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ficient Implementation of Reid's Multiple 
ypothesis Tracking Algorithm and Its 

Evaluation for the Purpose of Visual Tracking 
lngemar J. Cox and Sunita L. Hingorani 

Abstract-An efficient implementation of Reid's multiple hypothesis tracking (MHT) algorithm is presented in which the k-best 
hypotheses are determined in polynomial time using an algorithm due to M u r Q  [24]. The MHT algorithm is then applied to several 
motion sequences. The MHT capabilities of track initiation, termination, and continuation are demonstrated together with the latter's 
capability to provide low level support of temporary occlusion of tracks. Between 50 and 150 corner features are simultaneously 
tracked in the image plane over a sequence of up to 51 frames. Each corner is tracked using a simple linear Kalman filter and any 
data association uncertainty is resolved by the MHT. Kalman filter parameter estimation is discussed, and experimental results 
show that the algorithm is robust to errors in the motion model. An investigation of the performance of the algorithm as a function of 
look-ahead (tree depth) indicates that high accuracy can be obtained for tree depths as shallow as three. Experimental results 
suggest that a real-time MHT solution to the motion correspondence problem is possible for certain classes of scenes. 

Index Terms-Multiple hypothesis tracking, motion correspondence, data association, tracking, visual tracking, ranked bipartite 
graph matching. 

1 INTRODUCTION' 

HE analysis of image sequences for purposes of estimat- T ing camera motion and/or 3-D scene geometry often re- 
quires the tracking of geometric features over long image 
sequences. Typically predictions are first made as to the ex- 
pected locations of the current set of features of interest. 
These predictions are then matched to actual measurements. 
At this stage, ambiguities may arise. Predictions may not be 
supported by measurements-have these objects ceased to 
exist or were they simply occluded? There may be unex- 
pected measurements-do these measurements originate 
from newly visible objects or are they spurious readings from 
noisy sensors? More than one measurement may match a 
predicted feature-which measurement is the correct one and 
what is the origin of the other measurements? Or a single 
measurement may match to more than one fea tuewhich  
feature should the measurement be assigned to? These ambi- 
guities must be resolved in order to solve the motion cone  
spondence problem. 

Visual tracking has been extensively studied in recent 
years. However, almost all such work has assumed that 
the motion correspondence problem has been solved or is 

1. Portions of Sections 1 and 2 are taken from [8] and are reprinted 
courtesy of Kluwer Academic Publishers. 

* I.J. Cox is with NEC Research Institute, 4 Independence Way, 
Princeton, N J  08540. E-mail: ingemar@research.nj.nec.com. 
S.L. Hingorani is with AT&T Bell Laboratories, 184 Liberty Corner Road, 
Warren, N J  07059. E-mail: sunita@cartoon.lc.att.com. 

Manuscript received Aug. 25,1994; revised Aug. 18,1995. 
Recommended for acceptance by: A. Singh. 
For information on obtaining reprints of this article, please send e-mail to: 
transactions@computer.org, and reference IEEECS Log Number P95149. 

trivial so that a nearest neighbor strategy is effective. In some 
cases, a nearest neighbor strategy is indeed adequate. For 
example, Tomasi and Kanade [30]. track corner features over 
very many frames using such an approach. A nearest neigh- 
bor strategy usually relies on the frame-to-frame image mo- 
tion being extremely small. Much more data must then be 
processed than if a sparser sampling were used. However, if 
sigmficant frame to frame motions are present, then ambi- 
guities can quickly arise. Zheng and Chellappa [34] minimize 
these ambiguities by using a weighted correlation window to 
detected tracked features in the next frame. While correlation 
techniques can significantly reduce the motion correspon- 
dence ambigpi@, our experiments suggest that partial occlu- 
sion and significant changes in the background can be prob- 
lematic for such methods. Moreover, such techniques are only 
appropriate to the detection of measurements from existing 
tracking, not for the detection of new tracks. Many researchers 
have used the Kalman filter to track geometric features such 
as lines [I], [17] and corners [5], [4] in a scene, under the as- 
sumption that motion correspondence is straightforward. The 
motivation and significance of this work was in designing 
stable and reliable algorithms to infer the 3-D structure and 
motion from 2-D image plane measurements. Shapiro et al. 
[28] describe tracking corners in the image plane. Their sys- 
tem has several similarities to the one described herein, spe- 
cifically the use of Kalman filtering and a cross correlation 
measure to compare corners. However, the motion corre- 
spondence problem is not rigorously addressed: correspon- 
dences are determined between two consecutive frames 
based on a similarity measure between corners. Correspon- 
dences are determined without looking at subsequent frames 
and there is no mechanism for dealing with ambiguous mo- 
tion correspondences. 
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The target tracking and surveillance community has ex- 
tensively studied the motion correspondence problem [2] 
and a number of statistical data association techniques have 
been developed. These algorithms are now receiving wider 
attention, especially within the computer vision community 
[8]. For example, Chang and Aggarwal[6] have applied the 
joint probabilistic data association (JPDA) filter [18] to the 
problem of 3-D structure reconstruction from an ego motion 
sequence. However, the JPDA is only aplpropriate if the 
number of tracks is known a priori and remains fixed 
throughout the motion sequence. Zhang and Faugeras [32] 
have used the track splitting filter of Smith and Buechler 
[29] for dynamic motion analysis. The track splitting filter is 
similar to multiple hypothesis tracking in its use of track 
trees to delay correspondence decisions until more evidence 
is available. However, the track splitting filter allows meas- 
urements to be shared between tracks. This is physically 
unrealistic. More reasonable, is that a measurement origi- 
nates from only a single source feature, e.g., a single meas- 
urement might originate from either a wall or corner fea- 
ture but not from both. The motion correspondence now 
becomes one of partitioning measurements into disjoint 
tracks (or sets). Disjointness is also a common constraint in 
human vision where in stereo correspondence it is called 
uniqueness [22] and in motion correspondence it is called 
the element integrity principle 1161. It may also be reason- 
able to assume that a geometric feature gives rise to only a 
single measurement vector within a time frame. The track 
splitting algorithm cannot cope with these constraints and 
it is necessary to use an MHT approach. Moreover, one is 
unable to develop and efficient implementation, as dis- 
cussed in Section 2.3, without the disjointness constraint. 

