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Abstract

In this paper, we impose a rigidity constraint to the
motion between points and correspondence candidates ob-
tained by extracting local descriptors from an image pair.
In doing so, we are able to couple the estimation of corre-
spondences and motion within a single optimization prob-
lem, as a minimization of a cost function over a search grid
in two parameters, therefore bypassing the combinatorial
explosion inherent to the correspondence problem. The re-
sulting algorithm has polynomial complexity and optimal
properties when the camera parameters are known.

We demonstrate through a series of synthetic and real
data experiments the robustness of our method to outliers
and occlusion. We show the versatility in our algorithm’s
input, by coupling it with discriminative feature selection
algorithms (e.g., SIFT).

1. Introduction

Many problems in computer vision are solved by using
redundancy. Whether obtained from multiple cameras or
from a single camera over time and in different positions,
most of the solutions available require the position of a set
of points to be known in various images. The task of find-
ing these trajectories along the images, known as the corre-
spondence problem, is often relegated to a second role due
to its intrinsic combinatorial nature: to each point in the
first image corresponds a high cardinality set of respective
candidates in subsequent images (Fig. 1(a)).

Recently, methods [4, 6] were discovered that extract lo-
cal descriptors in images which not only possess interest-
ing properties (e.g., invariance to scale and rotation) but are
highly discriminative, easing their correspondence in a pair
of images by formulating it as a nearest neighbor problem.
The success of these techniques within the frameworks in
which they are currently used motivates its use in more gen-
eral settings, as is the case of 3D motion.

In this paper, we impose a rigidity constraint to the

motion between points and correspondence candidates ob-
tained by extracting local descriptors from an image pair. In
doing so, we are able to couple the estimation of correspon-
dences and motion within a single optimization problem,
as a minimization of a cost function over a search grid in
two parameters, therefore bypassing the combinatorial ex-
plosion inherent to this problem. The resulting algorithm
accurately estimates motion and correspondence with poly-
nomial complexity, finding an optimal solution when the
camera parameters are known.

The approach presented takes as input sets of point coor-
dinates, specifically a set of points in the first image, each
with a set of correspondence candidates in the second. With
this data, we estimate motion between both cameras and se-
lect a number of most likely candidates (Fig. 1(b)) for each
point in the first image (which, in particular, can be the case
of 1-to-1 correspondence).

Besides rigidity, we assume an orthographic projection
model is valid. Even though these assumptions are not re-
strictive, our method is able to cope objects exhibiting small
perspective effects.

Although the deduction hereby presented is particular-
ized for the case of candidate matches detected as having
the same intensity (which assumes a Lambertian object),
this method can easily be generalized to work with any fea-
ture extraction technique (we show examples of this in the
experimental section). Specifically, it enables us to merge

 
Points frame 1
Correspondences frame 2
Outliers frame 2

(a) input data

 
Points frame 1
Correspondences frame 2
Obtained results frame 2

(b) our method’s results

Figure 1. Points in a pair of images. The colors represent points
with equal intensity value.

1



cues from brightness and color without being prone to the
aperture problem.

The remainder of this paper is organized as follows:
Sec. 2 formulates our goal within an optimization frame-
work, after preliminary notions necessary to understand the
problem. Sec. 3 describes the steps taken in order to de-
rive the solution to the problem described in Sec. 2. Sec. 4
describes the experiments performed to assess the perfor-
mance of the algorithms. Finally, Sec. 5 presents closing
comments.

2. Problem formulation
We start by considering an image as an application

I : R2 7→ R3

that maps pixel coordinates into a certain intensity value.
We distinguish the frame f from an image sequence of the
same object by using the notation If , where f corresponds
to the frame index in the sequence. We also refer to the i-th
feature point present in the frame f by the coordinate vector
ui and to its intensity on frame f by If (ui).

2.1. Motion

Provided points have the same intensity value in different
frames, i.e., the object is Lambertian, the motion of the i-
th pixel between two frames I1 and I2 can be defined as a
space shift of the image function along both of its axis as

I1(xi, yi) = I2(xi + ∆xi, yi + ∆yi),

in which coefficients ∆xi and ∆yi respectively account for
the i-th pixel movement along the x and y axis.

