
D8.2 De fi n itio n o f Do c u m e n ta tio n
a n d M a n u fa c tu rin g P ro c e d u re s

18.3 D o c u m e n t a t io n C o m m e n t s

18.3.1 P r e lim in a r ie s

Documentation comments d es crib e clas s es , cons tructors , d es tructors , meth od s , memb ers , and func-

tions . T h e Dox y g en d ocumentation s y s tem [6] is us ed to ex tract th e d ocumentation comments and cre-

ate ex ternal d ocumentation in H T M L or L aT eX . A lth oug h Dox y g en s up p orts s everal d ocumentation

formats , we will s tick to th e J avad oc format as it is wid ely -accep ted and it facilitates vis ually - p leas ing

and unob s trus ive comments .

E ach d ocumentation comment is s et ins id e th e comment d elimiters /** ... */. With in th is com-

ment, s everal key word s are us ed to fl ag s p ecifi c ty p es of information (e.g . @param, @see, and

@return) . We will treat each of th es e b elow b y way of ex amp le.

Documentation comments are p laced in front of a d eclaration or d efi nition. A lth oug h Dox y g en allows

d ocumentation comments to b e p laced in oth er p laces , s uch as after a d eclaration, in anoth er location,

or in anoth er fi le, we will s tick to th e convention th at d ocumentation comments are p laced d irectly in

front of a d eclaration or d efi nition.

N ote th at b lank lines are treated as p arag rap h s ep arators and th e res ulting d ocumentation will auto-

matically h ave a new p arag rap h wh enever a b lank line is encountered in a d ocumentation comment.

18.3.2 B r ie f a n d D e t a ile d D e s c r ip t io n s

For each cod e item (clas s , cons tructor, d es tructor, meth od , memb er, and function) th ere are two ty p es

of d es crip tions , wh ich tog eth er form th e d ocumentation: a b rief d es crip tion and d etailed d es crip tion.

B oth s h ould b e p rovid ed . H aving more th an one b rief or d etailed d es crip tion is not allowed .

A s th e name s ug g es ts , a b rief d es crip tion is a s h ort one-liner, wh ereas th e d etailed d es crip tion p rovid es

long er more d etailed d ocumentation.

A s noted ab ove, we us e th e J avaDoc s ty le s o th at th e b rief d es crip tion is automatically taken from th e
fi rs t line of th e comment b lock and it is terminated b y th e fi r s t d ot followed b y a s p ace or new line.
For ex amp le:

/** Brief description which ends at this dot. Details follow

* here.

*/

If th ere is one b rief d es crip tion b efore a d eclaration and one b efore a d efi nition of a cod e item, only

th e one b efore th e d eclaration will b e us ed .

If th e s ame s ituation occurs for a d etailed d es crip tion, th e op p os ite ap p lies : th e one b efore th e d efi ni-

tion is us ed and th e one b efore th e d eclaration will b e ig nored .

In s h ort, b rief d es crip tions b efore d eclarations h ave p reced ence over b rief d es crip tions b efore d ef-

initions ; d etailed d es crip tions b efore d efi nitions h ave p reced ence over d etailed d es crip tions b efore

d eclarations .

Date: 1 9 /0 9 /2 0 0 5

Vers io n : N o 1 .0

Pa g e 3 1

D8.2 Definition of Documentation
and Manufacturing Procedures

We rec o m m en d th a t y o u a v o id c o n fu s io n a n d s im p ly p u t a ll d o c u m en ta tio n c o m m en ts , i.e. b rief a n d

d eta iled d es c rip tio n s , b efo re d ec la ra tio n s in th e in terfa c e (.h) fi le.

Note that to use the JavaDoc style JAVADOC_AUTOBRIEF must be set to YES in the Doxygen config-

uration file.

18.3.3 T h e F irst Docu mentation C omment

All source files should begin with a documentation comment that lists the program or class name,
version information, and date, as follows.

