
Towards Probabilistic Shape Vision in RoboCup:
A Practical Approach

Sven Olufs, Florian Adolf, Ronny Hartanto and Paul Plöger

Department of Computer Science, Bonn-Rhein-Sieg University of Applied Sciences,
D-53757 St. Augustin, Germany

sven@olufs.com, paul.ploeger@fh-brs.de

Abstract. This paper presents a robust object tracking method using
a sparse shape-based object model. Our approach consists of three in-
gredients namely shapes, a motion model and a sparse (non-binary) sub-
sampling of colours in background and foreground parts based on the
shape assumption. The tracking itself is inspired by the idea of having
a short-term and a long-term memory. A lost object is ”missed” by the
long-term memory when it is no longer recognized by the short-term
memory. Moreover, the long-term memory allows to re-detect vanished
objects and using their new position as a new initial position for ob-
ject tracking. The short-term memory is implemented with a new Monte
Carlo variant which provides a heuristic to cope with the loss-of-diversity
problem. It enables simultaneous tracking of multiple (visually) identical
objects. The long-term memory is implemented with a Bayesian Multiple
Hypothesis filter. We demonstrate the robustness of our approach with
respect to object occlusions and non-Gaussian/non-linear movements of
the tracked object. We also show that tracking can be significantly im-
proved by using compensating ego-motion. Our approach is very scalable
since one can tune the parameters for a trade-off between precision and
computational time.

1 Introduction

The ability of knowing ”where is what?” seems to be easy for humans while it
is a cognitive challenge for a machine. The knowledge about object tracks (e.g.
position, movement) is one of the key capabilities for a high level behaviour.
In a typical RoboCup MSL scenario this means that we want to detect and
track static and dynamic objects, e.g. a ball, goals, corner-posts, other robots
or humans. Additionally we must cope with the object dynamics and a rapidly
changing environment.

We can distinguish two major components in a typical visual tracker: (1) Target
Representation and Localisation and (2) Filtering and Data Association. (1) is
mostly a bottom-up process which has to cope with changes in the appearance of
the target, like for example Mean-Shift [5,3], Particle filtering [10,11] or iterative
error-minimising [8] approaches. Those kinds of approaches typically keep the

position of the object of interest in an image sequence. (2) is mostly a top-down
process dealing with the dynamics of the tracked object, e.g. like Probabilistic
Data Association filters (PDAF) [1], Sample-Based Joint Probabilistic Data As-
sociation Filters (SJPDAF) [15] or Multiple Hypothesis Tracking (MHT) [14,6]
approaches. Those kind of filters are typically dealing with an abstract (anony-
mous) observation and solve the tracking and data association problem [1].
Solely bottom-up approaches [5,3,10,11,8] provide a limited robustness with re-
spect to high dynamics (e.g. a bouncing ball), occlusions, visually hidden or
disappearing gone objects. Usually, it assumes that the initial position of the
object of interest is known a-priori and no visually identical objects appear in
the scene. In fact, this assumption does not hold true for a typical RoboCup sce-
nario where we have two goals and multiple players on the field. Recovering lost
objects and tracking of multiple objects are typically the domains of top-down
approaches using (primitive) classifiers. The idea of using a binary homogeneity
criterion (e.g. binary colour segmentation) as the primitive classifier is still pop-
ular within the RoboCup community [9], though it is bound to the RoboCup
soccer domain and not directly applicable to real world applications.

(a) (b)

Fig. 1. Contours of the detected and tracked objects and the projected believe
pose of the robot. The tracker has no knowledge about the initial object poses