2.2. Cameras

We model cameras as projection operators that transform
points in 3D space onto an image. We consider in this pa-
per that images are obtained according to an orthographic
camera model, valid when the variation of the object depths
is very small when compared to the distance between the
camera and the object. In this model, motions are obtained
by the composition of a matrix R ∈ R2×3 and a translation
vector t about the object coordinate system, comprising a
total of 5 degrees of freedom, as

H =
[

R t
]
. (1)

With R being an Euclidean coordinate change, it follows
that its rows are orthogonal and have unit norm. Therefore,
all possible matrices R constitute a Stiefel Manifold O(2, 3)
[2], the set of R2×3 matrices whose rows are orthonormal

O(2, 3) = {R ∈ R2×3 : RR> = I2}, (2)

where I2 ∈ R2×2 is the identity matrix. Since the singular
values of R are the square roots of the eigenvalues of RR>,
each of its singular values is equal to 1, see for instance [3].

2.3. Structure from Motion (SfM)

Using the camera definition on (1), we write the position
of N feature points along F image frames as the product
of a matrix M ∈ R2F×4 (obtained by stacking all cam-
era matrices H responsible for each frame) by a matrix
S> ∈ R4×N , containing the 3D coordinates of the N points
tracked in the object coordinate system, as

W = MS>. (3)

We consider the case of two sets W1 and W2, contain-
ing the coordinates of N points on a pair of images (F = 2).
Assuming the first camera coordinate system is aligned with
the object coordinate system and perpendicular to the z axis
[1], we can write M as

M =
[

I2 02

R t

]
,

where R ∈ R2×3 models the orientation of camera 2 rela-
tive to the object coordinate system and t ∈ R2 describes
the translation between the camera’s and object’s points of
origin.

By splitting R in the matrix A ∈ R2×2 and vector b ∈
R2 as

R =
[

A b
]
, (4)

the transformation between images W1 and W2 can be in-
terpreted as

W2 = AW1 + bz> + t1>, (5)

a three step transformation (Fig. 2) where 1> ∈ R1×N is a
vector of ones.
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Figure 2. Image motion decomposed in three sub-transformations:
the one applied by the operator A (left), translation along the vec-
tor b according to each point depth zi (center) and translation t
applied commonly to all points (right).

According to this formulation, in the SfM with corre-
spondences case, one wishes to find, given a set of point
trajectories along two frames, the unknowns A, b and t
that define the camera motion, as well as the unknown ob-
ject depths z, such that (5) holds.



2.4. SfM without correspondences as an optimiza-
tion problem

However, equations (3) and (5) are only valid for the case
where correspondences are known. The problem we formu-
late, on the other hand, makes no such assumption, and is
thus plagued with a large number of outliers in the form
of candidate matches. This fact alone is what constitutes
the main challenge of this problem, due to the combina-
toric explosion arising from the existence of several possi-
ble matches.

We are, however, able to surpass this curse of dimension-
ality and achieve an accurate solution with polynomial
complexity, by making use of the fact that the intensity is
independent from the object’s point of view (we assume a
Lambertian object). This way, point correspondences be-
tween images must display the same intensity value. For
the aforementioned case of two image frames W1 and W2,
this yields

I2(AW1 + bz> + t1>) = I1(W1),

a formulation that restricts the possible destinations each of
the i ∈ {1, . . . , N} points present in the image can take by
unifying rigidity and intensity constraints. We are now in
conditions to establish our problem statement.

Problem Statement Given I2, I1,W1 = [u1 . . . uN ],
find A,b, t, z such that

I2(Aui + bzi + t) ∈ Si, ∀i ∈ {1, . . . , N},

where Si represents the level curve of I2 with value given
by the intensity in image I1 at point ui. In practice, we have
small variations due to illumination and shading, so we con-
sider all points whose intensities are in the small polyhedron
centered in I1(ui) and defined by the `1 norm, as

Si = {v ∈ R2 : ||I1(ui)− I2(v)||1 ≤ ξ}. (6)

This formulation suggests the optimization problem of
finding correspondences such that the distance d of each
point Aui + bzi + t to its respective intensity level set Si

is minimized, or

minimize Φ(A,b)
subject to AA> + bb> = I2,

(7)

where

Φ(A,b) = inf
t∈R2,z∈RN

N∑
i=1

d(Aui + bzi + t,Si), (8)

the set distance d(·, ·) is defined using the Euclidean norm
as

d(xi,Si) = min
v∈Si

||xi − v||2

and the restriction AA> + bb> = I2 follows from (2) and
(4).

