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Abstract

In this paper we address how a robot can learn to grasp
objects from experience with a focus on open-ended learn-
ing. We aim at a system that gets along without a person
assisting in interacting with the objects during its whole
lifespan. The implementation was done based on the hu-
manoid robotic platform iCub. In particular we dealt with:
i) policies for the selection of promising training data ii) au-
tomated labeling of training samples and, iii) on-line learn-
ing. The presented system will serve as the basis for the
evaluation of our research on cognitive learning.

1. Introduction

To enable autonomous world interaction a robotic sys-
tem has to reason about individual affordances [1]. A par-
ticular important object affordance is grasping. Learning
how to grasp is driven by a large number of trials to enrich
the robot’s experience. Nowadays many approaches utilize
simulators to automate such experiments in order to be able
to automatically reset the environment over and over again.
Doing this on real hardware usually requires significant as-
sistance from the outside. In this paper we present a system
to overcome this in order to establish learning in a open-
ended way.

For this we build upon the work presented in [4]. It pre-
dicts the best suitable grasping points of an object based on
a set of local visual descriptors of a single image. Figure 2
shows an example of such a probability map. This approach
uses Binomial-Beta distributions to model the probability
of successful and failed experiments. Based on this a non-
parametric kernel approach is employed to reason about un-
seen objects based on previous observations. Hence, this
already makes itself out to be largely independent of the
action of a programmer (parameter tuning, etc.). The only
point remaining is the supply of the labeled training data

Figure 1. The setup of the experiment.

(the outcome of concrete experiments). Since the experi-
ment’s result is considered to be a boolean value (failure or
success) this can easily be left to the robot.

In fact the used approach isn’t limited to grasping but
is suitable for affordances in general. The actual type and
application is defined by the experiment that provides the
success or failure state or in our case, by what the robot
considers as success. The overall (long-term) objective is
to carry on to a level where this is also learned as part of
the robot’s experience to enable unsupervised learning, as
implied in [5].

2. System Overview

Due to the progress of the ROBOTCUB project1 we in-
creasingly use the iCub for our experiments on learning
cognitive skills. The iCub is a humanoid robot designed to
replicate the physical capabilities of a three and a half year
old child. All in all it has 53 degrees of freedom (DOF)
including 9 DOF for each hand [3].

1http://www.robotcub.org/



Figure 2. The predicted probability map for an
upside down Martini glass. The brighter an
area is in the right image, the higher is the
probability for a successful grasp.

Figure 1 shows the setup consisting out of the iCub and
a simple table with objects on it. The robot is supposed to
perceive an object on the table, grasp and lift it and put it
back (drop it) afterwards. In this way we are able restart a
grasping experiment on the same object but every time with
a different orientation and viewing angle. The setup divides
into two disjoint modes of operation (cf. Figure 3): a) the
automated collection of training data for bootstrapping the
system and b) the application.

2.1. System bootstrapping

In this mode (cf. Figure 3a) we do not factor in learn-
ing or prediction of grasping points as described in [4] at
all. We rather make the robot explore the scene by grasp-
ing multiple times at various positions on the table. Hereto,
we aim at strategically selecting points that are the most ex-
pressive ones. This mainly applies for points on the object
or in its close surrounding.

To map a specific grasping point in the image (u, v) to
the actual object on the table (x, y, z)table we use a 2D
projective transformation (homography).The homography
is fully defined by the kinematics of the robot and the rel-
ative position of the table to the robot’s base coordinates.
Once the 3D coordinates of the object are determined we
are able to reach it and perform a grasping experiment.

For the classification of the current experiment we have
to determine if the robot holds (successfully grasped) an ob-
ject or not. The hands of the iCub lack tactile sensors which
would allow us to directly reason about the result. To over-
come this limitation we analyze the power consumption of
the individual joints when manipulating objects. The in-
creased consumption that a specific load implies gives us a
good index of if the hand envelopes an object. However, on
its own this doesn’t enable us to infer a reliable metric that
tells us how good or stable a grasp is. Therefore, once the
robot successfully grasped an object, we perform a dynamic
movement of the arm and check if the hand afterwards still
holds the object.
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Figure 3. System bootstrapping (a) and appli-
cation (b) schemes of the presented system
for a single image. The red arrow indicates
the extended ability of on-line learning.

2.2. Application

For the application setup we use the previously collected
data to predict good grasping points as described in [4]. Fur-
thermore we attempt to perform this analysis in an on-line
manner. Instead of assuming a fixed database of labeled
data we enable to extend this database over time and update
the prediction accordingly (cf. Figure 3b). This requires
us to derive the kernel parameters at every update of the
database. Since this is computational intensive we try to
keep the amount of training data small but expressive.

To do so we perform the following evaluation after ev-
ery grasping experiment for the feature vector (obtained by
generic filters applied to the saturation channel of the im-
age) at that particular point: In a first step we determine if a
feature x improves our current prediction of the probability
distribution: λ · (p − p∗)2 > (p − p′∗)2 with 0 < λ ≤ 1.
Whereas p is the observed outcome, p∗ the prediction based
on the previous state of the database and p′∗ the prediction
taking feature x into account. In case it actually improves
our prediction we search the database for similar features in
a second step. Given the database already contains a fea-
ture x′ that is “identical” d(x,x′) < ε1 only the observed
probability of feature x′ is adjusted. Otherwise we weight
the adjustment of the observations for all features within a
distance ε2. Only if there are no similar features the new
feature x is included without modifications.

3. Discussion and future work

Due to the use of YARP [2] for the implementation of
the software components, the system is also applicable to
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other robotic systems than the iCub. However, the homog-
raphy for projecting grasping points is bound to a robot’s
kinematics and needs to be adapted accordingly. The sec-
ond component of the homography refers to the projection
plane and it’s position relative to the robot. Therefore, it
is possible to vary the plane of operation (table tops, floor,
etc.) by adjusting this transformation. However, this rep-
resents another constraint to the experiment’s current envi-
ronment. To overcome this limitation we consider an exten-
sion to multiple predictions from different camera positions
and/or the use of stereo cameras as motivated in [8] in order
to replace the homography.

4. Conclusions

We outlined a system capable of independently perform-
ing the necessary experiments for learning object affor-
dances. Moreover we discussed strategies of selecting ex-
pressive features with respect to the approach presented in
[4]. The thereby achieved reduction of the required training
set for the statistical model enables an on-line extension of
the approach.
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