Our new probabilistic approach is a hybrid solution of both concepts using
a Bayesian dynamic state space formulation, see [7] for theoretical issues. Note
that we are not interested in solving the data association problem. Basically
our approach is inspired by the idea of a short-term and a long-term memory.
The objective of the short term-memory is to track objects through image se-
quences. An observation is immediately lost if the object is no longer detected in
the image. The objective of the long-term memory is to maintain tracks of the
recognised object coming from the short-term memory. Its role is to re-detect
an object if it is no longer detected by the short-term memory. The compo-
nent gives a feedback to the short term memory in case of a ”missing” object.
Technically the long-term memory is implemented using a Bayesian Multiple
Hypothesis Tracker. The short-term memory is implemented by using a new ex-
tended method of Bayesian Monte Carlo filters, namely the extended Particle

http://video.google.com/videoplay?docid=-9028495361402208867&q=Towards+Probabilistic+Shape+Vision+in+RoboCup&pl=true
http://video.google.com/videoplay?docid=-5453362264713555303&q=Towards+Probabilistic+Shape+Vision+in+RoboCup&pl=true

Filter method. This extension allows obtaining multiple independent states es-
timation. We show that our tracking approach is more robust for fast moving
objects than exclusively used (standard) approaches. We also show that ego mo-
tion compensation can improve the performance and robustness of the tracker
considerably. In order to be applicable to the RoboCup domain we assume all
motions of robots and objects are non-Gaussian/non-linear. Furthermore we as-
sume that any initial position of the object of interest is a-priori unknown and
that visibility is not known. Finally we assume that multiple visually identical
objects can appear in the image.
The current implementation of our approach was tested extensively for coloured
objects in various RoboCup soccer competitions as well as on real-world soccer
playgrounds. Furthermore our method was successfully applied to other tasks
like mobile vehicle surveillance and multi-target tracking of real-world objects
in cluttered scenes.

The paper is organised as follows. Section 2 introduces the probabilistic ob-
ject model used by the short-term memory. In section 3 a practical approach is
presented. Experimental results are shown in Section 4. Finally we discuss the
results and the approach in Section 5.

2 Object Model

The pose of a tracked object is defined as Φ(x y θ λ ẋ ẏ) where x, y is the po-
sition, θ is the relative orientation, λ is a scale factor of the observed object in
the image and ẋ, ẏ denotes the relative motion of the object of interest in one
frame to the subsequent frame. Let q be an a-priori known target model of the
object of interest. Let Contour(Φ) be a function that is generated by a 3D
projection of a known 3D shape of the object a contour model for all Φ. Our

Object ContourObject Contour

(a) inner and outer force

Object Region

Object Background

Object Region

Object Background

(b) areas

Fig. 2. Principle of our tracking approach

implementation defines this function for ball, goals, corner-posts and obstacles.
The main idea of our approach is to keep the believed contour of an object of
interest as close as possible to its background, instead of keeping it only close

to the object’s contour alone. This is illustrated in fig. 2(a), the arrows head
for the two virtual forces that ”push” the contour of the object to its correct
position. The outer arrows indicate forces that maximise the likelihood of the
statistics of the beliefs of the objects. The inner arrows indicate forces, which
result from the function that maximises the ratio of the ability to distinguish
between object and background. This method prevents contours from collapsing
because of low-contrast objects, like e.g. a white ball.

In practice, tracking of the exact contour of the object is difficult due to motion
blur. Thus we track the region that is close to the object and its background
region as shown in fig. 2(b). The real contour lies in the middle of both re-
gions. We choose the m− bin histogram for the feature space representation of
the object region and the background region. Using histograms is not an optimal
non-parametric density estimate method [5] but it suffices for our purposes. Both
histograms are generated by function h(xi), which assigns the colour at location
xi to the corresponding histogram bin. In our experiments we use an illumina-
tion invariant colour space r′g′I that was introduced in [12]. The conversion of
RGB values is given by (r′, g′, I) = (r

g , g
b , r+g+b

3). Our experimental setup uses
a 12 × 12 × 4 bin histogram. The usage of a 4 bin illumination per 12 × 12 bin
colour information provides a smaller sensitivity to illumination changes. Our
experiments have shown that this also works by using only 16 × 16 colour bins
without illumination information. However, in this case it becomes impossible to
distinguish black from white objects. The colour distribution pΦ = y