In words, we wish to find the transformation of type
(5) that best repositions points ui in the first image with
their respective level sets Si in the second image. By doing
this, we are not only able to assess the goodness of a cam-
era model given image intensity data, but obtain from the
level sets Si the correspondence candidates that best fit that
model.

3. Correspondence Estimation using Rigidity
and local Descriptors (CERD)

The question naturally arising at this point is how the
value of the cost function Φ(A,b), itself an optimization
problem, is calculated, given a known pair (A,b).

Let us start by decomposing t in two components

t = αb + γb⊥, ||b⊥||2 = 1,

where b⊥ stands for the orthogonal complement of b. In
doing so, we implicitly assume that b 6= 0, a condition
equivalent to not having a pure planar motion, as the influ-
ence of object depths in motion is confined within subspace.
Provided this condition is met, we are able to rewrite (8) as

Φ(A,b) = inf
α∈R,
γ∈R,

z∈RN

N∑
i=1

d(Aui +b(zi + α) + γb⊥,Si). (9)

There is an intrinsic ambiguity to finding the value of the
factors zi + α from its sum alone. Thus, we collapse these
two variables in zi (i.e., we assume α = 0 for simplicity),
rendering (9) as the optimization problem

Φ(A,b) = inf
γ∈R,z∈RN

N∑
i=1

d(Aui + bzi + γb⊥,Si),

which we further simplify by using the fact that the infimum
over two variables can be decoupled as

Φ(A,b) = inf
γ∈R

[
inf

z∈RN

N∑
i=1

d(Aui + bzi + γb⊥,Si)

]
.

(10)
As can be seen in Fig. 3, the effect of not knowing the

object depths zi is that every point in I2 belonging to the
line with direction given by the vector b that intersects the
point Aui + t is considered valid by the motion model.
All points in this line intersecting the level curve Si are,
therefore, considered correct correspondences. Having said
this, our problem becomes minimizing the distance of the
level curve Si to the line passing through the point Aui +
γb⊥ with direction b, or

Φ(A,b) = inf
γ∈R

N∑
i=1

d
(
(b⊥)>Aui + γ, (b⊥)>Si

)
. (11)
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Figure 3. Ambiguity of correspondence for known H and un-
known object depths z. The dashed lines represent the variation
of object depth z, making each intersection of the lines passing
along Aui with direction given by the vector b and level curves
Si a valid correspondence.

This new measure corresponds to projecting every point
in Si and Aui onto the subspace defined by b⊥. In this
subspace, the entire line passing through the point Aui with
direction b collapses in a single point, allowing a represen-
tation that is independent of the object depth zi.

In practice, since the image has a finite resolution, and
therefore a finite number of points, the level sets Si degen-
erate into discrete sets

Si = {vi,1, . . . ,vi,Ni
},

where Ni represents the number of points in the second im-
age in the level set Si. Hence, the set distance operator
d

(
(b⊥)>Aui + γ,b⊥>Si

)
is naturally defined as

min
k∈{1,··· ,Ni}

∣∣(b⊥)>Aui + t− (b⊥)>vi,k

∣∣ , (12)

the minimum distance between the point (b⊥)>Aui + γ
and every element in the set (b⊥)>Si

Since R ∈ O(2, 3), we are able to fully parameterize its
components A and b as

A =
[

cos θ − sin θ
sin θ cos θ

] [
1 0
0 r

] [
cos φ sinφ
− sinφ cos φ

]
, (13)

b = ±
[
− sin θ
cos θ

]√
1− r2, b⊥ = ±

[
cos θ
sin θ

]
. (14)

For the purposes of this discussion, we restrict the pair
(θ, φ) to the square [0, 2π[×[−π

2 , π
2 ], the minimum interval

necessary to span all possible matrices.