This paper describes an efficient implementation of the 
multiple hypothesis tracking (MHT) algorithm originally 
proposed by Reid [27] and evaluates its usefulness in the 
context of visual tracking and motion correspondence. Our 
interest in the MHT is motivated by the fact that the MHT is 
the only statistical data association algorithm that inte- 
grates all the capabilities of 

Track Initiation. The automatic creation of new tracks 
as new geometric features enter the field of view. 
Track Termination. The automatic termination of a track 
when the geometric feature is no longer visible for an 
extended period of time 
Track Continuation. The continuation of a track over 
several frames in the absence of measurements. Thus, 
the algorithm is capable of providing a level of sup- 
port for temporary occlusion. 
Explicit Modeling of Spurious Measurements. 
Explicit Modeling of Uniqueness Constraints. A meas- 
urement may only be assigned to a single track and a 
track may only be the source of a single measurement 
per frame. 

The multiple hypothesis tracking (MHT) algorithm is 
outlined in Section 2. Unfortunately, the MHT algorithm is 
computationally exponential both in time and memory. An 
approximation to the algorithm must therefore be imple- 
mented. Section 2.3 describes an efficient approximation to 
the MHT algorithm, the key contribution being the use of 

an algorithm due to Murty 1241 to generate directly the 
k-best hypotheses in polynomial time [12] without explicitly 
enumerating all possible hypotheses. This is a significant 
contribution to the practical application of the MHT meth- 
odology which has recently been shown to be approxi- 
mately three orders of magnitude faster than previous hy- 
pothesis generation strategies [13]. 

Section 3 then describes experimental results on three 
motion sequences. In each motion sequence, corner features 
are automatically detected using a variant of the Lucas and 
Kanade corner detector 1211. The MHT then tracks these 
corners over the sequence of frames. Each corner is tracked 
in the image plane using a simple linear Kalman filter. Sec- 
tion 3.4 demonstrates that the algorithm is robust to errors 
in the motion model. The most significant experimental 
problem encountered was that of track initiation during the 
first two or three frames of the sequence. Section 3.2 de- 
scribes the approach used to reduce this problem. Section 
3.4.1 investigates how the performance of the MHT varies 
as a function of the depth of the hypothesis tree. Finally, 
Section 4 summarizes the experimental results and suggests 
several promising lines of future work. 

2 MULTIPLE HYPOTHESIS ALGORITHM 

The multiple hypothesis tracking algorithm was originally 
developed by Reid [27] in the context of multi-target track- 
ing. Recently, Cox and Leonard [9], [lo]’ demonstrated its 
utility in the context of building and maintaining a map of 
a mobile robot’s environment using acoustic sensors. Fig. 1 
outlines the basic operation of the MHT algorithm. An it- 
eration begins with the set of current hypotheses from it- 
eration (k  - 1). Each hypothesis represents a different set of 
assignments of measurements to features, i.e., it is a collec- 
tion of disjoint tracks. A track is defined to be a sequence of 
measurements that are assumed to originate from the same 
geometric feature. A dummy track in each global hypothe- 
sis denotes spurious measurements. 

Different sets of assignments expect to see different sets 
of measurements. Thus, each hypothesis predicts the loca- 
tion (in the image plane) of a set of expected geometric fea- 
tures (specifically corners) and these are compared with 
actual measurements detected in the next camera frame on 
the basis of their Mahalanobis di~tance.~ These comparisons 
are represented in the form of an ambiguity m a t r i ~ , ~  defined 

2. The interested reader is also directed to Cox et al. [14] who ap- 
plied the MHT to the problem of contour grouping and segmentation. 

3. For normally distributed measurements, the Mahalanobis distance 
is chi-squared distributed with number of degrees of freedom equal to 
the dimension n, of the measurement vector. The probability that the 
distance is less than the parameter y can, therefore, be obtained from 
x2 distribution tables. For example, if the measurement vector is two 
dimensional, n, = 2, and a validation or search volume is to be estab- 
lished in which there is a 95% probability of finding the measurement, 
i.e., P ( z ( k  + 1) E p(y)) = 0.95, then yis set to y =  5.99. Conversely, if a 
measurement fails the inequality test then there is a 5% or less chance 
that it is associated with the geometric feature. 
4. The ambiguity matrix is more often referred to as a hypothesis 

matrix. However, we feel that this is somewhat confusing since many 
hypotheses can be generated from a single (ambiguity) matrix. 
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in Section 2.1, which concisely models the ambiguities pres- 
ent in assigning measurements to features. 

Each measurement may either 1) belong to a previously 
known geometric feature, 2) be the start of a new geometric 
feature, e.g., a previously unseen corner that has entered 
the field of view of the camera, 3) be a spurious measure- 
ment (also called a false alarm). In addition, for geometric 
features that are not assigned measurements, there is the 
possibility of 4) deletion of the geometric feature. This 
situation may arise when say a corner feature leaves the 
field of view of the camera. Alternatively, 5) there is the 
possibility of continuation of a geometric feature, the 
missed measurement perhaps being due to either noise or a 
temporary occlusion caused by the motions of the camera 
and objects in the scene. 

After matching, each global hypothesis (from iteration 
(k - I)), has an associated ambiguity matrix from which it is 
necessary to generate a set of legal assignments (see Section 
2.1). Each subsequent child hypothesis represents one pos- 
sible interpretation of the new set of measurements and, 
together with its parent hypothesis, represents one possible 
interpretation of all past measurements. 

Finally, in order to contain the growth of the tree, it is 
necessary to prune unlikely branches (see Section 2.3). In 
order to do this intelligently, we need to evaluate the likeli- 
hood of each hypothesis. Section 2.2 provides the mathe- 
matical framework for estimating the probability of each 
leaf in the tree. 