(u)
u u=1...m

with the pose Φ is calculated as

p
(u)
Φ = f

l∑
i=1

δ[h(xi)− u] (1)

where l is the number of pixels in the area, δ is the Kronecker delta function and f

is a normalisation constant ensuring
∑m

u=1 p
(u)
Φ = 1. The probability distribution

functions of both histograms are calculated separately. For the sake of simplicity
we assume that all corresponding objects and background areas are known a-
priori for all Φ. Note that both histogram bins are not binary e.g. we do not
apply traditional segmentation. Next we need a similarity measure of pobject(u)
and qobject(u) to enable tracking and target localisation. The bin-likelihood is
calculated using the Bhattacharyya metric [5,13]:

ρ[p, q] =
m∑

u=1

√
pobj(u) · qobj(u) (2)

In theory a perfect match will result in ρ[p, q] = 1. A non perfect match will
result in a value between zero and one. To avoid certain observations, like for
example a ”white ball” on a ”white wall”, we can assume that the object is
always distinguishable from the background. We extend (2) to

ρ[p, q] =

⌊⌊ m∑
u=1

√
pobj(u) · qobj(u)−

√
pbck(u) · qobj(u)

⌋
− ϑ

⌋
(3)

The background is extracted bin-wise instead of subtracting the summed likeli-
hood. This leads to a higher stability in case of the background being alike to the
object scheme. In general, probabilistic frameworks output the ”most believed”
state, for example they will yield the ”best fit”. In practice this becomes often
a problem when the object of interest is not visible in the image, e.g. due to
partial or full occlusion, or when it is no longer in the image. In this case the
next most believed state output will be considered as a false positive. In order to
overcome that problem we apply thresholding using a lower limit ϑ ∈ R. Also,
in the probabilistic framework of [10] a lower limit was used to detect the loss
of an object.
Tracking whole regions yields relatively expensive computations, e.g. when we
apply sequential Monte Carlo filters. Hence, we apply an approximation that
uses structured sample points [8] near the contour, where the sample points can
be considered as both, object and background. Using this technique allows us to
have an adjustable trade-off between runtime and precision.

3 Probabilistic Object Tracking

In this section we consider the two co-operating memories of our approach.
First we give a brief introduction to Particle Filters and the related loss of
diversity problem in particle filtering. Next we explain the technical details of
both memory models.

3.1 Particle Filters

Particle Filtering [10] or Monte Carlo [7] (MC) was developed to track objects
in clutter. It is a Bayesian probabilistic method. The position of an object is
represented by using a set of n weighted particles. Each particle contains a
”believed” position with an assigned probability π. The pose of the object is
estimated by using the observations as a function of the likelihood of believed
poses/states while the particle filter attempts to maximise the likelihood of the
beliefs. The usual MC algorithm works recursively in four different stages: (1)
first the prediction stage of the motion model that is used to integrate the actions
u to all particles e.g. the particles are simply moved. In the following stage (2)
the observations are used to update the weight π of the particles. As next (3)
the weight of all particles are normalised to one. Finally (4) the particles are
re-sampled to get the posterior distribution. Technically, re-sampling discards
particles with low weights and moves their weights to specific (random) particles
with higher weights. In our implementation we move to the position of a new
”offspring” particle with respect to the weight of the parent particle. For example
a low weight of the parent particle will result in a high transformation.

3.2 Extended Particle filtering (ePF)

Particle filters approximate probability density functions using a discrete set of n
particles. Filters like the Bootstrap algorithm typically approximate the den-

1: procedure extendParticleFilter
2: // ...

3: NormaliseImportanceWeights(π̃
(0)
t , ..., π̃

(n)
t)

4: // Selection & Resampling step (Bayes Prediction Step)
5: // generate m clusters from all particles

6: c(j)
j=1...m ← ObtainClusters(x̃

(i)
0...t)

7: // calculate the weight of the clusters

8: $(j)
j=1...m ← NormaliseClusterWeights($′(j)

j=1...m)
9: for l← 1 to m do

10: N ′(l)
t ← SelectCluster(c(l))

11: d← Num(c(l)) // Apply traditional resampling for each cluster..
12: end for
13: // ...
14: end procedure