Using the definition of A and the expression for b⊥ in
(13), the product (b⊥)>A in (12) is simplified, yielding the
set distance d

(
(b⊥)>Aui + γ, (b⊥)>Si

)
as

min
k∈{1,··· ,Ni}

∣∣∣∣u>i [
cos φ
sinφ

]
+ γ − v>i,k

[
cos θ
sin θ

]∣∣∣∣ (15)

where we have factored out the sign indetermination in b⊥.
Note that despite R being defined univocally by the pa-

rameters (r, θ, φ), (15) only depends on the last two and
translation component γ. Besides that, the orthonormality
constraint in (7) is embedded within this equation. This al-
lows us to reformulate the optimization problem in (7) as
an unconstrained minimization of (11) with the set distance
d(·) defined as in (15).

3.1. Solving for translation

Since now we have defined how to calculate the value of
Φ(A,b) given A,b, let us assume that the camera parame-
ters are available. Since the parameters θ and φ are known,
the problem is reduced to

inf
γ∈R

C(γ) (16)

where the cost function C(γ) is

C(γ) =
N∑

i=1

d
(
(b⊥)>Aui + γ, (b⊥)>Si

)
(17)

and d(.) is defined as in (15).
According to this formulation, we wish to obtain from

the i ∈ {1, . . . , N} points in the first image and respective
sets of candidates Si (each with Ni prospective matches) in
the second image, a candidate vi,k ∈ Si for each point that
corroborates best the motion given by the camera parame-
ters A,b and the translation component γ.

The solution we propose relies on the key observation
that, in the absence of noise, γ is common to every correct
correspondence, i.e., it is given by the difference between
the point in the first image and it’s correct match in the sec-
ond image, when projected onto the subspace defined by
b⊥. As such, we restrict γ to forced correspondences be-
tween points in the first image and every possible candidates
in the second, as

γm,n = v>m,n

[
cos θ
sin θ

]
− u>m

[
cos φ
sinφ

]
, (18)

where um stands for the coordinates of the m-th point (m ∈
{1, . . . , N}) in image W1 and vm,n for the position of the
n-th correspondence candidate for point n in the level set
Sm.

This results in the confinement of (16) to a search in the
finite set of possible correspondences

Φ(A,b) = min
(m,n)∈{1,··· ,N}×{1,··· ,Nm}

C(γm,n) (19)



Note that this problem is equivalent to (16) in the absence
of noise, since the set of forced matches includes the correct
solution.

For the problem presented in (19), we present the fol-
lowing optimal solution: For each of the possible forced
correspondences γi,j , we select from the level sets Si the
best match for each of remaining N − 1 points in image
1 as the candidate with the least distance (i.e., the nearest
neighbor) according to the set distance d(·). We could have
restricted the search to one point in the first image and its
respective level set, but we chose to in order to account for
motions that might occlude some of the points in the image.

In doing this, we have reduced a problem with a num-
ber of possible assignments that is combinatoric

(
N×Ni

Ni

)
to

polynomial, with an algorithm that has a number of opera-
tions that approximates O

(
N2N2

i

)
.

In the case where the camera parameters are known and
the candidates available in the second image differ from
W2 only by a permutation matrix, such as in [5, 7], the op-
timal solution is given by attributing correspondences be-
tween each point and candidates according to the natural
order of the sets. This can be achieved by sorting both
constellations, a process with complexity of O

(
N log N

)
,

where N is the number of points considered in each image.

It should be noted that if the transformations that obtain
constellations 1 and 2 from W1 and W2 are not injective,
two points will have the same projection on the b⊥ axis;
in this case, the set order makes no distinction between the
two, therefore making it impossible to distinguish between
the possible correspondence solutions.

3.2. Solving for rotation

The cost function introduced in (17) assesses the extent
to which correspondences can be explained by a rigid, or-
thographic motion, allowing us to select the best candidates
for a motion given by a specific pair (θ, φ). Hence, the so-
lution mentioned in (19) for γ can be subsumed under a
broader algorithm that performs a discretized search on the
parameter grid (θ, φ) and calculates for each tuple the can-
didates that best agree with the given motion. This method,
which we call CERD, is summarized in Algorithm 1.