I delay Hypothykat time k 

hypotheses 

Predicted Features Ambiguity Matrix 

I I Feature Extraction 

Raw Sensor Data 

Fig. 1. Outline of the multiple hypothesis algorithm. 

2.1 Hypothesis Generation 

A particular global hypothesis at time k is defined by Of .  

Let Ok:bdenote the parent hypothesis from which Of is 

derived, and OJk) denote the specific set of assumed as- 
signments that map {@:;), Z ( k ) ]  to 0;. That is, OJk) is a 
set of assignments of the origins of all measurements re- 

ceived at time k with all the geometric features postulated 
by the parent hypothesis, 0:;;) at time k. The event 8,(k) 

based on the current measurements is defined to consist of z 
measurements from known geometric features, v measure- 
ments from new geometric features, $J spurious measure- 
ments (false alarms), and x deleted (or obsolete) geometric 
features from the parent hypothesis. 

A set of current assignments or events 0,(k) can be gener- 
ated by first creating an ambiguity matrix in which known 
geometric features are represented by the columns of the 
matrix and the current measurements by the rows. A non- 
zero element at matrix position c, denotes that measure- 
ment z,(k> is contained in the validation region of geometric 
feature t,. In addition to the total number, T, of known geo- 
metric features postulated by a hypothesis, the hypothesis 
matrix has appended to it a column 0 denoting false alarms 
and a column T + 1 denoting new geometric features. The 
situation depicted in Fig. 2 is represented by the hypothesis 
matrix shown in Fig. 3. 

X 

Fig. 2. Predicted target locations and elliptical validation regions for a 
situation with two known geometric features (T, and T,) and four new 
measurements (z,(k), z,(k), z,(k) z,(k)). 

Fig. 3. Hypothesis matrix for the situation depicted in Fig. 2. 

It is desired to constrain the legal set of assignments to 
be disjoint so that 1) a measurement originates from only 
one source feature and that 2) a geometric feature has at 
most one associated measurement per iteration. This is 
equivalent to restricting an ambiguity matrix to have only a 
single nonzero value in any row or column, except for the 
first and last columns since any number of measurements 
might be false alarms or new geometric features. If the first 
and last columns of the ambiguity matrix are replicated mk 
times for each of the m, measurements, then there is only a 
single nonzero in any row or column and the ambiguity 
matrix can be thought of as a cost matrix in a linear as- 
signment problem (or weighted bipartite graph matching). 
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Enumeration of all legal sets of assignments, 6, (k) ,  is 
straightforward [35],  but impractical for anything other 
than a trivial example. Section 2.3.3 describes in more detail 
how the ambiguity matrix can be modified to represent a 
classical assignment matrix from which the k-best assign- 
ments (hypotheses) can be generated using an algorithm 
due to Murty [24]. 

2.2. Probability Calculations 

The new hypothesis at time k, 0; is made up of the current 
set of assignments (also called an event), B,(k),  and a pre- 

vious hypothesis,@:$ based on measurements up to and 
including time k - 1, i.e., 

0; = {&-' m(l)' e,(')} (1 ) 

The probability of an hypothesis, p ok Zk can be calcu- 
lated using Bayes' rule, so that 

( - 1 1  1 
P { O ; ~ Z ~ }  = P {e,&), ok,;;)lz(k),zk-'} 

where c is a normalization constant. The last term of this 
equation, P (@:;;)IZk-'), represents the probability of the 
parent global hypothesis and is therefore available from the 
previous iteration. The remaining two terms may be evalu- 
ated as follows. 

The second factor of (2) is obtained by combining results 
from [2]  and [20] to yield 

(3)  
(PA) 6 ( 1  - P$61(P;)*yl - p;)'-" 

where pF(@) and pN(v) are the prior probability mass func- 
tions (PMFs) of the number of spurious measurements and 
new geometric features, PL and Pi are the probabilities of 

detection and termination (deletion) of track t and 6, and xt 
are indicator variables defined by 

if geometric feature t (in of;:)) is detected 

otherwise 
at time k (4) 

if geometric feature t (in @ki;)) is deleted 

otherwise 
at time k (5) 

To determine the first term on the right hand side of (2)  it 
is assumed that a measurement zl(k) has a Gaussian prob- 
ability density function (pdf) 

N, = N [ z , ( k ) ] A  N [ z , ( k ) ;  2,(klk- l), S t l ( k ) ]  

if it is associated with geometric feature t,, where 2,(klk - 1) 
denotes the predicted measurement for geometric feature t, 
and S'j(k)  is the associated innovation covariance. If the 
measurement is spurious (a false alarm), then its pdf is as- 
sumed uniform in the observation volume, V. The probabil- 
ity of a new geometric feature is also taken to be uniform' 
with pdf V-'. Under these assumptions, we have that 

M k  

p [ Z ( k ) l e , ( k ) ,  Okm;:), Zk-l]  = n [ N t j [ z ,  (k)]]"' V-(l-"l) 

(7) 
t=l 

mk 

= V-"-"U [Nt,  [ ~ , ( k ) ] ] " ~  
1=1 

where z, is an indicator variable defined as 

(8) 
z,(k) came from a known geometric feature z = =  

0 otherwise 

and v and $ are the total number of new geometric features 
and false alarms, respectively. 

Substituting (7) and (3)  into (2)  yields the final expression 
for the conditional probability of an association hypothesis 

If the number of false alarms and new features are assumed 
to be Poisson distributed6 with densities AF and A,, respec- 
tively then (9) reduces to 

The probability of each hypothesis can be used to guide 
a pruning strategy described next. 

2.3. Implementation' 
Because of the exponential complexity of the multiple hy- 
pothesis approach only an approximation to the MHT al- 
gorithm can be implemented. In particular, it is simply not 
feasible to search the entire space of hypotheses in order to 
determine the most likely set of assignments. Several im- 
plementation strategies were employed in order to contain 
the growth of the hypothesis tree and reduce the number of 
hypotheses that must be considered. 

