INSTITUTO SUPERIOR TÉCNICO
 IVP - Image and Video Processing

The goal of this problem is to help you familiarizing with stereo correspondence and reconstruction, by using a concrete example.

Consider a stereo pair characterized by the camera matrices

$$
\mathbf{P}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{P}_{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 10 \\
1 & 0 & 0 & -14 \\
0 & 0 & 0.5 & 0
\end{array}\right]
$$

Correspondences: using only the (projective) equality $\mathbf{x}=\mathbf{P X}$, answer to:
a) A 3D point \mathbf{X} projects onto a point of the line characterized by $y_{1}=2 x_{1}+1$ in the image of camera 1 and onto the point $\left(x_{2}, y_{2}\right)=(20,-10)$ in the image of camera 2 . Find the exact location of the projection of \mathbf{X} in the image of camera 1.
b) Is there any 3D point that projects onto $\left(x_{1}, y_{1}\right)=(0,0)$ in the image of camera 1 and onto $\left(x_{2}, y_{2}\right)=(20,-10)$ in the image of camera 2 ? If there is such a point, find its 3D coordinates; otherwise, find the region of the image of camera 1 collecting the projections of all 3D points that project onto $\left(x_{2}, y_{2}\right)=(20,-10)$ in the image of camera 2.

Correspondences using the fundamental matrix:

c) Compute the fundamental matrix \mathbf{F} for our pair of cameras.
d) Using the result obtained for \mathbf{F}, confirm your answers to a) and b) (or, equivalently, answer a) and b) again, now using \mathbf{F}).

Reconstruction:

e) Compute the 3D coordinates of \mathbf{X}.
f) Notice that you could not solve e) using \mathbf{F} alone, i.e., without knowing \mathbf{P}_{2} and \mathbf{P}_{2}. Why ? (to make the explanation crystal-clear, provide a different solution for \mathbf{X}, also valid according to \mathbf{F}).