Since we perform a search throughout O(2, 3), this
method finds the global minimum of (19) up to a specified
grid resolution, giving as a byproduct the motion model and
point correspondences that generate it.

It should be noted that this algorithm can be categorized
as having a polynomial complexity ofO

(
NpN

2N2
c

)
, where

Np stands for the number of points the grid is discretized
in.

4. Experiments
In this section, we perform experiments to assess the per-

formance of CERD. We start by evaluating the algorithms
with synthetic data, both for the case of known (Sec 4.1)
and unknown (Sec. 4.2) camera parameters. Sec. 4.3 ex-
tends the results obtained in the previous sections using real
data. Finally, in Sec. 4.4 we couple our method with ex-
isting state of the art feature extracting algorithms, such as
SIFT.

For the synthetic experiments, we generate data as fol-
lows: we obtain a pair of random images, as follows: we
generate parameters t, r, θ, φ and the shape matrix S ac-
cording to a uniform distribution, the latter bound to the in-
terval [0, ws]. We then specify points in the first image (the
set W1) as the first and second rows of S> and obtain W2

according to the model in (5). We obtain each of the level
sets Si as the union of each point in W2 with an additional
Nc candidates, also generated from a uniform distribution
with window size ws. Additionally, if occlusion is to be
tested, we remove from a number 0 ≤ No ≤ N of ran-
domly selected level sets the original match in W2.

4.1. Known θ, φ

In this section, we present experiences assessing the be-
havior of the minimization proposed in (19), for a given pair
θ, φ, as described in Sec. 3.1.

Constellations on both image and on the projected axis.
In this experiment, we generated a pair of images with N =
5 points in the first frame and N level sets in the second,
each with Nc = 10 candidates.

We feed the algorithm with points W1 and level sets Si,
as well as the camera parameters θ and φ, leaving the cor-
rect matching between points in both images to be obtained.
Fig. 4 shows the variation of the cost function C(γm,n) for
each of the forced correspondences, with minima occurring
when each of the N points is matched with its correct pair.

The value of C(γ) in the global minima shows, despite
the considerable point distances between images 1 and 2

Algorithm 1 CERD — Correspondence Estimation using
Rigidity and local Descriptors.

Initialize Global Cost C = ∞
for all −π

2 ≤ φ ≤ π
2 do

for all 0 ≤ θ < 2π do
Calculate Φ(A,b) as in (19)
if Φ(A,b) better than C then

Update Global Cost C = Φ(A,b)
end if

end for
end for



(Fig. 1), that inliers in both constellations fully overlap af-
ter being projected in the subspace defined by b⊥ and sub-
tracting the translation component γm,n yielding the min-
ima. These results demonstrate the usability of this sub-
space not only for its dimensionality reduction but for its
independence from unknown variables r and z. In the ab-
sence of noise, our method is able to find the optimal
solution while bypassing the combinatoric nature of the
problem and coping with a high number of outliers.

Sensitivity to noise. In practice, images are subject to er-
rors inherent not only to sensor noise but to a discretization
in pixels. To illustrate the robustness to noise of our method,
we start by introducing the concept of average point dispar-
ity, which we define as the average of the `1 norm of the dis-
tance between ground truth (with noise) and the algorithm’s
output, for each of the N correspondences, or

1
N × ws

N∑
i=1

||v̂i − vi||1

where v̂i,vi stand respectively for each correct (ground
truth) and calculated match for point ui and ws is the nor-
malization constant that factors in the window size bound-
ing generated data (for simplicity sake, however we select
ws = 1). Note that by making this a distance measure rather
than a binary (match, mismatch) decision, the average point
disparity takes into account the case where the points ob-
tained are not the original candidate but a neighboring point.

We generate data with N = 5 points and Nc = 10 can-
didate matches. We apply to the each of the point inliers in
the second constellation AWGN with standard deviation σ
as a fraction of the window size ws and perform the mini-
mization in (19), measuring the variation of cost C(γm,n)
(Fig. 5) and average point disparity (Fig. 6) with the stan-
dard deviation of noise σ.