5. Intuitively, the choice of uniform pdf's for false alarms and new 
features seems less justifiable for robotic applications than for tradi- 
tional radar and underwater sonar tracking applications. The impact 
of these assumptions needs further investigation. 

6.  Uniform distributions can also be easily accommodated. 
7. Portions of this section are taken from [12]. 
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2.3.1 Track Trees 
The same track may appear in more than one global hy- 
pothesis. Rather than duplicate a track for each hypothesis 
containing it, thereby incurring additional computational 
and storage overheads, track trees are formed [20]. Each 
branch of a track tree represents the assignment of a differ- 
ent measurement to the track. Each global hypothesis then 
contains pointers to leaves of the track trees. Each set of 
pointers, i.e., global hypothesis, represents a different per- 
mutation of track leaf nodes from different track trees, and 
enforce the constraints of disjoint partitions. The track tree 
provides considerable savings and is discussed in detail by 
Kurien [20]. Track trees also eliminate the need for an ex- 
plicit hypothesis tree; only the leaf nodes of a hypothesis 
tree need to be kept-parent hypotheses can be recon- 
structed by following the set of track tree pointers. 

2.3.2 Spatially Disjoint Hypothesis Trees 

A considerable reduction in the combinatorics can be 
achieved by realizing that it is not necessary to form a single 
global hypothesis tree if there are tracks that do not compete 
for common measurements. Instead, tracks can be partitioned 
into separate clusters as proposed by Reid 1271. Tracks within 
each cluster compete for common measurements, whereas 
tracks in different clusters do not. A separate hypothesis tree 
is grown for each spatially disjoint region and consequently, 
the combinatorial problem associated with forming gIobal 
hypotheses is significantly reduced. 

Of course, each new set of measurements must be 
checked to determine whether a measurement is shared 
(falls in the validation region) between two or more clus- 
ters. If so, these clusters must be merged. Similarly, a cluster 
containing two or more geometric features that do not share 
common measurements may be split. 

2.3.3 Generating the k-Best Hypotheses 

A brute force implementation of the MHT would, at each 
iteration, enumerate all possible global hypotheses, calcu- 
late the probability of each hypotheses and then prune so as 
to keep only the k-best. This enumeration is impractical. 
Recently, several researchers have recognized the impor- 
tance of generating the k-best directly without recourse to a 
costly enumeration. Nagarajan et al. [25] present an algo- 
rithm in which the k-best hypotheses are generated by an 
“easy search process instead of going through an extensive 
enumeration.” The authors do not provide a theoretical 
analysis of the computational complexity of their branch 
and bound scheme. However, while evidence is presented 
to demonstrate that in some cases a very significant reduc- 
tion in computation is achieved, in the worst case the cost 
may still be exponential. Brogan [3] provides an algorithm 
for determining a ranked set of p assignments. However, 
this set is not guaranteed to be the p-best, i.e., it is possible 
to miss certain good combinations. A sufficient condition is 
provided to determine q < p such that the first q assign- 
ments are optimal. Once again, no formal analysis of the 
computational complexity is provided. 

Danchick and Newnam [15] recognize that finding the 
best hypothesis can be formulated as a classical linear as- 

signment problem, and then show how modifications to the 
cost matrix followed by repeated solutions to these new 
assignment problems allow the k-best assignments to be 
computed. Danchick and Newnams’ algorithm has two 
disadvantages. First, in the worst case, Danchick and 
Newnam’ algorithm requires the solution of k! linear as- 
signment problems. Though the average case is expected to 
be considerably better, it is highly desirable to reduce the 
order of this dependency. Second, at the end of each itera- 
tion (or “sweep”) Danchick and Newnams’ algorithm must 
identify and eliminate duplicate assignments. A compari- 
son of an optimized version of the implementation de- 
scribed next with that of Danchick and Newnam revealed 
that our approach was approximately three orders of mag- 
nitude faster [13].8 

In order to generate the k-best hypotheses, we used an 
algorithm due to Murty [24] to optimally determine the 
k-best assignments in polynomial time. The number of lin- 
ear assignment problems that must then be solved is linear 
in k. In fact, ”the computations required at each stage are 
the solving of at most (n - 1) assignment problems, each of 
sizes 2, 3,  . . ., n” [24]. The algorithm avoids solving dupli- 
cate assignment problems, thereby eliminating the need to 
compare and delete duplicate hypotheses. Finally, in the 
average case, the dimension of the assignment problems 
that must be examined decreases with k. 

Consider first the problem of finding the single most 
probable hypothesis. This can be cast as a weighted bipar- 
tite matching problem by constructing a bipartite graph in 
which each node on one side represents one of the meas- 
urements, each node on the other represents one of the tar- 
gets, and each arc, < zt, t,, Z >, gives the log likelihood, I ,  that 
measurement z, should be assigned to target f. The log of 
the likelihood of a given assignment can be found by 
summing the log likelihoods of all the arcs that it specifies. 
These log likelihoods can be calculated from (10). 

Finding the best hypothesis, then, is a matter of finding 
the assignment that maximizes this sum. This is an instance 
of the classical assignment problem from combinatorial 
optimization, and can be solved very efficiently in poly- 
nomial time [26]. Murty’s algorithm is also guaranteed to 
find the k-best assignments in polynomial time. A brief de- 
scription of Murty’s algorithm follows: 

Given a solution, S, to an assignment problem, P, we can 
partition the assignment problem into a list of new prob- 
l e m  with the following properties: 

1) The set of valid solutions for any one of the problems 
in the list doesn’t intersect with the set of solutions for 
any other problem in the list. That is, there are no 
duplicate problems. 

2) The union of the sets of valid solutions for all the 
problems in the list is exactly the set of solutions for 
problem P, minus solution S. 

Murty gives a method for computing this partitioning in 
o(N’) time. 