Fig. 3. extended Particle Filter, see [7] for the original algorithm

sity by maximising the probability of particles by re-sampling particles with a
”high” probability. The terms ”high” and ”low” are relative in the theory of prob-
ability density functions: The weights of all particles are usually normalised such
that the overall sum is one. This means that particles with a ”high” probability
are considered more important than those with a relatively low probability. For
example ”high” ranked particles can generate more offspring in the re-sampling
step.
The discrete approximation can lead to unwanted side effects caused by the dis-
crete set of particles. For example, it can be the case when we apply particle
filters to semi-bimodal distributions (one short dominant peak and a wide lit-
tle peak): This can result in relatively many particles with a low probability
and relatively few particles with a high probability. According to the probability
function it can happen that low weighted particles gain a lot of attention of the
filter compared to the few particles with a high probability, like e.g. the ’parti-
cle clinging ’ effect when the system needs several time-steps to converge. With
visual object tracking we face the problem that we have several areas with very
low probabilities, e.g. if the background has a minimal similarity of the object.
This is exactly the case with our object model (section 2). It is a relatively liberal
model ensuring that lost objects are re-detected in short time. In the case of a
lost object the particles are distributed randomly. Indeed the usage of a strict
probability can reduce the required time to converge, however it has a high im-
pact on the robustness of the system. In eq. (3) we introduced a lower limit to
reduce the chance of this effect to occur. In literature this problem is sometimes
referred as the ”loss of diversity” (in particle filters) problem. In practise the
probability density is unknown; hence we have to expect ”particle clinging ”.
The ”particle clinging ” effect is also noticeable in the case of Monte Carlo local-
isation. With bi-modal distributions we face the problem that all particles will
always converge to the highest probability [15] and may lose the object.
The main reason for the particle clinging effect is that we consider the particles

piece-wise during the re-sampling step. We introduce a new extended Particle fil-
tering (ePF) method. It is based on the idea that we consider groups of particles
(clusters) during re-sampling. This means that we treat clusters like ordinary
particles. For example we assign each cluster a count of offspring particles. Each
cluster generates its own offspring while we use the same method as in tradi-
tional methods, e.g. the traditional re-sampling step is applied to each cluster.
We use an implementation based on the mean shift metric [2, pp 790]. This
method builds clusters of the state space using a weighted kernel function and
a kernel size. In contrast to the popular k-means clustering method the number
of clusters is determined by the algorithm itself. Using the clusters we are able
to obtain multiple states from one particle set by applying the MC estimation
methods separately on each cluster. In practice 80% of the entire time only one
cluster appears. In the worst case this extended method performs equally to the
non-extended method.

3.3 Short-Term memory

The short term memory deals with frame-to-frame changes of Φt in image se-
quences using the extended particle filters. We assume that the tracked object
undergo translation or rotation in the image of the camera. Additionally we as-
sume that only the object size changes while the shape remains unchanged. A
straightforward model of such motion applied to the state is Φt−1 to obtain Φt

using:
Φt = Φt−1 + ∆mov (4)

To simplify matters we assume that the process noise is contained within ∆mov.
Based on the idea of the Mass Inertia Model we use the particle filtering method
to estimate the translative motion. The relative motion is expressed by ẋ and ẏ
through the translation:

Φxt = Φxt−1 + Φẋt−1 Φyt = Φyt−1 + Φẏt−1 (5)

The theory of particle filters states that particles with a ”good” proposal will
survive in the sample set and populate in the resample set. The parameters ẋ, ẏ
are propagated in the resample step of the filtering process according to their
prior weights. A ”good” proposal will generate more but concentrated particles,
while a ”bad” proposal will generate fewer but highly varied particles. In theory
the set will convert to ”good” values after a few (> 3) iterations. So we obtain

Φt = Φt−1 +

Φẋt−1

Φẏt−1

1.1− π′t−1

0
1.1− π′t−1

1.1− π′t−1

T

·

1
1
ρω

0
ρmove

ρmove

T

·

1
1

rnd()
0

rnd()
rnd()

T

+ ∆Noise (6)

where ρmove, ρω is the expected (maximum) relative movement and orientation
change made in one time step, respectively. rnd() : [-1:1] ∈ R is a non Gaussian

and non linear random function. π′ represents the normalised weight ranging
from [0 : 1] ∈ R. Note that the (usual) π is normalised such that the sum of all
π is one. To prevent a local minima we use 1.1 instead of 1.0 as normalisation
value and we add uniform distributed noise ∆Noise to the particles. Note that
initially all parameters in Φt are set to zero.