The results present in Fig. 6 show that the method’s abil-
ity to make correct matches decreases with the presence
of noise, being able to estimate correspondences within a
5% disparity bound while subject to noise levels around
σ = 1 × 10−3. Translating to a real case scenario, our
method is able to withstand noise levels corresponding to
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Figure 4. Behavior of C(γm,n) for N = 5 and Nc = 10.

having a measurement error greater than 6 pixels in approx-
imately 32 % of all points registered in a 4000×4000 pixels
(a 16 Megapixel image), a value by far greater than what is
obtained with today’s cameras.

On the other hand, the value of C(γm,n) increases with
σ, allowing us to conclude that an increase in noise levels
incurs in a fading of the separation between minima and the
remaining values for the cost function, making the match-
ing process more strenuous. In fact, Fig. 7, which shows the
variation of the cost function C(γm,n) for σ = 1 × 10−3,
illustrates this trend; while still showing 5 points with mini-
mum cost, the value at these points is several orders of mag-
nitude higher, when compared with the noiseless case pre-
sented in Fig. 4.
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Figure 6. Variation of average point disparity with AWGN of stan-
dard deviation σ averaged over 6000 tests.
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4.2. Fully automatic SfM

Building up on the experiments of Sec. 4.1, we now test
our algorithm as an automatic SfM recovery system. For
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Figure 8. Variation of cost function Φ(A,b), average point dis-
placement and camera parameters θ and φ estimation errors with
the number N of points and number Nc of candidate matches for a
grid resolution of 2500 points: (a) variation of Φ(A,b); (b) varia-
tion of average point disparity; (c) variation of estimation error for
θ; and, (d) variation of estimation error for φ.

this purpose, we only feed the algorithm the inputs W1 and
level sets Si generated as before, leaving the camera param-
eters to be estimated.

Variation with number of points and candidates. In
this experiment, we assess how the behavior of the cost
function Φ(A,b) and the average point disparity change
when the algorithm is subject to a variation on the number
of points N and the cardinality Nc of the level sets Si. Re-
sults are present in Fig. 8.

Several conclusions can be drawn from this experiment:

• The cost function Φ(A,b) values are small, indicating
a solution that respects both constraints is found for all
cases;

• Although Φ(A,b) values grow with the number of
points N , this phenomena is due to the fact that the cost
function is made of a larger set of residuals. This is a
consequence of grid discretization, and should there-
fore lose its importance as resolution is increased;

• Having more points in the first frame adds information
on the shape and possibly confines motion estimation,
allowing for better estimation of correspondence and
camera parameters θ and φ;

• On the other hand, an increase in the number of can-
didates Nc allows for a lower value of Φ(A,b), since
with more outliers, there are more possibilities of rear-
ranging data into explanations other than the one given
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Figure 9. Variation of cost function Φ(A,b) with camera param-
eters θ and φ for N = 5 points and Nc = 10 candidates for a
grid resolution of 2500 points (the cross in the contours represents
parameters θ, φ used to generate data): (a) contour obtained with
multiple candidates; and, (b) contour obtained with ground truth.

by ground truth, as can be inferred from the fact that
the considerable average point disparity;

• The fact that the estimation of motion parameters θ and
φ worsens as a the number of candidates Nc increases
can be attributed to the same reasons.

These results allow us to define a region for this grid
resolution of Nc ≤ N candidates to N points where the
number of outliers is such that they are not easily coupled
into an alternative valid motion model, thus encouraging
the proposed grid search approach. Within this region, our
method is able to successfully estimate motion and cor-
respondences from images alone in a non-combinatoric
fashion. To get a sense of what the cost function Φ(A,b)
profile is in this region, we show in Fig. 9 the cost function
obtained for N = 20 points and Nc = 10 candidates and the
cost function obtained by feeding only ground truth to Al-
gorithm 1. This figure shows that both cost functions exhibit
their global minimum in the same neighborhood, which co-
incides with the values of (θ, φ) used to generate data.