8. To generate the 20 best hypotheses for 20 problems of dimension 
20 x 20 in which the matrix weights are randomly generated. 
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p, 
Termination likelihood a 

Ap 
5 

Mean rate of false alarms 
Mean rate of new tracks 

Depth of tree N-scan 

Ratio pruning 
Maximum number of hypotheses Hmx 

For the k-best algorithm, a list of problem/solution pairs 
is kept. Each pair consists of an assignment problem and its 
best solution. The list is initialized with the initial problem 
to be solved. In each iteration, the best solution is found, 
then removed from the list, and replaced with its partition- 
ing. So, in the first iteration, the single best solution, s,, is 
found to the problem, and the list is altered so the set of 
possible solutions no-longer contains S,. The next iteration 
gives the next-best solution, S,, and changes the list so that 
possible subsequent solutions no-longer include S, or So; 
and so on. Fig. 4 outlines the algorithm. The partitioning is 
performed by the loop in step 4.4. 

The reader is directed to [24], [E], [13] for more detail. 

0.999 - 
20 

0.00002 

0.004 

3 
300 

0.001 

1) Find the best solution, S, to Po (this can be done using a 

2) Initialize the list of problem/solution pairs with < P,, S, > 
3) Clear the list of solutions to be returned 
4) For 1’ = 1 to k, or until the list of problem/solution pairs is 

empty 
4.1 Search through the list of problem/solution pairs, and 

find the pair, < P, S > that has the best solution value 
4.2 Remove < P, S > from the list of problem/solution pairs 
4.3 Add S to the list of solutions to be returned 
4.4 For each triple, < f, z, I >, found in S 

standard algorithm like the Hungarian method) 

4.4.1 Let P’ = P 
4.4.2 Remove the triple c t,z, 1 > from F” 
4.4.3 Look for the best solution, S’, to P‘ 
4.4.4 If S’ exists 

4.4.4.1 Add < P’, S’ > to the set of problem/ so- 
lution pairs. 

4.4.5 From P, remove all triples that include t, and all 
triples that include z, except < t ,  .t, I z itself. (This 
reduces the dimension of the problem by one) 

Fig. 4. Murty’s algorithm for finding the k-best solutions to an assign- 
ment problem, Po. 

2.3.4 Pruning 
Pruning is essential to any practical implementation of this 
algorithm. Pruning is based on a combination of an 
”N-scan-back” algorithm [ZO] and ratio pruning, i.e., a 
simple lower limit on the ratio of the probabilities of the 
current and best hypotheses. 

The “N-scan-back” algorithm assumes that any ambigu- 
ity at time k is resolved by time k + N, i.e., it defines the 
number of frames to look ahead in order to resolve an am- 
biguity. Then, if hypothesis 0: at time k has q children, the 
sum of the probabilities of the leaf nodes is calculated for 
each of the 9 branches. Whichever branch has the greatest 
probability is retained and all other branches are pruned. 
The result is an irrevocable decision regarding the assign- 
ment of measurements to tracks based on looking ahead N 
time steps. Consequently, below the decision node there is a 
tree of depth N while above the decision node the tree has 
degenerated into a simple list of assignments. It is clearly 
computationally advantageous to set N as small as possible. 
Section 3.4.1 investigates how the performance of the MHT 

varies as a function of N. Results suggest that very good 
performance can be obtained for N = 3 and even N = 2 and 
this conclusion is supported by other work [9], [lo], [20]. 

Generating the k-best hypotheses obviously restricts the 
maximum number of new hypotheses to k. However, in 
many situations there may be little need to consider all k 
hypotheses particularly if there is little or no ambiguity. 
Moreover, hypotheses only have a finite number of itera- 
tions to increase their probabilities, before N-scan back 
pruning deletes them. In these circumstances there is little 
point in generating all k hypotheses if they are such that 
their probabilities are especially low. A threshold can there- 
fore be set that prevents hypotheses from being considered 
if the ratio of their probability to that of the best hypothesis 
becomes too small. 

3 EXPERIMENTAL RESULTS 

3.1 Kalman Filter 
Each corner feature was tracked in the image plane using a 
simple linear Kalman filter with state vector x = [ X  f y y]’, 
where x and y are the pixel coordinates of a feature. The 
state transition matrix, F, is given by 

(1 at 0 0 )  

(0 0 0 1) 

9. Our implementation used source code kindly provided by J. Barron. 
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The measurement vector z(k)  = [x y]' and the observation 
matrix H is given by 

1 0 0 0  
H(k) = (0 0 1 0 )  

In order to estimate the process and measurement noises, 
we manually tracked a few corners over approximately 10 
frames. We then adjusted the process and measurement 
noises so that all the measurements passed the Mahalanobis 
matching test. If this is not done, then of course, a meas- 
urements will not validate to the correct track and will 
therefore be incorrectly assigned. The process noise, S(k)  
and measurement noise R(k) were set to 

d t 3  / 3  d t 2  / 2  0 
d t 2  / 2 dt  0 

0 0 df3 / 3  
0 0 dt2 / 2 dt 

S ( k )  = 

where q = 9 for the Puma and J7 sequences and q = 0.5 for 
the Toycar sequence and 

1.0 0 
R(k) = ( 0 1.0) 

3.2 Track Initiation 

Although track initiation is handled automatically within 
the MHT framework, there is still the problem that the 
Kalman filter associated with each track cannot be initiated 
from a sing2e measurement since a single measurement does 
not provide velocity information. There are two solutions to 
this problem. The first is to delay track initiation until two 
consecutive measurements are available to give a reliable 
estimate of a feature's velocity. The second solution is to 
initiate the velocity estimates of the state vector to zero 
while simultaneously initializing the corresponding ele- 
ments of the state covariance matrix to a large value in or- 
der to represent the uncertainty in the velocity estimates. 
We chose to follow the second approach and initialized the 
state covariance, P(k), to 

(1.0 0 0 0 ) 

(0 0 0 200) 

for the puma and toy car sequences and 

(1.0 0 0 0) 

\ 0 0 0 10) 

for the J7 sequence 

The magnitude of the velocity variances was established 
by manually examining two consecutive image frames to 
determine the maximum displacement between two corre- 
sponding points. For the PUMA sequence, this displace- 
ment was typically 31 pixels for features closest to the cam- 
era. This is a considerable displacement which necessitated 
examining a very large initial window. 

