 0.5 m. Due to these large dimensions and

the double frequency in the horizontal direction that is

needed to draw the figure-8, the nonlinearities of the

dynamics of the 2-DOF arm are significant. Desired

trajectories in joint space were computed from standard



Fig. 9. Trajectories of robot end-effector. Xdes is the desired trajectory (thick

line), XPD is the result using a low gain PD controller (dashed line),

Xcomposite is the result using the proposed composite adaptive controller

after 60 s of learning (thin solid line). While the low gain PD controller

yields very large tracking error, the proposed controller achieves good

tracking performance-Xcomposite coincides almost perfectly with the desired

trajectory.
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analytical inverse kinematics formulae. The plant dynamics

is simulated on Matlab Simulink using an adaptive step size

Runge-Kutta algorithm, and the learning adaptive controller

is incorporated using a compiled S-function based on C

code. The parameters of the local models are updated every

0.00ls.

The proposed learning adaptive control is implemented

as follows: First, we rewrite the dynamics of the robot arm

(107) in the forward model representation

€q Z fðq; _qÞCGðqÞt (108)

where

fðq; _qÞ ZKMK1ðV Ck CD _qÞ; and GðqÞ Z MK1 (109)

and we approximate f and G using locally linear models for

fi and gij where

f Z
f1

f2

" #
; and G Z

g11 g12

g21 g22

� �
: (110)

Essentially, this formulation requires two independent

function approximators for

€q1 Z f1ðq; _qÞCg11ðqÞt1 Cg12ðqÞt2 (111)

€q2 Z f2ðq; _qÞCg21ðqÞt1 Cg22ðqÞt2 (112)

with input vector ck (cf. (21)) for each local model as

ck Z ½ �xT
k ; �x

T
k t1; �x

T
k t2�

T ; and �xk Z
q

_q

" #
Kck: (113)

Then, we design a feedback linearizing controller with the

estimates f and G

t Z Ĝ
K1

ðKf̂ C €qd KKd _e KKpeÞ (114)

where

f̂ Z
f̂ 1

f̂ 2

" #
; and Ĝ Z

ĝ11 ĝ12

ĝ21 ĝ22

" #
; (115)

eZqKqd, and Kp and Kd are PD gain matrices. Note that,

in practice, to ensure the numerical stability of the matrix

inversion associated with the feedback linearization (in this

case Ĝ
K1

), we employ ridge regression (Schaal & Atkeson,

1998) for matrix inversion. In this paper, we are concerned

with the forward model representation of the plant dynamics

for general control applications. However, in our future

work, for the particular application of rigid body dynamics

including robot arms, we will address an inverse model

formulation, which does not require matrix inversion and

would be made suitable for such plant dynamics.

Fig. 9 illustrates the performance of the proposed

learning adaptive controller in comparison to a low gain

PD controller. In Fig. 9, Xdes is the desired end-effector

trajectory, and XPD is the result of PD control. Xcomposite

denotes tracking with the proposed controller after 60 s of
learning on a slowly drifting Figure 8 pattern around

the desired trajectory. For our learning adaptive controller,

learning started from scratch with no local models, and new

local models were added as necessary if a training point did

not activate any local model by more than a threshold. The

distance metric of the local model was also learned on-line.

While the low gain PD controller has very large tracking

errors that lead to a strongly distorted Figure 8 pattern, the

proposed controller achieved almost perfect tracking results

after 60 seconds of learning. As a measure of the tracking

performance, the L2 norm of the tracking errors in joint

space is 4.80!10K1 rad for the low gain PD controller and

1.37!10K3 rad for the proposed controller, which is

defined by L2½eðtÞ�Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=TÞ

Ð tf
t0
keðtÞjj2dt

q
where TZtfKt0.

For the proposed control algorithm, 166 local models are

created. These simulation results demonstrate rapid learning

of the system dynamics and convergence of the tracking

error of the proposed learning adaptive controller.
8. Conclusion

In this paper, we presented a comprehensive develop-

ment of a provably stable learning adaptive controller that

covers a large class of nonlinear systems. Motivated from

the viewpoint of statistical learning, we employed a locally

weighted learning framework in which unknown functions

of the control system are approximated by piecewise linear
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models. New local models are allocated automatically as

necessary and the shape and size of the local models,

characterized by a distance metric, are optimized on-line.