It should be noted, in this context, the feature extracting
mechanism is the sole responsible for the value of Nc. The
choice of local descriptors and their ability to discriminate
between possible matches is, therefore, important to avoid
multiple explanations for the data.

Grid resolution variation. For each of the test cases, we
now vary the resolution of the grid and measure the results
of the obtained camera parameters φ and θ against ground
truth, as well as the value of the cost function Φ(A,b) and
the average point disparity, for different values of the num-
ber of candidates Nc.

A comparison of the cost function variation Φ(A,b)
(Fig. 10) with the average point disparity (Fig. 11) shows
the existent correlation between the average point disparity
and the cost value. As the number of candidates increases,
however, this correlation becomes less evident for smaller
scales. From this experiment, we conclude that the grid res-
olution should be chosen according to the cardinality of the



level sets Si, therefore allowing the use of coarser resolu-
tions without degrading the results of motion and corre-
spondence estimation, something to consider as a trade-off
exists between using a finer resolution and computational
effort. It should be noted, however, that while a finer scale
allows a clearer distinction between some outlier arrange-
ments and the correct match, multiple arrangements that re-
spect rigidity constraints can still exist. In that case, all ex-
planations within these conditions are accepted as correct.

4.3. Real images

In this section, we exemplify the use of our algorithm to
find correspondences in a real case scenario.

Feature selection. For the real image experiments, we
have used a corner detector [8, 9] to find points of interest in
both images (in order to avoid the dimensionality explosion
inherent to considering entire surfaces as possible matches).
We randomly select, from the extracted corners, N points to
be processed. Care is taken so as to avoid using the same
point more than once, as is to discard points with a very
small number of candidates in the second frame. For each
of these points, we then collect the level sets Si by selecting
from the detected corners in image 2 according to intensity
restrictions.

Lego blocks. In this experiment, we test our method
against the 768×576 pixel image pair depicting Lego blocks
in different poses present in Fig. 12. This stereo pair is
a courtesy of the SYNTIM project database [10] and was
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Figure 10. Variation of Φ(A,b) with grid resolution and number
of candidates Nc for N = 10 points, averaged over 200 tests.

100 400 900 1600 2500 3600 4900
−20

0

20

40

60

80

100

120

140

160

180

Total number of points in grid

Av
er

ag
e 

po
in

t d
is

pa
rit

y 
(%

)

 

 
Nc = 2 Nc = 5 Nc = 10 Nc = 15

Figure 11. Variation of average point disparity with grid resolution
and number of candidates Nc for a set of N = 10 points, averaged
over 200 tests.

(a) Frame 1 (b) Frame 2

Figure 12. Lego blocks pair, INRIA c© copyright.

(a) Frame 1 (b) Frame 2

Figure 13. Corners detected by the algorithm in Lego blocks pair
for use in correspondence estimation.

captured with a calibrated setup. For this pair, the corner
detector extracted 57 and 69 points from Frames 1 and 2,
respectively. The distribution of these features through the
images can be seen in Fig. 13.

We used a grid with a total of 2500 points. The estimated
camera parameters and their error relative to ground truth
(Tab. 1) shows the error values obtained are similar to the
error due to grid discretization π√

2500
= 0.0628 rad.

Table 1. Error of estimated parameters in Lego blocks pair.
Parameter Value Estimated Error

r 0.9753 N/A N/A
φ 1.5610 1.5080 0.0531
θ 1.6052 1.5708 0.0344

The matching results (Fig. 14) show correct matches for
23 out of 24 points selected.

Figure 14. Matching results for Lego blocks pair. Red lines repre-
sent mismatches.

Lego blocks with occlusion. In this experiment, we take
the points selected in the previous experiment and remove



the ground truth match from S1. We obtain the same pa-

Figure 15. Matching results for Lego blocks pair with occluded
points. Blue line represents correspondence obtained for occluded
point. Red lines represent mismatches.

rameter estimation errors as before (Tab. 1) and the match-
ing results (Fig. 15) still show correct matches for 18 out of
24 points. These results show that the existence of light oc-
clusion does not seem to perturb the matching process for
the majority of remaining points, allowing us to conclude
that our method is able to estimate correspondences and
motion in a robust manner while being subject to a high
number of outliers and light occlusion.