3.4 Long-Term memory

Although our particle filter is an efficient and robust visual object tracker, it
only provides limited robustness to occlusions. In such a case the particle filter
will converge to a uniform distribution of its particles. In order to keep objects
for a ”longer time” we use a well-tuned ”Multiple Hypothesis Tracking”(MHT)
filter. We apply a MHT algorithm that assigns an ID to the observed tracks of
the particle filter. The original implementation given in [14], later extended in
[6], provides already a full framework to suffice our needs. It is able to cope with
missing measurements and predicts the motion of a-priori known unobserved
objects. In our experimental setup, an unobserved object is ”forgotten” after
2 seconds. Note that the original implementation is bound to linear/Gaussian
systems.
We use a straightforward technique to give a feedback to the short-term memory:
We add b additional particles to the particle filter using the positions of the
predicted hypothesis of missing objects. The position of additional particles (per
hypothesis) depends on its ”age”, e.g. the count of iterations until the last update
step to a found observation. An older ”age” will result in a larger spread of the
additional particles. Note that the MHT filter is used only as a ”long term
memory” e.g. its only feeding ”hints” to the short-term memory. The estimation
of the believed state is done in the short-term memory, e.g. the most dominant
observation is output. In the case of visually gone objects these ”hints” are
ignored by the particle filtering.

3.5 Ego-Motion Compensation

The main idea of ego-motion compensation is to apply the inverse motion of
the robot to the tracker. In our experimental setup we use the self-localisation
of the robot system. We use a simple heuristic to apply the Ego-Motion Com-
pensation to the two tracker sensors: First we calculate the relative movement
of the robot by using the difference of the current and previous poses, like e.g.
the pose obtained from the current and previous iteration. We use the robot’s
pose probability as weight factor for the observed motion, which prevents ”ar-
tificial motion” caused by non explicit poses, like for example during the global
localisation. The weighted deltas are applied to the particles and the MHT hy-
pothesis by shifting them. Note that the particles are only rotated. We do not
shift the particles translatively because it can lead to unwanted behaviours. The
MHT hypotheses are shifted translatively and rotatory according to their deltas.
The motion models of both trackers remain untouched since we assume that the
object itself moves (approaching the robot).

4 Experimental Results

In this section we will evaluate our approach and compare it to standard tracking
methods like the Mean Shift tracker proposed by [5] and the Colour-Based prob-
abilistic tracking proposed by [11,13]. The Colour-Based probabilisticapproach is
closely related to ours while Mean Shift differs from it. The Mean Shift is usually
used in combination with a Kalman filter.

4.1 Test Environment

We use test sequences from the RoboCup Middle Size context to measure the
performance. Our robot is equipped with an omni-directional camera system
(omni-vision) which is the only sensor of the system. These kind of camera
systems lead to the effect that ego-motion is more intense in the image as in
ordinary pan and tilt setups.

StartStart

(a) Tour A

StartStart

(b) Tour B

StartStart

(c) Tour C

StartStart

(d) Tour D

Fig. 4. Sample Tours used for Evaluation, the unit of the values are frames

First, tour ”A” tests the object tracking performance over a large range
which is a typical situation in a RoboCup tournament: The ball can be far away
from its observer while it is possible that the object moves rapidly towards the
observer within short time. In tour ”B” we assess the ’trackers’ performance in
case of highly dynamic object movements. The ball is pushed to the centre of
the field and shot (very fast) towards the yellow goal. The shots are repeated
three times and the ball bounces back. The objective of tour ”C” is to test the
stability w.r.t. ego motion which represents a typical behaviour of a RoboCup
robot in the role of a striker. Tour ”D” tests the stability of the trackers w.r.t. a