/** @file <filename> <one line to identify the nature of the file>

*

* Version information

*

* Date

*

*/

18.3.4 Docu menting C lasses

There should be one documentation comment per class or function. This comment should appear just
before the declaration:

/**

* A test class. A more elaborate class description.

*/

class Test {

public:

/**

* An enum.

* More detailed enum description.

*/

enum Tenum {

TVAL1, /**< enum value TVAL1 */

TVAL2, /**< enum value TVAL2 */

TVAL3 /**< enum value TVAL3 */

};

Tenum *enumPtr; /**< enum pointer. Details. */

Tenum enumVar; /**< enum variable. Details. */

/**

* A constructor.

* A more elaborate description of the constructor.

*/

Date: 19/09/2005

Version: No 1.0

Page 32

D8.2 Definition of Documentation
and Manufacturing Procedures

Test();

/**

* A destructor.

* A more elaborate description of the destructor.

*/

˜Test();

/**

* a normal member taking two arguments and returning an integer value.

* @param a an integer argument.

* @param s a constant character pointer.

* @see Test()

* @see ˜Test()

* @see testMeToo()

* @see publicVar()

* @return The test results

*/

int testMe(int a, const char *s);

/**

* A pure virtual member.

* @see testMe()

* @param c1 the first argument.

* @param c2 the second argument.

*/

virtual void testMeToo(char c1,char c2) = 0;

/**

* a public variable.

* Details.

*/

int publicVar;

/**

* a function variable.

* Details.

*/

int (*handler)(int a,int b);

};

Doxygen also allows you to put the documentation of members (including global functions) in front

of the definition. This way the detailed documentation can be placed in the source file (definition)

instead of the header file (declaration). R ecall the point we made above about the precedence of

definition and declaration regarding brief and detailed descriptions, and the recommendation that you

Date: 19/09/2005

Version: No 1.0

Page 33

D8.2 Definition of Documentation
and Manufacturing Procedures

put all documentation comments in the header (i.e. interface) file.

Top-level classes are not indented but their members are. The first line of a documentation comment

is not indented but subseq uent documentation comment lines each have one space of indentation (to

align the asterisks vertically). Members, including constructors and destructors, have three or four

spaces for the first documentation comment line (depending on which indentation standard you are

using) and five spaces thereafter.

If you need to give information about a class, method, member, or function that isn’t appropriate for

documentation, use an implementation block comment or single-line comment immediately after the

declaration. For example, details about the implementation of a class should go in such an implemen-

tation block comment follow ing the class statement, not in the class documentation comment.

Documentation comments should not be positioned inside a method or a constructor definition block,

because Doxygen associates documentation comments with the first declaration after the comment.

Documentation comments should, as a bare minimum, state:

• What the function or method does.

• What arguments it is passed, their types, and their use.

• What arguments it returns, their types, and their use.

• What the return type is, if any, and what it signifies.

18.3.5 Putting Documentation after M emb ers

If you want to document the members of a file, struct, union, class, or enum, and you want to put
the documentation for these members inside the compound, it is sometimes desired to place the docu-
mentation block after the member instead of before. For this purpose you should put an additional <

marker in the comment block. For example:

int var; /**< Detailed description after the member */

Warning: These blocks can only be used to document members and parameters. They cannot be used

to document files, classes, unions, structs, groups, namespaces and enums themselves.

18.3.6 Documenting G lob al Code I tems

To document a member of a C+ + class, you must also document the class itself. The same holds for

namespaces. To document a global C function, typedef, enum or preprocessor definition you must

first document the file that contains it. This causes a problem because you can’t put a document

comment ‘in front’ of a file. Doxygen allows code items to be documented by putting the document

comment somewhere else but you must then identify the code item being documented with a structural

command.

To document a global code item, such as a C function, you must document the file in which they are
defined by putting a document comment with file structural command

Date: 19/09/2005

Version: No 1.0

Page 34

D8.2 Definition of Documentation
and Manufacturing Procedures

/** @file */

in that file. U sually this will be a header file. Here is an example of a C header named structcmd.h.