Rubik’s cube. In this experiment, we test our method
against the 512×384 pixel image pair present in Fig. 16, de-
picting a Rubik’s cube with slight perspective effects, cap-
tured by the author with an uncalibrated camera. We dig-
itally edited the pictures to remove light reflections in the
black grid of the cube and to harmonize face colors between
frames. We selected 20 points in frame 1 and obtained level
sets in frame 2 with 5 to 19 candidates. Since the corner
detector didn’t detect some correct points in frame 2 as pos-
sible matches, we added them to their respective level sets
by hand. We used a grid with a total of 2500 points. The

(a) Frame 1 (b) Frame 2

Figure 16. Rubik’s cube pair.

matching results (Fig. 17) show correct matches for 15 out
of 20 points selected. Note that in this case, there are vari-
ous explanations of the data by different physical models.

However, if we extend these results to include 5 point
correspondences with the least cost for each point (Fig. 18),
these now include the majority (4 out of 5) of the cor-
rect matches not found previously. Considering the best 8
matches, the remaining correct match is included.

This experiment shows that in cases where correspon-
dence estimation is hard, our method is still able to
drastically reduce the cardinality of the set of possible
correspondence matches between frames obtained using
brightness constraints.

4.4. Coupling with feature extraction methods

In this section, we present a joint utilization of our
method with other features, to illustrate the versatility in
having our method’s input consist simply of bags of point
coordinates, regardless of whence they were obtained from.
For this purpose, we revisit the Rubik’s cube image pair, this
time in its original condition (Fig. 19). In this case corner
detection is not appropriate, as it detects features in the cube
grid and faces due to lighting variations (Fig. 20). This leads
to a large amount of features (663 and 1590 for the first and
second frame, resp.) and consequently, to a poor correspon-
dence estimation (Fig. 21), with no correct matches in the
set of 5 least cost matches.

We replace corners with SIFT features, proceeding as
follows: we extract from each of the frames image descrip-
tors using the implementation in [11] (Fig. 22); then, we

Figure 17. Matching results for Rubik’s cube pair. Red lines rep-
resent mismatches.

Figure 18. Results for best 5 matches in Rubik’s cube pair. Green
lines represent ground truth explanation.

(a) Frame 1 (b) Frame 2

Figure 19. Original Rubik’s cube pair



(a) Frame 1 (b) Frame 2

Figure 20. Corners detected by the algorithm in original Rubik’s
cube pair for use in correspondence estimation.

Figure 21. Correspondence results for original Rubik’s cube pair
using corners as features for a grid resolution of 2500 points.

(a) Frame 1 (b) Frame 2

Figure 22. Features detected by SIFT in the original Rubik’s cube
pair for use in correspondence estimation.

Figure 23. Correspondence results for original Rubik’s cube pair
using SIFT features for a grid resolution of 2500 points.

randomly select N = 20 points from the features in the first
frame and form, for each of them, their respective level sets
Si from the features in the second frame. Note that in this
experiment, we dismissed the scale and orientation informa-
tion embedded in the features, since having considerable 3D
motion does not allow a robust match based on these cues.
Results (Fig. 23) show a significant improvement over us-
ing corners as features. Out of 20 points, 13 are included in
the selection of 5 matches with least cost.

5. Conclusions
We have successfully designed and demonstrated

through experimentation a method (CERD) to estimate mo-
tion and correspondence between a pair of images by im-
posing global rigidity constraints to points and correspon-
dence candidates found using local descriptors. CERD has
polynomial complexity, therefore bypassing the combinato-
rial explosion associated with the correspondence problem.
Moreover, it is able to cope with large motions, mild occlu-
sion and a large number of outliers.

The resulting algorithm has optimal properties when the
camera parameters are known. When they are not, it per-
forms a two-parameter grid search on the motion space to
find the globally best possible explanations for the data.

The intrinsic ambiguity of having various possible ex-
planations for the data prevents the distinction of a specific
configuration as the “correct” one. This can be attenuated
by using more discriminative local descriptors to find points
and correspondence candidates.
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