http://video.google.com/videoplay?docid=5678032048808528480&q=Towards+Probabilistic+Shape+Vision+in+RoboCup&pl=true
http://video.google.com/videoplay?docid=-3952363184630637430&q=Towards+Probabilistic+Shape+Vision+in+RoboCup&pl=true
http://video.google.com/videoplay?docid=-5453362264713555303&q=Towards+Probabilistic+Shape+Vision+in+RoboCup&pl=true
http://video.google.com/videoplay?docid=8992492982104720257&q=Towards+Probabilistic+Shape+Vision+in+RoboCup&pl=true

Table 1. Accuracy of the trackers, the unit of all values is pixel

Mean Shift Mean Shift + KL MC Tracker our approach
Tour Avr. Max Avr. Max Avr. Max Avr. Max

Tour A 21.125 168.848 5.510 48.664 40.253 348.319 4.651 62.047
Tour B 109.807 291.239 74.895 223.243 42.254 290.805 4.883 115.242
Tour C 153.664 350.957 168.434 513.469 26.951 238.484 9.273 221.215
Tour D 87.963 310.499 7.950 64.315 21.350 215.758 5.438 63.523

background highly similar to the object of interest. Note that we use an ordinary
white soccer ball which contrasts the RoboCup rule-set (2006).

4.2 Results

We use the following settings to parameterise our tracker: 200 particles for the
extended Particle Filter module, 50 ”hint” particles for the MHT module and 50
random particles. During the test runs the ego-motion compensation is not used.
For the other contestant we use values that were proposed by [5,11]: an ellipsoid
area is used for the Mean Shift and MC. We measure the Euclidean error e1 of
the believed pose of the tracker with respect to the ground truth position. In
tours with high dynamics the MC tracker performance is better than the Mean
Shift tracker. Results are vice versa in tours with low dynamics. One reason for
this is the incapability of a Kalman filter to adapt to non-linear/non-Gaussian
dynamics. In tour C the Kalman filter degrades even the performance of the Mean
Shift tracker. Altogether we see that our approach shows the lowest average error
of all contestants.

4.3 Benchmarking

First we analyse the influences of the number of particles on the performance
of different configurations of the tracker, see fig. 5(a). ”MC” denotes a tracker
using traditional Monte Carlo filtering. All configurations converge while the

 1

 10

 100

 100 1000 10000

E
rr

or
 [P

ix
el

]

Particles [Count]

Average Error
Random

MC
 ePF

MHT
 MHT + ePF

 MHT + Random + ePF

(a) different number of particles

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300

E
rr

or
 [P

ix
el

]

Frame #

Cumulative Error
 ePF (w/o comp)

MHT + Particle (w/o comp)
ePF

MHT + ePF

(b) ego motion compensation

Fig. 5. Using different configurations of our approach

number of particles increases. The MC tracker performs better than the MHT
tracker. In cased where MHT loses the object, all particles are set randomly to
recover the position of the object. That’s why MHT converges with an increasing
number of particles. The extended Particle Filter method performs better than
the traditional Monte Carlo. In fact the combination of MHT, random particles
and extended Particle Filter shows the best results. The main reason for the
improvement is that the MHT filters adapt better to ”long term” motion (of the
robot and objects) such as the extended Particle Filter, while the MHT filter
fails to adapt to ”short term” motion (e.g. if the ball is shot or is bounces back).
It is also shown in [16] that random particles can improve the performance of
particle filters. Next we consider the influence of the ego motion compensation
on the accuracy of the hybrid tracker. Figure 5(b) shows the cumulative error
of tour C using different configurations. Similar to fig. 5(a) an extended Parti-
cle Filter can be improved using additional particles resulting from the MHT
”long term” memory. We see that Ego motion compensation significantly im-
proves the performance. Turnings of the robot have only a slight influence on
the performance.