3.3 ValidatiodMatching 
As noted earlier, measurements were matched to predic- 
tions based on the Mahalanobis test. However, because of 
the very large initial search window, +31 pixels, there were 
a very large number of possible matches between a predic- 
tion and current measurements. This resulted in'very large 
ambiguity matrices and very few disjoint clusters which 
caused sigruficant computational problems. 

In order to reduce the total number of possible initial 
matches (and also increase the number of disjoint clusters) 
we supplemented the Mahalanobis test with a cross corre- 
lation testlo in order to prevent nonsense matches, such as 
matching a black corner with a white corner. The 3 x 3 
neighborhood of intensities centered at a corner in frame 
(k - l), Ik-l(i, j ) ,  were compared with the 5 x 5 neighborhood 
of intensities in frame k, Ik(i, j )  such that 

Z ~ ~ - ~ ( i ,  i) - ~ i - ~ ) ~  Z ( I k - l ( i r j )  - I , )  d L I E N  

A =  max 
p,q=-l,O,l 

z,j&N 

where N i s  the 3 x 3 neighborhood and 5 is the mean of I. 
A threshold was then set on the maximum cross correlation 
coefficient, i.e., if two corners passed the original Maha- 
lanobis test but failed the cross correlation test then the two 
comers did not validate/match.i A threshold of 0.9 was 
used for the PUMA and Toycar sequences and 0.05 for the 
J7 sequence. 

This cross correlation technique significantly improved the 
performance of the algorithm on the PUMA sequence, elimi- 
nating many (erroneous) matches from consideration. How- 
ever, the sitme test caused a few problems with the "Toycar" 
sequence due to occlusion, see Section 3.5. Zheng and Chel- 
lappa [34] use a weighted correlation technique which they 
claim is robust to "feature mutation." Such an approach 
could also be used within the framework described here. 
However, it is unclear whether the weighted correlation 
technique would be more robust to rapid changes in back- 
ground as objects partially occlude one another. 

3.4 The PUMA Sequence 
Fig. 5 shows the lst, loth, 20th, and 29th frames of the 
PUMA sequence. The extracted corners are overlayed on 
each frame. Fig. 6 shows those trajectories that were tracked 
from frame 1 and additional trajectories that began in frame 
2. Only trajectories of length greater than 6 are displayed. 
The square and circle symbols denote the start and end of a 
track, respectively. The results are qualitatively very good. 
In particular, it should be noted that these circular trajecto- 
ries were tracked despite the the underlying constant veloc- 
ity motion model. Note, however, the two erroneous trajec- 
tories in the top right of Fig. 6a. Detailed examination of 
this area revealed that the constant velocity model was re- 
sponsible for the erroneous classification. When a constant 

10. Shapiro et al., [28] call this the product moment coefficient. They 
point out that such a measure is invariant to linear changes in intensity 
and therefore compares the structure of the patches rather than their 
absolute intensities. 
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+ 

Fig. 5. The (a) Ist, (b) loth, (c) 20th, and (d) 29th frames of the 
PUMA sequence; courtesy of the University of Massachusetts. 

Fig. 6. Corner trajectories tracked from (a) frame 1 and (b) from frame 
2 of the PUMA sequence. Only trajectories of length greater than 6 
are displayed. 

acceleration model was used, the measurements were 
tracked correctly. 

Fig. 6b shows tracks that were started in frame 2. While 
many of these corners were visible in the first frame, they 
were either 1) not located by the corner detector until the 
second frame or 2) the corresponding corners in the 1st 
frame did not validate because intensity variations between 
frames caused the cross correlation test to fail. Fig. 7 shows 
the computation time and number of measurements for 
each frame of the Puma sequence. Although there are sig- 
nificant variations in the number of measurements per it- 
eration, the computational time per frame is approximately 
constant at 1.5 sec per frame on a MIPS I74400 150 MHz 
processor. 

3.4.1 Performance as a Function of Tree Depth 
The classifications of Fig. 6 were obtained with an 
”N-scan” of 3. In order to investigate how the performance 

of the MHT varies with the depth of the tree, the experi- 
ment was repeated for N-scan depths of 0, 1, and 2. Note 
that an N-scan of 0 provides no look ahead capability and is 
similar to a nearest neighbor solution to the assignment 
problem. 

The resulting tracks are shown in Fig. 8, including that of 
Fig. 6a for reference. Notice that for an N-scan of 0, 1, and 2 
there are several erroneous straight line trajectories in the 
lower left quandrant of the image. Experimental results 
showed no perceptable improvement for N-scans of greater 
than 3, supporting earlier claims [27], [20], [U] that near 
optimum performance can be obtained from quite shallow 
tree depths. 

3.5 The “Toycar” Sequence 
Fig. 9 shows the lst, 3rd, 5th, and 7th frames of a nine 
frame sequence in which two vehicles are moving from left 
to right, a vehicle is moving from right to left and a fourth 
vehicle is stationary for seven frames and then moves to the 
bottom left quadrant in the eighth frame. This latter motion 
is not tracked. 

Fig. 10 shows the trajectories of the tracked corners that 
are started in frames 1 and frame 2. While most of the tracks 
started in frame 2 are visible in frame 1, once again they were 
either not located by the corner detector until the second 
frame or the corresponding corners in the first frame did not 
validate because intensity variations between frames caused 
the cross correlation test to fail. Several of the tracks associ- 
ated with the van were temporarily occluded due to the mo- 
tion of the “jeep.” These occlusions were successfully handled 
by the h4HT algorithm, which continued the tracks (despite 
missed measurements) until the tracks were visible again. Of 
course, had a track been occluded for longer, then the MHT 
might well have terminated it and started a new track for the 
feature when it became visible again. 

Failing to validate a correct measurement based on the 
cross correlation coefficient occurred in this sequence as 
well. Significantly, the cross correlation measure provided a 
very poor method of matching when objects partially oc- 
clude one another, as in the case of the “jeep” passing in 
front of the van, because of the very significant changes in 
the 3 x 3 intensity neighborhood. 