/** @file structcmd.h A documented header file ...

* These are the functions ...

*/

/** Opens a file descriptor.

* @param pathname The name of the descriptor.

* @param flags Opening flags.

*/

int open(const char *,int);

/** Closes the file descriptor .

* @param fd The descriptor to close.

*/

int close(int);

/** Writes \a count bytes from \a buf to the filedescriptor \a fd.

* @param fd The descriptor to write to.

* @param buf The data buffer to write.

* @param count The number of bytes to write.

*/

size_t write(int,const char *, size_t);

19 P r o g r a m m in g S t y le

19.1 Declar ations

19.1.1 N umber Per L ine

O ne declaration per line is recommended since it encourages commenting:

int level; // indentation level

int size; // size of table

is preferable to:

int level, size;

Do not put different types on the same line:

int foo, fooarray[]; //WRONG!

19.1.2 Initializ ation

Initializ e local variables where they are declared. The only reason not to initializ e a variable where

it’s declared is if the initial value depends on some computation occurring first.

Date: 19/09/2005

Version: No 1.0

Page 35

D8.2 Definition of Documentation
and Manufacturing Procedures

19.2 P lacement

Put declarations only at the beginning of blocks. A block is any code surrounded by curly braces {
and }. Don’t wait to declare variables until their first use. Ideally, declare all variables at the beginning
of the method or function block.

void myMethod() {

int int1 = 0; // beginning of method block

if (condition) {

int int2 = 0; // beginning of "if" block

...

}

}

19.2.1 Class Declarations

The following formatting rules should be followed:

• No space between a method name and the parenthesis (starting its parameter list.

• The open brace { appears at the end of the same line as the declaration statement.

• The closing brace } starts a line by itself indented to match its corresponding opening statement.

class Sample {

...

}

• Methods are separated by a blank line.

19.3 S tatements

19.3.1 S imple S tatements

Each line should contain at most one statement. For example:

argv++; // Correct

argc++; // Correct

argv++; argc--; // AVOID!

19.3.2 Compound S tatements

Compound statements are statements that contain lists of statements enclosed in braces { statements }.

S ee the following sections for examples.

• The enclosed statements should be indented one more level than the compound statement.

• The opening brace should be at the end of the line that begins the compound statement; the

closing brace should begin a line and be indented to the beginning of the compound statement.

Date: 19/09/2005

Version: No 1.0

Page 36

D8.2 Definition of Documentation
and Manufacturing Procedures

• Braces are used around all statements, even single statements, when they are part of a control
structure, such as a if-else or for statement. This makes it easier to add statements without ac-
cidentally introducing bugs due to forgetting to add braces.

if (condition) {

a = b;

}

else {

a = c;

}

19.3.3 return Statements

A return statement with a value should not use parentheses unless they make the return value more
obvious in some way. For example:

return;

return myDisk.size();

return TRUE;

19.3.4 if, if-else, if else-if else Statements

The if-else class of statements should have the following form:

if (condition) {

statements;

}

if (condition) {

statements;

} else {

statements;

}

if (condition) {

statements;

} else if (condition) {

statements;

} else {

statements;

}

Always use braces { }, with if statements. Don’t use

if (condition) //AVOID!

statement;

Date: 19/09/2005

Version: No 1.0

Page 37

D8.2 Definition of Documentation
and Manufacturing Procedures

19.3.5 for Statements

A for statement should have the following form:

for (initialization; condition; update) {

statements;

}

19.3.6 while Statements

A while statement should have the following form:

while (condition) {

statements;

}

19.3.7 do-while Statements

A do-while statement should have the following form:

do {

statements;

} while (condition);

19.3.8 switch Statements

A switch statement should have the following form:

switch (condition) {

case ABC:

statements;

/* falls through */

case DEF:

statements;

break;

case XYZ:

statements;

break;

default:

statements;

break;

}

Every time a case falls through (i.e. when it doesn’t include a break statement), add a comment

where the break statement would normally be. This is shown in the preceding code example with the

/* falls through */ comment.