5 Discussion

We showed that our new tracking technique can robustly track objects with high
and low dynamics. Moreover we showed that the usage of our extended Particle
Filter yields better performance compared to traditional Monte Carlo Filters. It
allows us to obtain multiple (disjoint) independent states. The major drawback
of our implementation is that we have to assume a kernel size for the object in
the state space. The usage of too high or too low values can lead to multiple
observations of the same object which degrades the performance to the level of
traditional Monte Carlo filters. [4] proposed a parameter-free version of the Mean
shift algorithm by analysing the density of the state space. We cannot apply this
method because we use too few particles (≈ 1000 particles are needed). One ad-
vantage of our approach is that it only requires a minimum of initial knowledge
about an object’s motion dynamics since we assume that an object can move in
any direction.
Furthermore we faced the problem of the dynamic scale adoption. In our ap-
proach we propagate these parameters using particles, where [5] applies a heuris-
tic by using the best match probing the scales λ, λ0.9, λ1.1 in every iteration.
Both solutions are sub-optimal and can lead to inaccuracy in case of poor illumi-
nated environments. In fact the inaccuracy is caused by the false size adaptation
which leads to a ”shift” of the position of the believed track. See [5,13] for more
details. In our approach we observed two bottlenecks: (1) the generation and
evaluation of the colour scheme candidates and (2) the generation of the sample
points of the approximated shape model. The computational time on the eval-
uation of the colour scheme highly depends on the number of used bins of the
sensor model.

Table 2. Computational complexity

Mean Shift MC Tracker our Approach

Complexity O(m log m) O(nm log m) O(nm log m)
Average Runtime < 1ms ≈ 20ms Ball:≈ 6ms, Goal ≈ 11ms
typical n - 150 300
typical m 30x30 30x30 16x8

The Mean Shift is the fastest method of all tested trackers. This explains why it
became popular in the visual tracking community. Theoretically the runtime of
our approach and the MC tracker is identical. Practically m of our approach is
much smaller than MC due to the fact that we use sample pixels instead of the
pixel areas. The runtime was measured on a 1.1GHz PentiumM notebook.

References

1. Y. Bar-Shalom and T. Fortmann. Tracking and data association. Mathematics in
science and engineering ; 179. Academic Press Inc. London, 1. edition, 1988.

2. Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17:790–799, August 1995.

3. R. Collins, Y. Liu, and M. Leordeanu. On-line selection of discriminative tracking
features. IEEE Transaction on PAMI, 27(10):1631 – 1643, October 2005.

4. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Transaction on PAMI, 24:603–619, May 2002.

5. D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Transaction on PAMI, 25:564–575, May 2003.

6. I. Cox and S. Hingorani. An efficient implementation and evaluation of reid’s mht
algorithm for visual tracking. In ICPR94, pages 437–442, 1994.

7. A. Doucet, N. Freitag, and N. Gordon. Sequential Monte Carlo Methods in Parctise,
chapter 2, pages 4–16. Springer New York, 2001.

8. R. Hanek, T. Schmitt, S. Buck, and M. Beetz. Towards robocup without color
labeling. In RoboCup International Symposium 2002, 2002.

9. F. Hundelshausen and R. Rojas. Tracking regions. In RoboCup-2003: Robot Soccer
World Cup VII. Springer, 2004.

10. M. Isard and A. Blake. Condensation – conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

11. K. Nummiaro, E. Koller-Meier, and L. Gool. An adaptive color-based particle
filter. Image and Vision Computing, 21(1):99–110, 2003.

12. S. Olufs. Realtime color-segmentaion of fast moving objects (in german). Master’s
thesis, University of Applied Sciences Bonn-Rhein-Sieg, 2002.

13. P. Prez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic tracking.
In ECCV’2002, LNCS 2350, pages 661–675, Denmark, June 2002.

14. D. Reid. An algorithm for tracking multiple targets. IEEE Transaction on Auto-
matic Control 24(6), pages 843–854, 1979.

15. D. Schulz, W. Burgard, D., Fox, and A. Cremers. People tracking with a mobile
robot using sample-based joint probabilistic data association filters. In Journal of
Robotics Research (IJRR), 2003.

16. S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization
for mobile robots. Artificial Intelligence, 128(1-2):99–141, 2000.