3.51 

I,, 
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(C) 

Fig. 8. The corner trajectories tracked through the PUMA sequence 
for N-scan of (a) 0, (b) 1, (c) 2, and (d) 3. 

I,.\ 
\ V I  

Fig. 9. The (a) lst, (b) 3rd, (c) 5th, and (d) 7th frames of the Toycar 
sequence; courtesy of the University of Massachusetts. 

The average time-per-iteration of the MHT was 3.06 sec- 
onds on the Toycar sequence. However, it should be noted 
that almost half the total computational time is spent proc- 
essing frames 5 and 6 during which the vehicles are passing 
in front of one another, see Fig. 11. The increase in compu- 
tation time for frames 5 and 6 is not due to an increase in 

the number of measurements but rather to the motion cor- 
respondence ambiguity that arises during the partial occlu- 
sion of objects. 

Fig. 10. Corner trajectories tracked from (a) frame 1 and (b) from 
frame 2 of the Toycar sequence. Only trajectories of length greater 
than 6 are displayed. 
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Fig. 1 1 .  Time and number of measurements per frame for the MHT 
algorithm applied to the  Toycar sequence. 

3.6 The “J7” Outdoor Sequence 
Fig. 12 shows the 5th, 22nd, 39th and 55th frames of a 60 
frame sequence in which the camera is mounted in a mov- 
ing vehicle and is following behind a van. For approxi- 
mately half the sequence, the camera is approaching the 
van and for the remainder, the van is receding. This results 
in tracks whose direction reverse. Fig. 13 shows the trajec- 
tories of the tracked corners that started in frame 1 and 
were tracked to frames 22 and 55, respectively. The rela- 
tively large process noise allows the Kalman filter to cope 
with the change in direction of the tracks. Note that the 
cross correlation threshold was set to 0.05, effectively 
switching off this gating mechanism and relying almost 
exclusively on the Mahalanobis test. 

Comparison with the results of Zheng and Chellappa 
1341 show very few differences. Of the 100 tracks, 74 tracks 
were identical, 18 tracks that contained only one measure- 
ment were classified as false alarms by the MHT, five tracks 
with only three measurements in each differed somewhat 
but again, these tracks are not significant. Of the tracks con- 
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taining greater than three measurements there were only 
three tracks that differed; a single measurement in each 
track was assigned as a false alarm. These three tracks were 
following: 1) the shadow of a car, 2) leaves of a tree, and 3) a 
corner created by the occlusion of a pole by a van. 

The time to process the 51 frame sequence was approxi- 
mately 7 sec. Fig. 14 shows the computation time and num- 
ber of measurements per frame for the J7 sequence. The 
rapid increase in the computation time during the first three 
frames reflects the large uncertainty at startup due to track 
initiation. At the end of the third iteration the N-scan back 
pruning (N = 3) removes many of the hypotheses as deci- 
sions are made as to the assignments of mt  >asurements to 
tracks. The gradual reduction in the time-per-iteration par- 
ticularly between time t = 3 and t = 15 is because the num- 
ber of measurements per iteration is monotonically decreas- 
ing with time (see Fig. 14). 

To compare these results with an (approximately) nearest 
neighbor strategy, we reduced the N-scan lookahead depth to 
zero. In this case, 108 tracks were found with no false alarms, 
compared with 80 tracks and 28 false alarms for N-scan of 
three. An examination of the structure of the tracks revealed 
45 tracks with fewer than four measurements that were sub- 
sequently extrapolated (continued) for 15 iterations, as shown 
in Fig. 15. Most of these tracks contained only one or two 
actual measurements. The circles visible in Fig. 15 are indica- 
tive of tracks with zero velocity The small duration tracks 
visible on the right side of Fig. 15 and in the mid left were 
typically initialized with only measurements from three con- 
secutive frames yet persist for significantly lionger based on 
extrapolation over 15 frames. These tracks do not exist in 
practice and are evidence of the inferior data associations 
obtained using a nearest neighbor strategy. 

(a) (b) 

Fig. 13. The corner trajectories tracked through the “J7” sequence. (a) 
is tracks up to Frame 22, (b) is tracks up to Frame 55. 

0.8 O.gtO + 

i. 
Frame 

Fig. 14. Time and number of measurements per frame for the MHT 
algorithm applied to the J7 sequence. 

Fig. 15. Corner trajectories with 4 or less actual measurements tracked 
through the ‘77” sequence up to Frame 55 with N-scan lookahead set 
to zero. 

(Cl ( 4  

Fig. 12. The (a) lst, (b) 22nd, (e) 39th, and (d) 55th frames of the “J7 
sequence, courtesy of F. Meyer, IRISA, France and Thomson LER, 
Cesson-Sevigne, France. 

3.7. Discussion of Results 
Table 2 tabulates certain MHT run-time statistics for each of 
the three motion sequences. This data indicates that the 
run-time of the MHT algorithm is less affected by the total 
number of measurements and/or tracks, c.f. the Puma and 
Toycar sequences, and more by the degree of ambiguity 
present in the measurements. Note too, that for the PUMA 
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No. of 

and J7 sequences, 66% and 47%, respectively, of the total 
comutation time is spent in the validation phase (tentative 
matching) of the algorithm. This could be significantly sped 
up by using metric [7] or VP trees [31]. 

Tables 3,4, and 5 tabulate for each motion sequence, the 
number of disjoint clusters, the total number of hypotheses 
and the maximum number of hypotheses in a cluster for 
each frame of a sequence. The number of disjoint clusters is 
approximately equal to the number of measurements, for 
all three sequences. However, Table 5, for the J7 sequence, 
reveals that both the total number of global hypotheses as 
well as the maximum number of hypotheses in a cluster, are 
very small, indicating that the image sequence contains few 
motion correspondence ambiguities. The Puma sequence, 
Table 3, has significantly more global hypotheses. The fluc- 
tuations in the maximum number of hypotheses in a cluster 
indicates various degrees of motion correspondence ambi- 
guity Finally, Table 4 indicates via the total number of hy- 
potheses and the large maximum number of hypotheses 
within a cluster, that the Toycar sequence contains signifi- 
cant ambiguity. This ambiguity and the resultant large 
number of hypotheses that must be considered, cause the 
processing time to increase for the Toycar sequence. 