Every switch statement should include a default case. The break in the default case is redundant, but

it prevents a fall-through error if later another case is added.

Date: 19/09/2005

Version: No 1.0

Page 38

D8.2 Definition of Documentation
and Manufacturing Procedures

19.4 N aming Conventions

19.4.1 C vs. C+ +

Naming conventions make programs more understandable by making them easier to read. Since iCub

software uses both the C language and the C++ language, sometimes using the imperative program-

ming and object-oriented programming paradigms separately, sometimes using them together, we will

adopt two different naming conventions, one for C and the other for C++. The naming conventions

for C++ are derived from the JavaDoc standards [4].

19.4.2 C+ + Language Conventions

The following are the naming conventions for identifiers when using C++ and the object-oriented

paradigm.

Identifier Typ e R u les f o r N a m ing E x a m p les

C la s s es C la s s na m es s h o u ld b e no u ns , in m ix ed c a s e with class ImageDisplay

th e firs t letter o f ea c h interna l wo rd c a p ita liz ed class MotorController

M eth o ds M eth o d na m es s h o u ld b e verb s , in m ix ed c a s e with int grabImage()

th e firs t letter in lo werc a s e, with th e firs t int setVelocity()

letter o f ea c h interna l wo rd c a p ita liz ed

Va ria b les va ria b le na m es s h o u ld b e in m ix ed c a s e with th e int i;

firs t letter in lo werc a s e, with th e firs t letter float f;

o f ea c h interna l wo rd c a p ita liz ed double pixelValue;

C o ns ta nts Th e na m es o f va ria b les dec la red a s c o ns ta nts const int WIDTH = 4;

s h o u ld b e a ll u p p erc a s e with wo rds s ep a ra ted b y

u nders c o res _

Typ e N a m es Typ edef na m es s h o u ld u s e th e s a m e na m ing p o lic y a s typedef uint16 ModuleType

th a t u s ed fo r c la s s na m es

E nu m N a m es E nu m na m es s h o u ld u s e th e s a m e na m ing p o lic y a s enum PinState {

th a t u s ed fo r c la s s na m es . PIN_OFF,

E nu m la b els s h o u ld s h o u ld b e a ll u p p erc a s e with PIN_ON

wo rds s ep a ra ted b y u nders c o res _ };

19.4.3 C Language Conventions

The following are the naming conventions for identifies when using C and the imperative program-

ming paradigm.

Date: 19/09/2005

Version: No 1.0

Page 39

D8.2 Definition of Documentation
and Manufacturing Procedures

Identifier Type Rules for Naming Examples

F unctions F unction names should be all lowercase with words int display_image()

separated by underscores _ void set_motor_control()

Variables variable names should be all lowercase with words int i;

separated by underscores _ float f;

of each internal word capitalized double pixel_value;

Constants Constants should be all uppercase with words #define WIDTH 4

separated by underscores _

#define #define and macro names should all uppercase #define SUB(a,b) ((a) - (b))

and Macros with words separated by underscores _

19.5 A nd F inally : W h ere To Put Th e O p ening B race {

There are two main conventions on where to put the opening brace of a block. In this document, we
have adopted the JavaDoc convention and put the brace on the same line as the statement preceding
the block. For example:

class Sample {

...

}

while (condition) {

statements;

}

The second convention is to place the brace on the line below the statement preceding the block and
it indent it to the same level. For example:

class Sample

{

...

}

while (condition)

{

statements;

}

If you really hate the JavaDoc format, use the second format, but be consistent and stick to it through-

out your code.

Date: 19/09/2005

Version: No 1.0

Page 40

D8.2 Definition of Documentation
and Manufacturing Procedures

20 Programming Prac tic e

20.1 C+ + L anguage Conventions

20.1.1 A ccess to Data Members

Don’t make any class data member public without good reason.