Such automatic structure adaptation of the function

approximator is particularly desirable given that the domain

of operation and complexity of the function to be

approximated are usually not known in advance. Our

learning adaptive control algorithm uses both the tracking

error and the prediction error to update the learning

parameters, inspired by composite adaptive control in

which tracking error-based adaptation and recursive least

squares updates are combined. Stability analyses and

numerical simulations were provided to illustrate the

effectiveness of the proposed controller.

Future work will address developments of theoretically

sound learning and control algorithms toward real-time

high-dimensional system control including humanoid

robots. Our current locally weighted learning algorithm for

function approximation with piecewise linear models

(RFWR) will become computationally very expensive for

learning in high-dimensional input spaces. As a replace-

ment, we consider using an advanced statistical learning

algorithm, locally weighted projection regression (LWPR),

proposed in (Vijayakumar & Schaal, 2000) which achieves

low computational complexity and efficient learning in high-

dimensional spaces. In this paper, from a control theoretic

point of view, we considered a general forward dynamics

representation. However, for the particular application to

rigid body dynamics, we are more interested in an inverse

model representation. We will adapt our framework to this

special case of nonlinear systems and also compare it with

biologically inspired internal model learning such as

feedback error learning (Gomi & Kawato, 1993).
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Appendix A. Constrained optimization using lagrange
multiplier method

Consider the following constrained optimization pro-

blem of the form:
minimize gðxÞ Z xTb;

subject to the constraint xT Dx Km Z 0
(A1)

where x2R
n, b2R

n is the parameter vector of the linear

model, D is positive definite distance metric, and m is a

constant which is representative of the local model

boundary. Define an objective function

J Z xTb ClðxT Dx KmÞ (A2)

where l is the Lagrange multiplier. Then, at the stationary

points of J, we have

vJ

vx
Z bT C2lxT D Z 0 (A3)

and solving this equation for x yields

x ZK
1

2l
DK1b: (A4)

Substituting (A4) into (A1), we have

l ZG
1

2
ffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT DK1b

p
: (A5)

Thus, we obtain

x ZG

ffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT DK1b

p DK1b: (A6)

The value of f(x) at (A6) is given by

xT b ZG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbTDK1b

p
: (A7)

Thus, the minimum of xTb subject to the constraint (A1) is

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbTDK1b

p
at xZK

ffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffi
bT DK1b

p DK1b:
Appendix B. Lefschetz-Kalman-Yakubovich lemma and

positive real transfer function

Lemma 1. Lefschetz-Kalman-Yakubovich lemma (Tao &

Ioannou, 1990)

Given mO0, a matrix A such that det(sIKA) has only

zeros in the open left half plane, a real vector b such that

(A, b) is completely controllable, a real vector c, a scalar d,

and an arbitrary real symmetric positive definite matrix L;

then a real vector q and a real matrix PZPTO0 satisfying

AT P CPA ZKqqT KmL (B1)

Pb KcT Z
ffiffiffiffiffiffiffiffiffi
ð2dÞ

p
q (B2)

exist if and only if h(s)Zc(sIKA)K1bCd is a strictly

positive real matrix and m is sufficiently small.

Definition 1. Positive real transfer function (Krstić et al.,

1995, p. 509))

A rational transfer function G(s) is said to be positive real

if G(s) is real for all real s, and Re{G(s)}R0 for all
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Re{s}R0. If, in addition, G(sK3) is positive real for some

3O0, then G(s) is said to be strictly positive real.

Note that the scalar positive real transfer function G(s) is

stable, minimum-phase and of relative degree not exceeding

one (Kaufman, Bar-Kana, & Sobel, 1993). In addition, any

scalar transfer function of a relative degree higher than one

is not positive real (Khalil, 1996).

Consider the following linear time-invariant system

_x Z Ax CBu; y Z Cx CDu (B3)

where x2R
n, u2R

m and y2R
m. H(s)ZC(sIKA)K1 BC

D is the transfer matrix of the system above.

The following theorem states the necessary and sufficient

condition of strictly positive real system matrices for a

special case of the dynamical system given by (B3) (Tao &

Ioannou, 1990).

Theorem 1. (Tao & Ioannou, 1990) In (B3), let nZ1 and

mZ1 or nZ2 and mZ1 and let (A, B, C) be minimal, DZ0

and Bs0, then H(s) is a strictly positive and real matrix if

and only if the following conditions hold
1.
 All eigenvalues of A have negative real parts
2.
 CBZ(CB)TO0
3.
 CABC(CAB)T!0
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