Tables 3 and 4 suggests that an MHT framework codd m 
in real-time for certain classes of video sequences, though 
identifying such a sequence a priori is not entirely straight- 
forward. In both the PUMA and J7 sequences a very si@- 
cant amount of time is spent in the validation (tentative 
matching) phase of the algorithm, see Table 2. As noted ear- 
lier, algorithms exist to significantly speedup this phase [7], 
[31]. Moreover, the implementation of Murty‘s algorithm for 
hypothesis generation could be improved significantly and 
the entire MHT algorithm is amenable to parallelization [ZO]. 

No. of 
Hvpos in 

4 CONCLUSION 

We have demonstrated how the multiple hypothesis tracking 
algorithm of Reid may be applied to visual tracking. The 
MHT algorithm provides a Bayesian framework for motion 
analysis. In particular, it is the only statistical data association 
algorithm to explicitly model track initiation and termination, 
spurious measurements and track continuation. The latter 
characteristic provides a low level mechanism for dealing 
with temporary occlusions. Moreover, the algorithm enforces 
disjoint constraints so that a measurement can only be associ- 
ated with one feature and a feature can only be the source of 
a single measurement each iteration. 

The principal disadvantage of the MHT is its computa- 
tional complexity. This paper describes a significant contri- 
bution to the design of an efficient implementation of the 
MHT-the use of Murty’s algorithm to generate the k-best 
hypotheses (in order O ( p )  time, worst case,) thereby 
avoiding enumerating many unnecessary hypotheses. We 
expect Murty’s algorithm to become the hypothesis gen- 
eration strategy of choice for many MHT applications. An 
optimized version of Murty’s algorithm has been demon- 
strated to be three orders of magnitude faster than the best 
alternative algorithm. Moreover, experimental results indi- 
cate that a real-time implementation of the MHT to motion 
correspondence is feasible for certain classes of scene. 

TABLE 2 

FOR THE THREE SEQUENCES 
COMPARISON OF MHT RUN-TIME STATISTICS 

I PUMA I Toycar I J7 
Average time-per-iteration I 1.54 1 3.06 I 0.14 
Average number of tracks I 390 I 165 1 77 
Average number of measure- 

Frame 

7 

Time I Measure I No. of I No.of I a G r o u p  I 
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TABLE 5 
RUN-TIME STATISTICS FOR THE J7 SEQUENCE 

Hypos in 
a Grouo 

No. of 
Time Measure No. of No. of 

Experimental results support the belief that motion cor- 
respondence accuracy can be improved by examining more 
than just the current frame. At the same time, there appears 
to be little or no further improvement in ltooking beyond 
three consecutive frames. This is encouraging, since the 
depth of the hypothesis tree is quite shallow. 

Examination of the k-best hypotheses is predicated on 
the assumption that the correct hypotheses is contained 
therein. Typically, one would want and expect the probabil- 
ity of a hypothesis to fall off quickly as a function of k. This 
is usually the case, but not at the beginning of a motion 

sequence. Since there are no predictions for measurements 
in the first frame, all such measurements must be consid- 
ered either new tracks or spurious measurements. The 
probabilities associated with each hypothesis are quite flat 
and there is a high risk of pruning (or not examining) the 
correct hypothesis. In the second frame, this problem is 
compounded by the fact that the validation volume is much 
larger than in the steady state situation, in order to com- 
pensate for the lack of velocity information. This increases 
the motion correspondence (data association) uncertainty. 
Thus, k may need to be quite large in order to be confident 
that the correct correspondence was not pruned. 

In order to reduce the data association uncertainty (and 
thereby keep k manageable), we introduced a second gating 
mechanism based on the cross correlation coefficient of a 
3 x 3 neighborhood centered on the corner position. This 
significantly reduced the number of possible matches and 
was beneficial for the most part. However, several correct 
correspondences failed the cross correlation test, particu- 
larly when one object moves in front of another, e.g., when 
the ”van” passed behind the “jeep,” since a significant 
change within the 3 x 3 intensity neighborhood can occur. 
This suggests that other methods are needed for tentatively 
matching features. One such possibility would be some 
form of 2D matching that incorporated geometric con- 
straints and perhaps included a low level perceptual 
grouping strategy that (attempted to) identify and group 
features originating from a common rigid object in a fash- 
ion similar to Jacobs [19] or Meyer and Bouthemy [23]. 

Reliably detecting corners was surprisingly difficult. 
Corner detection was applied independent of the tracking 
algorithm, but a coupled feature detection and tracking 
mechanism, perhaps along the lines of Zheng and Chellapa 
[33], [34], should be investigated. 

The corners were tracked using simple linear Kalman fil- 
ters. Tuning the various parameters, e.g., process and 
measurement noise, was straightforward once a few tracks 
had been manually tracked for several frames. The PUMA 
and J7 sequences demonstrated that (with sufficient process 
noise) the algorithm is robust to errors in the motion model. 
Nevertheless, an accurate motion model is desirable to 
minimize incorrect motion correspondences. The MHT 
framework allows several motion models to run in parallel, 
i.e., instead of a single new track, there can be n possible 
new tracks, one for every motion model. This has been used 
in the past to deal with manouvering aircraft and in robot 
map making [ll]. Of course, this increased flexibility comes 
at the expense on increased combinatorial complexity. 

Finally, the MHT framework integrates both a top-down 
expectation level process, based on predictions from multi- 
ple Kalman filters, together with a bottom-up explanation 
driven process in the form of a Bayesian hypothesis tree. 
Such a framework appears to be well suited for active vi- 
sion applications in which sensing is directed to resolve 
ambiguities in the hypothesis tree. 
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