One example of appropriate public data member is the case where the class is essentially a data

structure, with no behaviour. In other words, if you would have used a struct instead of a class, then

it’s appropriate to make the class’s data members public.

20.2 C L anguage Conventions

Use the Standard C syntax for function definitions:

void example_function (int an_integer, long a_long, short a_short)

...

If the arguments don’t fit on one line, split the line according to the rules in Section 2 0 .2 :

void example_function (int an_integer, long a_long, short a_short,

float a_float, double a_double)

...

20.3 G eneral I ssues

20.3.1 Conditional Compilation

Avoid the use of conditional compilation. If your code deals with different configuration options, use
a conventional if-else construct. If the code associated with either clause is long, put it in a separate
function. For example, please write:

if (HAS_FOO) {

...

}

else {

...

}

instead of:

#ifdef HAS_FOO

...

#else

...

#endif

Date: 19/09/2005

Version: No 1.0

Page 41

D8.2 Definition of Documentation
and Manufacturing Procedures

20.3.2 W riting R obust Programs

Avoid arbitrary limits on the size or length of any data structure, including arrays, by allocating all

data structures dynamically. Use malloc or new to create data-structures of the appropriate size.

Remember to avoid memory leakage by always using free and delete to deallocate dynamically-

created data-structures.

Check every call to malloc or new to see if it returned NULL.

You must expect free to alter the contents of the block that was freed. Never access a data structure

after it has been freed.

If malloc fails in a non-interactive program, make that a fatal error. In an interactive program, it is

better to abort the current command and return to the command reader loop.

When static storage is to be written during program execution, use explicit C or C++ code to initialize
it. Reserve C initialize declarations for data that will not be changed. Consider the following two
examples.

static int two = 2; // two will never alter its value

...

static int flag;

flag = TRUE; // might also be FALSE

20.3.3 Constants

Numerical constants (literals) should not be coded directly, except for -1 , 0, and 1 , which can appear

in a for loop as counter values.

20.3.4 Variable Assignments

Avoid assigning several variables to the same value in a single statement. It is hard to read.

Do not use the assignment operator in a place where it can be easily confused with the equality oper-
ator.

if (c++ = d++) { // AVOID!

...

}

should be written as

if ((c++ = d++) != 0) {

...

}

Do not use embedded assignments in an attempt to improve run-time performance. This is the job of
the compiler.

Date: 19/09/2005

Version: No 1.0

Page 42

D8.2 Definition of Documentation
and Manufacturing Procedures

d = (a = b + c) + r; // AVOID!

should be written as

a = b + c;

d = a + r;

20.3.5 Parentheses

Use parentheses liberally in expressions involving mixed operators to avoid operator precedence prob-
lems. Even if the operator precedence seems clear to you, it might not be to others — you shouldn’t
assume that other programmers know precedence as well as you do.

if (a == b && c == d) // AVOID!

if ((a == b) && (c == d)) // USE

20.3.6 Standards for Graphical Interfaces

When you write a program that provides a graphical user interface (G UI), you should use a cross-

platform library. At the very least, it must possible to compile your G UI code for both a Window

environment and a Linux environment. The FLTK G UI library [3] satisfies this requirement.

20.3.7 E rror Messages

Error messages should look like this:

function_name: error message

20.3.8 License Messages

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

<Program name and version>

Copyright (C) <year> <name of author>, <author institute>

RobotCub Consortium, European Commission FP6 Project IST-004370

email: <firstname.secondname>@robotcub.org

website: www.robotcub.org

This program comes with ABSOLUTELY NO WARRANTY.

Permission is granted to copy, distribute, and/or modify this program

under the terms of the GNU General Public License, version 2

or any later version published by the Free Software Foundation;

see http://www.robotcub.org/icub/license/gpl.txt

Date: 19/09/2005

Version: No 1.0

Page 43

